Science.gov

Sample records for bemisia tabaci genome

  1. Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses

    PubMed Central

    Chen, Wenbo; Hasegawa, Daniel K.; Arumuganathan, Kathiravetpillai; Simmons, Alvin M.; Wintermantel, William M.; Fei, Zhangjun; Ling, Kai-Shu

    2015-01-01

    Whiteflies of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex are among the most important agricultural insect pests in the world. These phloem-feeding insects can colonize over 1000 species of plants worldwide and inflict severe economic losses to crops, mainly through the transmission of pathogenic viruses. Surprisingly, there is very little genomic information about whiteflies. As a starting point to genome sequencing, we report a new estimation of the genome size of the B. tabaci B biotype or Middle East-Asia Minor 1 (MEAM1) population. Using an isogenic whitefly colony with over 6500 haploid male individuals for genomic DNA, three paired-end genomic libraries with insert sizes of ~300 bp, 500 bp and 1 Kb were constructed and sequenced on an Illumina HiSeq 2500 system. A total of ~50 billion base pairs of sequences were obtained from each library. K-mer analysis using these sequences revealed that the genome size of the whitefly was ~682.3 Mb. In addition, the flow cytometric analysis estimated the haploid genome size of the whitefly to be ~690 Mb. Considering the congruency between both estimation methods, we predict the haploid genome size of B. tabaci MEAM1 to be ~680–690 Mb. Our data provide a baseline for ongoing efforts to assemble and annotate the B. tabaci genome. PMID:26463411

  2. Estimation of the Whitefly Bemisia tabaci Genome Size Based on k-mer and Flow Cytometric Analyses.

    PubMed

    Chen, Wenbo; Hasegawa, Daniel K; Arumuganathan, Kathiravetpillai; Simmons, Alvin M; Wintermantel, William M; Fei, Zhangjun; Ling, Kai-Shu

    2015-01-01

    Whiteflies of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex are among the most important agricultural insect pests in the world. These phloem-feeding insects can colonize over 1000 species of plants worldwide and inflict severe economic losses to crops, mainly through the transmission of pathogenic viruses. Surprisingly, there is very little genomic information about whiteflies. As a starting point to genome sequencing, we report a new estimation of the genome size of the B. tabaci B biotype or Middle East-Asia Minor 1 (MEAM1) population. Using an isogenic whitefly colony with over 6500 haploid male individuals for genomic DNA, three paired-end genomic libraries with insert sizes of ~300 bp, 500 bp and 1 Kb were constructed and sequenced on an Illumina HiSeq 2500 system. A total of ~50 billion base pairs of sequences were obtained from each library. K-mer analysis using these sequences revealed that the genome size of the whitefly was ~682.3 Mb. In addition, the flow cytometric analysis estimated the haploid genome size of the whitefly to be ~690 Mb. Considering the congruency between both estimation methods, we predict the haploid genome size of B. tabaci MEAM1 to be ~680-690 Mb. Our data provide a baseline for ongoing efforts to assemble and annotate the B. tabaci genome.

  3. Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae)

    PubMed Central

    Guo, Li T.; Wang, Shao L.; Wu, Qing J.; Zhou, Xu G.; Xie, Wen; Zhang, You J.

    2015-01-01

    The genome sizes of the B- and Q-types of the whitefly Bemisia tabaci (Gennnadius) were estimated using flow cytometry (Drosophila melanogaster as the DNA reference standard and propidium iodide (PI) as the fluorochrome) and k-mer analysis. For flow cytometry, the mean nuclear DNA content was 0.686 pg for B-type males, 1.392 pg for B-type females, 0.680 pg for Q-type males, and 1.306 pg for Q-type females. Based on the relationship between DNA content and genome size (1 pg DNA = 980 Mbp), the haploid genome size of B. tabaci ranged from 640 to 682 Mbp. For k-mer analysis, genome size of B-type by two methods were consistent highly, but the k-mer depth distribution graph of Q-type was not enough perfect and the genome size was estimated about 60 M larger than its flow cytometry result. These results corroborate previous reports of genome size based on karyotype analysis and chromosome counting. However, these estimates differ from previous flow cytometry estimates, probably because of differences in the DNA reference standard and dyeing time, which were superior in the current study. For Q-type genome size difference by two method, some discussion were also stated, and all these results represent a useful foundation for B. tabaci genomics research. PMID:26042041

  4. The genome of sweetpotato whitefly Bemisia tabaci, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies are among the most important agricultural pests. They have a broad range of host plants and exceptional ability to transmit a large number of plant viruses, and can rapidly evolve insecticide resistance. Here we present a high-quality draft genome of the whitefly, Bemisia tabaci. Comparat...

  5. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex

    PubMed Central

    2013-01-01

    Background The whiteflies under the name Bemisia tabaci (Gennadius) (Aleyrodidae: Hemiptera) are species complex of at least 31 cryptic species some of which are globally invasive agricultural pests. Previously, the mitochondrial genome (mitogenome) of the indigenous New World B. tabaci species was sequenced and major differences of gene order from the postulated whitefly ancestral gene order were found. However, the sequence and gene order of mitogenomes in other B. tabaci species are unknown. In addition, the sequence divergences and gene expression profiles of mitogenomes in the B. tabaci species complex remain completely unexplored. Results In this study, we obtained the complete mitogenome (15,632 bp) of the invasive Mediterranean (MED), which has been identified as the type species of the B. tabaci complex. It encodes 37 genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNAs and 22 transfer RNAs (tRNA). Comparative analyses of the mitogenomes from MED and New World (previously published) species reveal that there are no gene arrangements. Based on the Illumina sequencing data, the gene expression profile of the MED mitogenome was analyzed. We found that a number of genes were polyadenylated and the partial stop codons in cox1, cox2 and nd5 are completed via polyadenylation that changed T to the TAA stop codon. In addition, combining the transcriptome with the sequence alignment data, the possible termination site of some PCGs were defined. Our analyses also revealed that atp6 and atp8, nd4 and nd4l, nd6 and cytb were found on the same cistronic transcripts, whereas the other mature mitochondrial transcripts were monocistronic. Furthermore, RT-PCR analyses of the mitochondrial PCGs expression in different developmental stages revealed that the expression level of individual mitochondrial genes varied in each developmental stage of nymph, pupa and adult. Interestingly, mRNA levels showed significant differences among genes located in the same

  6. Genome sequencing and analysis of the whitefly (Bemisia tabaci) MEAM1, one of the most important vectors for plant viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among whiteflies, the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex is particularly important because of its ability to transmit hundreds of plant viruses, resulting in the loss of billions of U.S. dollars on agronomically important crops such as tomato, cucurbits, cassava, and cotton worl...

  7. Estimation of the whitefly Bemisia tabaci genome size based on k-mer and flow cytometry analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae), are one of the most important agricultural insect pests in the world. These phloem-feeding insects can colonize over 500 crop plants worldwide and inflict severe economic losses, mainly through the transmission of pathogenic viruses. Surprisingl...

  8. Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I.

    PubMed

    Zhu, Dan-Tong; Xia, Wen-Qiang; Rao, Qiong; Liu, Shu-Sheng; Ghanim, Murad; Wang, Xiao-Wei

    2016-08-01

    The whitefly, Bemisia tabaci, harbors the primary symbiont 'Candidatus Portiera aleyrodidarum' and a variety of secondary symbionts. Among these secondary symbionts, Rickettsia is the only one that can be detected both inside and outside the bacteriomes. Infection with Rickettsia has been reported to influence several aspects of the whitefly biology, such as fitness, sex ratio, virus transmission and resistance to pesticides. However, mechanisms underlying these differences remain unclear, largely due to the lack of genomic information of Rickettsia. In this study, we sequenced the genome of two Rickettsia strains isolated from the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex in China and Israel. Both Rickettsia genomes were of high coding density and AT-rich, containing more than 1000 coding sequences, much larger than that of the coexisted primary symbiont, Portiera. Moreover, the two Rickettsia strains isolated from China and Israel shared most of the genes with 100% identity and only nine genes showed sequence differences. The phylogenetic analysis using orthologs shared in the genus, inferred the proximity of Rickettsia in MEAM1 and Rickettsia bellii. Functional analysis revealed that Rickettsia was unable to synthesize amino acids required for complementing the whitefly nutrition. Besides, a type IV secretion system and a number of virulence-related genes were detected in the Rickettsia genome. The presence of virulence-related genes might benefit the symbiotic life of the bacteria, and hint on potential effects of Rickettsia on whiteflies. The genome sequences of Rickettsia provided a basis for further understanding the function of Rickettsia in whiteflies. PMID:27273750

  9. The Genome of Cardinium cBtQ1 Provides Insights into Genome Reduction, Symbiont Motility, and Its Settlement in Bemisia tabaci

    PubMed Central

    Santos-Garcia, Diego; Rollat-Farnier, Pierre-Antoine; Beitia, Francisco; Zchori-Fein, Einat; Vavre, Fabrice; Mouton, Laurence; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.

    2014-01-01

    Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors’ gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out. PMID:24723729

  10. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci.

    PubMed

    Santos-Garcia, Diego; Rollat-Farnier, Pierre-Antoine; Beitia, Francisco; Zchori-Fein, Einat; Vavre, Fabrice; Mouton, Laurence; Moya, Andrés; Latorre, Amparo; Silva, Francisco J

    2014-04-01

    Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors' gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out.

  11. Ecological determinants of resistance to insecticides in Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insecticide resistance is a critical issue in pest management and has often been implicated as the primary cause of outbreaks of the global whitefly pest Bemisia tabaci Gennadius. Resistance to all modes of action used commonly against B. tabaci has been documented in various locations throughout t...

  12. The Importance of Maintaining Protected Zone Status against Bemisia tabaci

    PubMed Central

    Cuthbertson, Andrew G. S.; Vänninen, Irene

    2015-01-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major pest of economically important crops worldwide. Both the United Kingdom (UK) and Finland hold Protected Zone status against this invasive pest. As a result B. tabaci entering these countries on plants and plant produce is subjected to a policy of eradication. The impact of B. tabaci entering, and becoming established, is that it is an effective vector of many plant viruses that are not currently found in the protected zones. The Mediterranean species is the most commonly intercepted species of B. tabaci entering both the UK and Finland. The implications of maintaining Protected Zone status are discussed. PMID:26463194

  13. Long term dynamics of aphelinid parasitoids attacking Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphelinid parasitoids are widely known natural enemies of Bemisia tabaci, a serious pest of agriculture globally. Here we examine pest and parasitoid interactions and dynamics in cotton from 1996–2010, during which a classical biological control program was underway. Two native species, Eremocerus e...

  14. Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility to spiromesifen, a tetronic acid derivative, was determined for three imidacloprid-resistant strains and 12 geographically discrete natural populations of Bemisia tabaci (Gennadius) (= Bemisia argentifolii Bellows and Perring) from California and Arizona by laboratory bioassays. Newl...

  15. Will the Real Bemisia tabaci Please Stand Up?

    PubMed Central

    Tay, Wee Tek; Evans, Gregory A.; Boykin, Laura M.; De Barro, Paul J.

    2012-01-01

    Since Panayiotis Gennadius first identified the whitefly, Aleyrodes tabaci in 1889, there have been numerous revisions of the taxonomy of what has since become one of the world's most damaging insect pests. Most of the taxonomic revisions have been based on synonymising different species under the name Bemisia tabaci. It is now considered that there is sufficient biological, behavioural and molecular genetic data to support its being a cryptic species complex composed of at least 34 morphologically indistinguishable species. The first step in revising the taxonomy of this complex involves matching the A. tabaci collected in 1889 to one of the members of the species complex using molecular genetic data. To do this we extracted and then amplified a 496 bp fragment from the 3′ end of the mitochondrial DNA cytochrome oxidase one (mtCOI) gene belonging to a single whitefly taken from Gennadius' original 1889 collection. The sequence identity of this 123 year-old specimen enabled unambiguous assignment to a single haplotype known from 13 Mediterranean locations across Greece and Tunisia. This enabled us to unambiguously assign the Gennadius A. tabaci to the member of the B. tabaci cryptic species complex known as Mediterranean or as it is commonly, but erroneously referred to, as the ‘Q-biotype’. Mediterranean is therefore the real B. tabaci. This study demonstrates the importance of matching museum syntypes with known species to assist in the delimitation of cryptic species based on the organism's biology and molecular genetic data. This study is the first step towards the reclassification of B. tabaci which is central to an improved understanding how best to manage this globally important agricultural and horticultural insect pest complex. PMID:23209778

  16. [Host plants of Bemisia tabaci (Homoptera: Aleyrodidae) in Cuba].

    PubMed

    Vázquez, L L; Jiménez, R; de la Iglesia, M; Mateo, A; Borges, M

    1997-03-01

    The sweet potato white fly, Bemisia tabaci, is an important pest of tomatoes and beans, among other crops, which transmits viral diseases. Since the second quarter of 1989 a significant population increase of this pest has been noted in several cultivated plants. From 1989 to 1992, a survey was done throughout the country, chiefly in vegetable and bean-producing areas. They occur in 119 species (42 families), a great increase over the previous record of four species. Worldwide, this report represents 50 species and six families which are new records.

  17. Comparative susceptibility of bemisia tabaci to imidacloprid in field- and laboratory-based bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci biotype B is a resistance-prone pest of protected and open agriculture. Systemic uptake bioassays used in resistance monitoring programs have provided important information on susceptibility to neonicotinoid insecticides, but have remained decoupled from field performance. Simultaneou...

  18. Monitoring changes in bemisia tabaci susceptibility to neonicotinoid insecticides in Arizona and California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory bioassays were carried out on field-collected and laboratory strains of Bemisia tabaci to evaluate relative toxicities of four neonicotinoid insecticides: acetamiprid, dinotefuran, imidacloprid and thiamethoxam. Susceptibility to all four neonicotinoids in leaf-uptake bioassays varied co...

  19. First report of the Q biotype of Bemisia tabaci (Gennadius) in Guatemala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci (Gennadius) adults were collected from poinsettia plants at a commercial greenhouse, bean and zucchini vegetable fields, weed species, and wild ornamentals species in selected locations in Guatemala. Both adult and immature whiteflies were observed on infested poinsettias. Whiteflies ...

  20. Impact of Vapor Pressure Deficit on the Performance of Bemisia tabaci: Adult, Nymphal, and Egg Survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B-biotype sweetpotato whitefly, Bemisia tabaci, is a serious global pest with varying population dynamics among different ecosystems. An experiment was conducted to assess the impact of vapor pressure deficit (VPD) on the survival of adults, nymphs and eggs of B. tabaci. The insects were reared...

  1. Implication of Bemisia tabaci heat shock protein 70 in Begomovirus-whitefly interactions.

    PubMed

    Götz, Monika; Popovski, Smadar; Kollenberg, Mario; Gorovits, Rena; Brown, Judith K; Cicero, Joseph M; Czosnek, Henryk; Winter, Stephan; Ghanim, Murad

    2012-12-01

    The whitefly Bemisia tabaci (Gennadius) is a major cosmopolitan pest capable of feeding on hundreds of plant species and transmits several major plant viruses. The most important and widespread viruses vectored by B. tabaci are in the genus Begomovirus, an unusual group of plant viruses owing to their small, single-stranded DNA genome and geminate particle morphology. B. tabaci transmits begomoviruses in a persistent circulative nonpropagative manner. Evidence suggests that the whitefly vector encounters deleterious effects following Tomato yellow leaf curl virus (TYLCV) ingestion and retention. However, little is known about the molecular and cellular basis underlying these coevolved begomovirus-whitefly interactions. To elucidate these interactions, we undertook a study using B. tabaci microarrays to specifically describe the responses of the transcriptomes of whole insects and dissected midguts following TYLCV acquisition and retention. Microarray, real-time PCR, and Western blot analyses indicated that B. tabaci heat shock protein 70 (HSP70) specifically responded to the presence of the monopartite TYLCV and the bipartite Squash leaf curl virus. Immunocapture PCR, protein coimmunoprecipitation, and virus overlay protein binding assays showed in vitro interaction between TYLCV and HSP70. Fluorescence in situ hybridization and immunolocalization showed colocalization of TYLCV and the bipartite Watermelon chlorotic stunt virus virions and HSP70 within midgut epithelial cells. Finally, membrane feeding of whiteflies with anti-HSP70 antibodies and TYLCV virions showed an increase in TYLCV transmission, suggesting an inhibitory role for HSP70 in virus transmission, a role that might be related to protection against begomoviruses while translocating in the whitefly. PMID:23015709

  2. Host plant influences on susceptibility of bemisia tabaci (Hemiptera: Aleyrodidae) to insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : A resistance monitoring program conducted for the polyphagous whitefly Bemisia tabaci (Gennadius) in Imperial Valley, CA, USA generated a large set of LC50s for adults collected from broccoli, cantaloupe and cotton crops over a four-year period. A vial bioassay and subsequently a yellow-sticky ca...

  3. Natural enemy impacts on bemisia tabaci dominate plant quality effects in the cotton system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant quality (bottom-up effects) and natural enemies (top-down effects) affect herbivore performance and population dynamics; plant quality can influence the impact of natural enemies. Lower plant quality through reduced irrigation generally increases the abundance of Bemisia tabaci Gennadius (Aley...

  4. Population genetics of invasive Bemisia tabaci cryptic species in the United States based on microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bemisia tabaci cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the U.S. MEAM1 occurs both in the field and in the greenhouse but MED is only found in the greenhouse. In order to make inferences about th...

  5. Population genetics of invasive Bemisia tabaci cryptic species in the United States based on microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bemisia tabaci cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the United States MEAM1 occurs both in the field and in the greenhouse, but MED is only found in the greenhouse. In order to make inference...

  6. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some hemipteran xylem and phloem feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber...

  7. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...

  8. Insecticidal Activity of Chromobacterium subtsugae on the Sweet Potato Whitefly, Bemisia tabaci, Biotype B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromobacterium subtsugae crude extracts contain compounds that are toxic to nymphal and adult Bemisia tabaci. When fed on artificial diet containing 10% of the supernatant of an aqueous cell-free extract of C subtsugae, the number of 2nd and 4th instar nymphs and of emerged adults was significantl...

  9. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America following the Q invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After the 2004 discovery of the Bemisia tabaci (Gennadius) Q biotype in the U.S., there was a vital need to determine its distribution and its interaction with the resident B biotype because of its innate ability to rapidly develop high level insecticide resistance that does not revert back to susce...

  10. Effect of dinotefuran on Bemisia tabaci (MED whitefly) and Amblyseius swirskii, 2016

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci is a polyphagous pest known to feed upon over 900 plant taxa, and is an effective vector of more than 100 plant damaging viruses. Among different biotypes of this cryptic species complex, MEAM1 and MED whitefly are the two most destructive members posing threats of several crops of ec...

  11. Insecticidal Activity of Some Reducing Sugars Against the Sweet Potato Whitefly, Bemisia tabaci, Biotype B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of 15 sugars on sweet potato whitefly (Bemisia tabaci) survival were determined using bioassays. Arabinose, mannose, ribose and xylose were strongly inhibitory to both nymphal and adult survival. When 10% mannose was added to the diet, 10.5%, 1.0% and 0% of nymphs developed to the 2nd, ...

  12. Molecular Characterization of Vitellogenin and Vitellogenin Receptor of Bemisia tabaci.

    PubMed

    Upadhyay, Santosh Kumar; Singh, Harpal; Dixit, Sameer; Mendu, Venugopal; Verma, Praveen C

    2016-01-01

    Vitellogenin (Vg) plays vital role in oocytes and embryo development in insects. Vg is synthesized in the fat body, moves through haemolymph and accumulates in oocytes. Vitellogenin receptors (VgR) present on the surface of oocytes, are responsible for Vg transportation from haemolymph to oocytes. Here, we cloned and characterized these genes from Bemisia tabaci Asia1 (BtA1) species. The cloned BtA1Vg and BtA1VgR genes consisted of 6,330 and 5,430 bp long open reading frames, which encoded 2,109 and 1,809 amino acid (AA) residues long protein. The BtA1Vg protein comprised LPD_N, DUF1943 and VWFD domains, typical R/KXXR/K, DGXR and GL/ICG motifs, and polyserine tracts. BtA1VgR protein contained 12 LDLa, 10 LDLb and 7 EGF domains, and a trans-membrane and cytoplasmic region at C-terminus. Phylogenetic analyses indicated evolutionary association of BtA1Vg and BtA1VgR with the homologous proteins from various insect species. Silencing of BtA1VgR by siRNA did not affect the transcript level of BtA1Vg. However, BtA1Vg protein accumulation in oocytes was directly influenced with the expression level of BtA1VgR. Further, BtA1VgR silencing caused significant mortality and reduced fecundity in adult whiteflies. The results established the role of BtA1VgR in transportation of BtA1Vg in oocytes. Further, these proteins are essential for fecundity, and therefore these can be potential RNAi targets for insect control in crop plants. PMID:27159161

  13. Molecular Characterization of Vitellogenin and Vitellogenin Receptor of Bemisia tabaci

    PubMed Central

    Upadhyay, Santosh Kumar; Singh, Harpal; Dixit, Sameer; Mendu, Venugopal; Verma, Praveen C.

    2016-01-01

    Vitellogenin (Vg) plays vital role in oocytes and embryo development in insects. Vg is synthesized in the fat body, moves through haemolymph and accumulates in oocytes. Vitellogenin receptors (VgR) present on the surface of oocytes, are responsible for Vg transportation from haemolymph to oocytes. Here, we cloned and characterized these genes from Bemisia tabaci Asia1 (BtA1) species. The cloned BtA1Vg and BtA1VgR genes consisted of 6,330 and 5,430 bp long open reading frames, which encoded 2,109 and 1,809 amino acid (AA) residues long protein. The BtA1Vg protein comprised LPD_N, DUF1943 and VWFD domains, typical R/KXXR/K, DGXR and GL/ICG motifs, and polyserine tracts. BtA1VgR protein contained 12 LDLa, 10 LDLb and 7 EGF domains, and a trans-membrane and cytoplasmic region at C-terminus. Phylogenetic analyses indicated evolutionary association of BtA1Vg and BtA1VgR with the homologous proteins from various insect species. Silencing of BtA1VgR by siRNA did not affect the transcript level of BtA1Vg. However, BtA1Vg protein accumulation in oocytes was directly influenced with the expression level of BtA1VgR. Further, BtA1VgR silencing caused significant mortality and reduced fecundity in adult whiteflies. The results established the role of BtA1VgR in transportation of BtA1Vg in oocytes. Further, these proteins are essential for fecundity, and therefore these can be potential RNAi targets for insect control in crop plants. PMID:27159161

  14. New records of entomopathogenic fungi infecting Bemisia tabaci and Trialeurodes vaporariorum, pests of horticultural crops, in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whiteflies (Hemiptera: Aleyrodidae) Bemisia tabaci (Gennadius), and Trialeurodes vaporariorum (Westwood) are major crop pests throughout the world. Although extensive research about biological control of whitefly has been conducted towards these insect's parasitoids and predators, several entom...

  15. Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study on the compatibility of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) with neem was conducted against sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on eggplant. Initially, three concentrations of B. bassiana (106, 1...

  16. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci.

    PubMed

    Fang, Yong; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Shi, Xiaobin; Chen, Gong; Su, Qi; Yang, Xin; Pan, Huipeng; Zhang, Youjun

    2013-01-01

    Bemisia tabaci, the whitefly vector of Tomato yellow leaf curl virus (TYLCV), seriously reduces tomato production and quality. Here, we report the first evidence that infection by TYLCV alters the host preferences of invasive B. tabaci B (Middle East-Minor Asia 1) and Q (Mediterranean genetic group), in which TYLCV-free B. tabaci Q preferred to settle on TYLCV-infected tomato plants over healthy ones. TYLCV-free B. tabaci B, however, preferred healthy tomato plants to TYLCV-infected plants. In contrast, TYLCV-infected B. tabaci, either B or Q, did not exhibit a preference between TYLCV-infected and TYLCV-free tomato plants. Based on gas chromatography-mass spectrometry (GCMS)analysis of plant terpene volatiles, significantly more β-myrcene, thymene, β-phellandrene, caryophyllene, (+)-4-carene, and α-humulene were released from the TYLCV-free tomato plants than from the TYLCV-infected ones. The results indicate TYLCV can alter the host preferences of its vector Bemisia tabaci B and Q. PMID:24096821

  17. Interspecific interactions between Bemisia tabaci biotype B and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    PubMed

    Zhang, Gui-Fen; Li, Dong-Chao; Liu, Tong-Xian; Wan, Fang-Hao; Wang, Jin-Jun

    2011-02-01

    Bemisia tabaci (Gennadius) biotype B and Trialeurodes vaporariorum (Westwood) are invasive whitefly species that often co-occur on greenhouse-grown vegetables in northern China. Although B. tabaci biotype B has been present in China for a relatively short period of time, it has become dominant over T. vaporariorum. We studied the interspecific competitive interactions between the two species in single or mixed cultures at 24 ± 1 °C, 40 ± 5% RH, and L14:D10 h photoperiod. Female longevity on tomato was not significantly different between species, but B. tabaci reproduced 4.3 to 4.9 fold more progeny. The ratio of female to male progeny in both instances was greater for B. tabaci. When cultured on tomato, cotton, and tobacco, B. tabaci developed 0.8, 3.3, and 4.7 d earlier in single culture, and 1.8, 3.9, and 4.3 d earlier in mixed culture. B. tabaci displaced T. vaporariorum in four, five and six generations when the initial ratios of B. tabaci to T. vaporariorum were 15:15, 20:10, or 10:20 on tomato. Populations of B. tabaci were 2.3 fold higher than that of T. vaporariorum on tomato plants for seven consecutive generations in single culture. B. tabaci performed better in development, survival, fecundity, and female ratio. We conclude that B. tabaci could displace T. vaporariorum in as short as four generations in a controlled greenhouse environment when they start at equal proportions. Warmer greenhouse conditions and an increase in total greenhouse area could be contributing factors in the recent dominance of B. tabaci.

  18. Prey Preference and Life Table of Amblyseius orientalis on Bemisia tabaci and Tetranychus cinnabarinus.

    PubMed

    Zhang, Xiaoxiao; Lv, Jiale; Hu, Yue; Wang, Boming; Chen, Xi; Xu, Xuenong; Wang, Endong

    2015-01-01

    Amblyseius orientalis (Ehara) (Acari: Phytoseiidae) is a native predatory mite species in China. It used to be considered as a specialist predator of spider mites. However, recent studies show it also preys on other small arthropod pests, such as Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Experiments were conducted to investigate (1) prey preference of A. orientalis between Tetranychus cinnabarinus (Boisd.) (Acari: Tetranychidae) and B. tabaci, and (2) development, consumption and life table parameters of A. orientalis when reared on T. cinnabarinus, B. tabaci or a mix of both prey species. When preying on different stages of T. cinnabarinus, A. orientalis preferred protonymphs, whereas when preying on different stages of B. tabaci, A. orientalis preferred eggs. When these two most preferred stages were provided together (T. cinnabarinus protonymphs and B. tabaci eggs), A. orientalis randomly selected its prey. Amblyseius orientalis was able to complete its life cycle on B. tabaci eggs, T. cinnabarinus protonymphs, or a mix of both prey. However, its developmental duration was 53.9% and 30.0% longer when reared on B. tabaci eggs than on T. cinnabarinus and a mix of both prey, respectively. In addition, it produced only a few eggs and its intrinsic rate of increase was negative when reared on B. tabaci eggs, which indicates that B. tabaci is not sufficient to maintain A. orientalis population. The intrinsic rates of increase were 0.16 and 0.23 when A. orientalis was fed on the prey mix and T. cinnabarinus, respectively. These results suggest that although B. tabaci is a poor food resource for A. orientalis in comparison to T. cinnabarinus, A. orientalis is able to sustain its population on a mix of both prey. This predatory mite may thus be a potential biological control agent of B. tabaci when this pest co-occurs with the alternative minor pest T. cinnabarinus. PMID:26436422

  19. Prey Preference and Life Table of Amblyseius orientalis on Bemisia tabaci and Tetranychus cinnabarinus

    PubMed Central

    Hu, Yue; Wang, Boming; Chen, Xi; Xu, Xuenong; Wang, Endong

    2015-01-01

    Amblyseius orientalis (Ehara) (Acari: Phytoseiidae) is a native predatory mite species in China. It used to be considered as a specialist predator of spider mites. However, recent studies show it also preys on other small arthropod pests, such as Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Experiments were conducted to investigate (1) prey preference of A. orientalis between Tetranychus cinnabarinus (Boisd.) (Acari: Tetranychidae) and B. tabaci, and (2) development, consumption and life table parameters of A. orientalis when reared on T. cinnabarinus, B. tabaci or a mix of both prey species. When preying on different stages of T. cinnabarinus, A. orientalis preferred protonymphs, whereas when preying on different stages of B. tabaci, A. orientalis preferred eggs. When these two most preferred stages were provided together (T. cinnabarinus protonymphs and B. tabaci eggs), A. orientalis randomly selected its prey. Amblyseius orientalis was able to complete its life cycle on B. tabaci eggs, T. cinnabarinus protonymphs, or a mix of both prey. However, its developmental duration was 53.9% and 30.0% longer when reared on B. tabaci eggs than on T. cinnabarinus and a mix of both prey, respectively. In addition, it produced only a few eggs and its intrinsic rate of increase was negative when reared on B. tabaci eggs, which indicates that B. tabaci is not sufficient to maintain A. orientalis population. The intrinsic rates of increase were 0.16 and 0.23 when A. orientalis was fed on the prey mix and T. cinnabarinus, respectively. These results suggest that although B. tabaci is a poor food resource for A. orientalis in comparison to T. cinnabarinus, A. orientalis is able to sustain its population on a mix of both prey. This predatory mite may thus be a potential biological control agent of B. tabaci when this pest co-occurs with the alternative minor pest T. cinnabarinus. PMID:26436422

  20. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly.

    PubMed

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A; Scheffler, Brian E; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  1. RNA Interference based Approach to Down Regulate Osmoregulators of Whitefly (Bemisia tabaci): Potential Technology for the Control of Whitefly

    PubMed Central

    Raza, Amir; Malik, Hassan Jamil; Shafiq, Muhammad; Amin, Imran; Scheffler, Jodi A.; Scheffler, Brian E.; Mansoor, Shahid

    2016-01-01

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops. PMID:27105353

  2. The Endosymbiont Hamiltonella Increases the Growth Rate of Its Host Bemisia tabaci during Periods of Nutritional Stress

    PubMed Central

    Su, Qi; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Liu, Baiming; Fang, Yong; Xu, Baoyun; Zhang, Youjun

    2014-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) harbors several bacterial symbionts. Among the secondary (facultative) symbionts, Hamiltonella has high prevalence and high infection frequencies, suggesting that it may be important for the biology and ecology of its hosts. Previous reports indicated that Hamiltonella increases whitefly fitness and, based on the complete sequencing of its genome, may have the ability to synthesize cofactors and amino acids that are required by its host but that are not sufficiently synthesized by the host or by the primary endosymbiont, Portiera. Here, we assessed the effects of Hamiltonella infection on the growth of B. tabaci reared on low-, standard-, or high-nitrogen diets. When B. tabaci was reared on a standard-nitrogen diet, no cost or benefit was associated with Hamiltonella infection. But, if we reared whiteflies on low-nitrogen diets, Hamiltonella-infected whiteflies often grew better than uninfected whiteflies. Furthermore, nitrogen levels in field-collected whiteflies indicated that the nutritional conditions in the field were comparable to the low-nitrogen diet in our laboratory experiment. These data suggest that Hamiltonella may play a previously unrecognized role as a nutritional mutualist in B. tabaci. PMID:24558462

  3. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci

    PubMed Central

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A.; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R.; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  4. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci.

    PubMed

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  5. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers.

    PubMed

    Shatters, Robert G; Powell, Charles A; Boykin, Laura M; Liansheng, He; McKenzie, C L

    2009-04-01

    Whiteflies, heteropterans in the family Aleyrodidae, are globally distributed and severe agricultural pests. The mitochondrial cytochrome c oxidase I (mtCOI) sequence has been used extensively in whitefly phylogenetic comparisons and in biotype identification of the agriculturally important Bemisia tabaci (Gennadius) whitefly. Because of the economic importance of several whitefly genera, and the invasive nature of the B and the Q biotypes of Bemisia tabaci, mtCOI sequence data are continually generated from sampled populations worldwide. Routine phylogenetic comparisons and biotype identification is done through amplification and sequencing of an approximately 800-bp mtCOI DNA fragment. Despite its routine use, published primers for amplification of this region are often inefficient for some B. tabaci biotypes and especially across whitefly species. Through new sequence generation and comparison to available whitefly mtCOI sequence data, a set of polymerase chain reaction (PCR) amplification primers (Btab-Uni primers) were identified that are more efficient at amplifying approximately 748 bp of the approximately 800-bp fragment currently used. These universal primers amplify an mtCOI fragment from numerous B. tabaci biotypes and whitefly genera by using a single amplification profile. Furthermore, mtCOI PCR primers specific for the B, Q, and New World biotypes of B. tabaci were designed that allow rapid discrimination among these biotypes. These primers produce a 478-, 405-, and 303-bp mtCOI fragment for the B, New World, and Q biotypes, respectively. By combining these primers and using rapid PCR and electrophoretic techniques, biotype determination can be made within 3 h for up to 96 samples at a time.

  6. Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera:Aleyrodidae) populations from Californis and Arizona to spirotetramat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Baseline toxicity levels to foliarly applied spirotetramat were established for 19 field populations of whiteflies, Bemisia tabaci B biotype from Arizona and California in 2008 and 2009. The susceptibility data was determined against the 2nd instar of B. tabaci field collections before the registrat...

  7. Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    PubMed Central

    Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex

  8. Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae).

    PubMed

    Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J

    2003-06-01

    Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.

  9. [Biotypes and phylogenetic analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) in China].

    PubMed

    Xu, Li-Li; Cai, Li; Shen, Wei-Jiang; Du, Yu-Zhou

    2014-04-01

    Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) is considered taxonomically as a species complex and could cause serious damages to crops by directly feeding on phloem and/or indirectly transmission of plant viruses. In this study, biotypes and phylogenetic relationships of 33 geographic populations of B. tabaci collected from nine provinces of China in 2010 and 2011 were studied based on the mitochondrial COI gene. The results showed there were a total of six biotypes of B. tabaci (B, Q, ZHJ-1, ZHJ-3, An and Nauru) recovered in China and the geographical distribution of these six biotypes was uneven. Phylogenetic analysis showed that biotype An B. tabaci from Taiwan clustered together with Hainan biotype An populations, indicating these two geographic populations might originate from a same ancestor. In addition, biotype B B. tabaci in China had a 99% genetical similarity compared to that from France and Uganda. However, relationships of biotype Q on the phylogenetic tree were divided into two different clusters. One was occupied with the population from China and Western Mediterranean Sea countries (France and Morocco) and the other contained biotype Q populations from Eastern Mediterranean Sea countries (Israel and Turkey). Overall, the results suggested that biotype Q B. tabaci in China was genetically similar to that from Western Mediterranean Sea countries and it could be highly possible that Chinese biotype Q B. tabaci originated from Western Mediterranean Sea areas. PMID:25011310

  10. Records of Natural Enemies of Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) Biotype B in Brazil.

    PubMed

    Torres, L C; Lourenção, A L; Costa, V A; Souza, B; Costa, M B; Tanque, R L

    2014-04-01

    Collections of natural enemies of Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) were made in Lavras, state of Minas Gerais, Brazil. In the greenhouse, 6,495 predators and 16,628 parasitoids belonging to three families were collected. In the field, 267 predators and 344 parasitoids belonging to five families were found. For the first time in Brazil, five species of predators associated with this whitefly were reported. Because of the diversity of natural enemies of B. tabaci biotype B recorded, this study points out the importance of these data for studies on integrated pest management.

  11. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense

    PubMed Central

    Liu, Guoxia; Ma, Hongmei; Xie, Hongyan; Xuan, Ning; Guo, Xia; Fan, Zhongxue; Rajashekar, Balaji; Arnaud, Philippe; Offmann, Bernard; Picimbon, Jean-François

    2016-01-01

    Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity. PMID:27167733

  12. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense.

    PubMed

    Liu, Guoxia; Ma, Hongmei; Xie, Hongyan; Xuan, Ning; Guo, Xia; Fan, Zhongxue; Rajashekar, Balaji; Arnaud, Philippe; Offmann, Bernard; Picimbon, Jean-François

    2016-01-01

    Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity. PMID:27167733

  13. Feeding preference of Macrolophus caliginosus (Heteroptera: Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae).

    PubMed

    Bonato, Olivier; Couton, Louise; Fargues, Jacques

    2006-08-01

    A study of predation choices of Macrolophus caliginosus Wagner (Heteroptera: Miridae) late instars and adults, when offered various developmental stages (eggs and nymphs) of the recently established whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was made based on two preference indices. In addition, prey choices of late instars when presented with three ratios of Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) and B. tabaci at a similar developmental stage (eggs, young or late instars) were assessed. M. caliginosus preferred older nymphs of B. tabaci than any other stage. It also chose T. vaporariorum over B. tabaci, unless the latter consisted of > 75% of the available prey. These results suggested that M. caliginosus might interfere with parasitoids such as Encarsia, Eretmocerus, or Amitus spp. because all three species emerge from the host pupal case. Furthermore, in mixed infestations, M. caliginosus preference for T. vaporariorum might either negatively affect the control of B. tabaci, or, contrarily, enhance the predator population, before a B. tabaci outbreak occurs in the greenhouse.

  14. Investigating contact toxicity of Geranium and Artemisia essential oils on Bemisia tabaci Gen.

    PubMed Central

    Yarahmadi, Fatemeh; Rajabpour, Ali; Zandi Sohani, Nooshin; Ramezani, Leila

    2013-01-01

    Objective: Sweet potato whitefly, Bemisia tabaci Gen. (B. tabaci), is one of the most important pests of various greenhouse crops in Iran. Nowadays, chemical insecticides are broadly used for control of the pests that causes risk to consumer's health. For the first time, contact toxicity of Pelargonium roseum Andrews and Artemisia sieberi Besser essential oils on B. tabaci and its possible application against the whitefly was evaluated in 2012. Materials and Methods: Essential oil with concentrations of 2500, 1250, 125, and 12 ppm were used. Infested leaves of greenhouse cucumber were treated by mentioned concentrations. After 24 hours, mortality of B. tabaci was recorded and compared after correcting by Abbot's formula. Results: Results showed that all concentrations of the essential oil could significantly reduce population of B. tabaci compared with the control treatment. Phytotoxicity of the treated leaves were recorded after 24, 48, and 72 hours and compared with the control. Concentrations of 2500, 1250, and 125 ppm caused severe phytotoxicity on greenhouse cucumber leaves and therefore are not suitable for greenhouse application. Phytotoxicity of 12 ppm was relatively low. Conclusions: This data implicated suitable protective effects of the essential oils to the pest infestation. Therefore, essential oils distillated from Geranium and Artemisia could be applied to control B. tabaci in greenhouse cucumber at V/V 12 ppm. PMID:25050264

  15. The Feeding Rate of Predatory Mites on Life Stages of Bemisia tabaci Mediterranean Species

    PubMed Central

    Cuthbertson, Andrew G. S.

    2014-01-01

    The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. There has recently been a shift from Middle East-Asia Minor 1 to the more chemical resistant Mediterranean species entering the UK. Predatory mites (Amblyseius swirskii, Transeius montdorensis and Typhlodromalus limonicus) were screened for their impact upon various lifestages of B. tabaci Mediterranean species. Approximately 30% of eggs were fed upon by A. swirskii following a 5 day period. Feeding rates slightly decreased for all mite species when feeding on first instar life-stages (27%, 24%, 16% respectively) and significantly decreased when feeding on second instars (8.5%, 8.5%, 8.7% respectively). Combining the two mite species (A. swirskii and T. montdorensis) increased mortality of Bemisia eggs to 36%. The potential of incorporating the mites into existing control strategies for B. tabaci is discussed. PMID:26462828

  16. Wolbachia Has Two Different Localization Patterns in Whitefly Bemisia tabaci AsiaII7 Species.

    PubMed

    Shi, Peiqiong; He, Zhan; Li, Shaojian; An, Xuan; Lv, Ning; Ghanim, Murad; Cuthbertson, Andrew G S; Ren, Shun-Xiang; Qiu, Bao-Li

    2016-01-01

    The whitefly Bemisia tabaci is a cosmopolitan insect species complex that harbors the obligate primary symbiont Portiera aleyrodidarum and several facultative secondary symbionts including Wolbachia, which have diverse influences on the host biology. Here, for the first time, we revealed two different localization patterns of Wolbachia present in the immature and adult stages of B. tabaci AsiaII7 cryptic species. In the confined pattern, Wolbachia was restricted to the bacteriocytes, while in the scattered pattern Wolbachia localized in the bacteriocytes, haemolymph and other organs simultaneously. Our results further indicated that, the proportion of B. tabaci AsiaII7 individuals with scattered Wolbachia were significantly lower than that of confined Wolbachia, and the distribution patterns of Wolbachia were not associated with the developmental stage or sex of whitefly host. This study will provide a new insight into the various transmission routes of Wolbachia in different whitefly species. PMID:27611575

  17. Wolbachia Has Two Different Localization Patterns in Whitefly Bemisia tabaci AsiaII7 Species

    PubMed Central

    Shi, Peiqiong; He, Zhan; Li, Shaojian; An, Xuan; Lv, Ning; Ghanim, Murad; Cuthbertson, Andrew G. S.; Ren, Shun-Xiang

    2016-01-01

    The whitefly Bemisia tabaci is a cosmopolitan insect species complex that harbors the obligate primary symbiont Portiera aleyrodidarum and several facultative secondary symbionts including Wolbachia, which have diverse influences on the host biology. Here, for the first time, we revealed two different localization patterns of Wolbachia present in the immature and adult stages of B. tabaci AsiaII7 cryptic species. In the confined pattern, Wolbachia was restricted to the bacteriocytes, while in the scattered pattern Wolbachia localized in the bacteriocytes, haemolymph and other organs simultaneously. Our results further indicated that, the proportion of B. tabaci AsiaII7 individuals with scattered Wolbachia were significantly lower than that of confined Wolbachia, and the distribution patterns of Wolbachia were not associated with the developmental stage or sex of whitefly host. This study will provide a new insight into the various transmission routes of Wolbachia in different whitefly species. PMID:27611575

  18. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae)

    PubMed Central

    Wang, Ran; Li, Fei; Zhang, Fan; Wang, Su

    2016-01-01

    The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia. PMID:27332546

  19. Suitability changes with host leaf age for Bemisia tabaci B biotype and Trialeurodes vaporariorum.

    PubMed

    Zhang, Gui-Fen; Wan, Fang-Hao

    2012-10-01

    The suitability of tomato leaves of different ages for Bemisia tabaci (Gennadius) B biotype and Trialeurodes vaporariorum (Westwood) was characterized by development time, stage-specific survival, sex ratio, longevity, and fecundity. Three categories of leaf ages were tested (young: expanding leaves <2 wk old; mature: fully expanded, 4-5-wk-old leaves; old: fully expanded, 6-7-wk-old leaves). There was no significant variation in the duration of development of the two species among the three classes of leaf ages, but total survival and ratio of females to males on mature and old leaves were higher than on young leaves. For egg hatch, the reverse tendency was found. Longevity of both species was higher on mature than on young leaves, and fecundity during the first 2 wk of adult life was higher on mature than on young or old leaves. The B. tabaci B biotype developed faster through the quiescent fourth nymphal instar, had higher ratio of females to males, survived longer, and produced more eggs (in the first 2 wk of adult life) than T. vaporariorum on leaves of the same age; although on young leaves, B. tabaci B biotype survivorship was lower than that of T. vaporariorum. The index of host suitability of B. tabaci B biotype was higher on mature and old leaves than on young leaves. In T. vaporariorum, no such differences were found among these three leaf ages. The results could provide some cues why B. tabaci B biotype is spreading so vigorously.

  20. Development of an antibody-based diagnostic method for the identification of Bemisia tabaci biotype B.

    PubMed

    Baek, Ji Hyeong; Lee, Hye Jung; Kim, Young Ho; Lim, Kook Jin; Lee, Si Hyeock; Kim, Bum Joon

    2016-07-01

    The whitefly Bemisia tabaci is a very destructive pest. B. tabaci is composed of various morphologically undistinguishable biotypes, among which biotypes B and Q, in particular, draw attention because of their wide distribution in Korea and differential potentials for insecticide resistance development. To develop a biotype-specific protein marker that can readily distinguishes biotypes B from other biotypes in the field, we established an ELISA protocol based on carboxylesterase 2 (COE2), which is more abundantly expressed in biotypes B compared with Q. Recombinant COE2 was expressed, purified and used for antibody construction. Polyclonal antibodies specific to B. tabaci COE2 [anti-COE2 pAb and deglycosylated anti-COE2 pAb (DG anti-COE2 pAb)] revealed a 3-9-fold higher reactivity to biotype B COE2 than biotype Q COE2 by Western blot and ELISA analyses. DG anti-COE2 pAb exhibited low non-specific activity, demonstrating its compatibility in diagnosing biotypes. Western blot and ELISA analyses determined that one of the 11 field populations examined was biotype B and the others were biotype Q, suggesting the saturation of biotype Q in Korea. DG anti-COE2 pAb discriminates B. tabaci biotypes B and Q with high specificity and accuracy and could be useful for the development of a B. tabaci biotype diagnosis kit for on-site field applications. PMID:27265822

  1. Genetic structure of the whitefly Bemisia tabaci populations in Colombia following a recent invasion.

    PubMed

    Díaz, Fernando; Endersby, Nancy M; Hoffmann, Ary A

    2015-08-01

    The whitefly Bemisia tabaci (Gennadius) is one of the most important pests causing economic losses in a variety of cropping systems around the world. This species was recently found in a coastal region of Colombia and has now spread inland. To investigate this invasive process, the genetic structure of B. tabaci was examined in 8 sampling locations from 2 infested regions (coastal, inland) using 9 microsatellite markers and the mitochondrial COI gene. The mitochondrial analysis indicated that only the invasive species of the B. tabaci complex Middle East-Asia Minor 1 (MEAM 1 known previously as biotype B) was present. The microsatellite data pointed to genetic differences among the regions and no isolation by distance within regions. The coastal region in the Caribbean appears to have been the initial point of invasion, while the inland region in the Southwest showed genetic variation among populations most likely reflecting founder events and ongoing changes associated with climatic and topographical heterogeneity. These findings have implications for tracking and managing B. tabaci.

  2. Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site

    PubMed Central

    Rodríguez-López, Maria Jose; Garzo, Elisa; Bonani, Jean Patrick; Fernández-Muñoz, Rafael; Moriones, Enrique; Fereres, Alberto

    2012-01-01

    Background The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD. Methodology/Principal Findings Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, ‘ABL 14-8 and Moneymaker’ respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of ‘Moneymaker’ leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of ‘Moneymarker’ susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface. Conclusions/Significance The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies. PMID:22427950

  3. Infection of the whitefly Bemisia tabaci with Rickettsia spp. alters its interactions with Tomato yellow leaf curl virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. Here we report that infection with Rickettsia spp., a facultative endosymbiont of whiteflies...

  4. Comparison of three single-nozzle operator-carried spray applicators for whitefly (Bemisia tabaci) management on squash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies cause problems in vegetable production on a global scale. The primary worldwide whitefly pest is Bemisia tabaci (Gennadius). Insecticides are commonly used to mitigate the whitefly problem in vegetable crops. In limited-resource crop production, operator-carried spray applicators are comm...

  5. Taxonomic Status of the Bemisia tabaci Complex (Hemiptera: Aleyrodidae) and Reassessment of the Number of Its Constituent Species

    PubMed Central

    Lee, Wonhoon; Park, Jongsun; Lee, Gwan-Seok; Lee, Seunghwan; Akimoto, Shin-ichi

    2013-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important insect pests in the world. In the present study, the taxonomic status of B. tabaci and the number of species composing the B. tabaci complex were determined based on 1059 COI sequences of B. tabaci and 509 COI sequences of 153 hemipteran species. The genetic divergence within B. tabaci was conspicuously higher (on average, 11.1%) than interspecific genetic divergence within the respective genera of the 153 species (on average, 6.5%). This result indicates that B. tabaci is composed of multiple species that may belong to different genera or subfamilies. A phylogenetic tree constructed based on 212 COI sequences without duplications revealed that the B. tabaci complex is composed of a total of 31 putative species, including a new species, JpL. However, genetic divergence within six species (Asia II 1, Asia II 7, Australia, Mediterranean, New World, and Sub Saharan Africa 1) was higher than 3.5%, which has been used as a threshold of species boundaries within the B. tabaci complex. These results suggest that it is necessary to increase the threshold for species boundaries up to 4% to distinguish the constituent species in the B. tabaci complex. PMID:23675507

  6. Repellent effect of alphacypermethrin-treated netting against Bemisia tabaci (Hemiptera: Aleyrodidae).

    PubMed

    Martin, T; Kamal, A; Gogo, E; Saidi, M; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M

    2014-04-01

    For > 20 yr, Bemisia tabaci Gennadius persists as a begomovirus vector and is a serious problem in tomato production in many parts of the world. In tropical countries, the use of netting to protect horticultural crops has proven to be an effective and sustainable tool against Lepidoptera but not against small insects. This study evaluated the repellent effect of AgroNet 0.9T, a 0.9-mm pore diameter and 40-mesh size netting treated with alphacypermethrin insecticide against B. tabaci. This pyrethroid insecticide is known to have toxic and repellent effects against mosquitoes and has been used for treatment of mosquito nets. Two nontreated netting materials were used as control: AgroNet 0.9NT with 0.9-mm pore diameter and 40-mesh size and AgroNet 0.4NT with 0.4-mm pore diameter and 80-mesh size. The behavior of B. tabaci and its parasitoid Encarsia formosa Gahan as they progressed through the treated netting was studied in the laboratory in choice and no-choice tests. The development of wild B. tabaci population on tomato plants protected by the same nets was followed in two field trials implemented in Njoro, Kenya. Results obtained with the no-choice tests showed a significant reduction of movement on the treated net with 40-mesh (19%) compared with nontreated netting (35 and 46% with 80- and 40-mesh, respectively). The mortality of B. tabaci was significantly higher (two-fold) in the test tube containing only the treated netting compared with the nontreated one. The repellent effect of the treated netting was also demonstrated against E. formosa, but it did not have this toxic effect. Unlike for B. tabaci, the treated and nontreated nets appeared to have a similar repellent effect on E. formosa in the choice test, which suggests a learning behavior of the parasitoid. In both field tests, B. tabaci population was significantly lower on tomato protected by the treated net compared with the same nontreated net. However there was no significant difference in B. tabaci

  7. Effects of selected fertilizers on the life history of Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B.

    PubMed

    England, K M; Sadof, C S; Cañnas, L A; Kuniyoshi, C H; Lopez, R G

    2011-04-01

    We tested the effects among a purportedly sustainable water-soluble fertilizer, a conventional water-soluble fertilizer, an alternation of these, a controlled-release fertilizer, and a clear water control on the life-history traits of sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae; =Bemisia argentifolii Bellows & Perring) biotype B reared on poinsettia (Euphorbia pulcherrima Willdenow ex Klotzch). Free amino acids in petioles were measured to estimate plant nutrient assimilation and phloem nutritional quality for B. tabaci biotype B. The sustainable fertilizer produced plants with the highest concentration of amino acids. In contrast, fecundity of whiteflies was lowest in plants treated with the sustainable fertilizer and the water control. The relationship between total amino acids in phloem and survival was significantly quadratic, with the highest survival at intermediate levels. Fecundity, however, was negatively correlated with total amino acid content of the maternal host plant. Variation in total amino acid concentration in petioles of plants treated within fertilizer treatments makes it difficult to predict whether a particular fertilizer will produce plants with enough amino acids to deleteriously affect both survivorship and fecundity and yet yield a plant of good quality. Despite this limitation, we can conclude that the use of this sustainable fertilizer will not cause increases in whitefly populations relative to plants fertilized with water-soluble and slow-release fertilizers that deliver the same level of nitrogen to the plant. PMID:21510203

  8. Effects of selected fertilizers on the life history of Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B.

    PubMed

    England, K M; Sadof, C S; Cañnas, L A; Kuniyoshi, C H; Lopez, R G

    2011-04-01

    We tested the effects among a purportedly sustainable water-soluble fertilizer, a conventional water-soluble fertilizer, an alternation of these, a controlled-release fertilizer, and a clear water control on the life-history traits of sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae; =Bemisia argentifolii Bellows & Perring) biotype B reared on poinsettia (Euphorbia pulcherrima Willdenow ex Klotzch). Free amino acids in petioles were measured to estimate plant nutrient assimilation and phloem nutritional quality for B. tabaci biotype B. The sustainable fertilizer produced plants with the highest concentration of amino acids. In contrast, fecundity of whiteflies was lowest in plants treated with the sustainable fertilizer and the water control. The relationship between total amino acids in phloem and survival was significantly quadratic, with the highest survival at intermediate levels. Fecundity, however, was negatively correlated with total amino acid content of the maternal host plant. Variation in total amino acid concentration in petioles of plants treated within fertilizer treatments makes it difficult to predict whether a particular fertilizer will produce plants with enough amino acids to deleteriously affect both survivorship and fecundity and yet yield a plant of good quality. Despite this limitation, we can conclude that the use of this sustainable fertilizer will not cause increases in whitefly populations relative to plants fertilized with water-soluble and slow-release fertilizers that deliver the same level of nitrogen to the plant.

  9. Olfactory response of predatory Macrolophus caliginosus Wagner (Heteroptera: Miridae) to the odours host plant infested by Bemisia tabaci

    NASA Astrophysics Data System (ADS)

    Saad, Khalid A.; Roff, M. N. Mohamad; Salam, Mansour; Hanifah Mohd, Y.; Idris, A. B.

    2014-09-01

    Plant infested with herbivores, release volatile that can be used by natural enemies to locate their herbivorous prey. Laboratory studies were carried out to determine the olfactory responses of predator Macrolophus caliginosus Wagner (Heteroptera: Miridae), to chili plant infected with eggs, nymphs of Bemisia tabaci, using Y-tube olfactometer. The results shown that predator, M. caliginosus has ability to discriminate between non-infested and infested plant by B. tabaci. Moreover, the predator preferred plants with nymphs over plants with eggs. This suggested that M. caliginous uses whitefly-induced volatile as reliable indicators to distinguish between infested chili plants by nymphs, eggs and non-infested plants. These results enhance our understanding of the olfactory cues that guide foraging by M. caliginosus to plant with and without Bemisia tabaci.

  10. Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum.

    PubMed

    Liang, Pei; Cui, Jian-Zhou; Yang, Xiu-Qing; Gao, Xi-Wu

    2007-04-01

    Bemisia tabaci (Gennadius) biotype B and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), have become serious pests of cotton and vegetable crops in China since the early 1990s. In recent years, however, B. tabaci have broken out more frequently and widely than have T. vaporariorum. The B. tabaci biotype B has also developed higher resistance to several insecticides. Here, the effects of four different host plants on the insecticide susceptibility of B. tabaci biotype B and T. vaporariorum have been compared. The LC(50) values of imidacloprid, abamectin, deltamethrin and omethoate in T. vaporariorum reared on cucumber were significantly higher than those in B. tabaci (the LC(50) values in T. vaporariorum were respectively 3.13, 2.63, 2.78 and 6.67 times higher than those in B. tabaci). On the other hand, the B. tabaci population reared on cotton was more tolerant to all four insecticides tested than the T. vaporariorum population from the same host, especially to abamectin (up to 8.4-fold). The effects of the four host plants on the activity of carboxylesterase (CarE) in B. tabaci biotype B and T. vaporariorum were also compared. The results showed that, although the CarE activity of B. tabaci and T. vaporariorum varied depending on the host plants, the B. tabaci population possessed significantly higher CarE activity than the T. vaporariorum population reared on the same host plant. This was especially so on cucumber and cotton, where the CarE activities of the B. tabaci population were over 1.6 times higher than those of T. varporariorum. The frequency profiles for this activity in B. tabaci and T. vaporariorum populations reared on same host plant were apparently different.

  11. Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spirotetramat.

    PubMed

    Prabhaker, Nilima; Castle, Steven; Perring, Thomas M

    2014-04-01

    Baseline toxicity levels to foliarly applied spirotetramat were established for 19 field populations of whiteflies, Bemisia tabaci (Gennadius) B biotype (=Bemisia argentifolii Bellows & Perring) (Hemiptera: Aleyrodidae) from Arizona and California in 2008 and 2009. The susceptibility data were determined against the second instar of B. tabaci field collections before the registration and widespread use of spirotetramat in California. Three strains of whitefly, resistant to either bifenthrin, imidacloprid, or pyriproxyfen, were also tested to determine the potential for cross-resistance to spirotetramat. No significant geographic variation in susceptibility to spirotetramat was observed among regions within Arizona. The LC50 values for the Arizona populations spanned a 14-fold range between populations during the 2 yr sampling tests including a low LC50 of 0.91 (micrg [AI] ml(-1)) and a high LC50 of 13.47 (microg [AI] ml(-1)), while the LC90 values showed a seven-fold range. The field populations from California exhibited limited variation in susceptibility to spirotetramat in general (1.02-7.02 microg [AI] ml(-1)) with one exception (27.98 microg [AI] ml(-1)). Variation in susceptibility among the resistant strains was about eight-fold at the LC50 level with the PYR-strain, showing the highest susceptibility to spirotetramat at 3.79 (microg [AI] ml(-1)). In addition, comparisons of relative susceptibilities among three older immature instars of two field populations showed no significant differences. These results establish a regional baseline that can serve as a reference for future monitoring and management of B. tabaci resistance to spirotetramat.

  12. Aphid-induced Defences in Chilli Affect Preferences of the Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae)

    PubMed Central

    Saad, Khalid A.; Mohamad Roff, M. N.; Hallett, Rebecca H.; Idris, A. B.

    2015-01-01

    The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography–mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β–cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli. PMID:26334135

  13. Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World.

    PubMed

    Dennehy, Timothy J; Degain, Benjamin A; Harpold, Virginia S; Zaborac, Marni; Morin, Shai; Fabrick, Jeffrey A; Nichols, Robert L; Brown, Judith K; Byrne, Frank J; Li, Xianchun

    2010-12-01

    A strain of the whitefly Bemisia tabaci (Gennadius) possessing unusually high levels of resistance to a wide range of insecticides was discovered in 2004 in the course of routine resistance monitoring in Arizona. The multiply resistant insects, collected from poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants purchased at a retail store in Tucson, were subjected to biotype analysis in three laboratories. Polyacrylamide gel electrophoresis of naphthyl esterases and sequencing of the mitochondrial cytochrome oxidase I gene (780 bp) confirmed the first detection of the Q biotype of B. tabaci in the New World. This U.S. Q biotype strain, referred to as Poinsettia'04, was highly resistant to two selective insect growth regulators, pyriproxyfen and buprofezin, and to mixtures of fenpropathrin and acephate. It was also unusually low in susceptibility to the neonicotinoid insecticides imidacloprid, acetamiprid, and thiamethoxam, relative to B biotype whiteflies. In 100 collections of whiteflies made in Arizona cotton (Gossypium spp.), vegetable, and melon (Cucumis melo L.) fields from 2001 to 2005, no Q biotypes were detected. Regions of the United States that were severely impacted by the introduction of the B biotype of B. tabaci in the 1980s would be well advised to promote measures that limit movement of the Q biotype from controlled environments into field systems and to formulate alternatives for managing this multiply-resistant biotype, in the event that it becomes more widely distributed. PMID:21309242

  14. Performance of Bemisia tabaci (Genn.) Biotype B (Hemiptera: Aleyrodidae) on Weeds.

    PubMed

    Sottoriva, L D M; Lourenção, A L; Colombo, C A

    2014-12-01

    Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) is regarded as a pest with a large number of hosts, including crops and weeds. The performance of this whitefly on seven weeds was evaluated in order to identify the most suitable host. The following weeds that are very common in intense agricultural areas in the state of São Paulo, Brazil, were selected for this study: spurge (Euphorbia heterophylla), beggarticks (Bidens pilosa), red tasselflower (Emilia sonchifolia), small-flower galinsoga (Galinsoga parviflora), pigweed (Amaranthus viridis), black nightshade (Solanum americanum), and morning glory (Ipomoea sp.). In free-choice tests, adult preference and oviposition were greatest on spurge. In contrast, morning glory was the least attractive and least oviposited plant. In assays carried out for egg-adult development, egg viability was greater than 87% over all weeds, whereas nymph viability ranged from 74 to 97%. The developmental period from egg to adult ranged from 26.7 to 49.1 days among the hosts under study. The lowest nymph density rate was observed for beggarticks and morning glory. Cluster analysis resulted in a single group formed by spurge, indicating its superiority as a host for B. tabaci biotype B. Even though the parameters evaluated indicate that spurge is the most suitable host among the weeds, all the others allow the reproduction of B. tabaci biotype B. For this reason, they should be observed during cropping and the intercrop period in areas infested by this whitefly.

  15. Factors Affecting Population Dynamics of Maternally Transmitted Endosymbionts in Bemisia tabaci

    PubMed Central

    Pan, Huipeng; Li, Xianchun; Ge, Daqing; Wang, Shaoli; Wu, Qingjun; Xie, Wen; Jiao, Xiaoguo; Chu, Dong; Liu, Baiming; Xu, Baoyun; Zhang, Youjun

    2012-01-01

    While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae) harbors the primary symbiont (P-symbiont) Portiera, the infection frequencies of the six secondary symbionts (S-symbionts) including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes) field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH), Rickettsia + Cardinium (RC), Hamiltonella + Cardinium (HC) and Rickettsia + Hamiltonella + Cardinium (RHC) varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci. PMID:22383972

  16. Aphid-induced Defences in Chilli Affect Preferences of the Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae).

    PubMed

    Saad, Khalid A; Mohamad Roff, M N; Hallett, Rebecca H; Idris, A B

    2015-01-01

    The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli. PMID:26334135

  17. MtDNA variability in whitefly (Bemisia tabaci) populations in Brazil.

    PubMed

    Valle, G E; Lourenção, A L; Zucchi, M I; Pinheiro, J B; Abreu, A G

    2011-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) consists of a complex of morphologically indistinct biotypes that vary mainly in their capacity to transmit plant viruses and to induce physiological disorders in plants of economic importance. The adaptability of B. tabaci to many regions of the world has fostered the appearance of various biotypes and has resulted in a broad spectrum of host plants. Our goal was to identify which biotypes were present in four B. tabaci populations in Brazil. We quantified genetic variability between and within populations. Three individuals were collected from three host plant species: two populations on soybean (Campinas and Rondonópolis), one on pumpkin (Barreiras) and one on tomato (Cruz das Almas) in three States of Brazil (São Paulo, Mato Grosso, and Bahia). We chose one sequence of the B biotype, obtained from GenBank; the Campinas population, which had been previously characterized as biotype B, was used as a control for this biotype. We also included one sequence of the Q biotype, obtained from GenBank, as an outgroup. The COI region of the mtDNA gene was partially amplified with the CI-J-2195 and L2-N-3014 pair of primers, and the reaction products were sequenced. Based on distance-based algorithm analyses, we found that all haplotypes belong to biotype B, which was confirmed by the haplotype network. Genetic structure analyses showed that the host plant species does not influence population structuring of this pest; only the geographic location mattered. PMID:21968683

  18. Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci.

    PubMed

    Pan, Huipeng; Li, Xianchun; Ge, Daqing; Wang, Shaoli; Wu, Qingjun; Xie, Wen; Jiao, Xiaoguo; Chu, Dong; Liu, Baiming; Xu, Baoyun; Zhang, Youjun

    2012-01-01

    While every individual of Bemisia tabaci (Hemiptera: Aleyrodidae) harbors the primary symbiont (P-symbiont) Portiera, the infection frequencies of the six secondary symbionts (S-symbionts) including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea vary greatly among different populations. To characterize the factors influencing the infection dynamics of the six S-symbionts in B. tabaci, gene-specific PCR were conducted to screen for the presence of the P-symbiont Portiera and the six S-symbionts in 61 (17 B and 44 Q biotypes) field populations collected from different plant species and locations in China. All individuals of the 61 populations hosted the P-symbiont Portiera, but none of them harbored Arsenophonus and Fritschea. The presence and infection rates of Hamiltonella, Cardinium, Rickettsia, Wolbachia and their co-infections Rickettsia + Hamiltonella (RH), Rickettsia + Cardinium (RC), Hamiltonella + Cardinium (HC) and Rickettsia + Hamiltonella + Cardinium (RHC) varied significantly among the 61 field populations; and the observed variations can be explained by biotypes, sexes, host plants and geographical locations of these field populations. Taken together, at least three factors including biotype, host plant and geographical location affect the infection dynamics of S-symbionts in B. tabaci.

  19. MtDNA variability in whitefly (Bemisia tabaci) populations in Brazil.

    PubMed

    Valle, G E; Lourenção, A L; Zucchi, M I; Pinheiro, J B; Abreu, A G

    2011-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) consists of a complex of morphologically indistinct biotypes that vary mainly in their capacity to transmit plant viruses and to induce physiological disorders in plants of economic importance. The adaptability of B. tabaci to many regions of the world has fostered the appearance of various biotypes and has resulted in a broad spectrum of host plants. Our goal was to identify which biotypes were present in four B. tabaci populations in Brazil. We quantified genetic variability between and within populations. Three individuals were collected from three host plant species: two populations on soybean (Campinas and Rondonópolis), one on pumpkin (Barreiras) and one on tomato (Cruz das Almas) in three States of Brazil (São Paulo, Mato Grosso, and Bahia). We chose one sequence of the B biotype, obtained from GenBank; the Campinas population, which had been previously characterized as biotype B, was used as a control for this biotype. We also included one sequence of the Q biotype, obtained from GenBank, as an outgroup. The COI region of the mtDNA gene was partially amplified with the CI-J-2195 and L2-N-3014 pair of primers, and the reaction products were sequenced. Based on distance-based algorithm analyses, we found that all haplotypes belong to biotype B, which was confirmed by the haplotype network. Genetic structure analyses showed that the host plant species does not influence population structuring of this pest; only the geographic location mattered.

  20. Resistance of soybean genotypes to Bemisia tabaci (Genn.) Biotype B (Hemiptera: Aleyrodidae).

    PubMed

    Vieira, S S; Bueno, A F; Boff, M I C; Bueno, R C O F; Hoffman-Campo, C B

    2011-01-01

    The silverleaf whitefly Bemisia tabaci (Genn.) biotype B has become a serious problem for soybean cultivation because it can significantly reduce soybean productivity. The use of soybean cultivars resistant to whitefly attack is an important strategy in an integrated pest management (IPM) program. This study evaluated the preference for oviposition and colonization by B. tabaci biotype B on different soybean genotypes. In the free-choice test, the genotypes studied were 'IAC 17' and 'IAC 19' as the standards for resistance and 'IAC Holambra Stwart' as the standard for susceptibility, as well as BABR01-0492, BABR01-0173, BABR01-1259, BABR01-1576, BABR99-4021HC, BABR99-4021HP, 'Barreiras', 'Conquista', 'Corisco', 'BRS Gralha', PI274454, PI227687, and PI171451. In the no-choice test, the four best genotypes selected in the free-choice test, in addition to the susceptible and resistant standards were evaluated. Our data indicated 'Barreiras' as the most resistant genotype against B. tabaci biotype B. 'BRS Gralha', which was the least attractive to whitefly adults in the free-choice test, did not show resistance to insect attack when they were confined in cages in the no-choice test. Despite the high number of eggs observed, BABR01-1576 and BABR99-4021HC showed a reduced number of nymphs, indicating antibiosis. The genotypes with a high level of resistance can be used as a tool against B. tabaci in IPM or as a source of resistance in plant-breeding programs.

  1. Transcriptomic and Proteomic Responses of Sweetpotato Whitefly, Bemisia tabaci, to Thiamethoxam

    PubMed Central

    Yang, Nina; Xie, Wen; Yang, Xin; Wang, Shaoli; Wu, Qingjun; Li, Rumei; Pan, Huipeng; Liu, Baiming; Shi, Xiaobin; Fang, Yong; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Background The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, “omics” analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. Results A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05). Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism), in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated “omics” response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci. Conclusions This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms

  2. First report and differential colonization of Passiflora species by the B biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Brazil.

    PubMed

    Nunes, Endson S; Brown, Judith K; Moreira, Adriana G; Watson, Gillian; Lourenção, André L; Piedade, Sônia M S; Rezende, Jorge A M; Vieira, Maria L C

    2008-01-01

    This note is the first report of Bemisia tabaci (Gennadius) biotype B colonizing passionvine in Brazil. We examined the colonization of nine Passiflora species by a wild B type population under greenhouse conditions. P. amethystina Mikan was the most preferred species for oviposition and colonization, whereas P. suberosa L., P. coriacea Juss. and two commercially cultivated species, P. alata Curtis and P. edulis Sims f. flavicarpa Degener, were mostly uncolonised. P. morifolia Mast., P. cincinnata Mast., P. foetida L. and P. caerulea L. showed intermediate levels of colonization. Such differential colonization might suggest some degree of resistance by certain Passiflora species or oviposition preference by B. tabaci. PMID:19169568

  3. Effect of starvation on vein preference of whitefly (Bemisia tabaci) on chilli as host plant

    NASA Astrophysics Data System (ADS)

    Siti Sakinah, A.; Mohamad Roff M., N.; Idris, A. B.

    2014-09-01

    The whitefly, Bemisia tabaci (Gennadius), is a cosmopolitan pest of horticultural crops. It caused serious damaged to the plants by feeding on plant saps as direct damage and transmit virus as indirect damage. Vein preferences of both female and male whitefly (WF) on chilli plant were recorded using Dinolite, a portable microscope, under laboratory conditions. WF adults of both sexes were starved for 2 and 4 hours before used for observation while no starvation for control individual (treatment). Results showed that both female and male preferred to feed on secondary veins rather than lamina, midrib and vein. From the result of whitefly preferred target site, hopefully this information will help to improve control tactics in WF management.

  4. Begomovirus coat protein interacts with a small heat-shock protein of its transmission vector (Bemisia tabaci).

    PubMed

    Ohnesorge, S; Bejarano, E R

    2009-11-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV) is transmitted from plant to plant by the whitefly Bemisia tabaci in a persistent-circulative manner. The coat protein (CP) plays an important role in this transmission cycle. In this study, the CP was used to screen a Bemisia tabaci cDNA library using the yeast two-hybrid system, in a search for interacting partners. A member of the small heat-shock protein family (termed BtHSP16) was identified and its interaction with the CP was verified by an in vitro pull-down assay. The binding domain was located at the variable N-terminal part of the CP, while full-length BtHSP16 is required for the interaction. The putative role for this interaction in the transmission cycle by the whitefly is discussed. PMID:19817909

  5. Investigation on some biological aspects of Chrysoperla lucasina (Chrysopidae: Neuroptera) on Bemisia tabaci in laboratory conditions.

    PubMed

    Baghdadi, A; Sharifi, F; Mirmoayedi, A

    2012-01-01

    Bemisia tabaci is one of the most important key pests of many types of cultivated plants. Lacewings (Chrysopidae: Neuroptera) are predatory insects, widely used in biological control programs. Between them green lacewing is a promising biological control agent of pests in green houses and crop fields. In this study, gravid females of the green lacewing Chrysoperla lucasina (Lacroix) were captured from Sarepolzahab ( altitude 540m, latitude 34 degrees ,14' N 46 degrees, 9' E) in western part of Iran. Collected insects were reared in a growth chamber, under experimental conditions (25 +/- 1 degrees C, 70 +/- 5% RH and a photoperiod of 16:8 L: D). Different diets were offered to larvae which consisted of a whitefly species B. tabaci, an aphid Myzus persica and also lyophilized powder of drone honeybee (Apis melifera). As different foods were used to nurish larvae, so for each diet, mean larval period were calculated, and finally means were compared to each other. Anova in MSTAT-C was used for analysis of variance, and Duncan multiple range test (DMRT) to compare between means. The results showed that larvae had maximum duration of 27 +/- 0.33 days when fed on honeybee lyophilized powder and the minimum value was 17.9 +/- 0.3 days for B. tabaci. 25 +/- 0.27 day recorded for M. persicae. Food preference of the 3rd instar larvae of green lacewing was surveyed, they showed a food preference to M. persicae, to compare with B. tabaci, as the former has a bigger body size, so more easily to be captured by the predator larvae. The 3rd instar larvae of lacewing were more voracious on preys, than the 1st or the 2nd instar larvae. Statistically speaking, there were a significantly difference when mean of different preys consumed by predator larvae were compared. We found, that when the predator larvae have fed on B. tabaci, their development time was shorter, and when arrived to adult stage, the adults showed, an improved fertility. The results indicated that the suitable prey

  6. Investigation on some biological aspects of Chrysoperla lucasina (Chrysopidae: Neuroptera) on Bemisia tabaci in laboratory conditions.

    PubMed

    Baghdadi, A; Sharifi, F; Mirmoayedi, A

    2012-01-01

    Bemisia tabaci is one of the most important key pests of many types of cultivated plants. Lacewings (Chrysopidae: Neuroptera) are predatory insects, widely used in biological control programs. Between them green lacewing is a promising biological control agent of pests in green houses and crop fields. In this study, gravid females of the green lacewing Chrysoperla lucasina (Lacroix) were captured from Sarepolzahab ( altitude 540m, latitude 34 degrees ,14' N 46 degrees, 9' E) in western part of Iran. Collected insects were reared in a growth chamber, under experimental conditions (25 +/- 1 degrees C, 70 +/- 5% RH and a photoperiod of 16:8 L: D). Different diets were offered to larvae which consisted of a whitefly species B. tabaci, an aphid Myzus persica and also lyophilized powder of drone honeybee (Apis melifera). As different foods were used to nurish larvae, so for each diet, mean larval period were calculated, and finally means were compared to each other. Anova in MSTAT-C was used for analysis of variance, and Duncan multiple range test (DMRT) to compare between means. The results showed that larvae had maximum duration of 27 +/- 0.33 days when fed on honeybee lyophilized powder and the minimum value was 17.9 +/- 0.3 days for B. tabaci. 25 +/- 0.27 day recorded for M. persicae. Food preference of the 3rd instar larvae of green lacewing was surveyed, they showed a food preference to M. persicae, to compare with B. tabaci, as the former has a bigger body size, so more easily to be captured by the predator larvae. The 3rd instar larvae of lacewing were more voracious on preys, than the 1st or the 2nd instar larvae. Statistically speaking, there were a significantly difference when mean of different preys consumed by predator larvae were compared. We found, that when the predator larvae have fed on B. tabaci, their development time was shorter, and when arrived to adult stage, the adults showed, an improved fertility. The results indicated that the suitable prey

  7. Identification of the molting hormone of the sweet potato (Bemisia tabaci) and greenhouse (Trialeurodes vaporariorum) whitefly.

    PubMed

    Gelman, Dale B; Blackburn, Michael B; Hu, Jing S

    2005-01-01

    In order to identify the whitefly molting hormone, whole body extracts of mature 4th instar and newly formed pharate adult Bemisia tabaci (Biotype B) and Trialeurodes vaporariorum were prepared and subjected to reverse phase high performance liquid chromatography (RPHPLC). Ecdysteroid content of fractions was determined by enzymeimmunoassay (EIA). The only detectable ecdysteroids that were present in significant amounts in whitefly extracts were ecdysone and 20-hydroxyecdysone. The concentrations of 20-hydroxyecdysone in B. tabaci and T. vaporariorum extracts, respectively, were 40 and 15 times greater than the concentrations of ecdysone. The identity of the two ecdysteroids was confirmed by normal phase high performance liquid chromatography (NPHPLC). When ecdysteroid content of RPHPLC fractions was assayed by radioimmunoassay (RIA), small amounts of polar ecdysteroids were also detected indicating that these ecdysteroids have a very low affinity for the antiserum used in the EIA. Ecdysteroid at 10.4 mM administered by feeding stimulated 2nd instar whitefly nymphs to molt. Based on our results, it appears that 20-hydroxyecdysone is the whitefly molting hormone.

  8. Acyl sugars and whitefly (Bemisia tabaci) resistance in segregating populations of tomato genotypes.

    PubMed

    Dias, D M; Resende, J T V; Marodin, J C; Matos, R; Lustosa, I F; Resende, N C V

    2016-04-07

    The wild tomato, Solanum pennellii, is an important source of resistance genes against tomato pests. This resistance is due to the presence of acyl sugars (AS), which are allelochemicals that have negative effects on arthropod pests. There are no commercially available tomato cultivars that exhibit significant levels of resistance to arthropod pests. Therefore, this study evaluated resistance to whitefly (Bemisia tabaci) in F2 and F2RC1 tomato genotypes with high AS levels from a cross between Solanum lycopersicum 'Redenção' and the S. pennellii accession, LA-716. Plants were exposed to B. tabaci biotype B at the pre-flowering stage. In both generations, there were significant, negative correlations between AS content and oviposition preference and nymph development. Whitefly exhibited a lower preference for oviposition and produced fewer nymphs in genotypes with high AS levels and the wild parent S. pennellii than in the low AS-level genotypes and Redenção cultivar, demonstrating that the breeding program was effective in transferring resistance to the F2 and F2RC1 generations. RVTA-2010-pl#31 and RVTA-2010-pl#94 in the F2 population are promising genotypes that produced materials with high AS levels in the F2RC1 generation (RVTA-2010-31-pl#177 and RVTA-2010-94-pl#381).

  9. Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island.

    PubMed

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-12-12

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition.

  10. Acyl sugars and whitefly (Bemisia tabaci) resistance in segregating populations of tomato genotypes.

    PubMed

    Dias, D M; Resende, J T V; Marodin, J C; Matos, R; Lustosa, I F; Resende, N C V

    2016-01-01

    The wild tomato, Solanum pennellii, is an important source of resistance genes against tomato pests. This resistance is due to the presence of acyl sugars (AS), which are allelochemicals that have negative effects on arthropod pests. There are no commercially available tomato cultivars that exhibit significant levels of resistance to arthropod pests. Therefore, this study evaluated resistance to whitefly (Bemisia tabaci) in F2 and F2RC1 tomato genotypes with high AS levels from a cross between Solanum lycopersicum 'Redenção' and the S. pennellii accession, LA-716. Plants were exposed to B. tabaci biotype B at the pre-flowering stage. In both generations, there were significant, negative correlations between AS content and oviposition preference and nymph development. Whitefly exhibited a lower preference for oviposition and produced fewer nymphs in genotypes with high AS levels and the wild parent S. pennellii than in the low AS-level genotypes and Redenção cultivar, demonstrating that the breeding program was effective in transferring resistance to the F2 and F2RC1 generations. RVTA-2010-pl#31 and RVTA-2010-pl#94 in the F2 population are promising genotypes that produced materials with high AS levels in the F2RC1 generation (RVTA-2010-31-pl#177 and RVTA-2010-94-pl#381). PMID:27173206

  11. Biological Invasions of Geminiviruses: Case Study of TYLCV and Bemisia tabaci in Reunion Island

    PubMed Central

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-01-01

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470

  12. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  13. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  14. Biological invasions of geminiviruses: case study of TYLCV and Bemisia tabaci in Reunion Island.

    PubMed

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-12-01

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470

  15. Challenges with managing insecticide resistance in agricultural pests, exemplisfied by the whitefly Bemisia tabaci

    PubMed Central

    Denholm, I.

    1998-01-01

    For many key agricultural pests, successful management of insecticide resistance depends not only on modifying the way that insecticides are deployed, but also on reducing the total number of treatments applied. Both approaches benefit from a knowledge of the biological characteristics of pests that promote or may retard the development of resistance. For the whitefly Bemisia tabaci (Gennadius), these factors include a haplodiploid breeding system that encourages the rapid selection and fixation of resistance genes, its breeding cycle on a succession of treated or untreated hosts, and its occurrence on and dispersal from high-value crops in greenhouses and glasshouses. These factors, in conjunction with often intensive insecticide use, have led to severe and widespread resistance that now affects several novel as well as conventional control agents. Resistance-management strategies implemented on cotton in Israel, and subsequently in south-western USA, have nonetheless so far succeeded in arresting the resistance treadmill in B. tabaci through a combination of increased chemical diversity, voluntary or mandatory restrictions on the use of key insecticides, and careful integration of chemical control with other pest-management options. In both countries, the most significant achievement has been a dramatic reduction in the number of insecticide treatments applied against whiteflies on cotton, increasing the prospect of sustained use of existing and future insecticides.

  16. Comparison of the Antennal Sensilla Ultrastructure of Two Cryptic Species in Bemisia tabaci

    PubMed Central

    Zhang, Xiao-Man; Wang, Su; Li, Shu; Luo, Chen; Li, Yuan-Xi; Zhang, Fan

    2015-01-01

    Bemisia tabaci is an important agricultural pest with worldwide distribution and host preference. Therefore, understanding the biology of this pest is important to devise specific pest control strategies. The antennae of herbivorous insects play an important role in the identification of hosts using plant volatiles. To understand the features of antennae in B. tabaci MEAM 1(formerly known as biotype ‘B’) and MED (formerly known as biotype ‘Q’), the morphology and distribution of the antennal sensilla were examined using scanning electron micrographs. The results showed that the average antennae length in MEAM 1 was longer than MED. No differences were observed in the number and distribution of antennal sensilla in MEAM 1 and MED antennae; each antenna had nine different types of sensilla. Both cryptic species possessed Microtrichia, Grooved surface trichodea sensilla, Chaetae sensilla, Coeloconic sensillaⅠandⅡ, Basiconic sensilla Ⅰ, Ⅱ and Ⅲ and Finger-like sensilla. This is the first report of Grooved surface trichodea sensilla and Basiconic sensilla Ⅱ on B. tabaci flies. The numbers of Chaetae sensilla were different in the females and males of MEAM 1 and MED, which females having 5 and males containing 7. The surface structure of Basiconic sensilla Ⅰ was different with MEAM 1 showing a multiple-pitted linen surface and MED showing a multiple-pitted pocking surface. Basiconic sensillaⅡ were double in one socket with the longer one having a multiple-pitted surface and the shorter one with a smooth surface. Basiconic Ⅲ and Finger-like sensillae were longer in MEAM 1 antennae than in MED antennae. Our results are expected to further the studies that link morphological characteristics to insect behavior and help devise strategies to control insect pests. PMID:25822843

  17. Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus (TYLCV).

    PubMed

    Pusag, Joseph Carlo A; Hemayet Jahan, S M; Lee, Kwan-Suk; Lee, Sukchan; Lee, Kyeong-Yeoll

    2012-10-01

    Acquisition of plant viruses has various effects on physiological mechanisms in vector insects. Bemisia tabaci is the only known vector of Tomato yellow leaf curl virus (TYLCV), which is a serious virus affecting tomato cultivars. In this study, the lifespan of Q1 biotype was compared between non-viruliferous (NV) and TYLCV-viruliferous (V) whiteflies. Total lifespan from egg to adult death of NV whiteflies was 62.54 days but 10.64 days shorter in V whiteflies. We investigated the temperature susceptibility of B. tabaci by comparing mortalities as well as heat shock protein (hsp) mRNA levels between NV and V whiteflies. For this, NV and V whiteflies were exposed for either 1 or 3h at 4, 25, and 35°C. The mortality of V whiteflies was higher than NV ones following exposure at either 4 or 35°C, but there was no significant difference at 25°C. Analysis of the expression level of heat shock protein (hsp) genes using quantitative real-time PCR showed that both cold and heat shock treatments stimulated higher expression of hsps (hsp40, hsp70, and hsp90) at various rates in V whiteflies than NV ones, but there was no difference at 25°C. All together, our results show that TYLCV acquisition accelerated the developmental rate and increased susceptibility to thermal stress in B. tabaci. Therefore, this modification may result in reduced vector longevity due to increased metabolic energy utilization. Our results provide insights into the complex interaction between vector fitness and thermal stress in relation to the acquisition and transmission of plant viruses. PMID:22841829

  18. Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California.

    PubMed

    Castle, S J; Prabhaker, N

    2013-06-01

    Bemisia tabaci (Gennadius) biotype B is a highly prolific and polyphagous whitefly that established in much of North America during the 1980s. Neonicotinoid insecticides have been fundamental in regaining control over outbreak populations of B. tabaci, but resistance threatens their sustainability. Susceptibility of B. tabaci in the southwestern United States to four neonicotinoid insecticides varied considerably across populations within each year over a 3 yr period. Using a variability ratio of highest LC50 to lowest LC50 in field-collected whitefly adults from Arizona and California, the ranges of LC50(s) across all tests within compounds were highest to imidacloprid and lowest to thiamethoxam. Patterns of susceptibility were similar among all four neonicotinoid insecticides, but the greater variability in responses to imidacloprid and significantly higher LC50(s) attained indicated higher resistance levels to imidacloprid in all field populations. Further evidence of differential toxicities of neonicotinoids was observed in multiple tests of dinotefuran against imidacloprid-resistant lab strains that yielded significant differences in the LC50(s) of dinotefuran and imidacloprid in simultaneous bioassays. To test the possibility that resistance expression in field-collected insects was sometimes masked by stressful conditions, field strains cultured in a greenhouse without insecticide exposure produced significantly higher LC50(s) to all neonicotinoids compared with LC50(s) attained directly from the field. In harsh climates such as the American southwest, resistance expression in field-collected test insects may be strongly influenced by environmental stresses such as high temperatures, overcrowding, and declining host plant quality.

  19. Comparison of the antennal sensilla ultrastructure of two cryptic species in Bemisia tabaci.

    PubMed

    Zhang, Xiao-Man; Wang, Su; Li, Shu; Luo, Chen; Li, Yuan-Xi; Zhang, Fan

    2015-01-01

    Bemisia tabaci is an important agricultural pest with worldwide distribution and host preference. Therefore, understanding the biology of this pest is important to devise specific pest control strategies. The antennae of herbivorous insects play an important role in the identification of hosts using plant volatiles. To understand the features of antennae in B. tabaci MEAM 1(formerly known as biotype 'B') and MED (formerly known as biotype 'Q'), the morphology and distribution of the antennal sensilla were examined using scanning electron micrographs. The results showed that the average antennae length in MEAM 1 was longer than MED. No differences were observed in the number and distribution of antennal sensilla in MEAM 1 and MED antennae; each antenna had nine different types of sensilla. Both cryptic species possessed Microtrichia, Grooved surface trichodea sensilla, Chaetae sensilla, Coeloconic sensillaⅠandⅡ, Basiconic sensilla Ⅰ, Ⅱ and Ⅲ and Finger-like sensilla. This is the first report of Grooved surface trichodea sensilla and Basiconic sensilla Ⅱ on B. tabaci flies. The numbers of Chaetae sensilla were different in the females and males of MEAM 1 and MED, which females having 5 and males containing 7. The surface structure of Basiconic sensilla Ⅰ was different with MEAM 1 showing a multiple-pitted linen surface and MED showing a multiple-pitted pocking surface. Basiconic sensillaⅡ were double in one socket with the longer one having a multiple-pitted surface and the shorter one with a smooth surface. Basiconic Ⅲ and Finger-like sensillae were longer in MEAM 1 antennae than in MED antennae. Our results are expected to further the studies that link morphological characteristics to insect behavior and help devise strategies to control insect pests. PMID:25822843

  20. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects.

    PubMed

    Van Ekert, Evelien; Chauvigné, François; Finn, Roderick Nigel; Mathew, Lolita G; Hull, J Joe; Cerdà, Joan; Fabrick, Jeffrey A

    2016-10-01

    The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; 2) the ability to avoid or prevent dehydration and desiccation, particularly during egg hatching and molting; and 3) to be adapted for survival at elevated temperatures. One superfamily of proteins involved in the maintenance of fluid homeostasis in many organisms includes the aquaporins, which are integral membrane channel proteins that aid in the rapid flux of water and other small solutes across biological membranes. Here, we show that B. tabaci has eight aquaporins (BtAqps), of which seven belong to the classical aquaporin 4-related grade of channels, including Bib, Drip, Prip, and Eglps and one that belongs to the unorthodox grade of aquaporin 12-like channels. B. tabaci has further expanded its repertoire of water channels through the expression of three BtDrip2 amino-terminal splice variants, while other hemipteran species express amino- or carboxyl-terminal isoforms of Drip, Prip, and Eglps. Each BtAqp has unique transcript expression profiles, cellular localization, and/or substrate preference. Our phylogenetic and functional data reveal that hemipteran insects lost the classical glp genes, but have compensated for this by duplicating the eglp genes early in their evolution to comprise at least three separate clades of glycerol transporters. PMID:27491441

  1. Relative amount of symbionts in Bemisia tabaci (Gennadius) Q changes with host plant and establishing the method of analyzing free amino acid in B. tabaci

    PubMed Central

    Pan, Huipeng; Su, Qi; Jiao, Xiaoguo; Zhou, Long; Liu, Baiming; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Xu, Baoyun; Zhang, YouJun

    2013-01-01

    The impact of symbionts on their insect hosts depends on their infection density. In the current study, we investigated the effects of host plants (cucumber, cabbage, and cotton) on the relative amount of symbionts Portiera and Hamiltonella in the whitefly Bemisia tabaci (Gennadius) Q. The relative amounts of symbionts in 3 host plant B. tabaci Q populations with the same genetic background were evaluated by quantitative PCR. The whiteflies of cabbage population harbored more Portiera than those of cucumber and cotton populations, and the relative amount of Portiera did not differ statistically between cotton and cucumber populations. The whiteflies of cucumber and cabbage populations harbored more Hamiltonella than that of cotton population, and the relative amount of Hamiltonella did not differ statistically between cabbage and cucumber populations, indicated that the relative amount of symbionts was significantly affected by host plant. In addition, the method of analyzing the composition of free amino acid in B. tabaci was established. Twenty-eight amino acids were detected in the B. tabaci Q population, the non-essential amino acids, such as glutamate, glutamine, alanine, proline and the essential amino acid arginine were the dominant amino acids in B. tabaci Q. PMID:23750302

  2. Trade-offs between survival, longevity, and reproduction, and variation of survival tolerance in Mediterranean Bemisia tabaci after temperature stress.

    PubMed

    Lü, Zhi-Chuang; Wang, Yan-Min; Zhu, Shao-Guang; Yu, Hao; Guo, Jian-Ying; Wan, Fang-Hao

    2014-01-01

    The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediterranean B. tabaci were decreased significantly after direct or cross temperature stress and that the number of eggs per female was not reduced significantly. Furthermore, heat-shock selection dramatically increased the survival of Mediterranean B. tabaci within two generations, and it did not significantly affect the egg number per female within five generations. These results indicated that there was a trade-off between survival, longevity, and reproduction in Mediterranean B. tabaci after temperature stress. The improvement in reproduction was costly in terms of decreased survival and longevity, and there was a fitness consequence to temperature stress. In addition, heat tolerance in Mediterranean B. tabaci increased substantially after selection by heat shock, indicating a considerable variation for survival tolerance in this species. This information could help us better understand the thermal biology of Mediterranean B. tabaci within the context of climate change. PMID:25368068

  3. Trade-Offs between Survival, Longevity, and Reproduction, and Variation of Survival Tolerance in Mediterranean Bemisia tabaci after Temperature Stress

    PubMed Central

    Lü, Zhi-Chuang; Wang, Yan-Min; Zhu, Shao-Guang; Yu, Hao; Guo, Jian-Ying; Wan, Fang-Hao

    2014-01-01

    The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediterranean B. tabaci were decreased significantly after direct or cross temperature stress and that the number of eggs per female was not reduced significantly. Furthermore, heat-shock selection dramatically increased the survival of Mediterranean B. tabaci within two generations, and it did not significantly affect the egg number per female within five generations. These results indicated that there was a trade-off between survival, longevity, and reproduction in Mediterranean B. tabaci after temperature stress. The improvement in reproduction was costly in terms of decreased survival and longevity, and there was a fitness consequence to temperature stress. In addition, heat tolerance in Mediterranean B. tabaci increased substantially after selection by heat shock, indicating a considerable variation for survival tolerance in this species. This information could help us better understand the thermal biology of Mediterranean B. tabaci within the context of climate change. PMID:25368068

  4. [Effects of calcium fertilizer on the development, survival, and feeding of B-biotype Bemisia tabaci on Euphorbia pulcherrima].

    PubMed

    Huang, Jun; Zhang, Juan; Yu, Yong-Ming; Liu, Jian-Xin; Li, Ming-Jiang; Zhu, Kai-Yuan

    2012-09-01

    This paper studied the development, survival, and feeding of B-biotype Bemisia tabaci on Euphorbia pulcherrima under the conditions of 26 +/- 1 degrees C and 60% - 80% relative humidity after applying calcium fertilizer, taking applying fresh water as the control. There existed significant differences in the developmental duration of B. tabaci between treatment applying calcium fertilizer and the control. After applying calcium fertilizer, the egg stage of B. tabaci shortened significantly, and the development from egg to adult took 20.18 days (for the control, it took 18.72 days). However, there were no significant differences in the survival rates of B. tabaci at different development stages between the two treatments. The feeding of B. tabaci on E. pulcherrima induced the plant leaf chlorophyll fluorescence parameters changed, i. e., the photochemical efficiency (Fv/Fm), photochemical quenching coefficient (q(p)), light use efficiency (alpha), maximum photosynthesis rate (rETRmax), and tolerance to light (I(k)) decreased significantly, while the non-photochemical quenching coefficient (NPQ) had a significant increase. After applying calcium fertilizer, the plant leaf photoinhibition parameter (beta), rETRmax, and I(k) had less difference with th e control. The nail polish blot observation on the lower epidermis structure of plant leaf showed that calcium fertilizer could effectively compensate the decrease in the photosynthesis of E. pulcherrima damaged by B-biotype B. tabaci. PMID:23286011

  5. [Effects of calcium fertilizer on the development, survival, and feeding of B-biotype Bemisia tabaci on Euphorbia pulcherrima].

    PubMed

    Huang, Jun; Zhang, Juan; Yu, Yong-Ming; Liu, Jian-Xin; Li, Ming-Jiang; Zhu, Kai-Yuan

    2012-09-01

    This paper studied the development, survival, and feeding of B-biotype Bemisia tabaci on Euphorbia pulcherrima under the conditions of 26 +/- 1 degrees C and 60% - 80% relative humidity after applying calcium fertilizer, taking applying fresh water as the control. There existed significant differences in the developmental duration of B. tabaci between treatment applying calcium fertilizer and the control. After applying calcium fertilizer, the egg stage of B. tabaci shortened significantly, and the development from egg to adult took 20.18 days (for the control, it took 18.72 days). However, there were no significant differences in the survival rates of B. tabaci at different development stages between the two treatments. The feeding of B. tabaci on E. pulcherrima induced the plant leaf chlorophyll fluorescence parameters changed, i. e., the photochemical efficiency (Fv/Fm), photochemical quenching coefficient (q(p)), light use efficiency (alpha), maximum photosynthesis rate (rETRmax), and tolerance to light (I(k)) decreased significantly, while the non-photochemical quenching coefficient (NPQ) had a significant increase. After applying calcium fertilizer, the plant leaf photoinhibition parameter (beta), rETRmax, and I(k) had less difference with th e control. The nail polish blot observation on the lower epidermis structure of plant leaf showed that calcium fertilizer could effectively compensate the decrease in the photosynthesis of E. pulcherrima damaged by B-biotype B. tabaci.

  6. Conservation of natural enemies in cotton: comparative selectivity of acetamiprid in the management of Bemisia tabaci.

    PubMed

    Naranjo, Steven E; Akey, David H

    2005-06-01

    The integrated control concept emphasizes the importance of both chemical and biological control for pest suppression in agricultural systems. A two-year field study was conducted to evaluate the selectivity of acetamiprid for the control of Bemisia tabaci (Gennadius) in cotton compared with a proven selective regime based on the insect growth regulators (IGRs) pyriproxyfen and buprofezin. Acetamiprid was highly effective in controlling all stages of B tabaci compared with an untreated control, and generally produced lower pest densities than the IGR regime. Univariate analyses indicated that nine of 17 taxa of arthropod predators were significantly depressed with the use of acetamiprid compared with an untreated control, including common species such as Geocoris punctipes (Say), Orius tristicolor (White), Chrysoperla carnea Stephens sensu lato, Collops vittatus (Say), Hippodamia convergens Guérin-Méneville, and Drapetis nr divergens. Compared with results from independent, concurrent studies using mixtures of broad-spectrum insecticides at the same research site, acetamiprid depressed populations of fewer predator taxa; but, for eight predator taxa significantly affected by both regimes, the average population reduction was roughly equal. In contrast, only four taxa were significantly reduced in the IGR regime compared with the untreated control and three of these were omnivores that function primarily as plant pests. Principal response curves analyses (a time-dependent, multivariate ordination method) confirmed these patterns of population change for the entire predator community. Predator:prey ratios generally increased with the use of both IGRs and acetamiprid compared with an untreated control, but ratios were consistently higher with IGRs. Parasitism by aphelinid parasitoids was unaffected or depressed slightly in all insecticide regimes compared with the control. Because of its high efficacy, acetamiprid may play an important role in later stages of B

  7. Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci

    PubMed Central

    Pakkianathan, Britto Cathrin; Kontsedalov, Svetlana; Lebedev, Galina; Mahadav, Assaf; Zeidan, Muhammad; Czosnek, Henryk

    2015-01-01

    ABSTRACT Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. IMPORTANCE Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it

  8. Tomato Yellow Leaf Curl Virus Benefits Population Growth of the Q Biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae).

    PubMed

    Maluta, N K P; Garzo, E; Moreno, A; Lopes, J R S; Fereres, A

    2014-08-01

    Plant viruses can directly influence their insect vectors, and indirectly through their shared host plant, altering their behavior and performance in a mutualistic or rather antagonistic manner. One of the most studied begomovirus, Tomato yellow leaf curl virus (TYLCV), may also facilitate the expansion of its vector, the whitefly Bemisia tabaci (Gennadius). Considering the likely expansion of the disease and its major vector, we studied the direct and the indirect effects of a Mediterranean isolate of this virus (TYLCV-IL) on the biological performance of the Q biotype of B. tabaci. The following parameters were examined: development time and viability of nymphs, sex ratio, fecundity, and fertility and longevity. The results varied from positive to neutral depending on the parameter and the effect studied. TYLCV accelerated nymphal developmental and increased male longevity of B. tabaci when viruliferous insects developed on TYLCV-immune eggplants (direct effects). An indirect, positive effect of TYLCV-infected plants was observed on fecundity of B. tabaci, which laid more eggs on virus-infected than on noninfected tomato plants. Our results show that TYLCV enhances the population increase of its whitefly vector and that there is a high risk of rapid expansion of both the virus and its vector-the MED species of B. tabaci-into new areas when both agents interact together. PMID:27193818

  9. Non-invasive delivery of dsGST is lethal to the sweet potato whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae).

    PubMed

    Asokan, R; Rebijith, K B; Roopa, H K; Kumar, N K Krishna

    2015-02-01

    The sweet potato whitefly, Bemisia tabaci (G.) biotype B (Hemiptera: Aleyrodidae), is one of the most economically important pest, by being a dreaded vector of Geminiviruses, and also causes direct damage to the crops by sucking phloem sap. Glutathione S-transferase (GST) is a large family of multifunctional enzymes that play pivotal roles in the detoxification of secondary allelochemical produced by the host plants and in insecticide resistance, thus regulates insect growth and development. The objective of this study is to show the potential of RNA interference (RNAi) in the management of B. tabaci. RNAi is a sequence-specific gene silencing mechanism induced by double-stranded RNA (dsRNA) which holds tremendous potential in pest management. In this regard, we sequenced the GST from B. tabaci and synthesized approximately 500-bp dsRNA from the above and delivered through diet to B. tabaci. Real-time quantitative PCR (RT-qPCR) showed that continuous application of dsGST at 1.0, 0.5, and 0.25 μg/μl reduced mRNA expression levels for BtGST by 77.43, 64.86, and 52.95 % which resulted in mortality by 77, 59, and 40 %, respectively, after 72 h of application. Disruption of BtGST expression will enable the development of novel strategies in pest management and functional analysis of vital genes in B. tabaci.

  10. Gene expression profiling in the thiamethoxam resistant and susceptible B-biotype sweetpotato whitefly, Bemisia tabaci.

    PubMed

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females. PMID:22957505

  11. Gene Expression Profiling in the Thiamethoxam Resistant and Susceptible B-biotype Sweetpotato Whitefly, Bemisia tabaci

    PubMed Central

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiaoguo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females. PMID:22957505

  12. Behavioral Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 Plant Extracts.

    PubMed

    Emilie, Deletre; Mallent, Maelle; Menut, Chantal; Chandre, Fabrice; Martin, Thibaud

    2015-08-01

    In the Mediterranean region, the use of small-mesh netting to protect horticultural crops is an effective sustainable tool against pests. But in tropical regions, because of high humidity under the net favoring fungal development, netting with a larger mesh size has to be used, protecting crops against lepidopteran pests but not against small pests such as hemipterans, thrips, and phytophagous mites. A combination of netting with a repellent or irritant product is one possible solution, but the desire to reduce the use of synthetic chemicals and mitigate resistance issues calls for a natural alternative. The objective of this study was to evaluate the repellent, irritant, and toxic effects of nets dipped in 20 different plant extracts on Bemisia tabaci (Gennadius) adults. The repellent effect of volatile compounds was evaluated using a still-air olfactometer. The irritant effect and toxicity were evaluated with a no-choice test in tubes separated into two parts by an impregnated net. Our results showed the seven most irritant and toxic products against B. tabaci were aframomum, cinnamon, geranium, dill, citronella, litsea, and savory. The most repellent were aframomum and lemongrass, although cinnamon, geranium, and savory were also repellent at higher doses. Effects varied with the plant extract and the concentration, and effects were independent of one another, i.e., an essential oil can be irritant but not repellent, suggesting that the repellent mechanism and that behind the irritant or toxic effects is not the same. The use of repellent compounds in combination with netting as new pest control strategy is discussed. PMID:26470332

  13. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    PubMed

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species. PMID:25204756

  14. Evidence for Horizontal Transmission of Secondary Endosymbionts in the Bemisia tabaci Cryptic Species Complex

    PubMed Central

    Ahmed, Muhammad Z.; De Barro, Paul J.; Ren, Shun-Xiang; Greeff, Jaco M.; Qiu, Bao-Li

    2013-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) is a globally distributed pest composed of at least 34 morphologically indistinguishable cryptic species. At least seven species of endosymbiont have been found infecting some or all members of the complex. The origin(s) of the associations between specific endosymbionts and their whitefly hosts is unknown. Infection is normally vertical, but horizontal transmission does occur and is one way for new infections to be introduced into individuals. The relationships between the different members of the cryptic species complex and the endosymbionts have not been well explored. In this study, the phylogenies of different cryptic species of the host with those of their endosymbionts were compared. Of particular interest was whether there was evidence for both coevolution and horizontal transmission. Congruence was observed for the primary endosymbiont, Portiera aleyrodidarum, and partial incongruence in the case of two secondary endosymbionts, Arsenophonus and Cardinium and incongruence for a third, Wolbachia. The patterns observed for the primary endosymbiont supported cospeciation with the host while the patterns for the secondary endosymbionts, and especially Wolbachia showed evidence of host shifts and extinctions through horizontal transmission rather than cospeciation. Of particular note is the observation of several very recent host shift events in China between exotic invader and indigenous members of the complex. These shifts were from indigenous members of the complex to the invader as well as from the invader to indigenous relatives. PMID:23308142

  15. Bioactivity of Indigenous Medicinal Plants against the Cotton Whitefly, Bemisia tabaci

    PubMed Central

    Hammad, E. Abou-Fakhr; Zeaiter, A.; Saliba, N.; Talhouk, S.

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species. PMID:25204756

  16. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae)

    PubMed Central

    Xie, Wen; Wu, Qingjun; Wang, Shaoli; Jiao, Xiaoguo; Guo, Litao; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    Host-associated differentiation is one of the driving forces behind the diversification of phytophagous insects. In this study, host induced transcriptomic differences were investigated in the sweetpotato whitefly Bemisia tabaci, an invasive agricultural pest worldwide. Comparative transcriptomic analyses using coding sequence (CDS), 5′ and 3′ untranslated regions (UTR) showed that sequence divergences between the original host plant, cabbage, and the derived hosts, including cotton, cucumber and tomato, were 0.11–0.14%, 0.19–0.26%, and 0.15–0.21%, respectively. In comparison to the derived hosts, 418 female and 303 male transcripts, respectively, were up-regulated in the original cabbage strain. Among them, 17 transcripts were consistently up-regulated in both female and male whiteflies originated from the cabbage host. Specifically, two ESTs annotated as Cathepsin B or Cathepsin B-like genes were significantly up-regulated in the original cabbage strain, representing a transcriptomic response to the dietary challenges imposed by the host shifting. Results from our transcriptome analysis, in conjunction with previous reports documenting the minor changes in their reproductive capacity, insecticide susceptibility, symbiotic composition and feeding behavior, suggest that the impact of host-associated differentiation in whiteflies is limited. Furthermore, it is unlikely the major factor contributing to their rapid range expansion/invasiveness. PMID:25540625

  17. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    PubMed

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species.

  18. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    PubMed

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae),Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species.

  19. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    PubMed

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae),Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species. PMID:25373231

  20. Whitefly Bemisia tabaci (Homoptera: Aleyrodidae) infestation on cassava genotypes grown at different ecozones in Nigeria.

    PubMed

    Ariyo, O A; Dixon, A G O; Atiri, G I

    2005-04-01

    Large-scale screening of cassava, Manihot esculenta Crantz, genotypes for resistance to infestation by whitefly Bemisia tabaci Gennadius, the vector of cassava mosaic geminiviruses, is limited. A range of new cassava elite clones were therefore assessed for the whitefly infestation in the 1999/2000 and 2000/2001 cropping seasons in experimental fields of International Institute of Tropical Agriculture, Ibadan, Nigeria. On each scoring day, between 0600 and 0800 hours when the whiteflies were relatively immobile, adult whitefly populations on the five topmost expanded leaves of cassava cultivars were counted. All through the 6-mo scoring period, there was a highly significant difference in whitefly infestation among the new cassava elite clones. Vector population buildup was observed in Ibadan (forest-savanna transition zone) and Onne (humid forest), 2 mo after planting (MAP). Mean infestation across cassava genotypes was significantly highest (16.6 whiteflies per plant) in Ibadan and lowest in Zaria (0.2). Generally, whitefly infestation was very low in all locations at 5 and 6 MAP. During this period, cassava genotypes 96/1439 and 91/02324 significantly supported higher infestations than other genotypes. Plants of 96/1089A and TMS 30572 supported the lowest whitefly infestation across cassava genotypes in all locations. The preferential whitefly visitation, the differences between locations in relation to whitefly population, cassava mosaic disease, and the fresh root yield of cassava genotypes are discussed.

  1. Bemisia tabaci Q carrying tomato yellow leaf curl virus strongly suppresses host plant defenses

    PubMed Central

    Shi, Xiaobin; Pan, Huipeng; Zhang, Hongyi; Jiao, Xiaoguo; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Fang, Yong; Chen, Gong; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China. PMID:24912756

  2. Expression Profiling in Bemisia tabaci under Insecticide Treatment: Indicating the Necessity for Custom Reference Gene Selection

    PubMed Central

    Zhou, Xuguo; Gao, Xiwu

    2014-01-01

    Finding a suitable reference gene is the key for qRT-PCR analysis. However, none of the reference gene discovered thus far can be utilized universally under various biotic and abiotic experimental conditions. In this study, we further examine the stability of candidate reference genes under a single abiotic factor, insecticide treatment. After being exposed to eight commercially available insecticides, which belong to five different classes, the expression profiles of eight housekeeping genes in the sweetpotato whitefly, Bemisia tabaci, one of the most invasive and destructive pests in the world, were investigated using qRT-PCR analysis. In summary, elongation factor 1α (EF1α), α-tubulin (TUB1α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified as the most stable reference genes under the insecticide treatment. The initial assessment of candidate reference genes was further validated with the expression of two target genes, a P450 (Cyp6cm1) and a glutathione S-transferase (GST). However, ranking of reference genes varied substantially among intra- and inter-classes of insecticides. These combined data strongly suggested the necessity of conducting custom reference gene selection designed for each and every experimental condition, even when examining the same abiotic or biotic factor. PMID:24498122

  3. Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1.

    PubMed

    Liu, Guo Xia; Xuan, Ning; Chu, Dong; Xie, Hong Yan; Fan, Zhong Xue; Bi, Yu Ping; Picimbon, Jean-François; Qin, Yu Chuan; Zhong, Su Ting; Li, Yao Fa; Gao, Zhan Lin; Pan, Wen Liang; Wang, Guo Ying; Rajashekar, Balaji

    2014-03-01

    Chemosensory proteins (CSPs) are a group of small soluble proteins found so far exclusively in arthropod species. These proteins act in chemical communication and perception. In this study, a gene encoding the Type 1 CSP (BtabCSP1) from the agricultural pest Bemisia tabaci (whitefly) was analyzed to understand sequence variation and expression specificity in different biotypes. Sequence analysis of BtabCSP1 showed significant differences between the two genetically characterized biotypes, B and Q. The B-biotype had a larger number of BtabCSP1 mutations than the Q-biotype. Similar to most other CSPs, BtabCSP1 was more expressed in the head than in the rest of the body. One-step RT-PCR and qPCR analysis on total messenger RNA showed that biotype-Q had higher BtabCSP1 expression levels than biotype-B. Females from a mixed field-population had high levels of BtabCSP1 expression. The interaction of BtabCSP1 with the insecticide thiamethoxam was investigated by analyzing the BtabCSP1 expression levels following exposure to the neonicotinoid, thiamethoxam, in a time/dose-response study. Insecticide exposure increased BtabCSP1 expression (up to tenfold) at 4 and 24 h following 50 or 100 g/ml treatments. PMID:24478049

  4. Bemisia tabaci Q carrying tomato yellow leaf curl virus strongly suppresses host plant defenses.

    PubMed

    Shi, Xiaobin; Pan, Huipeng; Zhang, Hongyi; Jiao, Xiaoguo; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Fang, Yong; Chen, Gong; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China. PMID:24912756

  5. Female-biased symbionts and tomato yellow leaf curl virus infections in Bemisia tabaci.

    PubMed

    Guo, Huifang; Qu, Yufeng; Liu, Xiangdong; Zhong, Wanfang; Fang, Jichao

    2014-01-01

    The female-biased infection of facultative symbionts has been found in Bemisia tabaci; however, whether there are any differences in tomato yellow leaf curl virus (TYLCV) and obligate symbiont infection rates between females and males is unknown. Determining whether such differences exist would be very important for understanding the spread of the plant virus and of the symbionts. We compared both symbiont infection types, including obligate and facultative symbionts, and the rates of TYLCV infection in both sexes in five field populations from Jiangsu Province, China. The obligate symbiont Portiera aleyrodidarum was not found in every whitefly tested. In all tested populations, more females than males were found to harbor P. aleyrodidarum; and more females than males also harbored Hamiltonella defense, the most common facultative symbiont as well as Cardinium. In addition to female-biased symbiont infections, there were also female-biased TYLCV infections, and the infection frequencies of this plant virus in females were higher than those in males. Taken together, these results suggested that both the female-biased symbiont infections and female-biased TYLCV infections promoted the rapid spread of TYLCV in China. PMID:24465416

  6. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage.

    PubMed

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC50 values were higher for Lab-Q than for Lab-B; avermectin LC50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China. PMID:25434040

  7. Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage.

    PubMed

    Xie, Wen; Liu, Yang; Wang, Shaoli; Wu, Qingjun; Pan, Huipeng; Yang, Xin; Guo, Litao; Zhang, Youjun

    2014-01-01

    Whitefly biotypes B and Q are the two most damaging members of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Control of B. tabaci (and especially of Q) has been impaired by resistance to commonly used insecticides. To find new insecticides for B. tabaci management in China, we investigated the sensitivity of eggs, larvae, and adults of laboratory strains of B and Q (named Lab-B and Lab-Q) and field strains of Q to several insecticides. For eggs, larvae, and adults of B. tabaci and for six insecticides (cyantraniliprole, chlorantraniliprole, pyriproxyfen, buprofezin, acetamiprid, and thiamethoxam), LC50 values were higher for Lab-Q than for Lab-B; avermectin LC50 values, however, were low for adults of both Lab-Q and Lab-B. Based on the laboratory results, insecticides were selected to test against eggs, larvae, and adults of four field strains of B. tabaci Q. Although the field strains differed in their sensitivity to the insecticides, the eggs and larvae of all strains were highly sensitive to cyantraniliprole, and the adults of all strains were highly sensitive to avermectin. The eggs, larvae, and adults of B. tabaci Q were generally more resistant than those of B. tabaci B to the tested insecticides. B. tabaci Q eggs and larvae were sensitive to cyantraniliprole and pyriproxyfen, whereas B. tabaci Q adults were sensitive to avermectin. Field trials should be conducted with cyantraniliprole, pyriproxyfen, and avermectin for control of B. tabaci Q and B in China.

  8. The Dynamics and Environmental Influence on Interactions Between Cassava Brown Streak Disease and the Whitefly, Bemisia tabaci.

    PubMed

    Jeremiah, S C; Ndyetabula, I L; Mkamilo, G S; Haji, S; Muhanna, M M; Chuwa, C; Kasele, S; Bouwmeester, H; Ijumba, J N; Legg, J P

    2015-05-01

    Cassava brown streak disease (CBSD) is currently the most significant virus disease phenomenon affecting African agriculture. In this study, we report results from the most extensive set of field data so far presented for CBSD in Africa. From assessments of 515 farmers' plantings of cassava, incidence in the Coastal Zone of Tanzania (46.5% of plants; 87% of fields affected) was higher than in the Lake Zone (22%; 34%), but incidences for both zones were greater than previous published records. The whitefly vector, Bemisia tabaci, was more abundant in the Lake Zone than the Coastal Zone, the reverse of the situation reported previously, and increased B. tabaci abundance is driving CBSD spread in the Lake Zone. The altitudinal "ceiling" previously thought to restrict the occurrence of CBSD to regions <1,000 masl has been broken as a consequence of the greatly increased abundance of B. tabaci in mid-altitude areas. Among environmental variables analyzed, minimum temperature was the strongest determinant of CBSD incidence. B. tabaci in the Coastal and Lake Zones responded differently to environmental variables examined, highlighting the biological differences between B. tabaci genotypes occurring in these regions and the superior adaptation of B. tabaci in the Great Lakes region both to cassava and low temperature conditions. Regression analyses using multi-country data sets could be used to determine the potential environmental limits of CBSD. Approaches such as this offer potential for use in the development of predictive models for CBSD, which could strengthen country- and continent-level CBSD pandemic mitigation strategies. PMID:25585059

  9. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci

    PubMed Central

    Becker, Nathalie; Rimbaud, Loup; Chiroleu, Frédéric; Reynaud, Bernard; Thébaud, Gaël; Lett, Jean-Michel

    2015-01-01

    Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0–144 hours or 0–20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation. PMID:26625871

  10. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci.

    PubMed

    Becker, Nathalie; Rimbaud, Loup; Chiroleu, Frédéric; Reynaud, Bernard; Thébaud, Gaël; Lett, Jean-Michel

    2015-01-01

    Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0-144 hours or 0-20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation. PMID:26625871

  11. Molecular cloning of the sex-related gene PSI in Bemisia tabaci and its alternative splicing properties.

    PubMed

    Liu, Yating; Xie, Wen; Yang, Xin; Guo, Litao; Wang, Shaoli; Wu, Qingjun; Yang, Zezhong; Zhou, Xuguo; Zhang, Youjun

    2016-04-15

    The P-element somatic inhibitor (PSI) is gene known to regulate the transcription of doublesex (dsx) when transformer (tra) is absent in Bombyx mori. In this study, we identified and characterized a PSI homolog in Bemisia tabaci (BtPSI). BtPSI cDNA had a total length of 5700 bp and contained a predicted open reading frame (ORF) of 2208 nucleotides encoding for 735 amino acids. Multiple sequence alignments of the common regions of PSI proteins from B. tabaci and five other insect species revealed a high degree of sequence conservation. BtPSI is expressed in all stages of B. tabaci development, and expression did not significantly differ between female and male adult. A total of 92 BtPSI isoforms (78 in female and 22 in male) were identified, and a marker indicating the female-specific form was found. These results increase the understanding of genes that may determine sex in B. tabaci and provide a foundation for research on the sex determination mechanism in this insect.

  12. Implication of the Bacterial Endosymbiont Rickettsia spp. in Interactions of the Whitefly Bemisia tabaci with Tomato yellow leaf curl virus

    PubMed Central

    Kliot, Adi; Cilia, Michelle; Czosnek, Henryk

    2014-01-01

    ABSTRACT Numerous animal and plant viruses are transmitted by arthropod vectors in a persistent, circulative manner. Tomato yellow leaf curl virus (TYLCV) is transmitted by the sweet potato whitefly Bemisia tabaci. We report here that infection with Rickettsia spp., a facultative endosymbiont of whiteflies, altered TYLCV-B. tabaci interactions. A B. tabaci strain infected with Rickettsia acquired more TYLCV from infected plants, retained the virus longer, and exhibited nearly double the transmission efficiency compared to an uninfected B. tabaci strain with the same genetic background. Temporal and spatial antagonistic relationships were discovered between Rickettsia and TYLCV within the whitefly. In different time course experiments, the levels of virus and Rickettsia within the insect were inversely correlated. Fluorescence in situ hybridization analysis of Rickettsia-infected midguts provided evidence for niche exclusion between Rickettsia and TYLCV. In particular, high levels of the bacterium in the midgut resulted in higher virus concentrations in the filter chamber, a favored site for virus translocation along the transmission pathway, whereas low levels of Rickettsia in the midgut resulted in an even distribution of the virus. Taken together, these results indicate that Rickettsia, by infecting the midgut, increases TYLCV transmission efficacy, adding further insights into the complex association between persistent plant viruses, their insect vectors, and microorganism tenants that reside within these insects. IMPORTANCE Interest in bacterial endosymbionts in arthropods and many aspects of their host biology in agricultural and human health systems has been increasing. A recent and relevant studied example is the influence of Wolbachia on dengue virus transmission by mosquitoes. In parallel with our recently studied whitefly-Rickettsia-TYLCV system, other studies have shown that dengue virus levels in the mosquito vector are inversely correlated with

  13. Comparative transcriptome analysis in Bemisia tabaci in response to tomato yellow leaf curl virus and development of ribonucleic acid interference to manage whitefly-transmitted viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whitefly, Bemisia tabaci transmits over 300 plant viruses, with the majority of them belonging to the Begomovirus genus. Begomoviruses are obligately transmitted to a wide range of agriculture crops, resulting in the loss of billions of dollars annually, while jeopardizing food security worldwid...

  14. Transcriptome analysis of Bemisia tabaci during tomato yellow leaf curl virus acquisition and ribonucleic acid interference to manage whitefly-transmitted viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 300 viruses are transmitted by the whitefly, Bemisia tabaci, with 90% of them belonging to the genus, Begomovirus. Begomoviruses are obligately transmitted by whiteflies to a wide range of agriculture crops, resulting in billions of dollars lost annually, while jeopardizing food security worldw...

  15. Pre shipping dip treatments using soap, natural oils, and Isaria fumosorosea: potential biopesticides for mitigating the spread of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) invasive insects on ornamental plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whitefly Bemisia tabaci (Hemiptera: Aleyodidae) is an invasive insect pest affecting different crops including vegetables, fruits, cereals, and ornamentals. The efficacy of some products such as commercial soap, natural oils and Preferal® (based on the entomopathogenic fungus Isaria fumosorosea ...

  16. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomics differences between two cotton cultivars that exhibit e...

  17. Multi-generation life tables of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) under high-temperature stress.

    PubMed

    Guo, Jian-Ying; Cong, Lin; Zhou, Zhong-Shi; Wan, Fang-Hao

    2012-12-01

    Much attention has been focused on insects' ability to survive long-term high-temperature stress and on their resulting population distributions under global warming. In this study, life tables of the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, were collected over five consecutive generations at 27, 31, and 35°C and for one generation at 37°C. At 37°C, the intrinsic rate of increase (r) and the net reproductive rate (r(0)) of the whitefly were 0.0383 d(-1) and 2.8 offspring, respectively. These results demonstrate that the lethal high temperature for B. tabaci is >37°C. At 27°C, neither r(0) nor r decreased over the generations studied. However, both of these values decreased over time at 31 and 35°C, and the decrease was more evident at 35°C. Our results on the ability of B. tabaci biotype B to survive long-term high-temperature stress are important for understanding its population distribution under global warming. PMID:23321117

  18. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance

    PubMed Central

    Yang, N; Xie, W; Jones, CM; Bass, C; Jiao, X; Yang, X; Liu, B; Li, R; Zhang, Y

    2013-01-01

    Bemisia tabaci has developed high levels of resistance to many insecticides including the neonicotinoids and there is strong evidence that for some compounds resistance is stage-specific. To investigate the molecular basis of B. tabaci resistance to the neonicotinoid thiamethoxam we used a custom whitefly microarray to compare gene expression in the egg, nymph and adult stages of a thiamethoxam-resistant strain (TH-R) with a susceptible strain (TH-S). Gene ontology and bioinformatic analyses revealed that in all life stages many of the differentially expressed transcripts encoded enzymes involved in metabolic processes and/or metabolism of xenobiotics. Several of these are candidate resistance genes and include the cytochrome P450 CYP6CM1, which has been shown to confer resistance to several neonicotinoids previously, a P450 belonging to the Cytochrome P450s 4 family and a glutathione S-transferase (GST) belonging to the sigma class. Finally several ATP-binding cassette transporters of the ABCG subfamily were highly over-expressed in the adult stage of the TH-R strain and may play a role in resistance by active efflux. Here, we evaluated both common and stage-specific gene expression signatures and identified several candidate resistance genes that may underlie B. tabaci resistance to thiamethoxam. PMID:23889345

  19. Differing Behavioural Responses of Bemisia tabaci MEAM1 and MED to Cabbage Damaged by Conspecifics and Heterospecifics

    PubMed Central

    Kong, Hailong; Zeng, Yang; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Jiao, Xiaoguo; Xu, Baoyun; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci is a serious pest with an extensive host range. Previous research has shown that B. tabaci is a species complex with many cryptic species or biotypes and that the two most important species are MEAM1 (Middle East-Minor Asia 1) and MED (Mediterranean genetic group). MEAM1 and MED are known to differ in their preference for cabbage, Brassica oleracea, as a host plant, however, the mechanism underlying this preference is unknown. In the current study, a host choice experiment showed that MED prefers to settle and oviposit on undamaged cabbage plants rather than MED-damaged cabbage plants. However, MEAM1 prefers MED-damaged cabbage plants to undamaged plants and does not exhibit a significant preference for undamaged or MEAM1-damaged cabbage plants. On the basis of gas chromatography-mass spectrometry (GC-MS) analysis, the following volatiles were released in larger quantities from Q-damaged cabbage plants than from undamaged plants: 2-ethyl-1-hexanol, benzenemethanol, (E)-2-decenol, benzaldehyde, nonanal, acetic acid geraniol ester, 4-hydroxy-4-methyl-2-pentanone, decane, and α-longipinene. Only one volatile, 4-hydroxy-4-methyl-2-pentanone, was released in greater quantities from MEAM1-damaged cabbage plants than from undamaged plants. Our results suggest that differences in herbivore-induced host volatile release may help explain the differences between the preference of B. tabaci MEAM1 and MED for cabbage as a host. PMID:27731417

  20. Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci

    PubMed Central

    Tan, Xiaoling; Hu, Nana; Zhang, Fan; Ramirez-Romero, Ricardo; Desneux, Nicolas; Wang, Su; Ge, Feng

    2016-01-01

    A mixed species release of parasitoids is used to suppress outbreaks of tobacco whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae); however, this biocontrol may be inhibited by interspecific interactions. We investigated the effects of mixed releases of natural enemies of B. tabaci on predation rates, parasite performance and adult parasitoid emergence under greenhouse conditions. We tested the polyphagous predatory ladybird Harmonia axyridis (Coleoptera: Coccinellidae) and two whitefly-specific parasitoids, namely Encarsia formosa and Encarsia sophia (both, Hymenoptera: Aphelinidae). Harmonia axyridis exhibited the lowest rates of predation when released with each parasitoid than with both parasitoid species together and showed a significant preference for non-parasitized nymphs as prey. Both E. formosa and E. sophia parasitized more B. tabaci when released with the ladybird than when the wasps were released either alone or mixed with the other parasitoid. We also found that the presence of H. axyridis significantly reduced adult parasitoid emergence; the highest rate of adult emergence was obtained with parasitoids released alone. Our results indicate that different combinations of natural enemies can influence observed rates of predation, parasitism, and parasitoid emergence. Therefore, the combination of natural enemies to be used for a particular biological control program should depend on the specific objectives. PMID:27312174

  1. Location of Symbionts in the Whitefly Bemisia tabaci Affects Their Densities during Host Development and Environmental Stress

    PubMed Central

    Su, Qi; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Ghanim, Murad; Zhang, Youjun

    2014-01-01

    Bacterial symbionts often enhance the physiological capabilities of their arthropod hosts and enable their hosts to expand into formerly unavailable niches, thus leading to biological diversification. Many arthropods, including the worldwide invasive whitefly Bemisia tabaci, have individuals simultaneously infected with symbionts of multiple genera that occur in different locations in the host. This study examined the population dynamics of symbionts that are located in different areas within B. tabaci. While densities of Portiera and Hamiltonella (which are located in bacteriocytes) appeared to be well-regulated during host development, densities of Rickettsia (which are not located in bacteriocytes) were highly variable among individual hosts during host development. Host mating did not significantly affect symbiont densities. Infection by Tomato yellow leaf curl virus did not affect Portiera and Hamiltonella densities in either sex, but increased Rickettsia densities in females. High and low temperatures did not affect Portiera and Hamiltonella densities, but low temperature (15°C) significantly suppressed Rickettsia densities whereas high temperature (35°C) had little effect on Rickettsia densities. The results are consistent with the view that the population dynamics of bacterial symbionts in B. tabaci are regulated by symbiont location within the host and that the regulation reflects adaptation between the bacteria and insect. PMID:24632746

  2. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).

    PubMed

    Díaz, Fernando; Orobio, Rony F; Chavarriaga, Paul; Toro-Perea, Nelson

    2015-08-01

    There is convincing evidence that heat-shock proteins (HSP) are upregulated by stress conditions in insects; however, the relative contribution of each HSP gene to the heat-shock response remains unclear. Here we considered the whitefly Bemisia tabaci (MEAM 1), a phloem feeder and invasive species whose molecular stress response is an important mechanism for overcoming heat stress. We assessed the expression of the hsp23, 40, 70 and 90 genes at the mRNA level when submitted to heat shocks of 40 and 44°C/1h (control at 25°C). For this, we evaluated a set of available and suitable reference genes in order to perform data normalization using the real-time polymerase chain reaction (qRT-PCR) technique, and then confirmed the production of HSP70 protein based on Western blot. Results were compared with the hardening capacity of B. tabaci, measured by fitness components as a response to heat shocks, using 40°C as the induction temperature. Three of the four genes (hsp23, 70 and 90) were upregulated by heat stress at mRNA, showing differential expression patterns. Hsp70 expression was confirmed at the protein level. Hardening significantly increased fitness following heat stress, suggesting that HSPs may contribute to hardening capacity in B. tabaci. Potential role of each gene in the heat-shock response for whiteflies is discussed. PMID:26267515

  3. Relative influence of plant quality and natural enemies on the seasonal dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton.

    PubMed

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2013-06-01

    The abundance and distribution of insect herbivores is determined by, among other things, plant quality and natural enemies. These two factors vary temporally and spatially, subsequently affecting seasonal population dynamics. The relative influence of plant quality and natural enemies on the seasonal dynamics of Bemisia tabaci (Gennadius) was investigated in a 3-yr field study in cotton. Plant quality was manipulated through varying irrigation regimes: irrigations done at 20, 40, and 60% soil water depletions; and natural enemy densities were manipulated using broad spectrum insecticide applications that reduced their densities compared with unsprayed controls. In each year, densities of B. tabaci eggs, large nymphs and adults were consistently higher when natural enemy densities were reduced compared with when they were left unaltered, regardless of irrigation regime. In contrast, effects of plant quality on densities of all whitefly stages were weak and inconsistent. In addition, natural enemy densities and predator:prey ratios also were not generally affected by plant quality. Interactions between natural enemies and plant quality on whitefly dynamics were rare. In general, whitefly densities were elevated two-thirds of the time and increased two- to sixfold when natural enemy densities were reduced compared with plant quality effects which influenced whitefly densities about one-third of the time and were expressed inconsistently over the years. This indicates that natural enemies exert a comparatively greater influence on seasonal dynamics of B. tabaci in cotton than plant quality, as manipulated by differential irrigation.

  4. Only a minority of broad-range detoxification genes respond to a variety of phytotoxins in generalist Bemisia tabaci species

    PubMed Central

    Halon, Eyal; Eakteiman, Galit; Moshitzky, Pnina; Elbaz, Moshe; Alon, Michal; Pavlidi, Nena; Vontas, John; Morin, Shai

    2015-01-01

    Generalist insect can utilize two different modes for regulating their detoxification genes, the constitutive mode and the induced mode. Here, we used the Bemisia tabaci sibling species MEAM1 and MED, as a model system for studying constitutive and induced detoxification resistance and their associated tradeoffs. B. tabaci adults were allowed to feed through membranes for 24 h on diet containing only sucrose or sucrose with various phytotoxins. Quantitative real-time PCR analyses of 18 detoxification genes, indicated that relatively few transcripts were changed in both the MEAM1 and MED species, in response to the addition of phytotoxins to the diet. Induced transcription of detoxification genes only in the MED species, in response to the presence of indole-3-carbinol in the insect’s diet, was correlated with maintenance of reproductive performance in comparison to significant reduction in performance of the MEAM1 species. Three genes, COE2, CYP6-like 5 and BtGST2, responded to more than one compound and were highly transcribed in the insect gut. Furthermore, functional assays showed that the BtGST2 gene encodes a protein capable of interacting with both flavonoids and glucosinolates. In conclusion, several detoxification genes were identified that could potentially be involved in the adaptation of B. tabaci to its host plants. PMID:26655836

  5. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1).

    PubMed

    Díaz, Fernando; Orobio, Rony F; Chavarriaga, Paul; Toro-Perea, Nelson

    2015-08-01

    There is convincing evidence that heat-shock proteins (HSP) are upregulated by stress conditions in insects; however, the relative contribution of each HSP gene to the heat-shock response remains unclear. Here we considered the whitefly Bemisia tabaci (MEAM 1), a phloem feeder and invasive species whose molecular stress response is an important mechanism for overcoming heat stress. We assessed the expression of the hsp23, 40, 70 and 90 genes at the mRNA level when submitted to heat shocks of 40 and 44°C/1h (control at 25°C). For this, we evaluated a set of available and suitable reference genes in order to perform data normalization using the real-time polymerase chain reaction (qRT-PCR) technique, and then confirmed the production of HSP70 protein based on Western blot. Results were compared with the hardening capacity of B. tabaci, measured by fitness components as a response to heat shocks, using 40°C as the induction temperature. Three of the four genes (hsp23, 70 and 90) were upregulated by heat stress at mRNA, showing differential expression patterns. Hsp70 expression was confirmed at the protein level. Hardening significantly increased fitness following heat stress, suggesting that HSPs may contribute to hardening capacity in B. tabaci. Potential role of each gene in the heat-shock response for whiteflies is discussed.

  6. Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci.

    PubMed

    Tan, Xiaoling; Hu, Nana; Zhang, Fan; Ramirez-Romero, Ricardo; Desneux, Nicolas; Wang, Su; Ge, Feng

    2016-01-01

    A mixed species release of parasitoids is used to suppress outbreaks of tobacco whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae); however, this biocontrol may be inhibited by interspecific interactions. We investigated the effects of mixed releases of natural enemies of B. tabaci on predation rates, parasite performance and adult parasitoid emergence under greenhouse conditions. We tested the polyphagous predatory ladybird Harmonia axyridis (Coleoptera: Coccinellidae) and two whitefly-specific parasitoids, namely Encarsia formosa and Encarsia sophia (both, Hymenoptera: Aphelinidae). Harmonia axyridis exhibited the lowest rates of predation when released with each parasitoid than with both parasitoid species together and showed a significant preference for non-parasitized nymphs as prey. Both E. formosa and E. sophia parasitized more B. tabaci when released with the ladybird than when the wasps were released either alone or mixed with the other parasitoid. We also found that the presence of H. axyridis significantly reduced adult parasitoid emergence; the highest rate of adult emergence was obtained with parasitoids released alone. Our results indicate that different combinations of natural enemies can influence observed rates of predation, parasitism, and parasitoid emergence. Therefore, the combination of natural enemies to be used for a particular biological control program should depend on the specific objectives. PMID:27312174

  7. Effects of high-gossypol cotton on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species.

    PubMed

    Guo, Jian-Ying; Wu, Gang; Wan, Fang-Hao

    2013-06-01

    Use of plant secondary metabolic compounds is an important method for insect pest control. In this study, the survival, development, and reproduction of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) MEAM1 cryptic species were compared over two consecutive generations on three cotton cultivars of different gossypol levels. Both cotton cultivar and generation significantly affected the fitness of the whitefly. In both generations, the immature development times on the low-gossypol cultivar ZMS13 were significantly longer than those on the high-gossypol cultivar M9101 or medium-gossypol cultivar HZ401. The female fecundity and rate of population increase of the whitefly ranked in the following order: ZMS13 > HZ401 > M9101. On each cultivar, the immature development time was shorter and the immature survival rate was higher in the second generation than those in the first generation. Rate of increase was also higher in the second generation. These results demonstrated that the fitness of B. tabaci MEAM1 cryptic species on the low-gossypol cotton cultivar ZMS13 was higher than that on the medium- or high-gossypol cultivar. The comparison of the life histories of B. tabaci MEAM1 cryptic species on different cotton varieties is important for the development of an integrated pest management program of the whitefly by using plant secondary metabolic compounds.

  8. DNA Barcoding of Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Reveals Southerly Expansion of the Dominant Whitefly Species on Cotton in Pakistan

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, M. Sajjad; Khan, Arif M.; Mansoor, Shahid; Shah, Ghulam S.; Zafar, Yusuf

    2014-01-01

    Background Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Methods/Principal Findings Sequence diversity in the DNA barcode region (mtCOI-5′) was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3′ to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage “Pakistan”. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and “Pakistan” were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. Conclusions DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region. PMID

  9. Densities of Eggs and Nymphs and Percent Parasitism of Bemisia tabaci (Hemiptera: Aleyrodidae) on Common Weeds in West Central Florida

    PubMed Central

    Smith, Hugh A.; Nagle, Curtis A.; Evans, Gregory A.

    2014-01-01

    The density of eggs and nymphs of Bemisia tabaci (Gennadius) biotype B and the percent parasitism of the nymphs were measured from specimens collected on nine species of weeds, commonly found in west central Florida during the spring and summer of 2012 and 2013. The weeds were direct seeded in 2012 and grown as transplants in 2013 for Randomized Complete Block design experiments. The leaf area of each whole-plant sample was measured and the B. tabaci density parameters were converted to numbers per 100 cm2. In June and July, 2013, whole-plant samples became too large to examine entirely, thus a representative portion of a plant totaling about 1000 cm2 was sampled. Egg and nymph densities and percent parasitism varied greatly among weed species, and were higher overall in 2012 than in 2013. The highest densities of eggs and nymphs were measured on Abutilon theophrasti, Cassia obtusifolia and Emilia fosbergii each year. Lower densities of immature B. tabaci were measured on most dates for Amaranthus retroflexus, Bidens alba, Ipomoea lacunosa, Sesbania exaltata and Sida acuta. Nymph to egg ratios of 1:4 were observed on A. theophrasti and S. exaltata in 2012, while less than one nymph per ten eggs was observed overall on A. retroflexus, E. fosbergii and I. lacunosa. In 2012, parasitism rates of 32.3% were measured for B. alba, 23.4% for C. obtusifolia and 17.5% for S. acuta. Of the 206 parasitoids reared out over two seasons, 96.6% were Encarsia spp. and the remainder Eretmocerus spp. The role of weeds in managing B. tabaci is discussed. PMID:26462945

  10. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci.

    PubMed

    He, Yuxian; Zhao, Jianwei; Zheng, Yu; Weng, Qiyong; Biondi, Antonio; Desneux, Nicolas; Wu, Kongming

    2013-01-01

    The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of

  11. Lethal and Inhibitory Activities of Plant-Derived Essential Oils Against Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Biotype B in Tomato.

    PubMed

    Fanela, T L M; Baldin, E L L; Pannuti, L E R; Cruz, P L; Crotti, A E M; Takeara, R; Kato, M J

    2016-04-01

    The silverleaf whitefly Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) is one of the most severe tomato pests in the world. The damage caused by this insect may compromise up to 100% of crop production, and management of this pest has relied on spraying of synthetic insecticides. However, due to the environmental issues associated with this practice, alternative methods such as the use of botanical pesticides are now used as a strategy of integrated pest management (IPM). We evaluated the effects of essential oils of five plant species on B. tabaci biotype B in tomato and demonstrate that the essential oils (0.5%) of Piper callosum (PC-EO), Adenocalymma alliaceum (AA-EO), Pelargonium graveolens (PG-EO), and Plectranthus neochilus (PN-EO) inhibit the settlement and oviposition of B. tabaci biotype B adults in tomato plants. In fumigation tests, A. alliaceum (AA-EO) at 0.4 μL/L of air after 72 h and 0.1 μL/L of air after 6 h was the most effective against nymphs and adults of B. tabaci biotype B, respectively. The major chemical constituents of PC-EO were identified as being safrole (29.3%), α-pinene (19.2%), and β-pinene (14.3%), whereas diallyl trisulfide (66.9%) and diallyl disulfide (23.3%) were the major compounds identified in AA-EO. This is the first report on the reduction of oviposition by the use of P. callosum (PC-EO) and A. alliaceum (AA-EO). In addition, the fumigant effect of A. alliaceum (AA-EO) on nymphs and adults has also been reported here for the first time. PMID:26712319

  12. Transient Receptor Potential Is Essential for High Temperature Tolerance in Invasive Bemisia tabaci Middle East Asia Minor 1 Cryptic Species

    PubMed Central

    Lü, Zhi-Chuang; Li, Qian; Liu, Wan-Xue; Wan, Fang-Hao

    2014-01-01

    Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism’s temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3′ and 5′ rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate

  13. Transient receptor potential is essential for high temperature tolerance in invasive Bemisia tabaci Middle East Asia minor 1 cryptic species.

    PubMed

    Lü, Zhi-Chuang; Li, Qian; Liu, Wan-Xue; Wan, Fang-Hao

    2014-01-01

    Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism's temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3' and 5' rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate change.

  14. Transient receptor potential is essential for high temperature tolerance in invasive Bemisia tabaci Middle East Asia minor 1 cryptic species.

    PubMed

    Lü, Zhi-Chuang; Li, Qian; Liu, Wan-Xue; Wan, Fang-Hao

    2014-01-01

    Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing and regulation mechanisms of temperature adaptation. The transient receptor potential (TRP) is one of the key components of an organism's temperature perception system. TRP plays important roles in perceiving temperature, such as avoiding high temperature, low temperature and choosing the optimum temperature. To assess high temperature sensation and the heat resistance role of the TRP gene, we used 3' and 5' rapid-amplification of cDNA ends to isolate the full-length cDNA sequence of the TRP gene from Bemisia tabaci (Gennadius) MEAM1 (Middle East Asia Minor 1), examined the mRNA expression profile under various temperature conditions, and identified the heat tolerance function. This is the first study to characterize the TRP gene of invasive B. tabaci MEAM1 (MEAM1 BtTRP). The full-length cDNA of MEAM1 BtTRP was 3871 bp, and the open reading frames of BtTRP was 3501 bp, encoding 1166 amino acids. Additionally, the BtTRP mRNA expression level was significantly increased at 35°C. Furthermore, compared with control treatments, the survival rate of B. tabaci MEAM1 adults was significantly decreased under high temperature stress conditions after feeding with dsRNA BtTRP. Collectively, these results showed that MEAM1 BtTRP is a key element in sensing high temperature and plays an essential role in B. tabaci MEAM1 heat tolerance ability. Our data improved our understanding of the mechanism of temperature sensation in B. tabaci MEAM1 at the molecular level and could contribute to the understanding of the thermal biology of B. tabaci MEAM1 within the context of global climate change

  15. Asymmetry in thermal tolerance trade-offs between the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae).

    PubMed

    Elbaz, M; Weiser, M; Morin, S

    2011-05-01

    We investigated life history trade-offs related to thermal tolerance in two sibling species, commonly referred to as the B and Q biotypes, of Bemisia tabaci. We focused on basal resistance to short unpredicted heat stress, which reflects the organism investment, during both optimal and stressful conditions, in insuring its survival. At 27 °C, the relative reproductive performance of B was seven-fold higher than Q. After short stress of 42 °C, these differences increased to 23-fold. A turnover took place after short stress of 43 and 45 °C, in which Q adults performed better. As the expression of the analysed Hsp70 and other stress-related genes was found to be higher in the Q species, our data likely reflects two different strategies for optimal performance. B lowers soma protection for achieving maximum reproduction ('direct inhibitory' trade-off model), whereas Q invests significant resources in being always 'ready' for a challenge.

  16. Evidence for adaptive divergence of thermal responses among Bemisia tabaci populations from tropical Colombia following a recent invasion.

    PubMed

    Díaz, F; Muñoz-Valencia, V; Juvinao-Quintero, D L; Manzano-Martínez, M R; Toro-Perea, N; Cárdenas-Henao, H; Hoffmann, A A

    2014-06-01

    There is an increasing evidence that populations of ectotherms can diverge genetically in response to different climatic conditions, both within their native range and (in the case of invasive species) in their new range. Here, we test for such divergence in invasive whitefly Bemisia tabaci populations in tropical Colombia, by considering heritable variation within and between populations in survival and fecundity under temperature stress, and by comparing population differences with patterns established from putatively neutral microsatellite markers. We detected significant differences among populations linked to mean temperature (for survival) and temperature variation (for fecundity) in local environments. A QST  - FST analysis indicated that phenotypic divergence was often larger than neutral expectations (QST  > FST ). Particularly, for survival after a sublethal heat shock, this divergence remained linked to the local mean temperature after controlling for neutral divergence. These findings point to rapid adaptation in invasive whitefly likely to contribute to its success as a pest species. Ongoing evolutionary divergence also provides challenges in predicting the likely impact of Bemisia in invaded regions.

  17. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato

    PubMed Central

    Du, Wenxiao; Han, Xiaoqing; Wang, Yubo; Qin, Yuchuan

    2016-01-01

    With the goal of finding a new way to reduce population densities of Bemisia tabaci biotype Q in greenhouses, seven repellent volatile chemicals and their combinations were screened. The mixture of DLCO (D-limonene, citral and olive oil (63:7:30)) had a better cost performance(SC50 = 22.59 mg/ml)to repel whiteflies from settling than the other mixtures or single chemicals. In the greenhouse, in both the choice test and the no-choice tests, the number of adult whiteflies that settled on 1% DLCO-treated tomato plants was significantly lower than those settling on the control plants for the different exposure periods (P < 0.01). In the choice test, the egg amount on the treated tomato plants was significantly lower (P < 0.01) than that on the control plants, but there was no significant difference (P > 0.05) between the number of eggs on treated and control plants in the no-choice test. Compared with the controls, 1% DLCO did not cause significantly statistic mortality rates (P > 0.05) out of different living stages of B. tabaci. The tests for evaluating the repellent efficacy, showed that a slow-releasing bottle containing the mixture had a period of efficacy of 29 days, and the application of this mixture plus a yellow board used as a push-pull strategy in the greenhouse was also effective. PMID:26907368

  18. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato

    NASA Astrophysics Data System (ADS)

    Du, Wenxiao; Han, Xiaoqing; Wang, Yubo; Qin, Yuchuan

    2016-02-01

    With the goal of finding a new way to reduce population densities of Bemisia tabaci biotype Q in greenhouses, seven repellent volatile chemicals and their combinations were screened. The mixture of DLCO (D-limonene, citral and olive oil (63:7:30)) had a better cost performance(SC50 = 22.59 mg/ml)to repel whiteflies from settling than the other mixtures or single chemicals. In the greenhouse, in both the choice test and the no-choice tests, the number of adult whiteflies that settled on 1% DLCO-treated tomato plants was significantly lower than those settling on the control plants for the different exposure periods (P < 0.01). In the choice test, the egg amount on the treated tomato plants was significantly lower (P < 0.01) than that on the control plants, but there was no significant difference (P > 0.05) between the number of eggs on treated and control plants in the no-choice test. Compared with the controls, 1% DLCO did not cause significantly statistic mortality rates (P > 0.05) out of different living stages of B. tabaci. The tests for evaluating the repellent efficacy, showed that a slow-releasing bottle containing the mixture had a period of efficacy of 29 days, and the application of this mixture plus a yellow board used as a push-pull strategy in the greenhouse was also effective.

  19. Effects of Isaria fumosorosea on TYLCV (Tomato Yellow Leaf Curl Virus) Accumulation and Transmitting Capacity of Bemisia tabaci

    PubMed Central

    2016-01-01

    Tomato yellow leaf curl virus (TYLCV) is transmitted by the Bemisia tabaci pest Middle East-Asia Minor 1 (MEAM1) in China. Isaria fumosorosea is a fungal pathogen of B. tabaci. However, the effects of fungal infection on TYLCV expression and transmission by MEAM1 are unclear. In this study, potted tomatoes containing second instar nymphs of MEAM1 were treated with I. fumosorosea IfB01 strain and the relationship between fungal infection in MEAM1 and its TYLCV transmission capacity was investigated. The results indicated that a significantly (p < 0.05) decreased incidence of transmission of TYLCV-infected plants (ITYPs) transmitted by second instar nymphs of MEAM1 infected with fungus. Further, we found a negative correlation between fungal conidial concentrations and eclosion rates of MEAM1, and a positive correlation between ITYPs and eclosion. In addition, when each plant was exposed to three adults treated with fungus, a significantly decreased transmission of TYLCV (TYTE) was observed in the infected group. However, the incidence of TYLCV-carrying MEAM1 adults (ITYAs) was not significantly different in the infected and control groups (p < 0.05). Nevertheless, a significant decrease in viral accumulation using TYLCV AC2 gene as a marker was observed in the fungus-infected MEAM1. In conclusion, the results suggested that I. fumosorosea infection decreases TYLCV accumulation in MEAM1 and subsequently reduces its transmission. Our study provides new insights into the relationship between host plant, plant virus, insect vector, and entomopathogenic fungus. PMID:27716852

  20. Antifeedant activity of botanical crude extracts and their fractions on Bemisia tabaci (Homoptera: Aleyrodidae) adults: II. Sechium pittieri (Cucurbitaceae).

    PubMed

    Flores, Guillermo; Hilje, Luko; Mora, Gerardo A; Carballo, Manuel

    2008-12-01

    Bemisia tabaci is a key pest of vegetables and other crops worldwide, but it is a particularly serious problem in the tropics, due to its ability to transmit several types of viruses, especially begomoviruses (Geminiviridae). Therefore, a preventive approach to deal with viral epidemics may be the deployment of repellents or phagodeterrents at earlier stages of plant development (critical period). Thus, the crude extract and four fractions thereof (water, water: methanol, methanol, and diethyl ether) of wild "tacaco" (Sechium pittieri, Cucurbitaceae), were tested for phagodeterrence to B. tabaci adults under greenhouse conditions, on tomato plants, in Costa Rica. Both restricted-choice and unrestricted-choice experiments showed that the crude extract as well as some fractions exert such effect on the insect. In the former (in sleeve cages), fractions caused deterrence at doses as low as 0.1% (ether) and 0.5% (water and water: methanol), with the methanol fraction showing no activity. However, in the latter (plants exposed in a greenhouse) no one of the fractions performed well, suggesting that the deterrent principles somehow decomposed under the experimental conditions.

  1. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato.

    PubMed

    Du, Wenxiao; Han, Xiaoqing; Wang, Yubo; Qin, Yuchuan

    2016-01-01

    With the goal of finding a new way to reduce population densities of Bemisia tabaci biotype Q in greenhouses, seven repellent volatile chemicals and their combinations were screened. The mixture of DLCO (D-limonene, citral and olive oil (63:7:30)) had a better cost performance(SC50 = 22.59 mg/ml)to repel whiteflies from settling than the other mixtures or single chemicals. In the greenhouse, in both the choice test and the no-choice tests, the number of adult whiteflies that settled on 1% DLCO-treated tomato plants was significantly lower than those settling on the control plants for the different exposure periods (P < 0.01). In the choice test, the egg amount on the treated tomato plants was significantly lower (P < 0.01) than that on the control plants, but there was no significant difference (P > 0.05) between the number of eggs on treated and control plants in the no-choice test. Compared with the controls, 1% DLCO did not cause significantly statistic mortality rates (P > 0.05) out of different living stages of B. tabaci. The tests for evaluating the repellent efficacy, showed that a slow-releasing bottle containing the mixture had a period of efficacy of 29 days, and the application of this mixture plus a yellow board used as a push-pull strategy in the greenhouse was also effective. PMID:26907368

  2. Population genetics of invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species in the United States based on microsatellite markers.

    PubMed

    Dickey, Aaron M; Osborne, Lance S; Shatters, Robert G; Hall, Paula A M; Mckenzie, Cindy L

    2013-06-01

    The Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the United States, MEAM1 occurs both in the field and in the greenhouse, but MED is only found in the greenhouse. To make inferences about the population structure of both species, and the origin and recent spread of MED within the United States, 987 MEAM1 whiteflies and 340 MED whiteflies were genotyped at six and seven microsatellite loci, respectively, for population genetic analyses. Major results of the study are 1) MED exhibits more population structure and genetic differentiation than MEAM1, 2) nuclear microsatellite markers exhibit a high degree of concordance with mitochondrial markers recovering a major east-west phylogeographic break within MED, 3) both eastern and western MED are found throughout the continental United States and eastern MED is present in Hawaii, and 4) MEAM1 contains two greenhouse U.S. populations significantly differentiated from other U.S. MEAM1. The results suggest that MED was introduced into the United States on at least three occasions and rapidly spread throughout the United States, showing no discernible differentiation across 7,000 km. The results further suggest that there is an enhanced role of the protected agricultural environment in promoting genetic differentiation in both invasive B. tabaci cryptic species.

  3. Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype

    PubMed Central

    Ning, Wenxi; Shi, Xiaobin; Liu, Baiming; Pan, Huipeng; Wei, Wanting; Zeng, Yang; Sun, Xinpei; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Cheng, Jiaxu; Peng, Zhengke; Zhang, Youjun

    2015-01-01

    Bemisia tabaci is a serious pest of vegetables and other crops worldwide. The most damaging and predominant B. tabaci biotypes are B and Q, and both are vectors of tomato yellow leaf curl virus (TYLCV). Previous research has shown that Q outperforms B in many respects but comparative research is lacking on the ability of B and Q to transmit viruses. In the present study, we tested the hypothesis that B and Q differ in their ability to transmit TYLCV and that this difference helps explain TYLCV outbreaks. We compared the acquisition, retention, and transmission of TYLCV by B and Q females and males. We found that Q females are more efficient than Q males, B females, and B males at TYLCV acquisition and transmission. Although TYLCV acquisition and transmission tended to be greater for B females than B males, the differences were not statistically significant. Based on electrical penetration graphs determination of phloem sap ingestion parameters, females fed better than males, and Q females fed better than Q males, B females, or B males. These results are consistent with the occurrences of TYLCV outbreaks in China, which have been associated with the spread of Q rather than B. PMID:26021483

  4. Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as Affected by Whitefly Sex and Biotype.

    PubMed

    Ning, Wenxi; Shi, Xiaobin; Liu, Baiming; Pan, Huipeng; Wei, Wanting; Zeng, Yang; Sun, Xinpei; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Cheng, Jiaxu; Peng, Zhengke; Zhang, Youjun

    2015-01-01

    Bemisia tabaci is a serious pest of vegetables and other crops worldwide. The most damaging and predominant B. tabaci biotypes are B and Q, and both are vectors of tomato yellow leaf curl virus (TYLCV). Previous research has shown that Q outperforms B in many respects but comparative research is lacking on the ability of B and Q to transmit viruses. In the present study, we tested the hypothesis that B and Q differ in their ability to transmit TYLCV and that this difference helps explain TYLCV outbreaks. We compared the acquisition, retention, and transmission of TYLCV by B and Q females and males. We found that Q females are more efficient than Q males, B females, and B males at TYLCV acquisition and transmission. Although TYLCV acquisition and transmission tended to be greater for B females than B males, the differences were not statistically significant. Based on electrical penetration graphs determination of phloem sap ingestion parameters, females fed better than males, and Q females fed better than Q males, B females, or B males. These results are consistent with the occurrences of TYLCV outbreaks in China, which have been associated with the spread of Q rather than B. PMID:26021483

  5. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato.

    PubMed

    Du, Wenxiao; Han, Xiaoqing; Wang, Yubo; Qin, Yuchuan

    2016-02-24

    With the goal of finding a new way to reduce population densities of Bemisia tabaci biotype Q in greenhouses, seven repellent volatile chemicals and their combinations were screened. The mixture of DLCO (D-limonene, citral and olive oil (63:7:30)) had a better cost performance(SC50 = 22.59 mg/ml)to repel whiteflies from settling than the other mixtures or single chemicals. In the greenhouse, in both the choice test and the no-choice tests, the number of adult whiteflies that settled on 1% DLCO-treated tomato plants was significantly lower than those settling on the control plants for the different exposure periods (P < 0.01). In the choice test, the egg amount on the treated tomato plants was significantly lower (P < 0.01) than that on the control plants, but there was no significant difference (P > 0.05) between the number of eggs on treated and control plants in the no-choice test. Compared with the controls, 1% DLCO did not cause significantly statistic mortality rates (P > 0.05) out of different living stages of B. tabaci. The tests for evaluating the repellent efficacy, showed that a slow-releasing bottle containing the mixture had a period of efficacy of 29 days, and the application of this mixture plus a yellow board used as a push-pull strategy in the greenhouse was also effective.

  6. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.

    PubMed

    Wang, Haihong; Lei, Zhongren; Li, Xue; Oetting, Ronald D

    2011-02-01

    This paper describes the rapid cold hardening processes of the sweetpotato whitefly, Bemisia tabaci (Gennadius). It was found that all developmental stages of B. tabaci have the capacity of rapid cold hardening and the length of time required to induce maximal cold hardiness at 0 °C varies with stage. There was only 18.3% survival when adult whiteflies were transferred directly from 26 °C to -8.5 °C for 2 h. However, exposure to 0 °C for 1 h before transfer to -8.5 °C increased the survival to 81.2%. The whiteflies show "prefreeze" mortality when they were exposed to temperatures above the supercooling point (SCP), although the range of SCP of whiteflies is -26 °C to -29 °C. The rapid cold hardening had no effect on SCP and reduced the lower lethal temperature of adults from -9 °C to -11 °C. Rapid cold-hardened adults had a similar lifespan as the control group but deposited fewer eggs than nonhardened individuals. The expression profiles during cold hardening and recovery from this process revealed that HSP90 did not respond to cold stress. However, HSP70 and HSP20 were significantly induced by cold with different temporal expression patterns. These results suggest that the rapid cold hardening response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations in spring or autumn in northern China, and the expression of HSP70 and HSP20 may be associated with the cold tolerance of B. tabaci.

  7. Induced changes in the antioxidative compounds of Vigna mungo genotypes due to infestation by Bemisia tabaci (Gennadius).

    PubMed

    Taggar, Gaurav Kumar; Gill, Ranjit Singh; Gupta, Anil Kumar; Singh, Sarvjeet

    2014-11-01

    Antioxidative compounds were quantified from the leaves of nine black gram (Vigna mungo (L.) Hepper) genotypes over a period of two years, for potential whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleryrodidae) resistance. Oviposition preference, nymphal and adult development were evaluated under screen-house conditions. Biochemical analysis revealed that higher per cent increase in the total phenol and o-dihydroxy phenol contents both at 30 and 50 days after sowing was evident in moderately resistant genotypes NDU 5-7 (49.6 and 50.8%, respectively) and KU 99-20 (47.8 and 50.8%, respectively) under whitefly stress conditions as compared to non-stressed plants. Tannin and flavonol contents in leaves increased to varying degrees (up to 11.1 and 7.1%, respectively) in resistant plants after whitefly infestation, indicating that the changes in tannin and flavonol contents were closely associated with the resistance to whitefly. Correlation studies relating leaf content of black gram antioxidative compounds from different genotypes with whitefly population were also worked out. Total phenols (r = -0.71 & -0.88), o- dihydroxy phenols (r = -0.56 & -0.76), flavonols (r = -0.80 & -0.81) and tannins (r= -0.16 & -0.26) showed significant negative correlation with whitefly population (nymphs and adults) suggesting that enhanced level of these biochemicals may contribute to bioprotection of black gram plants against B. tabaci infestation. Comparatively higher level of resistance in genotype NDU 5-7 and KU 99-20 can serve as base for genetic improvement of black gram, focusing on the development of resistant varieties to B. tabaci.

  8. Tri-Tek (Petroleum Horticultural Oil) and Beauveria bassiana: Use in Eradication Strategies for Bemisia tabaci Mediterranean Species in UK Glasshouses

    PubMed Central

    Cuthbertson, Andrew G. S.; Collins, Debbie A.

    2015-01-01

    The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest of global importance on both outdoor and glasshouse crops. To date, B. tabaci has not become established in the UK. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Mediterranean species is now the most prevalent Bemisia species entering the UK. Increasing neonicotinoid resistance is becoming increasingly widespread and problematic with this species. As a result, this continues to pose problems for eradication strategies. The current study investigates the efficacy of Tri-Tek (a petroleum horticultural oil awaiting UK registration) and the fungus Beauveria bassiana to act as control agents against Mediterranean species in UK glasshouses. Tri-Tek provided 100% egg mortality compared to 74% for B. bassiana. When tested against second instar larvae, mortalities of 69% and 65% respectively were achieved. Both products can be successfully “tank-mixed”. A tank-mix application provided 95.5% mortality of second instar larvae under glasshouse conditions. The potential integration of both products into current Bemisia eradication strategies in UK glasshouses is discussed. PMID:26463071

  9. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings.

    PubMed

    Buitenhuis, Rosemarije; Brownbridge, Michael; Brommit, Angela; Saito, Taro; Murphy, Graeme

    2016-01-01

    (1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers' options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies. PMID:27681741

  10. Rapid spread of a recently introduced virus (tomato yellow leaf curl virus) and its vector Bemisia tabaci (Hemiptera: Aleyrodidae) in Liaoning Province, China.

    PubMed

    Zhang, Wan-Min; Fu, Hai-Bin; Wang, Wen-Hang; Piao, Chun-Shu; Tao, Yun-Li; Guo, Dong; Chu, Dong

    2014-02-01

    In Liaoning Province, China, tomato yellow leaf curl virus (TYLCV) was first detected in 2009 and in only four counties. To quantify the spread of TYLCV and to identify potential factors influencing its spread in Liaoning Province, we assayed for TYLCV within 1,055 whiteflies (Bemisia tabaci (Gennadius) complex) from 74 populations and 29 counties in 2011. The B. tabaci species of these individuals was determined based on molecular markers. TYLCV was found in 13 counties (Donggang, Liaoyang, Kazuo, Lingyuan, Heishan, Liaozhong, Kaiyuan, Taian, Dawa, Dashiqiao, Beizhen, Linghai, and Xingcheng) and was most frequently detected in the central plain. In addition, the percentage of whiteflies with TYLCV was significantly higher in B. tabaci Q than in B. tabaci B but was unrelated to the hosts (pepper, eggplant, tomato, cucumber, and kidney bean) on which the whiteflies had been collected. These results demonstrate that TYLCV has spread rapidly in Liaoning Province since its first detection and suggest that its spread is more closely associated with the introduction of B. tabaci Q than with the species of host plant. These findings also indicate that controls are now needed to reduce the further spread of TYLCV and that these controls should include the management of B. tabaci Q populations. PMID:24665690

  11. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings.

    PubMed

    Buitenhuis, Rosemarije; Brownbridge, Michael; Brommit, Angela; Saito, Taro; Murphy, Graeme

    2016-09-26

    (1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers' options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies.

  12. Demographic trends in mixed Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species populations in commercial poinsettia under biological control- and insecticide-based management.

    PubMed

    Frewin, Andrew J; Scott-Dupree, Cynthia; Murphy, Graeme; Hanner, Robert

    2014-06-01

    Bemisia tabaci (Gennadius) is an economically important pest of agricultural and ornamental plants worldwide and is now widely recognized as a cryptic species complex. In North America, B. tabaci is a particularly important pest of greenhouse poinsettia. In poinsettia production, two cryptic species from the B. tabaci complex, Mediterranean and Middle East Minor 1, often infest crops simultaneously. Differences in pesticide susceptibility between these two cryptic species have the potential to influence growers' management decisions, including the use of biological control or insecticides, and the choice of insecticide active ingredient. However, the demographic behavior of mixed-species infestations in commercial greenhouses has yet to be investigated. We conducted a survey of B. tabaci populations in commercial greenhouses in Ontario, Canada, and provide evidence that under biological control-based management, Middle East Minor 1 can displace Mediterranean, whereas under insecticide-based management Mediterranean populations will persist. Furthermore, we comment on implications of this behavior on the management of B. tabaci, and comment on methods used to identify B. tabaci cryptic species.

  13. Age-specific interaction between the parasitoid, Encarsia formosa and its host, the silverleaf whitefly, Bemisia tabaci (Strain B).

    PubMed

    Hu, Jing S; Gelman, Dale B; Blackburn, Michael B

    2003-01-01

    The effect of hostage, the instar of Bemisia tabaci (Gennadius) parasitized, on the growth and development of Encarsia formosa (Gahan) was studied. E. formosa was able to parasitize and complete its life cycle no matter which instar of B. tabaci (Strain B), [also identified as B. argentifolii (Bellows and Perring)], was provided for oviposition, but parasitoid development was significantly slower when 1st or 2nd instar B. tabaci rather than 3rd or 4th instars were parasitized. Host age influenced the day on which E. formosa nymphs hatching from eggs was first observed. Mean embryonic development was significantly longer when 1st (5.4 days) rather than 2nd, 3rd or 4th instars (4.1, 3.4 and 3.5 days, respectively) were parasitized. The duration of the 1st instar parasitoid and the pupa, but not the 2nd or 3rd instar parasitoid, were also significantly greater when 1st instars were parasitized than when older host instars were parasitized. Interestingly, no matter which instar was parasitized, the parasitoid did not molt to the 3rd instar until the 4th instar host had reached a depth of about 0.23 mm (Stage 4-5) and had initiated the nymphal-adult molt and adult development. Histological studies revealed that whitefly eye and wing structures had either disintegrated or were adult in nature whenever a 3rd instar parasitoid was present. It appears, then, that the molt of the parasitoid to its last instar is associated with the host whitefly's nymphal-adult molt. However, the initiation of the host's final molt, while a prerequisite for the parasitoid's 2nd-3rd instar molt, did not necessarily trigger this molt. In contrast to its significant effect on various aspects of parasitoid development, host instar did not significantly influence the mean size of the parasitoid larva, pupa, or adult. Larval and pupal length and adult head width were similar for all parasitoids, regardless of which host instar was parasitized as was adult longevity. Adult parasitoid emergence was

  14. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.

  15. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding.

    PubMed

    Puthoff, David P; Holzer, Frances M; Perring, Thomas M; Walling, Linda L

    2010-11-01

    The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects.

  16. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding. PMID:21521136

  17. Direct and Indirect Impacts of Infestation of Tomato Plant by Myzus persicae (Hemiptera: Aphididae) on Bemisia tabaci (Hemiptera: Aleyrodidae)

    PubMed Central

    Tan, Xiao-Ling; Wang, Su; Ridsdill-Smith, James; Liu, Tong-Xian

    2014-01-01

    The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition. PMID:24710393

  18. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow leaf curl virus.

    PubMed

    Liu, Baiming; Preisser, Evan L; Chu, Dong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhou, Xuguo; Zhang, Youjun

    2013-05-01

    For many insect-vectored plant viruses, the relationship between feeding behavior and vector competence may prove integral to an understanding of the epidemiology of the resulting plant disease. While plant-infecting viruses are well known to change host plant physiology in a way that makes them more attractive to vectors, viral manipulation of the vectors themselves has only recently been reported. Previous research suggested that the rapid spread of Tomato yellow leaf curl virus (TYLCV) throughout China has been facilitated by its primary vector, the whitefly Bemisia tabaci. We conducted two experiments testing the impact of TYLCV infection of the host plant (tomato) and vector (B. tabaci biotypes B and Q) on whitefly feeding behavior. Whiteflies of biotypes B and Q both appeared to find TYLCV-infected plants more attractive, probing them more quickly and having a greater number of feeding bouts; this did not, however, alter the total time spent feeding. Viruliferous whiteflies fed more readily than uninfected whiteflies and spent more time salivating into sieve tube elements. Because vector salivation is essential for viral transmission, this virally mediated alteration of behavior should provide TYLCV a direct fitness benefit. This is the first report of such manipulation by a nonpropagative virus that belongs to an exclusively plant-infecting family of viruses (Geminiviridae). In the context of previous research showing that feeding on TYLCV-infected plants harms biotype B but helps biotype Q, the fact that both biotypes were equally affected by TYLCV also suggests that the virus may alter the biotype B-biotype Q competitive interaction in favor of biotype Q. PMID:23408638

  19. The suitability of biotypes Q and B of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae)

    PubMed Central

    Liu, Xin; Zhang, Youjun; Xie, Wen; Wu, Qingjun

    2016-01-01

    Encarsia formosa Gahan (Hymenoptera: Aphelinidae) is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies infesting greenhouse crops. In most areas in China, the invasive and destructive whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q has replaced B. tabaci biotype B and has become dominant between the two. A better understanding of the suitability of different nymphal instars of B. tabaci biotypes Q and B as hosts for E. formosa is needed to improve the use of this parasitoid for biological control. Parasitism of the four nymphal instars of B. tabaci biotypes Q and B by the commercial strain of E. formosa mass reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was assessed in the laboratory. The results indicated that E. formosa parasitized and successfully developed on all instars of both biotypes but performed best on the 3rd instar of B. tabaci biotype B and on the 2nd, 3rd, and 4th instars of B. tabaci biotype Q. The host-feeding rate of the adult parasitoid was generally higher on nymphal instars of B. tabaci biotype Q than on the corresponding nymphal instars of biotype B and was significantly higher on the 2nd and 3rd instars. For both whitefly biotypes, the parasitoid’s immature developmental period was the longest on the 1st instar, intermediate on the 2nd and 3rd instars, and the shortest on the 4th instar. The parasitoid emergence rate was significantly lower on the 1st instar than on the other three instars and did not significantly differ between B. tabaci biotype B and biotype Q. Offspring longevity was greater on the 3rd and 4th instars than on the 1st instar and did not significantly differ between the two B. tabaci biotypes. The results indicate that commercially-produced E. formosa can parasitize all instars of B. tabaci biotypes B and Q, making this parasitoid a promising tool for the management of the two biotypes of B. tabaci present

  20. The suitability of biotypes Q and B of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae).

    PubMed

    Liu, Xin; Zhang, Youjun; Xie, Wen; Wu, Qingjun; Wang, Shaoli

    2016-01-01

    Encarsia formosa Gahan (Hymenoptera: Aphelinidae) is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies infesting greenhouse crops. In most areas in China, the invasive and destructive whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q has replaced B. tabaci biotype B and has become dominant between the two. A better understanding of the suitability of different nymphal instars of B. tabaci biotypes Q and B as hosts for E. formosa is needed to improve the use of this parasitoid for biological control. Parasitism of the four nymphal instars of B. tabaci biotypes Q and B by the commercial strain of E. formosa mass reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was assessed in the laboratory. The results indicated that E. formosa parasitized and successfully developed on all instars of both biotypes but performed best on the 3rd instar of B. tabaci biotype B and on the 2nd, 3rd, and 4th instars of B. tabaci biotype Q. The host-feeding rate of the adult parasitoid was generally higher on nymphal instars of B. tabaci biotype Q than on the corresponding nymphal instars of biotype B and was significantly higher on the 2nd and 3rd instars. For both whitefly biotypes, the parasitoid's immature developmental period was the longest on the 1st instar, intermediate on the 2nd and 3rd instars, and the shortest on the 4th instar. The parasitoid emergence rate was significantly lower on the 1st instar than on the other three instars and did not significantly differ between B. tabaci biotype B and biotype Q. Offspring longevity was greater on the 3rd and 4th instars than on the 1st instar and did not significantly differ between the two B. tabaci biotypes. The results indicate that commercially-produced E. formosa can parasitize all instars of B. tabaci biotypes B and Q, making this parasitoid a promising tool for the management of the two biotypes of B. tabaci present in

  1. The suitability of biotypes Q and B of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae).

    PubMed

    Liu, Xin; Zhang, Youjun; Xie, Wen; Wu, Qingjun; Wang, Shaoli

    2016-01-01

    Encarsia formosa Gahan (Hymenoptera: Aphelinidae) is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies infesting greenhouse crops. In most areas in China, the invasive and destructive whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype Q has replaced B. tabaci biotype B and has become dominant between the two. A better understanding of the suitability of different nymphal instars of B. tabaci biotypes Q and B as hosts for E. formosa is needed to improve the use of this parasitoid for biological control. Parasitism of the four nymphal instars of B. tabaci biotypes Q and B by the commercial strain of E. formosa mass reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) was assessed in the laboratory. The results indicated that E. formosa parasitized and successfully developed on all instars of both biotypes but performed best on the 3rd instar of B. tabaci biotype B and on the 2nd, 3rd, and 4th instars of B. tabaci biotype Q. The host-feeding rate of the adult parasitoid was generally higher on nymphal instars of B. tabaci biotype Q than on the corresponding nymphal instars of biotype B and was significantly higher on the 2nd and 3rd instars. For both whitefly biotypes, the parasitoid's immature developmental period was the longest on the 1st instar, intermediate on the 2nd and 3rd instars, and the shortest on the 4th instar. The parasitoid emergence rate was significantly lower on the 1st instar than on the other three instars and did not significantly differ between B. tabaci biotype B and biotype Q. Offspring longevity was greater on the 3rd and 4th instars than on the 1st instar and did not significantly differ between the two B. tabaci biotypes. The results indicate that commercially-produced E. formosa can parasitize all instars of B. tabaci biotypes B and Q, making this parasitoid a promising tool for the management of the two biotypes of B. tabaci present in

  2. [Fitness of Bemisia tabaci (Gennadius) B Biotype (Hemiptera: Aleyrodidae) populations with different levels of susceptibility to the thiametoxam insecticide].

    PubMed

    Campuzano-Martínez, Aidee; Rodríguez-Maciel, J Concepcion; Lagunes-Tejeda, Angel; Llanderal-Cázares, Celina; Terán-Vargas, Antonio P; Vera-Graziano, Jorge; Vaquera-Huerta, Humberto; Silva-Aguayo, Gonzalo

    2010-01-01

    In two field-collected populations of de Bemisia tabaci (Gennadius) B biotype previously selected with the neonicotinoid insecticide thiamethoxam (NEO-R, NEO-N), and a population susceptible to insecticides (SUSC), the level of response to the insecticide thiametoxam, as well as the life and fertility tables were determined. At LC95, the NEO-R population showed a resistance ratio (RR95) value of 8.8-fold, an intrinsic rate of increase (r m) of 0.72. The fitness of the NEO-R and NEO-N populations in relation to the SUSC was 1.5 and 2.0, respectively. The RR95 value for NEO-N was 1.9-fold; it's r m value was 0.082, while in the SUSC population was 0.041. The developmental time of egg and adult were longer in NEO-R population, while the nymph and pupa lasted longer in the NEO-N and SUSC populations. The developmental time was different in the three NEO-R, NEO-N, and SUSC populations with 19.7 d (315.84 degree days or dd), 15.7 d (250.4 dd) and 18.5 d (296.6 d), respectively. The populations previously selected with thiamethoxam did not reproduce faster than their susceptible counterpart.

  3. Comparison of transmission of Papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex.

    PubMed

    Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng

    2015-01-01

    Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs.

  4. New Insecticides for Management of Tomato Yellow Leaf Curl, a Virus Vectored by the Silverleaf Whitefly, Bemisia tabaci

    PubMed Central

    Smith, H. A.; Giurcanu, M. C.

    2014-01-01

    Greenhouse studies using a randomized complete block design were carried out to evaluate the effect of six insecticides on transmission of Tomato yellow leaf curl virus (TYLCV) by the silverleaf whitefly, Bemisia tabaci biotype B Gennadius (Hemiptera: Aleyrodidae) to tomato, Lycopersicon esculentum (Miller) (Solanales: Solanaceae), seedlings that were inoculated with whiteflies from a TYLCV colony in cages 3, 7, or 14 d after treatment with insecticide. The purpose was to reveal differences in residual efficacy of four materials that are nearing registration for use on tomato—cyazypyr, flupyradifurone, pyrafluquinazon, and sulfoxaflor—and to compare them with two established insecticides, pymetrozine and a zeta-cypermethrin/bifenthrin combination. Differences in efficacy were expected because these six materials represent five distinct modes of action and both contact and systemic materials. Percentage of tomato seedlings expressing virus symptoms tended to be lowest in seedlings treated with flupyradifurone. The zeta-cypermethrin/bifenthrin insecticide demonstrated comparable efficacy to flupyradifurone in some trials at 3 and 7 d after treatment inoculations, but not the 14 d after treatment inoculation. Pyrafluquinazon was not statistically different from cyazypyr or sulfoxaflor in percentage of plants with virus symptoms in any trial. Percentage virus in the cyazypyr and sulfoxaflor treatments was not statistically different in the 3 and 7 d after treatment inoculations. Among seedlings treated with insecticide, percentage with virus symptoms tended to be highest in the seedlings treated with pymetrozine. PMID:25368089

  5. Comparison of transmission of Papaya leaf curl China virus among four cryptic species of the whitefly Bemisia tabaci complex

    PubMed Central

    Guo, Tao; Guo, Qi; Cui, Xi-Yun; Liu, Yin-Quan; Hu, Jian; Liu, Shu-Sheng

    2015-01-01

    Begomoviruses are transmitted by cryptic species of the whitefly Bemisia tabaci complex, often in a species-specific manner. Papaya leaf curl China virus (PaLCuCNV) has been recorded to infect several crops including papaya, tomato and tobacco in China. To help assess the risks of spread of this virus, we compared the acquisition, retention and transmission of PaLCuCNV among four species of whiteflies, Middle East-Asia Minor 1 (MEAM1), Mediterranean (MED), Asia 1 and Asia II 7. All four species of whiteflies are able to acquire, retain and transmit the virus, but with different levels of efficiency. Transmission tests using tomato as the host plant showed that MEAM1 transmitted PaLCuCNV with substantially higher efficiency than did MED, Asia 1 and Asia II 7. Furthermore, accumulation of PaLCuCNV in the whiteflies was positively associated with its efficiency of transmitting the virus. Altogether, these findings indicate that MEAM1 is the most efficient vector for PaLCuCNV in the four species of whiteflies, and suggest that risks of PaLCuCNV pandemics are high in regions where MEAM1 occurs. PMID:26486606

  6. New insecticides for management of tomato yellow leaf curl, a virus vectored by the silverleaf whitefly, Bemisia tabaci.

    PubMed

    Smith, H A; Giurcanu, M C

    2014-01-01

    Greenhouse studies using a randomized complete block design were carried out to evaluate the effect of six insecticides on transmission of Tomato yellow leaf curl virus (TYLCV) by the silverleaf whitefly, Bemisia tabaci biotype B Gennadius (Hemiptera: Aleyrodidae) to tomato, Lycopersicon esculentum (Miller) (Solanales: Solanaceae), seedlings that were inoculated with whiteflies from a TYLCV colony in cages 3, 7, or 14 d after treatment with insecticide. The purpose was to reveal differences in residual efficacy of four materials that are nearing registration for use on tomato-cyazypyr, flupyradifurone, pyrafluquinazon, and sulfoxaflor-and to compare them with two established insecticides, pymetrozine and a zeta-cypermethrin/bifenthrin combination. Differences in efficacy were expected because these six materials represent five distinct modes of action and both contact and systemic materials. Percentage of tomato seedlings expressing virus symptoms tended to be lowest in seedlings treated with flupyradifurone. The zeta-cypermethrin/bifenthrin insecticide demonstrated comparable efficacy to flupyradifurone in some trials at 3 and 7 d after treatment inoculations, but not the 14 d after treatment inoculation. Pyrafluquinazon was not statistically different from cyazypyr or sulfoxaflor in percentage of plants with virus symptoms in any trial. Percentage virus in the cyazypyr and sulfoxaflor treatments was not statistically different in the 3 and 7 d after treatment inoculations. Among seedlings treated with insecticide, percentage with virus symptoms tended to be highest in the seedlings treated with pymetrozine. PMID:25368089

  7. Selection of endogenous reference genes for gene expression analysis in the Mediterranean species of the Bemisia tabaci (Hemiptera: Aleyrodidae) complex.

    PubMed

    Su, Yun; He, Wen-Bo; Wang, Jia; Li, Jun-Min; Liu, Shu-Sheng; Wang, Xiao-Wei

    2013-06-01

    Quantitative real-time reverse transcription polymerase chain reaction is widely used for gene expression analysis, and robust normalization against stably expressed endogenous reference genes (ERGs) is necessary to obtain accurate results. In this study, the stability of nine housekeeping genes of the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean were evaluated in various conditions by quantitative real-time reverse transcription polymerase chain reaction using geNorm and Normfinder programs. Both programs suggested alpha-tubulin/ubiquitin and 18S small subunit ribosomal RNA the most stable genes for bacterium- and insecticide-treated whiteflies, respectively. For developmental stages, organs, and the samples including salivary glands and the whole body, transcription initiation factor TFIID subunit was calculated as the most stably expressed gene by both programs. In addition, we compared the RNA-seq data with the results of geNorm and Normfinder and found that the stable genes revealed by RNA-seq analysis were also the ERGs recommended by geNorm and Normfinder. Furthermore, the use of the most stable gene suggested by RNA-seq analysis as an ERG produced similar gene expression patterns compared with results generated from the normalization against the most stable gene selected by geNorm and Normfinder and multiple genes recommended by geNorm. It indicates that RNA-seq data are reliable and provide a great source for ERG candidate exploration. Our results benefit future research on gene expression profiles of whiteflies and possibly other organisms.

  8. Within-plant distribution and sampling of single and mixed infestations of Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in winter tomato crops.

    PubMed

    Arnó, Judit; Albajes, Ramon; Gabarra, Rosa

    2006-04-01

    In several areas of Spain, the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and the sweet potato whitefly, Bemisia tabaci (Gennadius), coexist in tomato, Lycopersicon esculentum Miller. For integrated pest management decision-making, it is important to know the abundance of each species, because they exhibit different abilities to transmit viruses, are susceptible to different biological control agents, and have different responses to insecticides. This study was conducted to provide information on the vertical distribution of T. vaporariorumn and B. tabaci in tomato plants grown in greenhouses in winter and to determine the optimal sampling unit and the sample size for estimating egg and nymphal densities of both whitefly species. Eggs of T. vaporariorum were mainly located on the top stratum of the plant, whereas B. tabaci eggs were mainly found on the middle stratum. Nymphs of both species mainly concentrated in the bottom stratum of the plant. When pest abundance and low relative variation were considered, the bottom stratum was selected as the most convenient for sampling nymphs of both whitefly species. Conversely, the same two criteria indicated that either the top or the middle strata could be used when sampling T. vaporariorum and B. tabaci eggs. Several different sampling units were compared to optimize the estimation of nymphal and egg densities in terms of cost efficiency. One disk (1.15 cm in diameter) per leaflet collected from the top stratum of the tomato plant was the most efficient sampling unit for simultaneously estimating the egg densities of the two whitefly species.

  9. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    PubMed Central

    Hariton Shalev, Aliza; Sobol, Iris; Ghanim, Murad; Liu, Shu-Sheng; Czosnek, Henryk

    2016-01-01

    The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. PMID:27455309

  10. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect.

    PubMed

    Hariton Shalev, Aliza; Sobol, Iris; Ghanim, Murad; Liu, Shu-Sheng; Czosnek, Henryk

    2016-01-01

    The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. PMID:27455309

  11. Critical feeding periods for last instar nymphal and pharate adults of the whiteflies, Trialeurodes vaporariorum and Bemisia tabaci.

    PubMed

    Gelman, Dale B; Hu, Jing S

    2007-01-01

    A critical feeding period is the time after which 50% of a given species of insect can be removed from its food source and complete development by undergoing adult eclosion. The critical feeding period was determined for the greenhouse white fly, Trialeurodes vaporariorum, and the sweet potato whitefly, Bemisia tabaci (Biotype B) (Homptera/Hemiptera: Aleyrodidae). Fourth (last) instar and pharate adult whiteflies were removed from green bean leaves, staged, placed on filter paper in small Petri dishes containing drops of water, and observed daily for eclosion. For T. vaporariorum reared at 25 degrees C and L:D 16:8, 55 and 80% adult eclosion were observed when whiteflies were removed at stages 4 (0.23-0.26 mm in body depth) and 5 (> or = 0.27 mm in body depth), respectively, so that at least 50% eclosion was only achieved in this species of whitefly when adult eye development had already been initiated (in Stage 4), and 80% eclosion when adult wing development had been initiated (Stage 5). In contrast, 63% of B. tabaci emerged as adults if removed from the leaf at Stage 3 (0.18-0.22 mm in body depth), and 80% emerged if removed at Stage 4/5, stages in which adult formation had not yet been initiated. The mean number of eggs laid by experimental (those removed at Stages 4-5, 6-7 or 8-9) and control (those that remained on the leaf prior to eclosion) whiteflies, and the mean percent hatch of these eggs were not significantly different in experimental and control groups. Stages 7, 8 and 9 are characterized by a light red adult eye, medium red bipartite adult eye and dark red or red-black bipartite adult eye, respectively. Mean adult longevity also was not significantly different between experimental and control groups. However, for all groups of T. vaporariorum, adult female longevity was significantly (at least 2 times) greater than male longevity. Our results identify the critical feeding periods for last instar/pharate adults of two important pest species of

  12. Identification and Evaluation of Suitable Reference Genes for Gene Expression Studies in the Whitefly Bemisia tabaci (Asia I) by Reverse Transcription Quantitative Real-Time PCR

    PubMed Central

    Collins, Carl; Patel, Mitulkumar V.; Colvin, John; Bailey, David; Seal, Susan

    2014-01-01

    This study presents a reliable method for performing reverse transcription quantitative real-time PCR (RT-qPCR) to measure gene expression in the whitefly Bemisia tabaci (Asia I) (Gennadius) (Hemiptera: Aleyrodidae), utilising suitable reference genes for data normalisation. We identified orthologs of commonly used reference genes (actin (ACT), cyclophilin 1 (CYP1), elongation factor 1α (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein L13a (RPL13A), and α-tubulin (TUB1A)), measured the levels of their transcripts by RT-qPCR during development and in response to thermal stress, and evaluated their suitability as endogenous controls using geNorm, BestKeeper, and NormFinder programs. Overall, TUB1A, RPL13A, and CYP1 were the most stable reference genes during B. tabaci development, and TUB1A, GAPDH, and RPL13A were the most stable reference genes in the context of thermal stress. An analysis of the effects of reference gene choice on the transcript profile of a developmentally-regulated gene encoding vitellogenin demonstrated the importance of selecting the correct endogenous controls for RT-qPCR studies. We propose the use of TUB1A, RPL13A, and CYP1 as endogenous controls for transcript profiling studies of B. tabaci development, whereas the combination of TUB1A, GAPDH, and RPL13A should be employed for studies into thermal stress. The data presented here will assist future transcript profiling studies in whiteflies. PMID:25373210

  13. Encarsia species (Hymenoptera: Aphelinidae) of Australia and the Pacific Islands attacking Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)--a pictorial key and descriptions of four new species.

    PubMed

    Schmidt, S; Naumann, I D; De Barro, P J

    2001-10-01

    After the recent introduction of the pest whitefly Bemisia tabaci (Gennadius) biotype B into Australia, research was undertaken to study the parasitoids of the long established native B. tabaci and Trialeurodes vaporariorum (Westwood). The genus Encarsia contains species which are important biological control agents of whiteflies and hard scales. The taxonomy of the Encarsia species attacking B. tabaci and T. vaporariorum in Australia and the Pacific Islands is revised. DNA sequencing of the 28S D2 ribosomal DNA was used to characterize species. Sixteen species are recognized, with 12 occurring in Australia, eight in the Pacific region, and four in both regions. All except one species (E. formosa Gahan) are new records for Australia. Four species are described as new from Australia: E. accenta Schmidt & Naumann sp. n., E. adusta Schmidt & Naumann sp. n., E. oakeyensis Schmidt & Naumann sp. n., and E. ustulata Schmidt & Naumann sp. n. Diagnostic descriptions are given for all species and each species is illustrated. A pictorial key is provided to allow the identification of species by non-specialists.

  14. The Immune Strategy and Stress Response of the Mediterranean Species of the Bemisia tabaci Complex to an Orally Delivered Bacterial Pathogen

    PubMed Central

    Xia, Jun; Li, Fang-Fang; Xia, Wen-Qiang; Liu, Shu-Sheng; Wang, Xiao-Wei

    2014-01-01

    Background The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system is needed to further decipher those interactions. Methodology/Principal Findings We conducted a comprehensive investigation of the whitefly's defense responses to infection, via oral ingestion, of the pathogen, Pseudomonas aeruginosa, using RNA-seq technology. Compared to uninfected whiteflies, 6 and 24 hours post-infected whiteflies showed 1,348 and 1,888 differentially expressed genes, respectively. Functional analysis of the differentially expressed genes revealed that the mitogen associated protein kinase (MAPK) pathway was activated after P. aeruginosa infection. Three knottin-like antimicrobial peptide genes and several components of the humoral and cellular immune responses were also activated, indicating that key immune elements recognized in other insect species are also important for the response of B. tabaci to pathogens. Our data also suggest that intestinal stem cell mediated epithelium renewal might be an important component of the whitefly's defense against oral bacterial infection. In addition, we show stress responses to be an essential component of the defense system. Conclusions/Significance We identified for the first time the key immune-response elements utilized by B. tabaci against bacterial infection. This study provides a framework for future research into the complex interactions between whiteflies and microbes. PMID:24722540

  15. Infection of Bacterial Endosymbionts in Insects: A Comparative Study of Two Techniques viz PCR and FISH for Detection and Localization of Symbionts in Whitefly, Bemisia tabaci

    PubMed Central

    Raina, Harpreet Singh; Singh, Ambika; Popli, Sonam; Pandey, Neeti; Rajagopal, Raman

    2015-01-01

    Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts. These bacterial endosymbionts are known to provide various nutritional, physiological, environmental and evolutionary benefits to its insect host. In this study, we have tried to compare two techniques, Polymerase chain reaction (PCR) and Flourescence in situ Hybridisation (FISH) commonly used for identification and localization of bacterial endosymbionts in B. tabaci as it harbors one of the highest numbers of endosymbionts which have helped it in becoming a successful global invasive agricultural pest. The amplified PCR products were observed as bands on agarose gel by electrophoresis while the FISH samples were mounted on slides and observed under confocal microscope. Analysis of results obtained by these two techniques revealed the advantages of FISH over PCR. On a short note, performing FISH, using LNA probes proved to be more sensitive and informative for identification as well as localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would help in designing more efficient experiments based on much reliable detection procedure and studying the role of endosymbionts in insects. PMID:26287997

  16. Identification and evaluation of suitable reference genes for gene expression studies in the whitefly Bemisia tabaci (Asia I) by reverse transcription quantitative realtime PCR.

    PubMed

    Collins, Carl; Patel, Mitulkumar V; Colvin, John; Bailey, David; Seal, Susan

    2014-05-02

    This study presents a reliable method for performing reverse transcription quantitative realtime PCR (RT-qPCR) to measure gene expression in the whitefly Bemisia tabaci (Asia I) (Gennadius) (Hemiptera: Aleyrodidae), utilising suitable reference genes for data normalisation. We identified orthologs of commonly used reference genes (actin (ACT), cyclophilin 1 (CYP1), elongation factor 1α (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein L13a (RPL13A), and α-tubulin (TUB1A)), measured the levels of their transcripts by RT-qPCR during development and in response to thermal stress, and evaluated their suitability as endogenous controls using geNorm, BestKeeper, and NormFinder programs. Overall, TUB1A, RPL13A, and CYP1 were the most stable reference genes during B. tabaci development, and TUB1A, GAPDH, and RPL13A were the most stable reference genes in the context of thermal stress. An analysis of the effects of reference gene choice on the transcript profile of a developmentally-regulated gene encoding vitellogenin demonstrated the importance of selecting the correct endogenous controls for RT-qPCR studies. We propose the use of TUB1A, RPL13A, and CYP1 as endogenous controls for transcript profiling studies of B. tabaci development, whereas the combination of TUB1A, GAPDH, and RPL13A should be employed for studies into thermal stress. The data pre- sented here will assist future transcript profiling studies in whiteflies.

  17. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential.

    PubMed

    Roy, Amit; Gupta, Sumanti; Hess, Daniel; Das, Kali Pada; Das, Sampa

    2014-07-01

    The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications.

  18. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda.

    PubMed

    Legg, J P; French, R; Rogan, D; Okao-Okuja, G; Brown, J K

    2002-07-01

    During the 1990s, an epidemic of cassava mosaic virus disease caused major losses to cassava production in Uganda. Two factors associated with the epidemic were the occurrence of a novel recombinant begomovirus, EACMV-Ug, and unusually high populations of the whitefly vector, Bemisia tabaci. Here we present molecular evidence for the occurrence of two cassava-colonizing B. tabaci genotype clusters, Ug1 and Ug2, one of which, Ug2, can be consistently associated with the CMD epidemic in Uganda at the time of collection in 1997. By contrast, a second genotype cluster, Ug1, only occurred 'at' or 'ahead of' the epidemic 'front', sometimes in mixtures with Ug2. Comparison of mitochondrial cytochrome oxidase I gene sequences for Ug1 and Ug2 and well-studied B. tabaci reference populations indicated that the two Ugandan populations exhibited approximately 8% divergence, suggesting they represent distinct sub-Saharan African lineages. Neither Ugandan genotype cluster was identified as the widely distributed, polyphagous, and highly fecund B biotype of Old World origin, with which they both diverged by approximately 8%. Within genotype cluster divergence of Ug1 at 0.61 +/- 0.1% was twice that of Ug2 at 0.35 +/- 0.1%. Mismatch analysis suggested that Ug2 has undergone a recent population expansion and may be of nonUgandan origin, whereas Ug1 has diverged more slowly, and is likely to be an indigenous genotype cluster.

  19. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential.

    PubMed

    Roy, Amit; Gupta, Sumanti; Hess, Daniel; Das, Kali Pada; Das, Sampa

    2014-07-01

    The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications. PMID:24753494

  20. Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B: progress report of 973 Program on invasive alien species in China.

    PubMed

    Wan, FangHao; Zhang, GuiFen; Liu, ShuSheng; Luo, Chen; Chu, Dong; Zhang, YouJun; Zang, LianSheng; Jiu, Min; Lü, ZhiChuang; Cui, XuHong; Zhang, LiPing; Zhang, Fan; Zhang, QingWen; Liu, WanXue; Liang, Pei; Lei, ZhongRen; Zhang, YongJun

    2009-01-01

    Bemisia tabaci (Gennadius) biotype B, called a "superbug", is one of the most harmful biotypes of this species complex worldwide. In this report, the invasive mechanism and management of B. tabaci biotype B, based on our 5-year studies, are presented. Six B. tabaci biotypes, B, Q, ZHJ1, ZHJ2, ZHJ3 and FJ1, have been identified in China. Biotype B dominates the other biotypes in many regions of the country. Genetic diversity in biotype B might be induced by host plant, geographical conditions, and/or insecticidal application. The activities of CarE (carboxylesterase) and GSTs (glutathione-S-transferase) in biotype B reared on cucumber and squash were greater than on other host plants, which might have increased its resistance to insecticides. The higher activities of detoxification enzymes in biotype B might be induced by the secondary metabolites in host plants. Higher adaptive ability of biotype B adults to adverse conditions might be linked to the expression of heat shock protein genes. The indigenous B. tabaci biotypes were displaced by the biotype B within 225 d. The asymmetric mating interactions and mutualism between biotype B and begomoviruses via its host plants speed up widespread invasion and displacement of other biotypes. B. tabaci biotype B displaced Trialeurodes vaporariorum (Westwood) after 4-7 generations under glasshouse conditions. Greater adaptive ability of the biotype B to adverse conditions and its rapid population increase might be the reasons of its successful displacement of T. vaporariorum. Greater ability of the biotype B to switch to different host plants may enrich its host plants, which might enable it to better compete with T. vaporariorum. Native predatory natural enemies possess greater ability to suppress B. tabaci under field conditions. The kairomones in the 3rd and 4th instars of biotype B may provide an important stimulus in host searching and location by its parasitoids. The present results provide useful information in

  1. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties

    PubMed Central

    Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction. PMID:27081849

  2. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties.

    PubMed

    Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.

  3. Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties.

    PubMed

    Hasanuzzaman, Abu Tayeb Mohammad; Islam, Md Nazrul; Zhang, Yi; Zhang, Chen-Yang; Liu, Tong-Xian

    2016-01-01

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction. PMID:27081849

  4. Specific Cells in the Primary Salivary Glands of the Whitefly Bemisia tabaci Control Retention and Transmission of Begomoviruses

    PubMed Central

    Wei, Jing; Zhao, Juan-Juan; Zhang, Tong; Li, Fang-Fang; Ghanim, Murad; Zhou, Xue-Ping; Ye, Gong-Yin

    2014-01-01

    ABSTRACT The majority of plant viruses are vectored by arthropods via persistent-circulative or noncirculative transmission. Previous studies have shown that specific binding sites for noncirculative viruses reside within the stylet or foregut of insect vectors, whereas the transmission mechanisms of circulative viruses remain ambiguous. Here we report the critical roles of whitefly primary salivary glands (PSGs) in the circulative transmission of two begomoviruses. The Middle East Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex efficiently transmits both Tomato yellow leaf curl China virus (TYLCCNV) and Tomato yellow leaf curl virus (TYLCV), whereas the Mediterranean (MED) species transmits TYLCV but not TYLCCNV. PCR and fluorescence in situ hybridization experiments showed that TYLCCNV efficiently penetrates the PSGs of MEAM1 but not MED whiteflies. When a fragment of the coat protein of TYLCCNV was exchanged with that of TYLCV, mutated TYLCCNV accumulated in the PSGs of MED whiteflies, while mutant TYLCV was nearly undetectable. Confocal microscopy revealed that virion transport in PSGs follows specific paths to reach secretory cells in the central region, and the accumulation of virions in the secretory region of PSGs was correlated with successful virus transmission. Our findings demonstrate that whitefly PSGs, in particular the cells around the secretory region, control the specificity of begomovirus transmission. IMPORTANCE Over 75% of plant viruses are transmitted by insects. However, the mechanisms of virus transmission by insect vectors remain largely unknown. Begomoviruses and whiteflies are a complex of viruses and vectors which threaten many crops worldwide. We investigated the transmission of two begomoviruses by two whitefly species. We show that specific cells of the whitefly primary salivary glands control viral transmission specificity and that virion transport in the glands follows specific paths to reach secretory cells in

  5. Extensive settlement of the invasive MEAM1 population of Bemisia tabaci (Hemiptera: Aleyrodidae) in the Caribbean and rare detection of indigenous populations.

    PubMed

    Muñiz, Y; Granier, M; Caruth, C; Umaharan, P; Marchal, C; Pavis, C; Wicker, E; Martínez, Y; Peterschmitt, M

    2011-10-01

    Bemisia tabaci populations belonging to Middle East-Asia Minor one (MEAM1) and Mediterranean (MED) groups (formerly biotype B and Q, respectively) have spread throughout the world. Although the introduction of MEAM1 is documented from several Caribbean islands, it is generally not known whether MED has also been introduced; whether indigenous populations have survived; and if in the affirmative, to which group(s) they belonged. Whiteflies were collected from seven islands on various plant species. The prevalence of MEAM1 and non-MEAM1 individuals was assessed using a microsatellite approach validated with sequences of the mitochondrial cytochrome oxidase I (mtCOI) gene. Of the 262 samples tested, 247 exhibited the MEAM1 pattern, whereas none showed the MED pattern. The mtCOI gene was partially sequenced from a sample of individuals exhibiting MEAM1 (n = 15) and non-MEAM1 patterns (n = 8) and compared with type sequences. The 15 individuals exhibiting the MEAM1 pattern were confirmed to belong to MEAM1. Of the eight individuals representative of the six non-MEAM1 patterns, two belonged to the indigenous New World (NW) group of B. tabaci (NW), one belonged to a distinct species of Bemisia, and five belonged to MEAM1. One individual belonging to NW exhibited 99.9% nucleotide identity with a NW individual from Puerto Rico. The other was identified as the most divergent individual of the North and Central American genetic cluster. We conclude that a highly homogenous MEAM1 population has extensively settled in the Caribbean and that heterogeneous NW populations were still detectable although severely displaced.

  6. Chemical composition and insecticidal activity of essential oils of two aromatic plants from Ivory Coast against Bemisia tabaci G. (Hemiptera: Aleyrodidae).

    PubMed

    Tia, Etienne V; Adima, Augustin A; Niamké, Sébastien L; Jean, Gnago A; Martin, Thibaud; Lozano, Paul; Menut, Chantal

    2011-08-01

    Essential oils of aromatic plants with insecticidal properties are nowadays considered as alternative insecticides to protect cultures from attack by insect pest. The aims of the present work were to evaluate the toxicity of the essential oils vapors of two aromatic plants (Lippia multiflora Mold. and Aframomum latifolium K. Schum) against Bemisia tabaci and to characterize their chemical composition. The highest fumigant toxicity against B. tabaci adults was observed with the L. multiflora oil: by exposure to 0.4 microL/L air, the lethal time inducing 90% mortality (LT90) was below 2 hours for this essential oil whereas it reached 15 h in the case of the A. latifolium oil. Both oils were analyzed by GC-FID and GC-MS on two capillary columns. The oil of L. multiflora contained a majority of oxygenated terpenoids mainly represented by the two acyclic components linalool (46.6%) and (E)-nerolidol (16.5%); the oil of A. latifolium was dominated by hydrocarbonated terpenoids among them beta-pinene (51.6%) and beta-caryophyllene (12.3%) were the two major components.

  7. Biological parameters of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) on Jatropha gossypiifolia, commercial (Manihot esculenta) and wild cassava (Manihot flabellifolia and M. carthaginensis) (Euphorbiaceae).

    PubMed

    Carabalí, Arturo; Belloti, Anthony C; Montoya-Lerma, James

    2010-01-01

    Bemisia tabaci (Gennadius) is one of the most important pests of cassava in Africa and several countries of Asia due to the damage caused by direct feeding, the excretion of honeydew, and its capacity as a vector of cassava mosaic geminivirus. There is a general consensus that B. tabaci is a complex of morphologically indistinguishable populations with different biotypes. In the Americas, the polyphagous biotype B does not appear to feed on cassava. Recent studies indicate that it is possible, however, for biotype B to gradually adapt to cassava using phylogenetically related hosts. Therefore, the possibility that some wild species of cassava constitute intermediate hosts in the adaptation process may lead to the establishment of biotype B on commercial varieties of Manihot esculenta. In here, we evaluated Jatropha gossypiifolia, two wild species of cassava (Manihot flabellifolia and M. carthaginensis) and a commercial cassava variety (MCol 2063) as hosts of biotype B. The highest oviposition rate (2.7 eggs /two days) occurred on M. esculenta, although the development time (44 d) was the longest when compared to M. carthaginensis and J. gossypiifolia. About 60% of the population could reproduce on the wild cassava species vs. 55% on J. gossypiifolia and 27.5% on the commercial variety. Our data suggest that J. gossypiifolia is a suitable host and the wild species M. carthaginensis can constitute a potential intermediate host in the adaptation of biotype B to commercial varieties of cassava.

  8. Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding

    PubMed Central

    Taggar, Gaurav Kumar; Gill, Ranjit Singh; Gupta, Anil Kumar; Sandhu, Jeet Singh

    2012-01-01

    Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleryrodidae), is a serious pest of black gram, (Vigna mungo (L.) Hepper), an important legume pulse crop grown in north India. This research investigated the potential role of selected plant oxidative enzymes in resistance/susceptibility to whitefly in nine black gram genotypes. Oxidative enzyme activity was estimated spectrophotometrically from leaf samples collected at 30 and 50 d after sowing (DAS) from whitefly infested and uninfested plants. The enzymes showed different activity levels at different times after the infestation. The results indicated that in general, whitefly infestation increased the activities of peroxidase and decreased the catalase activity. Resistant genotypes NDU 5-7 and KU 99-20 recorded higher peroxidase and catalase activities at 30 and 50 DAS under whitefly-stress conditions as compared with non-stressed plants. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of black gram plants against B. tabaci infestation. The potential mechanisms to explain the correlation of resistance to whitefly in black gram genotypes with higher activities of oxidative enzymes are also discussed. PMID:22902801

  9. Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding.

    PubMed

    Taggar, Gaurav Kumar; Gill, Ranjit Singh; Gupta, Anil Kumar; Sandhu, Jeet Singh

    2012-10-01

    Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleryrodidae), is a serious pest of black gram, (Vigna mungo (L.) Hepper), an important legume pulse crop grown in north India. This research investigated the potential role of selected plant oxidative enzymes in resistance/susceptibility to whitefly in nine black gram genotypes. Oxidative enzyme activity was estimated spectrophotometrically from leaf samples collected at 30 and 50 d after sowing (DAS) from whitefly infested and uninfested plants. The enzymes showed different activity levels at different times after the infestation. The results indicated that in general, whitefly infestation increased the activities of peroxidase and decreased the catalase activity. Resistant genotypes NDU 5-7 and KU 99-20 recorded higher peroxidase and catalase activities at 30 and 50 DAS under whitefly-stress conditions as compared with non-stressed plants. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of black gram plants against B. tabaci infestation. The potential mechanisms to explain the correlation of resistance to whitefly in black gram genotypes with higher activities of oxidative enzymes are also discussed.

  10. The complete mitochondrial genome of Bemisia afer (Hemiptera: Aleyrodidae).

    PubMed

    Wang, Hua-Ling; Xiao, Na; Yang, Jiao; Wang, Xiao-Wei; Colvin, John; Liu, Shu-Sheng

    2016-01-01

    The length of the Bemisia afer (Priesner & Hosny) (Hemiptera: Aleyrodidae) mitochondrial genome (mitogenome) is 14,968 bp and consists of 13 protein coding genes (PCGs), 21 transfer RNAs (tRNA), 2 ribosomal RNAs and 1 control region. Apart from one serine transfer RNA gene (tRNA-Ser) which is absent, the synteny is consistent with the mitogenomes of other whitefly species. The overall base composition of the heavy strand for A, G, T and C is 28.96, 18.97, 36.7 and 15.37%, respectively, with a slight AT bias. Two rare codons (GTG and TTG) are employed as start codons by some PCGs. B. afer is a group of cryptic species. This first mitogenome cloned from African cassava B. afer, therefore, both enrich the whitefly molecular resource and will aid the sequencing of the other species' mitogenomes. It will contribute significantly to resolving the systematics of the B. afer complex.

  11. Quantification and Localization of Watermelon Chlorotic Stunt Virus and Tomato Yellow Leaf Curl Virus (Geminiviridae) in Populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with Differential Virus Transmission Characteristics

    PubMed Central

    Kollenberg, Mario; Winter, Stephan; Götz, Monika

    2014-01-01

    Bemisia tabaci (Gennadius) is one of the economically most damaging insects to crops in tropical and subtropical regions. Severe damage is caused by feeding and more seriously by transmitting viruses. Those of the genus begomovirus (Geminiviridae) cause the most significant crop diseases and are transmitted by B. tabaci in a persistent circulative mode, a process which is largely unknown. To analyze the translocation and to identify critical determinants for transmission, two populations of B. tabaci MEAM1 were compared for transmitting Watermelon chlorotic stunt virus (WmCSV) and Tomato yellow leaf curl virus (TYLCV). Insect populations were chosen because of their high and respectively low virus transmission efficiency to compare uptake and translocation of virus through insects. Both populations harbored Rickettsia, Hamiltonella and Wolbachia in comparable ratios indicating that endosymbionts might not contribute to the different transmission rates. Quantification by qPCR revealed that WmCSV uptake and virus concentrations in midguts and primary salivary glands were generally higher than TYLCV due to higher virus contents of the source plants. Both viruses accumulated higher in insects from the efficiently compared to the poorly transmitting population. In the latter, virus translocation into the hemolymph was delayed and virus passage was impeded with limited numbers of viruses translocated. FISH analysis confirmed these results with similar virus distribution found in excised organs of both populations. No virus accumulation was found in the midgut lumen of the poor transmitter because of a restrained virus translocation. Results suggest that the poorly transmitting population comprised insects that lacked transmission competence. Those were selected to develop a population that lacks virus transmission. Investigations with insects lacking transmission showed that virus concentrations in midguts were reduced and only negligible virus amounts were found at the

  12. Virion stability is important for the circulative transmission of tomato yellow leaf curl sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility.

    PubMed

    Caciagli, Piero; Medina Piles, Vicente; Marian, Daniele; Vecchiati, Manuela; Masenga, Vera; Mason, Giovanna; Falcioni, Tania; Noris, Emanuela

    2009-06-01

    The capsid protein (CP) of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV), family Geminiviridae, is indispensable for plant infection and vector transmission. A region between amino acids 129 and 152 is critical for virion assembly and insect transmissibility. Two previously described mutants, one with a double Q129P Q134H mutation (PNHD) and another with a further D152E change (PNHE), were found nontransmissible (NT). Another NT mutant with a single N130D change (QDQD) was retrieved from a new mutational analysis. In this study, these three NT mutants and the wild-type (wt) virus were compared in their relationships with the whitefly vector Bemisia tabaci and the nonvector Trialeurodes vaporariorum. Retention kinetics of NT mutants were analyzed by quantitative dot blot hybridization in whiteflies fed on infected plants. The QDQD mutant, whose virions appeared nongeminate following purification, was hardly detectable in either whitefly species at any sampling time. The PNHD mutant was acquired and circulated in both whitefly species for up to 10 days, like the wt virus, while PNHE circulated in B. tabaci only. Using immunogold labeling, both PNHD and PNHE CPs were detected in B. tabaci salivary glands (SGs) like the wt virus, while no labeling was found in any whitefly tissue with the QDQD mutant. Significant inhibition of transmission of the wt virus was observed after prior feeding of the insects on plants infected with the PNHE mutant, but not on plants infected with the other mutants. Virion stability and ability to cross the SG barrier are necessary for TYLCSV transmission, but interactions with molecular components inside the SGs are also critical for transmissibility.

  13. Quantification and localization of Watermelon chlorotic stunt virus and Tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics.

    PubMed

    Kollenberg, Mario; Winter, Stephan; Götz, Monika

    2014-01-01

    Bemisia tabaci (Gennadius) is one of the economically most damaging insects to crops in tropical and subtropical regions. Severe damage is caused by feeding and more seriously by transmitting viruses. Those of the genus begomovirus (Geminiviridae) cause the most significant crop diseases and are transmitted by B. tabaci in a persistent circulative mode, a process which is largely unknown. To analyze the translocation and to identify critical determinants for transmission, two populations of B. tabaci MEAM1 were compared for transmitting Watermelon chlorotic stunt virus (WmCSV) and Tomato yellow leaf curl virus (TYLCV). Insect populations were chosen because of their high and respectively low virus transmission efficiency to compare uptake and translocation of virus through insects. Both populations harbored Rickettsia, Hamiltonella and Wolbachia in comparable ratios indicating that endosymbionts might not contribute to the different transmission rates. Quantification by qPCR revealed that WmCSV uptake and virus concentrations in midguts and primary salivary glands were generally higher than TYLCV due to higher virus contents of the source plants. Both viruses accumulated higher in insects from the efficiently compared to the poorly transmitting population. In the latter, virus translocation into the hemolymph was delayed and virus passage was impeded with limited numbers of viruses translocated. FISH analysis confirmed these results with similar virus distribution found in excised organs of both populations. No virus accumulation was found in the midgut lumen of the poor transmitter because of a restrained virus translocation. Results suggest that the poorly transmitting population comprised insects that lacked transmission competence. Those were selected to develop a population that lacks virus transmission. Investigations with insects lacking transmission showed that virus concentrations in midguts were reduced and only negligible virus amounts were found at the

  14. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa.

    PubMed

    Legg, James P; Sseruwagi, Peter; Boniface, Simon; Okao-Okuja, Geoffrey; Shirima, Rudolph; Bigirimana, Simon; Gashaka, Gervais; Herrmann, Hans-Werner; Jeremiah, Simon; Obiero, Hannington; Ndyetabula, Innocent; Tata-Hangy, Willy; Masembe, Charles; Brown, Judith K

    2014-06-24

    The greatest current threat to cassava in sub-Saharan Africa, is the continued expansion of plant virus pandemics being driven by super-abundant populations of the whitefly vector, Bemisia tabaci. To track the association of putatively genetically distinct populations of B. tabaci with pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), a comprehensive region-wide analysis examined the phylogenetic relationships and population genetics of 642 B. tabaci adults sampled from cassava in six countries of East and Central Africa, between 1997 and 2010, using a mitochondrial DNA cytochrome oxidase I marker (780 bases). Eight phylogenetically distinct groups were identified, including one, designated herein as 'East Africa 1' (EA1), not previously described. The three most frequently occurring groups comprised >95% of all samples. Among these, the Sub-Saharan Africa 2 (SSA2) group diverged by c. 8% from two SSA1 sub-groups (SSA1-SG1 and SSA1-SG2), which themselves were 1.9% divergent. During the 14-year study period, the group associated with the CMD pandemic expansion shifted from SSA2 to SSA1-SG1. Population genetics analyses of SSA1, using Tajima's D, Fu's Fs and Rojas' R2 statistics confirmed a temporal transition in SSA1 populations from neutrally evolving at the outset, to rapidly expanding from 2000 to 2003, then back to populations more at equilibrium after 2004. Based on available evidence, hybrid introgression appears to be the most parsimonious explanation for the switch from SSA2 to SSA1-SG1 in whitefly populations driving cassava virus pandemics in East and Central Africa.

  15. Insecticide resistance in Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Anopheles gambiae Giles (Diptera: Culicidae) could compromise the sustainability of malaria vector control strategies in West Africa.

    PubMed

    Gnankiné, Olivier; Bassolé, Imael H N; Chandre, Fabrice; Glitho, Isabelle; Akogbeto, Martin; Dabiré, Roch K; Martin, Thibaud

    2013-10-01

    Insecticides from the organophosphate (OP) and pyrethroid (PY) chemical families, have respectively, been in use for 50 and 30 years in West Africa, mainly against agricultural pests, but also against vectors of human disease. The selection pressure, with practically the same molecules year after year (mainly on cotton), has caused insecticide resistance in pest populations such as Bemisia tabaci, vector of harmful phytoviruses on vegetables. The evolution toward insecticide resistance in malaria vectors such as Anopheles gambiae sensus lato (s.l.) is probably related to the current use of these insecticides in agriculture. Thus, successful pest and vector control in West Africa requires an investigation of insect susceptibility, in relation to the identification of species and sub species, such as molecular forms or biotypes. Identification of knock down resistance (kdr) and acetylcholinesterase gene (Ace1) mutations modifying insecticide targets in individual insects and measure of enzymes activity typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transferase) are indispensable in understanding the mechanisms of resistance. Insecticide resistance is a good example in which genotype-phenotype links have been made successfully. Insecticides used in agriculture continue to select new resistant populations of B. tabaci that could be from different biotype vectors of plant viruses. As well, the evolution of insecticide resistance in An. gambiae threatens the management of malaria vectors in West Africa. It raises the question of priority in the use of insecticides in health and/or agriculture, and more generally, the question of sustainability of crop protection and vector control strategies in the region. Here, we review the susceptibility tests, biochemical and molecular assays data for B. tabaci, a major pest in cotton and vegetable crops, and An. gambiae, main vector of malaria. The data reviewed was collected in Benin and Burkina

  16. Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus.

    PubMed

    Rodríguez-López, M J; Garzo, E; Bonani, J P; Fereres, A; Fernández-Muñoz, R; Moriones, E

    2011-10-01

    Breeding of tomato genotypes that limit whitefly (Bemisia tabaci) access and feeding might reduce the spread of Tomato yellow leaf curl virus (TYLCV), a begomovirus (genus Begomovirus, family Geminiviridae) that is the causal agent of tomato yellow leaf curl disease. TYLCV is restricted to the phloem and is transmitted in a persistent manner by B. tabaci. The tomato breeding line ABL 14-8 was developed by introgressing type IV leaf glandular trichomes and secretion of acylsucroses from the wild tomato Solanum pimpinellifolium accession TO-937 into the genetic background of the whitefly- and virus-susceptible tomato cultivar Moneymaker. Results of preference bioassays with ABL 14-8 versus Moneymaker indicated that presence of type IV glandular trichomes and the production of acylsucrose deterred the landing and settling of B. tabaci on ABL 14-8. Moreover, electrical penetration graph studies indicated that B. tabaci adults spent more time in nonprobing activities and showed a reduced ability to start probing. Such behavior resulted in a reduced ability to reach the phloem. The superficial type of resistance observed in ABL 14-8 against B. tabaci probing significantly reduced primary and secondary spread of TYLCV. PMID:21615206

  17. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

    PubMed

    Nauen, Ralf; Wölfel, Katharina; Lueke, Bettina; Myridakis, Antonis; Tsakireli, Dimitra; Roditakis, Emmanouil; Tsagkarakou, Anastasia; Stephanou, Euripides; Vontas, John

    2015-06-01

    Cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is a major sucking pest in many agricultural and horticultural cropping systems globally. The frequent use of insecticides of different mode of action classes resulted in populations resisting treatments used to keep numbers under economic damage thresholds. Recently it was shown that resistance to neonicotinoids such as imidacloprid is linked to the over-expression of CYP6CM1, a cytochrome P450 monooxygenase detoxifying imidacloprid and other neonicotinoid insecticides when recombinantly expressed in insect cells. However over-expression of CYP6CM1 is also known to confer cross-resistance to pymetrozine, an insecticide not belonging to the chemical class of neonicotinoids. In addition we were able to demonstrate by LC-MS/MS analysis the metabolisation of pyriproxyfen by recombinantly expressed CYP6CM1. Based on our results CYP6CM1 is one of the most versatile detoxification enzymes yet identified in a pest of agricultural importance, as it detoxifies a diverse range of chemical classes used to control whiteflies. Therefore we developed a field-diagnostic antibody-based lateral flow assay which detects CYP6CM1 protein at levels providing resistance to neonicotinoids and other insecticides. The ELISA based test kit can be used as a diagnostic tool to support resistance management strategies based on the alternation of different modes of action of insecticides. PMID:26047106

  18. Effectiveness of Cyantraniliprole for Managing Bemisia tabaci (Hemiptera: Aleyrodidae) and Interfering with Transmission of Tomato Yellow Leaf Curl Virus on Tomato.

    PubMed

    Caballero, Rafael; Schuster, David J; Peres, Natalia A; Mangandi, Jozer; Hasing, Tomas; Trexler, Fred; Kalb, Steve; Portillo, Héctor E; Marçon, Paula C; Annan, I B

    2015-06-01

    Cyantraniliprole is the second xylem-systemic active ingredient in the new anthranilic diamide class. Greenhouse (2006), growth chamber (2007), and field studies (2009-2010) were conducted to determine the efficacy of cyantraniliprole for managing Bemisia tabaci (Gennadius) biotype B and in interfering with transmission of tomato yellow leaf curl virus (TYLCV) by this whitefly. Cyantraniliprole applied as soil treatments (200 SC) or foliar sprays (100 OD) provided excellent adult whitefly control, TYLCV suppression, and reduced oviposition and nymph survival, comparable to current standards. The positive results observed in these greenhouse experiments with a high level of insect pressure (10× the field threshold of one adult per plant) and disease pressure (five adults per plant, with a high level of confidence that TYLCV virulent adults were used), indicate a great potential for cyantraniliprole to be used in a whitefly management program. Field evaluations of soil drench treatments confirmed the suppression of TYLCV transmission demonstrated in the greenhouse studies. Field studies in 2009 and 2010 showed that cyantraniliprole (200 SC) provided TYLCV suppression for 2 wk after a drench application, when using a susceptible (2009) or imidacloprid-tolerant (2010) whitefly population. Cyantraniliprole was demonstrated to be a promising tool for management of TYLCV in tomato production, which is very difficult and expensive, and which has limited options. The integration of cyantraniliprole into a resistance management program will help to ensure the continued sustainability of this and current insecticides used for the management of insect vectors, including whiteflies and the TYLCV they spreads. PMID:26470209

  19. Insecticidal activity against Bemisia tabaci biotype B of peel essential oil of Citrus sinensis var. pear and Citrus aurantium cultivated in northeast Brazil.

    PubMed

    Ribeiro, Nicolle de Carvalho; da Camara, Claudio Augusto Gomes; Born, Flávia de Souza; de Siqueira, Herbert Alvaro Abreu

    2010-11-01

    The fumigant action of peel essential oils of Citrus sinensis var. pear (pear orange = PO) and C. aurantium (bitter orange = BO) from the northeast of Brazil were evaluated against Bemisia tabaci biotype B and compared with eugenol as a positive control. The oil concentration in the PO at 8.5 microL/L of air caused 97% mortality, while the oil concentration of BO at 9.5 microL/L of air caused 99% mortality. However, the LC50 estimates for both oils (LC50 = 3.80 microL/L of air for PO and LC50 = 5.80 microL/L of air for BO) did not differ from each other, but they did when compared with eugenol (LC50 = 0.20 microL/L of air). Regarding their effects on oviposition, the Citrus oils showed concentration-response dependence, reducing the number of eggs as the concentration increased, which was not observed for eugenol. The minimum concentrations of the oils that caused a significant reduction in the egg lay were 3.5 and 7.0 microL/L of air for BO and PO, respectively. These results suggest that oils from PO and BO peels may be promising as models to develop new insecticides that might be applied into the integrated management of whiteflies.

  20. Resistance Mechanisms to Chlorpyrifos and F392W Mutation Frequencies in the Acetylcholine Esterase Ace1 Allele of Field Populations of the Tobacco Whitefly, Bemisia tabaci in China

    PubMed Central

    Zhang, Ning-ning; Liu, Cai-feng; Yang, Fang; Dong, Shuang-lin; Han, Zhao-jun

    2012-01-01

    The tobacco whitefly B-biotype Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a worldwide pest of many crops. In China, chlorpyrifos has been used to control this insect for many years and is still being used despite the fact that some resistance has been reported. To combat resistance and maintain good control efficiency of chlorpyrifos, it is essential to understand resistance mechanisms. A chlorpyrifos resistant tobacco whitefly strain (NJ-R) and a susceptible strain (NJ-S) were derived from a field-collected population in Nanjing, China, and the resistance mechanisms were investigated. More than 30-fold resistance was achieved after selected by chlorpyrifos for 13 generations in the laboratory. However, the resistance dropped significantly to about 18-fold in only 4 generations without selection pressure. Biochemical assays indicated that increased esterase activity was responsible for this resistance, while acetylcholine esterase, glutathione S-transferase, and microsomal-O-demethylase played little or no role. F392W mutations in acel were prevalent in NJ-S and NJ-R strains and 6 field-collected populations of both B and Q-biotype from locations that cover a wide geographical area of China. These findings provide important information about tobacco whitefly chlorpyrifos resistance mechanisms and guidance to combat resistance and optimize use patterns of chlorpyrifos and other organophosphate and carbamate insecticides. PMID:22954331

  1. [Genetic variability of the Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) in vegetable crops in São Luís, state of Maranhão, Brazil].

    PubMed

    Da Silva, Maria C; De Lemos, Raimunda N S; Lima, Luzia H C; Gourlart Filho, Luiz R; Pereira, Silma R F

    2009-01-01

    The RAPD technique is widely used to investigate the distinct genetic characteristics of the complex Bemisia tabaci (Gennadius), which is currently constituted of approximately 41 biotypes. The objective of this research was to characterize populations of whitefly collected in crops of agricultural producing areas in São Luís, MA, like okra, beans and pepper, using RAPD molecular markers. Females from nine whitefly populations were analyzed and compared with B. tabaci biotype B taken from poinsettia culture of Embrapa Genetic Resources and Biotechnology (Brasília, DF). Twelve out of the 20 primers tested produced specific band patterns suitable to confirm that the evaluated specimens belong to the biotype B of B. tabaci, despite the high percentage of detected polymorphism. The analysis of the 96 RAPD molecular markers generated indicated that the populations on okra, beans and pepper were grouped according to the host cultures, sharing 80, 76 and 45% of genetic similarity, respectively, when compared with the control population of B. tabaci biotype B. A lower selective pressure was observed with the population of whitefly collected on pepper and minor genetic variability in the whitefly populations collected on okra and bean, when compared with the control population. PMID:20098922

  2. Evaluation of Bioinsecticides for Management of Bemisia tabaci (Hemiptera: Aleyrodidae) and the Effect on the Whitefly Predator Delphastus catalinae (Coleoptera: Coccinellidae) in Organic Squash.

    PubMed

    Razze, Janine M; Liburd, Oscar E; Nuessly, Gregg S; Samuel-Foo, Michelle

    2016-08-01

    Organic zucchini squash is a high-value vegetable crop in Florida and potential exists to expand its production throughout the state. A lack of knowledge on the effectiveness of organic products and their integration with natural enemies is an important constraint to the regulation of pest populations in organic squash production in Florida. The objectives of this study were to evaluate the effect of insecticides labeled for organic production that can be used for management of Bemisia tabaci (Gennadius) biotype B, on organically grown squash; and to determine the effects of the most efficient insecticides on a key natural enemy, Delphastus catalinae (Horn). Experiments were conducted in the greenhouse in exclusion cages. The first experiment compared the effects of four bioinsecticides on whitefly densities. Insecticides include 1) AzaSol (azadirachtin), 2) PyGanic EC 1.4 (pyrethrin), 3) M-Pede (insecticidal soap), and 4) Entrust (spinosad). The second experiment investigated the effects of bioinsecticides on D. catalinae Treatment effectiveness was evaluated 1, 3, and 5 d posttreatment. PyGanic and M-Pede were highly effective in controlling whitefly populations on organic squash, while moderate control was provided by AzaSol and there was no control provided by Entrust. PyGanic and M-Pede treatments reduced D. catalinae populations when adults were released 1 d post pesticide application. However, when adults were released 5 d post application, there was no reduction. The importance of using bioinsecticides in combination with natural enemies to regulate pest populations in organic cropping systems is discussed.

  3. Evaluation of Bioinsecticides for Management of Bemisia tabaci (Hemiptera: Aleyrodidae) and the Effect on the Whitefly Predator Delphastus catalinae (Coleoptera: Coccinellidae) in Organic Squash.

    PubMed

    Razze, Janine M; Liburd, Oscar E; Nuessly, Gregg S; Samuel-Foo, Michelle

    2016-08-01

    Organic zucchini squash is a high-value vegetable crop in Florida and potential exists to expand its production throughout the state. A lack of knowledge on the effectiveness of organic products and their integration with natural enemies is an important constraint to the regulation of pest populations in organic squash production in Florida. The objectives of this study were to evaluate the effect of insecticides labeled for organic production that can be used for management of Bemisia tabaci (Gennadius) biotype B, on organically grown squash; and to determine the effects of the most efficient insecticides on a key natural enemy, Delphastus catalinae (Horn). Experiments were conducted in the greenhouse in exclusion cages. The first experiment compared the effects of four bioinsecticides on whitefly densities. Insecticides include 1) AzaSol (azadirachtin), 2) PyGanic EC 1.4 (pyrethrin), 3) M-Pede (insecticidal soap), and 4) Entrust (spinosad). The second experiment investigated the effects of bioinsecticides on D. catalinae Treatment effectiveness was evaluated 1, 3, and 5 d posttreatment. PyGanic and M-Pede were highly effective in controlling whitefly populations on organic squash, while moderate control was provided by AzaSol and there was no control provided by Entrust. PyGanic and M-Pede treatments reduced D. catalinae populations when adults were released 1 d post pesticide application. However, when adults were released 5 d post application, there was no reduction. The importance of using bioinsecticides in combination with natural enemies to regulate pest populations in organic cropping systems is discussed. PMID:27247302

  4. Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan.

    PubMed

    Gogi, Muhammad D; Sarfraz, Rana M; Dosdall, Lloyd M; Arif, Muhammad J; Keddie, Andrew B; Ashfaq, Muhammad

    2006-10-01

    Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed. PMID:16862616

  5. RNA interference based approach to down regulate Osmoregulators of whitefly Bemisia tabaci: potential technology for the control of whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) could offer potential for insect pest management. Insects feeding exclusively on plant sap depend on osmotic pressure...

  6. Fumigant toxicity of summer savory and lemon balm oil constituents and efficacy of spray formulations containing the oils to B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae).

    PubMed

    Chae, Song-Hwa; Kim, Soon-Il; Yeon, Seong Hum; Perumalsamy, Haribalan; Ahn, Young-Joon

    2014-02-01

    An assessment was made of the fumigant toxicity of 36 constituents from lemon balm oil (LBO) and summer savory oil (SSO) and another additional nine previously identified compounds of the oils, as well as of the control efficacy of four experimental spray formulations containing individual oils (0.5 and 0.1% sprays) and spinosad 10% suspension concentrate (SC) to females from B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Based on 24-h LC50 values, Q-biotype females (0.20 microg/cm3) were 40 times less susceptible to dichlorvos than B-biotype females (0.005 microg/cm3). Thymol (LC50, 0.35 microg/cm3) and carvacrol (0.56 microg/cm3) were the most toxic compounds toward Q-biotype females, followed by (1S)-(-)-borneol, alpha-terpineol, nerol, linalool, and carvone (1.06-1.38 microg/cm3). The toxicity of these compounds was virtually identical toward both biotype females, indicating that the terpenoids and the insecticides (neonicotinoids and dichlorvos) do not share a common mode of action or elicit cross-resistance. The 0.5% spray of LBO, SSO, and spinosad 10% SC resulted in >90% mortality toward both biotype females. Global efforts to reduce the level of toxic synthetic insecticides in the agricultural environment justify further studies on LBO- and SSO-derived materials as potential contact-action fumigants for the control of B. tabaci populations. PMID:24665712

  7. Fumigant toxicity of summer savory and lemon balm oil constituents and efficacy of spray formulations containing the oils to B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae).

    PubMed

    Chae, Song-Hwa; Kim, Soon-Il; Yeon, Seong Hum; Perumalsamy, Haribalan; Ahn, Young-Joon

    2014-02-01

    An assessment was made of the fumigant toxicity of 36 constituents from lemon balm oil (LBO) and summer savory oil (SSO) and another additional nine previously identified compounds of the oils, as well as of the control efficacy of four experimental spray formulations containing individual oils (0.5 and 0.1% sprays) and spinosad 10% suspension concentrate (SC) to females from B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Based on 24-h LC50 values, Q-biotype females (0.20 microg/cm3) were 40 times less susceptible to dichlorvos than B-biotype females (0.005 microg/cm3). Thymol (LC50, 0.35 microg/cm3) and carvacrol (0.56 microg/cm3) were the most toxic compounds toward Q-biotype females, followed by (1S)-(-)-borneol, alpha-terpineol, nerol, linalool, and carvone (1.06-1.38 microg/cm3). The toxicity of these compounds was virtually identical toward both biotype females, indicating that the terpenoids and the insecticides (neonicotinoids and dichlorvos) do not share a common mode of action or elicit cross-resistance. The 0.5% spray of LBO, SSO, and spinosad 10% SC resulted in >90% mortality toward both biotype females. Global efforts to reduce the level of toxic synthetic insecticides in the agricultural environment justify further studies on LBO- and SSO-derived materials as potential contact-action fumigants for the control of B. tabaci populations.

  8. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus.

    PubMed

    Akad, F; Eybishtz, A; Edelbaum, D; Gorovits, R; Dar-Issa, O; Iraki, N; Czosnek, H

    2007-01-01

    Some (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroEL-TYLCV complexes were detected in the grafted tissues. PMID:17334947

  9. Populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton grown in open-top field chambers enriched with CO/sub 2/

    SciTech Connect

    Butler, G.D. Jr.; Kimball, B.A.; Mauney, J.R.

    1985-02-01

    Atmospheric CO/sub 2/ levels are anticipated to rise from the current ambient level of ca. 350 ..mu..l/liter to 500-600 ..mu..l/liter in the next 50 to 75 years. Plant scientists are artificially enhancing the CO/sub 2/ environment of crop plants to increase photosynthesis, which is currently limited by inadequate levels of CO/sub 2/. It is not known how increases of CO/sub 2/ might affect consumers in the food chain. Population levels of sweet potato whitefly (SPWF), Bermisiaa tabaci (Gennadius), were assessed with sticky traps placed in a field experiment wherein cotton was grown in open-top field chambers that were enriched with CO/sub 2/ at levels approaching 200% ambient concentration levels. Although trapping started at the first of June, only an occasional SPWF was caught until early August. At that time populations began to increase at an exponential rate similar to that observed in commercial cotton fields in Arizona and California in previous years. There was no difference in rate of buildup of SPWF in ambient and CO/sub 2/-enriched chambers in either wet or dry irrigation treatment. Thus, it seems that raised CO/sub 2/ levels, either natural or artificial, do not affect SPWF populations.

  10. High efficient of females of B-type Bemisia tabaci as males in transmitting the whitefly-borne tomato yellow leaf curl virus to tomato plant with Q-PCR method confirmation.

    PubMed

    Xie, Wen; Xu, Yan-Xia; Jiao, Xiao-Guo; Zhang, You-Jun

    2012-11-01

    It has been previously reported that TYLCV can be transmitted from viruliferous males to non-viruliferous females and from viruliferous females to non-viruliferous males, but not between insects of the same sex; female whiteflies transmit TYLCV-Is with higher efficiency than males through symptoms recognition and viral DNA identification in tomato test plants (one insect per plant, with 48 h AAP and 48 h IAP). However, it remains unclear whether non-infected female and male could obtain same virus from TYLCV-infected tomato plants, and whether TYLCV-infected female and male could transmit same virus to non-viruliferous tomato plants. To address this issue, quantitative real-time PCR were applied to detect TYLCV content in adults or tomato plant. The acquisition and transmission experiments showed that both female and male can acquire and transmit the virus and no acquisition capability difference was observed between newly emerged female and male, however, female demonstrated superior transmission capability than male. Moreover, gene expressions profilings of GroEL and Hamiltonella in non-viruliferous and viruliferous female was all higher than that in male. These results further indicated that sex is an important factor affecting TYLCV transmission efficiency in B. tabaci. PMID:23336021

  11. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa.

    PubMed

    Legg, James P; Shirima, Rudolph; Tajebe, Lensa S; Guastella, Devid; Boniface, Simon; Jeremiah, Simon; Nsami, Elibariki; Chikoti, Patrick; Rapisarda, Carmelo

    2014-10-01

    Cassava mosaic disease and cassava brown streak disease are caused by viruses transmitted by Bemisia tabaci and affect approximately half of all cassava plants in Africa, resulting in annual production losses of more than $US 1 billion. A historical and current bias towards virus rather than vector control means that these diseases continue to spread, and high Bemisia populations threaten future virus spread even if the extant strains and species are controlled. Progress has been made in parts of Africa in replicating some of the successes of integrated Bemisia control programmes in the south-western United States. However, these management efforts, which utilise chemical insecticides that conserve the Bemisia natural enemy fauna, are only suitable for commercial agriculture, which presently excludes most cassava cultivation in Africa. Initiatives to strengthen the control of B. tabaci on cassava in Africa need to be aware of this limitation, and to focus primarily on control methods that are cheap, effective, sustainable and readily disseminated, such as host-plant resistance and biological control. A framework based on the application of force multipliers is proposed as a means of prioritising elements of future Bemisia control strategies for cassava in Africa.

  12. Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...

  13. Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies

    PubMed Central

    Bing, Xiao-Li; Xia, Wen-Qiang; Gui, Jia-Dong; Yan, Gen-Hong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2014-01-01

    Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein-coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored. PMID:25077022

  14. Temperature stress, anti-oxidative enzyme activity and virus acquisition in Bemisia tabaci (Hemiptera: Aleyrodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...

  15. Baseline Susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of pyriproxyfen and neonicotinoid resistance in the B biotype whitefly and recent introduction of the Q biotype are threatening the current whitefly management programs in Arizona. Whether the novel anthranilic diamides chlorantraniliprole and cyantraniliprole can be integrated into the ...

  16. Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to vapor pressure deficit: Oviposition, immature survival and body size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambient temperature is an abiotic factor that has been studied extensively in insect biology and population dynamics while relatively little investigations have been carried out on the impact of ambient moisture. Whiteflies cause major agricultural problems in environments ranging from arid to humi...

  17. Temperature stress effects in Bemisia tabaci (Hemiptera: Aleyrodidae) type B whiteflies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative stress occurs in response to changes in the redox equilibiurm, which may be caused by increases in reactive oxygen species (ROS), a decrease in antioxidant protection or failure of cells to repair oxidative damage. ROS are either free radicals, reactive molecules containing oxygen atoms or...

  18. High Ozone (O3) Affects the Fitness Associated with the Microbial Composition and Abundance of Q Biotype Bemisia tabaci

    PubMed Central

    Hong, Yanyun; Yi, Tuyong; Tan, Xiaoling; Zhao, Zihua; Ge, Feng

    2016-01-01

    Ozone (O3) affects the fitness of an insect, such as its development, reproduction and protection against fungal pathogens, but the mechanism by which it does so remains unclear. Here, we compared the fitness (i.e., the growth and development time, reproduction and protection against Beauveria bassiana (B. bassiana) of Q biotype whiteflies fumigated under hO3 (280 ± 20 ppb) and control O3 (50 ± 10 ppb) concentrations. Moreover, we determined that gene expression was related to development, reproduction and immunity to B. bassiana and examined the abundance and composition of bacteria and fungi inside of the body and on the surface of the Q biotype whitefly. We observed a significantly enhanced number of eggs that were laid by a female, shortened developmental time, prolonged adult lifespan, decreased weight of one eclosion, and reduced immunity to B. bassiana in whiteflies under hO3, but hO3 did not significantly affect the expression of genes related to development, reproduction and immunity. However, hO3 obviously changed the composition of the bacterial communities inside of the body and on the surface of the whiteflies, significantly reducing Rickettsia and enhancing Candidatus_Cardinium. Similarly, hO3 significantly enhanced Thysanophora penicillioides from the Trichocomaceae family and reduced Dothideomycetes (at the class level) inside of the body. Furthermore, positive correlations were found between the abundance of Candidatus_Cardinium and the female whitefly ratio and the fecundity of a single female, and positive correlations were found between the abundance of Rickettsia and the weight of adult whiteflies just after eclosion and immunity to B. bassiana. We conclude that hO3 enhances whitefly development and reproduction but impairs immunity to B. bassiana, and our results also suggest that the changes to the microbial environments inside of the body and on the surface could be crucial factors that alter whitefly fitness under hO3. PMID:27799921

  19. Transmission of Iris yellow spot virus by Frankliniella fusca and Thrips tabaci (Thysanoptera: Thripidae).

    PubMed

    Srinivasan, Rajagopalbabu; Sundaraj, Sivamani; Pappu, Hanu R; Diffie, Stan; Riley, David G; Gitaitis, Ron D

    2012-02-01

    Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.

  20. Enhanced symbiotic nitrogen fixation with P. syringae pv tabaci

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J. New Mexico State Univ., Las Cruces ); Sengupta-Gopalan, C. )

    1989-04-01

    Infestation of legumes such as alfalfa and soybeans with the plant pathogen Pseudomonas syringae pv. tabaci is accompanied by increased plant growth, nodulation, overall nitrogen fixation, and total assimilated nitrogen. These effects are observed only in plants infested with Tox{sup +} pathogen; the toxin is tabtoxinine-{beta}-lactam, an active site-directed irreversible inhibitor of glutamine synthetase. The key to the legumes survival of this treatment is the insensitivity of the nodule-specific form of glutamine synthetase to the toxin. As expected, significant changes are observed in ammonia assimilation in these plants. The biochemical and molecular biological consequences of this treatment are being investigated.

  1. Population dynamics of Bemisia argentifolii (Homoptera: Aleyrodidae) on spring collard and relationship to yield in the lower Rio Grande Valley of Texas.

    PubMed

    Liu, T X

    2000-06-01

    Seasonal population dynamics of the silverleaf whitefly, Bemisia argentifolii Bellows & Perring [formerly known as the sweetpotato whitefly, B. tabaci (Gennadius) Biotype "B"], was investigated on collard (Brassica oleracea L. variety acephala) during spring 1998 and 1999 in the Lower Rio Grande Valley of Texas. Yield loss caused by whitefly was determined by using insecticides to suppress whitefly populations to a low level. Although B. argentifolii populations of adults and immatures fluctuated greatly from April to June during the two seasons, the relative values were similar. Adult whiteflies first appeared on the plants in early April, increased rapidly within the month, peaked in May, and declined at the end of the season in early or mid-June. Whitefly eggs appeared on plants soon after adults were found, but high numbers of eggs were observed on foliage until late May 1998 and mid- and late May 1999. Nymphs and pupae increased slowly before June 1998 and increased early in May 1999. Whitefly population levels appeared to be positively associated with the availability and the growth of host plants until plant maturation, afterward being negatively related with plant quality in the late season. Temperature, rainfall, and natural enemies were not key factors in regulating population dynamics during the two seasons. Collard plants with heavy infestations of whiteflies were unmarketable because of the damage caused by honeydew and sooty mold on the foliage. Application of a combination of fenpropathrin (Danitol) and acephate (Orthene) not only significantly reduced the whitefly infestation levels but also reduced plant foliar damage, resulting in marketable foliage with six to seven times greater yield and higher quality compared with the untreated plants.

  2. Detection of Gene Flow from Sexual to Asexual Lineages in Thrips tabaci (Thysanoptera: Thripidae).

    PubMed

    Li, Xiao-Wei; Wang, Ping; Fail, Jozsef; Shelton, Anthony M

    2015-01-01

    Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction. PMID:26375283

  3. Detection of Gene Flow from Sexual to Asexual Lineages in Thrips tabaci (Thysanoptera: Thripidae)

    PubMed Central

    Li, Xiao-Wei; Wang, Ping; Fail, Jozsef; Shelton, Anthony M.

    2015-01-01

    Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction. PMID:26375283

  4. Detection of Gene Flow from Sexual to Asexual Lineages in Thrips tabaci (Thysanoptera: Thripidae).

    PubMed

    Li, Xiao-Wei; Wang, Ping; Fail, Jozsef; Shelton, Anthony M

    2015-01-01

    Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction.

  5. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In animals dependent on intracellular bacteria with very small genomes, the host cell is adapted to support the function of its bacterial symbionts, but the molecular basis of these adaptations is poorly understood. We investigated the metabolic coevolution between the whitefly Bemisia tabaci and th...

  6. Seasonal Changes in Thrips tabaci Population Structure in Two Cultivated Hosts

    PubMed Central

    Nault, Brian A.; Kain, Wendy C.; Wang, Ping

    2014-01-01

    Thrips tabaci is a major pest of high-value vegetable crops and understanding its population genetics will advance our knowledge about its ecology and management. Mitochondrial cytochrome oxidase subunit I (COI) gene sequence was used as a molecular marker to analyze T. tabaci populations from onion and cabbage fields in New York. Eight COI haplotypes were identified in 565 T. tabaci individuals collected from these fields. All T. tabaci were thelytokous and genetically similar to those originating from hosts representing seven plant families spanning five continents. The most dominant haplotype was NY-HT1, accounting for 92 and 88% of the total individuals collected from onion fields in mid-summer in 2005 and 2007, respectively, and 100 and 96% of the total in early fall in 2005 and 2007, respectively. In contrast, T. tabaci collected from cabbage fields showed a dynamic change in population structure from mid-summer to early fall. In mid-summer, haplotype NY-HT2 was highly abundant, accounting for 58 and 52% of the total in 2005 and 2007, respectively, but in early fall it decreased drastically to 15 and 7% of the total in 2005 and 2007, respectively. Haplotype NY-HT1 accounted for 12 and 46% of the total in cabbage fields in mid-summer of 2005 and 2007, respectively, but became the dominant haplotype in early fall accounting for 81 and 66% of the total in 2005 and 2007, respectively. Despite the relative proximity of onion and cabbage fields in the western New York landscape, T. tabaci populations differed seasonally within each cropping system. Differences may have been attributed to better establishment of certain genotypes on specific hosts or differing colonization patterns within these cropping systems. Future studies investigating temporal changes in T. tabaci populations on their major hosts in these ecosystems are needed to better understand host-plant utilization and implications for population management. PMID:24992484

  7. Reduction of viral load in whitefly (Bemisia tabaci Gen.) feeding on RNAi-mediated bean golden mosaic virus resistant transgenic bean plants.

    PubMed

    de Paula, Nayhanne T; de Faria, Josias C; Aragão, Francisco J L

    2015-12-01

    The RNAi concept was explored to silence the rep gene from the bean golden mosaic virus (BGMV) and a genetically modified (GM) bean immune to the virus was previously generated. We investigated if BGMV-viruliferous whiteflies would reduce viral amount after feeding on GM plants. BGMV DNA amount was significantly reduced in whiteflies feeding in GM-plants (compared with insects feeding on non-GM plants) for a period of 4 and 8 days in 52% and 84% respectively.

  8. Temporal Effects of a Begomovirus Infection and Host Plant Resistance on the Preference and Development of an Insect Vector, Bemisia tabaci, and Implications for Epidemics

    PubMed Central

    Legarrea, Saioa; Barman, Apurba; Marchant, Wendy; Diffie, Stan; Srinivasan, Rajagopalbabu

    2015-01-01

    Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics. PMID:26529402

  9. Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood).

    PubMed

    Javed, N; Viner, R; Williamson, M S; Field, L M; Devonshire, A L; Moores, G D

    2003-12-01

    Gene sequences encoding putative acetylcholinesterases have been reported for four hemipteran insect species. Although acetylcholinesterase insensitivity occurs in insecticide-resistant populations of each of these species, no mutations were detected in the gene sequences from the resistant insects. This, coupled with a series of experiments using novel reversible inhibitors to compare the biochemical characteristics of acetylcholinesterase from a range of insect species, showed that the cloned cDNA fragments are unlikely to encode the hemipteran synaptic acetylcholinesterases, and there is likely to be a second ace locus.

  10. Temporal Effects of a Begomovirus Infection and Host Plant Resistance on the Preference and Development of an Insect Vector, Bemisia tabaci, and Implications for Epidemics.

    PubMed

    Legarrea, Saioa; Barman, Apurba; Marchant, Wendy; Diffie, Stan; Srinivasan, Rajagopalbabu

    2015-01-01

    Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics. PMID:26529402

  11. Draft Genome Sequence of Antagonistic Agent Lysobacter antibioticus 13-6.

    PubMed

    Zhou, Lihong; Li, Miao; Yang, Jun; Wei, Lanfang; Ji, Guanghai

    2014-01-01

    Lysobacter antibioticus 13-6, isolated from the roots of Chinese cabbage, effectively controls the pathogens Plasmodiophora brassicae, Xanthomonas oryzae pv. oryzicola, X. oryzae pv. oryzae, Xanthomonas axonopodis pv. dieffenbachiae, and Pseudomonas syringae pv. tabaci. We report the first draft genome sequence of the L. antibioticus species in China. PMID:25301638

  12. Restricted Gene Flow among Lineages of Thrips tabaci Supports Genetic Divergence Among Cryptic Species Groups

    PubMed Central

    Jacobson, Alana L.; Nault, Brian A.; Vargo, Edward L.; Kennedy, George G.

    2016-01-01

    Knowledge of the relative influence of population- versus species-level genetic variation is important to understand patterns of phenotypic variation and ecological relationships that exist among and within morphologically indistinguishable cryptic species and subspecies. In the case of cryptic species groups that are pests, such knowledge is also essential for devising effective population management strategies. The globally important crop pest Thrips tabaci is a taxonomically difficult group of putatively cryptic species. This study examines population genetic structure of T. tabaci and reproductive isolation among lineages of this species complex using microsatellite markers and mitochondrial COI sequences. Overall, genetic structure supports T. tabaci as a cryptic species complex, although limited interbreeding occurs between different clonal groups from the same lineage as well as between individuals from different lineages. These results also provide evidence that thelytoky and arrhenotoky are not fixed phenotypes among members of different T. tabaci lineages that have been generally associated with either reproductive mode. Possible biological and ecological factors contributing to these observations are discussed. PMID:27690317

  13. Thrips tabaci Population Genetic Structure and Polyploidy in Relation to Competency as a Vector of Tomato Spotted Wilt Virus

    PubMed Central

    Jacobson, Alana L.; Booth, Warren; Vargo, Edward L.; Kennedy, George G.

    2013-01-01

    Knowledge of population-level genetic differences can help explain variation among populations of insect vectors in their role in the epidemiology of specific viruses. Variation in competency to transmit Tomato spotted wilt virus (TSWV) that exists among populations of Thrips tabaci has been associated with the presence of cryptic species that exhibit different modes of reproduction and host ranges. However, recent findings suggest that vector competency of T. tabaci at any given location depends on the thrips and virus populations that are present. This study characterizes the population genetic structure of T. tabaci collected from four locations in North Carolina and examines the relationship between population genetic structure and variation in TSWV transmission by T. tabaci. Mitochondrial COI sequence analysis revealed the presence of two genetically distinct groups with one characterized by thelytokous, parthenogenetic reproduction and the other by arrhenotokous, sexual reproduction. Using a set of 11 microsatellite markers that we developed to investigate T. tabaci population genetic structure, we identified 17 clonal groups and found significant genetic structuring among the four NC populations that corresponded to the geographic locations where the populations were collected. Application of microsatellite markers also led to the discovery of polyploidy in this species. All four populations contained tetraploid individuals, and three contained both diploid and tetraploid individuals. Analysis of variation in transmission ofTSWV among isofemale lines initiated with individuals used in this study revealed that ‘clone assignment,’ ‘virus isolate’ and their interaction significantly influenced vector competency. These results highlight the importance of interactions between specific T. tabaci clonal types and specific TSWV isolates underlying transmission of TSWV by T. tabaci. PMID:23365671

  14. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci

    PubMed Central

    Muvea, Alexander M.; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K.

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci. PMID:25254657

  15. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci.

    PubMed

    Muvea, Alexander M; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.

  16. Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease.

    PubMed

    Yang, Hyun Ju; Lee, Jun Seung; Cha, Ji Young; Baik, Hyung Suk

    2011-10-01

    Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.

  17. Specific Insect-Virus Interactions Are Responsible for Variation in Competency of Different Thrips tabaci Isolines to Transmit Different Tomato Spotted Wilt Virus Isolates

    PubMed Central

    Jacobson, Alana L.; Kennedy, George G.

    2013-01-01

    Local adaptation between sympatric host and parasite populations driven by vector genetics appears to be a factor that influences dynamics of disease epidemics and evolution of insect-vectored viruses. Although T. tabaci is the primary vector of Tomato spotted wilt virus (TSWV) in some areas of the world, it is not an important vector of this economically important plant virus in many areas where it occurs. Previous studies suggest that genetic variation of thrips populations, virus isolates, or both are important factors underlying the localized importance of this species as a vector of TSWV. This study was undertaken to quantify variation in transmissibility of TSWV isolates by T. tabaci, in the ability of T. tabaci to transmit isolates of TSWV, and to examine the possibility that genetic interactions and local adaptation contribute to the localized nature of this species as a vector of TSWV. Isofemale lines of Thrips tabaci from multiple locations were tested for their ability to transmit multiple TSWV isolates collected at the same and different locations as the thrips. Results revealed that the probability of an isofemale line transmitting TSWV varied among virus isolates, and the probability of an isolate being transmitted varied among isofemale lines. These results indicate that the interaction of T. tabaci and TSWV isolate genetic determinants underlie successful transmission of TSWV by T. tabaci. Further analysis revealed sympatric vector-virus pairing resulted in higher transmission than allopatric pairing, which suggests that local adaptation is occurring between T. tabaci and TSWV isolates. PMID:23358707

  18. Performance of arrhenotokous and thelytokous Thrips tabaci (Thysanoptera: Thripidae) on onion and cabbage and its implications on evolution and pest management.

    PubMed

    Li, Xiao-Wei; Fail, Jozsef; Wang, Ping; Feng, Ji-Nian; Shelton, A M

    2014-08-01

    Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is an important pest on onion and cabbage. Two reproductive modes--arrhenotoky and thelytoky--are found in this species and co-occur in the field. We compared life table traits between arrhenotokous and thelytokous T. tabaci on cabbage and onion. Experiments were conducted in cages to determine which reproductive mode is more competitive. Additionally, host adaption of the arrhenotokous and thelytokous T. tabaci between onion and cabbage was investigated. On onion, arrhenotokous T. tabaci performed better than thelytokous T. tabaci, while on cabbage the opposite occurred. When comparing life table and demographic growth parameters (net reproductive rates R(o), mean generation time T, the intrinsic rate of natural increase r(m), finite rate of increase A, and population doubling time T(d)) on different host plants, we found that arrhenotokous T. tabaci performed better on onion than on cabbage, whereas thelytokous T. tabaci performed better on cabbage than on onion. Host-related performance differences in this species suggest that the divergence between two reproductive modes might be associated with host adaption. Pest management strategies for this global pest should recognize that the two reproductive modes can impact population dynamics on different crops.

  19. Evaluation of onion germplasm for resistance to Iris yellow spot (Iris yellow spot virus) and onion thrips, Thrips tabaci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onion (Allium cepa L.) is the most economically important monocot outside of the grasses. This important crop suffers severe damage from onion thrips (Thrips tabaci), a cosmopolitan and polyphagous insect pest. In addition to direct feeding damages, onion thrips has emerged as the principal vector o...

  20. Thrips tabaci (Thysanoptera: Thripidae) and Iris yellow spot virus associated with onion transplants, onion volunteers, and weeds in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thrips tabaci infestation was determined on onion transplants received in Colorado during March and April from out of state sources (Imperial Valley, near Phoenix Arizona, and southern Texas) during 2004 to 2008. In the five years of the study, 50% to 100% of the transplant lots sampled were found ...

  1. Expression of the Tomato Pto Gene in Tobacco Enhances Resistance to Pseudomonas syringae pv tabaci Expressing avrPto.

    PubMed Central

    Thilmony, R. L.; Chen, Z.; Bressan, R. A.; Martin, G. B.

    1995-01-01

    The Pto gene encodes a serine-threonine kinase that confers resistance in tomato to Pseudomonas syringae pv tomato strains expressing the avirulence gene avrPto. We examined the ability of Pto to function in tobacco, a species that is sexually incompatible with tomato. Evidence that a heterologous Pto-like signal transduction pathway is present in tobacco was suggested by the fact that tobacco line Wisconsin-38 exhibits a hypersensitive response after infection with P. syringae pv tabaci expressing avrPto. We introduced a Pto transgene into cultivar Wisconsin-38 and assessed the ability of transformed plants to further inhibit growth of the P. s. tabaci strain expressing avrPto. The Pto-transformed tobacco plants exhibited a significant increase in resistance to the avirulent P. s. tabaci strain compared with wild-type tobacco as indicated by (1) more rapid development of a hypersensitive resistance response at high inoculum concentrations (108 colony-forming units per mL); (2) lessened severity of disease symptoms at moderate inoculum concentrations (106 and 107 colony-forming units per mL); and (3) reduced growth of avirulent P. s. tabaci in inoculated leaves. The results indicate that essential components of a Pto-mediated signal transduction pathway are conserved in tobacco and should prompt examination of resistance gene function across even broader taxonomic distances. PMID:12242354

  2. Onion Thrips, Thrips tabaci, Have Gut Bacteria That are Closely Related to the Symbionts of the Western Flower Thrips, Frankliniella occidentalis

    PubMed Central

    de Vries, Egbert J.; van der Wurff, André W. G.; Jacobs, Gerrit; Breeuwer, Johannes A. J.

    2008-01-01

    It has been shown that many insects have Enterobacteriaceae bacteria in their gut system. The western flower thrips, Frankliniella occidentalis Pergande [Thysanoptera: Thripidae], has a symbiotic relation with Erwinia species gut bacteria. To determine if other Thripidae species have similar bacterial symbionts, the onion thrips, Thrips tabaci, was studied because, like F. occidentalis, it is phytophagous. Contrary to F. occidentalis, T. tabaci is endemic in Europe and biotypes have been described. Bacteria were isolated from the majority of populations and biotypes of T. tabaci examined. Bacteria were present in high numbers in most individuals of the populations studied. Like F. occidentalis, T. tabaci contained one type of bacterium that clearly outnumbered all other types present in the gut. This bacterium was identified as an Erwinia species, as was also the case for F. occidentalis. However, its biochemical characteristics and 16S rDNA sequence differed from the bacteria present in F. occidentalis. PMID:20298113

  3. Transmission of Pantoea ananatis and P. agglomerans, causal agents of center rot of onion (Allium cepa), by onion thrips (Thrips tabaci) through feces.

    PubMed

    Dutta, B; Barman, A K; Srinivasan, R; Avci, U; Ullman, D E; Langston, D B; Gitaitis, R D

    2014-08-01

    Frankliniella fusca, the tobacco thrips, has been shown to acquire and transmit Pantoea ananatis, one of the causal agents of the center rot of onion. Although Thrips tabaci, the onion thrips, is a common pest of onions, its role as a vector of P. ananatis has been unknown. The bacterium, P. agglomerans, is also associated with the center rot of onion, but its transmission by thrips has not been previously investigated. In this study, we investigated the relationship of T. tabaci with P. ananatis and P. agglomerans. Surface-sterilized T. tabaci were provided with various acquisition access periods (AAP) on onion leaves inoculated with either P. ananatis or P. agglomerans. A positive exponential relationship was observed between thrips AAP duration and P. ananatis (R² = 0.967; P = 0.023) or P. agglomerans acquisition (R² = 0.958; P = 0.017). Transmission experiments conducted with T. tabaci adults indicated that 70% of the seedlings developed center rot symptoms 15 days after inoculation. Immunofluorescence microscopy with antibodies specific to P. ananatis revealed that the bacterium was localized only in the gut of T. tabaci adults. Mechanical inoculation of onion seedlings with fecal rinsates alone produced center rot but not with salivary secretions. Together these results suggested that T. tabaci could efficiently transmit P. ananatis and P. agglomerans.

  4. Pathogenicity of Aschersonia spp. against whiteflies Bemisia argentifolii and Trialeurodes vaporariorum.

    PubMed

    Meekes, Ellis T M; Fransen, Joanne J; van Lenteren, Joop C

    2002-09-01

    Entomopathogenic fungi of the genus Aschersonia are specific for whitefly and scale insects. They can be used as biological control agents against silverleaf whitefly, Bemisia argentifolii and greenhouse whitefly, Trialeurodes vaporariorum. Forty-four isolates of Aschersonia spp. were tested for their ability to sporulate and germinate on semi-artificial media and to infect insect hosts. Seven isolates sporulated poorly (less than 1x10(7) conidia/dry weight) and 10 were not able to infect either of the whitefly species. Several isolates were able to produce capilliconidia. Infection level was not correlated with germination on water agar. After a selection based on spore production and infection, virulence of 31 isolates was evaluated on third instar nymphs of both whitefly species on poinsettia (Euphorbia pulcherrima). Whitefly infection levels varied between 2 and 70%, and infection percentages of B. argentifolii correlated with that of T. vaporariorum. However, mortality was higher for T. vaporariorum than for B. argentifolii, as a result of a higher 'mortality due to unknown causes.' Several isolates, among which unidentified species of Aschersonia originating from Thailand and Malaysia, A. aleyrodis from Colombia, and A. placenta from India showed high spore production on semi-artificial medium and high infection levels of both whitefly species.

  5. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence.

    PubMed

    Westmore, G C; Poke, F S; Allen, G R; Wilson, C R

    2013-09-01

    Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European 'L2' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time.

  6. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence.

    PubMed

    Westmore, G C; Poke, F S; Allen, G R; Wilson, C R

    2013-09-01

    Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European 'L2' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time. PMID:23632893

  7. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence

    PubMed Central

    Westmore, G C; Poke, F S; Allen, G R; Wilson, C R

    2013-01-01

    Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European ‘L2' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time. PMID:23632893

  8. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields.

    PubMed

    Hsu, Cynthia L; Hoepting, Christine A; Fuchs, Marc; Shelton, Anthony M; Nault, Brian A

    2010-04-01

    Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV.

  9. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields.

    PubMed

    Hsu, Cynthia L; Hoepting, Christine A; Fuchs, Marc; Shelton, Anthony M; Nault, Brian A

    2010-04-01

    Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYSV. PMID:20388253

  10. Molecular basis of a microbe-mediated enhancement of symbiotic N/sub 2/-fixation. [Rhizobium meliloti; Pseudomonas syringae pv. tabaci

    SciTech Connect

    Unkefer, P.J.; Knight, T.J.

    1987-04-01

    Improvement of biological nitrogen fixation represents a potential source of both increased food production and decreased dependence on costly chemical fertilizer. They report the results of an investigation of the molecular basis of a unique, microbial-mediated mechanism for increased growth and nitrogen fixation rates in alfalfa. Inoculation of alfalfa plants with both Rhizobium meliloti and Pseudomonas syringae pv tabaci provides increased growth and N/sub 2/-fixation rates of alfalfa. Tabaci produces tabtoxinine-..beta..-lactam (T..beta..L), an exocellular product and glutamine synthetase (GS) inhibitor. The association of this pathogen with nodulating alfalfa plants appears to alter the normal regulation of nitrogen fixation such that nitrogenase activity is stimulated and GS activity is inhibited. Studies of the soluble amino acids in these nodules and the activities of the ammonia assimilatory enzymes indicate alternative pathways of ammonia assimilation are being employed.

  11. Susceptibility of ornamental pepper banker plant candidates to common greenhouse pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of four potential ornamental pepper banker plant candidates [Black Pearl (BP), Explosive Ember (EE), Masquerade (MA), Red Missile (RM), and a commercial pepper cultivar Blitz (BL)] were evaluated against three common greenhouse pests - Bemisia tabaci, Polyphagotarsonemus latus and Fra...

  12. Effects of selected defoliants in combination with insecticides on sweetpotato whitefly (Hemiptera: Aleyrodidae) and its parasitoids in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of two defoliants, Def (S, S, Stributylphosphorotrithioate) and Dropp (thidiazuron) alone and in combination with two commonly used insecticides, a pyrethroid, Karate (lambda-cyhalothrin) and an organophosphate, Guthion (azinphosmethyl) on sweetpotato whitefly, Bemisia tabaci Gennadius Bioty...

  13. Reducing whiteflies on cucumber using intercropping with less preferred vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of four less preferred vegetables – celery, asparagus lettuce, Malabar spinach, and edible amaranth – were investigated for suppression of two biotypes of sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on cucumber, Cucumis sativus L. (Cucurbitaceae). Int...

  14. Influence of cover crop and intercrop systems on Bemisia argentifolli (Hemiptera: Aleyrodidae) infestation and associated squash silverleaf disorder in zucchini.

    PubMed

    Manandhar, Roshan; Hooks, Cerruti R R; Wright, Mark G

    2009-04-01

    Field experiments were conducted to evaluate the effects of cover cropping and intercropping on population densities of silverleaf whitefly, Bemisia argentifolli Bellow and Perring, and the incidence of squash silverleaf disorder (SSL) in zucchini, Cucurbita pepo L., in Oahu, HI. Two cover crops, buckwheat (BW), Fagopyrum esculentum Moench, and white clover (WC), Trifolium repens L., or sunn hemp (SH), Crotolaria juncea L., and an intercropped vegetable, okra, Abelmonchus esculentus L., were evaluated during the 2003, 2005, and 2006 growing seasons, respectively. Population densities of whiteflies and SSL severity varied during the three field experiments. In 2003, the severity of SSL and percentage of leaves displaying symptoms were significantly lower on zucchini plants in WC than BW plots throughout the crops' growth cycle. Additionally, the percentage of leaves per plant displaying SSL symptoms was significantly greater in bare-ground (BG) compared with the pooled BW and WC treatments on each inspection date. In 2005, zucchini intercropped with okra had lower numbers of adult whiteflies and resulted in significantly lower severity of SSL than pooled BW and WC treatments. During 2006, zucchini grown with SH had significantly lower numbers of all whitefly stages (i.e., egg, immature, and adult) and less SSL severity symptoms than BW. Despite these differences in whitefly numbers and SSL severity, marketable yields were not significantly lower in BW compared with WC or SH treatment plots during the study. The mechanisms underlying these results and the feasibility of using cover crops and intercrops to manage B. argentifolli and SSL are discussed.

  15. Functional analysis of the aefR mutation and identification of its binding site in Pseudomonas syringae pv. tabaci 11528.

    PubMed

    Yun, Sora; Lee, Jun Seung; Do, Mi Sol; Jeon, Young Ji; Cha, Ji Young; Baik, Hyung Suk

    2015-11-01

    The TetR family transcriptional regulator AefR contributes to the regulation of the quorum-sensing system. However, the role of AefR in the regulatory network of the phytopathogen Pseudomonas syringae pathovars is not known. In this study, the phenotype of a P. syringae pv. tabaci 11528 aefR deletion mutant strain was examined. The aefR gene expression and AefR DNA-binding affinity were examined by quantitative real-time polymerase chain reaction and electrophoretic mobility shift assay, respectively. AefR was found to control quorum-sensing genes as well as the efflux genes mexE, mexF, and oprN via an indirect mechanism. AefR binds to its own operator site as well as to the palindromic sequence between positions -28 and -2 corresponding to the transcription start site of aefR, as determined by dye primer sequencing. These results suggest that P. syringae AefR modulates quorum sensing and efflux as well as its own expression, which can be exploited by strategies developed to manage this plant parasite.

  16. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    SciTech Connect

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  17. Functional analysis of the aefR mutation and identification of its binding site in Pseudomonas syringae pv. tabaci 11528.

    PubMed

    Yun, Sora; Lee, Jun Seung; Do, Mi Sol; Jeon, Young Ji; Cha, Ji Young; Baik, Hyung Suk

    2015-11-01

    The TetR family transcriptional regulator AefR contributes to the regulation of the quorum-sensing system. However, the role of AefR in the regulatory network of the phytopathogen Pseudomonas syringae pathovars is not known. In this study, the phenotype of a P. syringae pv. tabaci 11528 aefR deletion mutant strain was examined. The aefR gene expression and AefR DNA-binding affinity were examined by quantitative real-time polymerase chain reaction and electrophoretic mobility shift assay, respectively. AefR was found to control quorum-sensing genes as well as the efflux genes mexE, mexF, and oprN via an indirect mechanism. AefR binds to its own operator site as well as to the palindromic sequence between positions -28 and -2 corresponding to the transcription start site of aefR, as determined by dye primer sequencing. These results suggest that P. syringae AefR modulates quorum sensing and efflux as well as its own expression, which can be exploited by strategies developed to manage this plant parasite. PMID:26376742

  18. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  19. Evaluations of melon germplasm reported to exhibit host plant resistance to sweetpotato whitefly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) displaced B. tabaci biotype A in 1991 in the lower desert area of southern California and the adjoining areas of Arizona and western Mexico. The search for high-level host plant resistance to this devastating insect has been ongoin...

  20. Biology of Bemisia tuberculata Bondar (Aleyrodidae) and parasitism by Encarsia porteri (Mercet, 1928) (Hymenoptera, Aphelinidae) on cassava plants.

    PubMed

    Andrade Filho, N N; Roel, A R; Penteado-Dias, A M; Costa, R B

    2012-11-01

    The whitefly Bemisia tuberculata has caused serious damage to cassava producing areas in the state of Mato Grosso do Sul. However, little is known about the biological characteristics of this species. The objective of this study was therefore, to monitor the development of this species bred on cassava plants under controlled greenhouse conditions, and to determine its most vulnerable stages and its reproductive capacity, as well as measuring the length and width each stage of development. To obtain these data, adult individuals were kept in voile traps on cassava leaves of five different plants, totalling ten leaves. After 24 hours the leaves were removed from the traps thus making each egg-laden leaf an experimental unit. The lowest mortality rate was record in the last nymphal stage ('pupae) compared with the other development stages. The highest mortality occurred in the nymphs at the 2nd and 3rd instars. Each female laid an average of 6.3 eggs in 24 hours. Thirteen days after egg laying, every one of the nymphs was fixed on the leaves of cassava plants. From the egg laying stage up until the adult stage, the process took 26 days. The proportion of females was 73.5%. The average size of the B. tuberculata egg was 163.22 µm in length and 72.39 µm in width and the "pupae" is 915.82 µm in length and 628.71 µm in width. The measurements of males were 797.16 µm in length and 200.81 µm in width and the length females 916.12 µm in length and 338.99 µm in width. The parasitoid Encarsia porteri (Mercet, 1928) (Hymenoptera, Aphelinidae) was found in the insect stock culture.

  1. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci.

    PubMed

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  2. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci

    PubMed Central

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S.; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant’s tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  3. Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran.

    PubMed

    Nazemi, A; Khajehali, J; Van Leeuwen, T

    2016-05-01

    Onion thrips, Thrips tabaci Lindeman, is the main pest of onion-growing fields in Isfahan and is mainly controlled by frequently spraying several insecticides. To investigate the resistance status and mechanisms, the susceptibility of ten field populations collected from Isfahan onion-growing regions were tested to several currently used pesticides. Resistance to the tested insecticides was observed in most populations when compared with the susceptible reference population. Enhanced detoxification, implicated by the use of inhibitors of major metabolic detoxification enzymes, was observed in the populations resistant to profenofos and chlorpyrifos. In the deltamethrin resistant populations, the amino acid substitution T929I was detected in the voltage gated sodium channel, which is known to confer pyrethroid resistance. These data are a first step towards more efficient resistance management tactics through early detection of resistant onion thrips in Iran. PMID:27017878

  4. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  5. RNA Viral Metagenome of Whiteflies Leads to the Discovery and Characterization of a Whitefly-Transmitted Carlavirus in North America

    PubMed Central

    Rosario, Karyna; Capobianco, Heather; Ng, Terry Fei Fan; Breitbart, Mya; Polston, Jane E.

    2014-01-01

    Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida) (genus Carlavirus) in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector. PMID:24466220

  6. RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America.

    PubMed

    Rosario, Karyna; Capobianco, Heather; Ng, Terry Fei Fan; Breitbart, Mya; Polston, Jane E

    2014-01-01

    Whiteflies from the Bemisia tabaci species complex have the ability to transmit a large number of plant viruses and are some of the most detrimental pests in agriculture. Although whiteflies are known to transmit both DNA and RNA viruses, most of the diversity has been recorded for the former, specifically for the Begomovirus genus. This study investigated the total diversity of DNA and RNA viruses found in whiteflies collected from a single site in Florida to evaluate if there are additional, previously undetected viral types within the B. tabaci vector. Metagenomic analysis of viral DNA extracted from the whiteflies only resulted in the detection of begomoviruses. In contrast, whiteflies contained sequences similar to RNA viruses from divergent groups, with a diversity that extends beyond currently described viruses. The metagenomic analysis of whiteflies also led to the first report of a whitefly-transmitted RNA virus similar to Cowpea mild mottle virus (CpMMV Florida) (genus Carlavirus) in North America. Further investigation resulted in the detection of CpMMV Florida in native and cultivated plants growing near the original field site of whitefly collection and determination of its experimental host range. Analysis of complete CpMMV Florida genomes recovered from whiteflies and plants suggests that the current classification criteria for carlaviruses need to be reevaluated. Overall, metagenomic analysis supports that DNA plant viruses carried by B. tabaci are dominated by begomoviruses, whereas significantly less is known about RNA viruses present in this damaging insect vector.

  7. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  8. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  9. Imaging genomics

    PubMed Central

    Thompson, Paul M.; Martin, Nicholas G.; Wright, Margaret J.

    2010-01-01

    Purpose of review Imaging genomics is an emerging field that is rapidly identifying genes that influence the brain, cognition, and risk for disease. Worldwide, thousands of individuals are being scanned with high-throughput genotyping (genome-wide scans), and new imaging techniques [high angular resolution diffusion imaging and resting state functional magnetic resonance imaging (MRI)] that provide fine-grained measures of the brain’s structural and functional connectivity. Along with clinical diagnosis and cognitive testing, brain imaging offers highly reproducible measures that can be subjected to genetic analysis. Recent findings Recent studies of twin, pedigree, and population-based datasets have discovered several candidate genes that consistently show small to moderate effects on brain measures. Many studies measure single phenotypes from the images, such as hippocampal volume, but voxel-wise genomic methods can plot the profile of genetic association at each 3D point in the brain. This exploits the full arsenal of imaging statistics to discover and replicate gene effects. Summary Imaging genomics efforts worldwide are now working together to discover and replicate many promising leads. By studying brain phenotypes closer to causative gene action, larger gene effects are detectable with realistic sample sizes obtainable from meta-analysis of smaller studies. Imaging genomics has broad applications to dementia, mental illness, and public health. PMID:20581684

  10. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  11. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects

    PubMed Central

    Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K.; Simmons, Alvin M.; Wintermantel, William M.; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E.

    2015-01-01

    Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction. PMID:26377567

  12. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.

    PubMed

    Luan, Jun-Bo; Chen, Wenbo; Hasegawa, Daniel K; Simmons, Alvin M; Wintermantel, William M; Ling, Kai-Shu; Fei, Zhangjun; Liu, Shu-Sheng; Douglas, Angela E

    2015-09-15

    Genomic decay is a common feature of intracellular bacteria that have entered into symbiosis with plant sap-feeding insects. This study of the whitefly Bemisia tabaci and two bacteria (Portiera aleyrodidarum and Hamiltonella defensa) cohoused in each host cell investigated whether the decay of Portiera metabolism genes is complemented by host and Hamiltonella genes, and compared the metabolic traits of the whitefly symbiosis with other sap-feeding insects (aphids, psyllids, and mealybugs). Parallel genomic and transcriptomic analysis revealed that the host genome contributes multiple metabolic reactions that complement or duplicate Portiera function, and that Hamiltonella may contribute multiple cofactors and one essential amino acid, lysine. Homologs of the Bemisia metabolism genes of insect origin have also been implicated in essential amino acid synthesis in other sap-feeding insect hosts, indicative of parallel coevolution of shared metabolic pathways across multiple symbioses. Further metabolism genes coded in the Bemisia genome are of bacterial origin, but phylogenetically distinct from Portiera, Hamiltonella and horizontally transferred genes identified in other sap-feeding insects. Overall, 75% of the metabolism genes of bacterial origin are functionally unique to one symbiosis, indicating that the evolutionary history of metabolic integration in these symbioses is strongly contingent on the pattern of horizontally acquired genes. Our analysis, further, shows that bacteria with genomic decay enable host acquisition of complex metabolic pathways by multiple independent horizontal gene transfers from exogenous bacteria. Specifically, each horizontally acquired gene can function with other genes in the pathway coded by the symbiont, while facilitating the decay of the symbiont gene coding the same reaction.

  13. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  14. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  15. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.

    PubMed Central

    Liu, L; Shaw, P D

    1997-01-01

    The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis. PMID:8990304

  16. A possible role for acetylated intermediates in diaminopimelate and tabtoxinine-beta-lactam biosynthesis in Pseudomonas syringae pv. tabaci BR2.024.

    PubMed Central

    Liu, L; Shaw, P D

    1997-01-01

    The deduced product of an open reading frame (ORF3) located in the tabtoxinine-beta-lactam (T beta L) biosynthetic region of Pseudomonas syringae pv. tabaci BR2.024 (BR2.024) has significant sequence homology to the dapD products of other bacteria. dapD encodes L-2,3,4,5-tetrahydrodipicolinate succinyl coenzyme A succinyltransferase (THDPA-ST), an enzyme in the diaminopimelate (DAP) and lysine biosynthetic pathway. Complementation studies, in vitro transcription-translation experiments, and enzymatic assays indicated that ORF3 encodes a product with THDPA-ST activity in Escherichia coli dapD mutant beta 274. However, a BR2.024 mutant with an insert in ORF3 was prototrophic, and only basal THDPA-ST activity was detected in extracts of both parent and mutant. This finding suggested that ORF3 was not required for DAP biosynthesis and that it did not encode a product with THDPA-ST activity. The results of enzymatic studies, indicating that BR2.024 uses acetylated intermediates for DAP biosynthesis, are consistent with the hypothesis that BR2.024 does not need THDPA-ST for DAP biosynthesis. The ORF3 mutant produced reduced levels of tabtoxin, indicating that ORF3 may have a role in T beta L biosynthesis. We have named the gene tabB and have proposed a possible function for the gene product. PMID:9294453

  17. Two years research on efficiency of two intercrops, birdsfoot trefoil and summer savory, to reduce damage caused by onion thrips(Thrips tabaci Lindeman, Thysanoptera, Thripidae) on leek.

    PubMed

    Gombac, P; Trdan, S

    2012-01-01

    In 2009 and 2011, a field experiment was carried out at the Laboratory Field at the Biotechnical Faculty in Ljubljana, Slovenia, with the aim to investigate suitability of two intercrops, birdsfoot trefoil (Lotus corniculatus L) and summer savory (Satureja hortensis L.), for reducing damage caused by onion thrips (Thrips tabaci Lindeman) on leek (Allium porrum L.). Four leek cultivars--'Columbus', 'Forrest', 'Lancelot' and 'Lincoln'--were used in the research (Bejo Zaden B.V., Netherlands). In both years, the mean index of damage caused by feeding of the pest on the leek leaves increased from the first evaluation (13 July 2009 and 18 June 2011) in both treatments with intercrops and in control treatment (without intercrop). Leek grown with birdsfoot trefoil as intercrop was in both years statistically the least damaged from thrips. Also summer savory was efficient in the same context in comparison with control treatment. In year 2009 cultivar 'Lancelot' was the least damaged in all treatments, and in year 2011 'Lancelot' and 'Forrest'. In both years intercrop and cultivar also had a significant influence on the yield of leek. The highest yield was obtained on the control plots, meanwhile birdsfoot trefoil and summer savory were pretty competitive and yield of leek grown with them as intercrops was therefore significantly lower.

  18. Virus infection of a weed increases vector attraction to and vector fitness on the weed

    PubMed Central

    Chen, Gong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Fang, Yong; Shi, Xiaobin; Zhang, Youjun

    2013-01-01

    Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China. PMID:23872717

  19. Virus infection of a weed increases vector attraction to and vector fitness on the weed.

    PubMed

    Chen, Gong; Pan, Huipeng; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Fang, Yong; Shi, Xiaobin; Zhang, Youjun

    2013-01-01

    Weeds are important in the ecology of field crops, and when crops are harvested, weeds often become the main hosts for plant viruses and their insect vectors. Few studies, however, have examined the relationships between plant viruses, vectors, and weeds. Here, we investigated how infection of the weed Datura stramonium L. by tomato yellow leaf curl virus (TYLCV) affects the host preference and performance of the TYLCV vector, Bemisia tabaci (Gennadius) Q. The results of a choice experiment indicated that B. tabaci Q preferentially settled and oviposited on TYLCV-infected plants rather than on healthy plants. In addition, B. tabaci Q performed better on TYLCV-infected plants than on healthy plants. These results demonstrate that TYLCV is indirectly mutualistic to B. tabaci Q. The mutually beneficial interaction between TYLCV and B. tabaci Q may help explain the concurrent outbreaks of TYLCV and B. tabaci Q in China. PMID:23872717

  20. Comparative genomics - a perspective.

    PubMed

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-03-27

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology.

  1. Comparative genomics - A perspective

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2007-01-01

    The rapidly emerging field of comparative genomics has yielded dramatic results. Comparative genome analysis has become feasible with the availability of a number of completely sequenced genomes. Comparison of complete genomes between organisms allow for global views on genome evolution and the availability of many completely sequenced genomes increases the predictive power in deciphering the hidden information in genome design, function and evolution. Thus, comparison of human genes with genes from other genomes in a genomic landscape could help assign novel functions for un-annotated genes. Here, we discuss the recently used techniques for comparative genomics and their derived inferences in genome biology. PMID:17597925

  2. Genome cartography: charting the apicomplexan genome.

    PubMed

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology.

  3. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  4. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  5. Tomato yellow leaf curl virus confronts host degradation by sheltering in small/midsized protein aggregates.

    PubMed

    Gorovits, Rena; Fridman, Lilia; Kolot, Mikhail; Rotem, Or; Ghanim, Murad; Shriki, Oz; Czosnek, Henryk

    2016-02-01

    Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted by the whitefly Bemisia tabaci to tomato and other crops. TYLCV proteins are endangered by the host defenses. We have analyzed the capacity of the tomato plant and of the whitefly insect vector to degrade the six proteins encoded by the TYLCV genome. Tomato and whitefly demonstrated the highest proteolytic activity in the fractions containing soluble proteins, less-in large protein aggregates; a significant decrease of TYLCV proteolysis was detected in the intermediate-sized aggregates. All the six TYLCV proteins were differently targeted by the cytoplasmic and nuclear degradation machineries (proteases, ubiquitin 26S proteasome, autophagy). TYLCV could confront host degradation by sheltering in small/midsized aggregates, where viral proteins are less exposed to proteolysis. Indeed, TYLCV proteins were localized in aggregates of various sizes in both host organisms. This is the first study comparing degradation machinery in plant and insect hosts targeting all TYLCV proteins. PMID:26654789

  6. Lateral genomics.

    PubMed

    Doolittle, W F

    1999-12-01

    More than 20 complete prokaryotic genome sequences are now publicly available, each by itself an unparalleled resource for understanding organismal biology. Collectively, these data are even more powerful: they could force a dramatic reworking of the framework in which we understand biological evolution. It is possible that a single universal phylogenetic tree is not the best way to depict relationships between all living and extinct species. Instead a web- or net-like pattern, reflecting the importance of horizontal or lateral gene transfer between lineages of organisms, might provide a more appropriate visual metaphor. Here, I ask whether this way of thinking is really justified, and explore its implications.

  7. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco.

    PubMed

    Han, Song Hee; Lee, Seung Je; Moon, Jae Hak; Park, Keun Hyung; Yang, Kwang Yeol; Cho, Balk Ho; Kim, Kil Yong; Kim, Yong Whan; Lee, Myung Chul; Anderson, Anne J; Kim, Young Cheol

    2006-08-01

    Root colonization by a plant-beneficial rhizobacterium, Pseudomonas chlororaphis O6, induces disease resistance in tobacco against leaf pathogens Erwinia carotovora subsp. carotovora SCC1, causing soft-rot, and Pseudomonas syringae pv. tabaci, causing wildfire. In order to identify the bacterial determinants involved in induced systemic resistance against plant diseases, extracellular components produced by the bacterium were fractionated and purified. Factors in the culture filtrate inducing systemic resistance were retained in the aqueous fraction rather than being partitioned into ethyl acetate. Fractionation on high-performance liquid chromatography followed by nuclear magnetic resonance mass spectrometry analysis identified the active compound as 2R, 3R-butanediol. 2R, 3R butanediol induced systemic resistance in tobacco to E. carotovora subsp. carotovora SCC1, but not to P. syringae pv. tabaci. Treatment of tobacco with the volatile 2R, 3R-butanediol enhanced aerial growth, a phenomenon also seen in plants colonized by P. chlororaphis O6. The isomeric form of the butanediol was important because 2S, 3S-butandiol did not affect the plant. The global sensor kinase, GacS, of P. chlororaphis O6 was a key regulator for induced systemic resistance against E. carotovora through regulation of 2R, 3R-butanediol production. This is the first report of the production of these assumed fermentation products by a pseudomonad and the role of the sensor kinase GacS in production of 2R, 3R-butanediol. PMID:16903358

  8. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  9. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens.

  10. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  11. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  12. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  13. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  14. Regional and temporal variation in susceptibility to lambda-cyhalothrin in onion thrips, Thrips tabaci (Thysanoptera: Thripidae), in onion fields in New York.

    PubMed

    Shelton, A M; Nault, B A; Plate, J; Zhao, J Z

    2003-12-01

    Populations of onion thrips, Thrips tabaci Lindeman, from commercial onion fields in New York were evaluated for their susceptibility to the commonly used pyrethroid, lambda-cyhalothrin (Warrior T), using a novel system called the Thrips Insecticide Bioassay System (TIBS). To use TIBS, thrips are collected directly from the plant into an insecticide-treated 0.5-ml microcentrifuge tube that has a flexible plastic cap with a small well into which 0.08 ml of a 10% sugar-water solution with food colorant is deposited. The solution is sealed into the well with a small piece of stretched parafilm through which the thrips can feed on the solution. Thrips mortality is assessed after 24 h with the help of a dissecting stereoscope. In 2001, onion thrips populations were collected from 16 different sites and resistance ratios were >1,000 in five populations. Percent mortality at 100 ppm, a recommended field rate, varied from 9 to 100%, indicating high levels of variation in susceptibility. Particular instances of resistance appeared to be the result of practices within an individual field rather than a regional phenomenon. In 2002, we also observed large differences in onion thrips susceptibility, not only between individual fields but also between thrips collected in a single field at mid season and late season, again suggesting that insecticide-use practices within an individual field caused differences in susceptibility. Additional tests indicated no differences in susceptibility between adult and larval onion thrips populations and only relatively minor differences between populations collected from different parts of the same field. Using TIBS, several populations of onion thrips with different susceptibilities to lambda-cyhalothrin were identified and then subjected to lambda-cyhalothrin-treated onion plants. There was a highly significant positive relationship between percent mortality of thrips from TIBS and percent mortality from the treated onion plants, indicating

  15. Genome Mapping in Plant Comparative Genomics.

    PubMed

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  16. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  17. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  18. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.

  19. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  20. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  1. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  2. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  3. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  4. Companion and refuge plants to control insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...

  5. Whitefly transmission of Sweet potato leaf curl virus in sweetpotato germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato, Ipomoea batatas (L.) Lam., is among an extensive number of plant species attacked by Bemisia tabaci (Gennadius). Because this important world food crop is vegetatively propagated, it can conveniently accumulate infections by several viruses. Sweet potato leaf curl virus (SPLCV) (ssDNA...

  6. Recessive resistance to Cucurbit yellow stunting disorder virus in melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit yellow stunting disorder virus (CYSDV) reduces melon (Cucumis melo L.) fruit quality and yield in many parts of the world. CYSDV and its vector, sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) are a devastating combination in the Sonoran Desert areas of California and A...

  7. Host plant resistance in melon to sweetpotato whitefly in California and Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly biotype B (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon (Cucumis melo L.) yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant r...

  8. Tracking disease and insect pests using Smartphone technology: a new approach for regional (and local) pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato yellow leaf curl virus (TYLCV) is vectored by the silverleaf whitefly (Bemisia tabaci biotype B) and was first detected in south Florida in 1997. The virus has spread widely in Florida and is responsible for millions of dollars of lost production. Anlaysis of data from a comprehensive, multi-...

  9. Persistent, circulative transmission of begomoviruses by whitefly vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Begomoviruses comprise an emerging and economically important group of plant viruses exclusively transmitted by the sweetpotato whitefly Bemisia tabaci in many regions of the world. The past twenty years have witnessed significant progress in studying the molecular interactions between members of th...

  10. A new and potentially damaging whitefly-transmitted virus of cucurbits was found this fall 2014 in Imperial County, CA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new virus that appears to be related to but distinct from Squash vein yellowing virus (SqVYV), a Bemisia tabaci-transmitted ipomovirus (family Potyviridae) that occurs in Florida was found in fall 2014 in Imperial County, CA infecting pumpkin and melon plants and exhibiting symptoms of stunting an...

  11. The effect of time of sweetpotato whitefly infestation on plant nutrition and development of tomato irregular ripening disorder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato irregular ripening (TIR) disorder is associated with Bemisia tabaci biotype B feeding and is characterized by incomplete ripening of longitudinal sections of fruit. Our objective was to determine the effect of time of whitefly infestation on plant nutrition and the development of tomato irreg...

  12. The effect of time of whitefly infestation and plant nutrition on the development of tomato irregular ripening disorder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato irregular ripening (TIR) is a physiological plant disorder caused by Bemisia tabaci biotype B feeding on foliage and resulting in incomplete ripening of longitudinal sections of fruit.Our objective was to determine the effect of time of whitefly infestation and plant nutrition on the developm...

  13. Resistance for watermelon (Citrullus lanatus var. lanatus) against whiteflies (Hemiptera: Aleyrodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is an important global pest with and an extensive host range. Watermelon (Citrullus lanatus var. lanatus) is among the crops damaged by this pest. Host plant resistance is the foundation for the management of crops pests in general. ...

  14. Epidemiology of Cucurbit yellow stunting disorder virus in the US Southwest and development of virus resistant melon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit yellow stunting disorder virus (CYSDV), emerged in the Southwest USA in 2006, where it is transmitted by the MEAM1 cryptic species of Bemisia tabaci. The virus results in late-season infection of spring melon crops with limited economic impact; however, all summer and fall cucurbits become ...

  15. Host plant resistance in melon (Cucumis melo L.) to sweetpotato whitefly in California and Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato whitefly (MEAM1 cryptic species of Bemisia tabaci; SPWF) feeding severely impacts fall season melon yield and quality in the lower deserts of California and Arizona. Melon accessions PI 313970 and TGR 1551 (PI 482420) have been reported to exhibit host plant resistance (HPR) to SPWF. Pot...

  16. Papaya is not a host for Tomato Yellow Leaf Curl Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The economic value of tomato production is threatened by tomato yellow leaf-curl virus TYLCV and its vector, the silverleaf whitefly Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae). Use of papaya Carica papaya L. as a banker plant for a whitefly parasitoid shows promise as a whitefly m...

  17. Environmental and geographical variables associated with TYLCV epidemics in southwest Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato yellow leaf curl virus (TYLCV), which is vectored by the silverleaf whitefly (Bemisia tabaci biotype B), was first detected in south Florida in 1997. The virus has spread widely in Florida and is responsible for millions of dollars of lost production. A more complete understanding of the temp...

  18. Transcriptomics-guided development of RNA interference strategies to manage whiteflies: a globally distributed vector of crop viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 300 viruses are transmitted by the whitefly, Bemisia tabaci, with 90% of them belonging to the genus, Begomovirus. Begomoviruses are exclusively transmitted by whiteflies to a range of agriculture crops, resulting in billions of dollars lost annually, while jeopardizing food security worldwide....

  19. Release of ‘XRAV-40-4’ black bean (Phaseolus vulgaris L.) cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black bean (Phaseolus vulgaris L.) production in the lowlands of Central America and the Caribbean is threatened by viral diseases. Bean golden yellow mosaic virus (BGYMV), a whitefly [Bemisia tabaci (Gennadius)]-transmitted begomovirus, can cause significant reduction in common bean seed yield when...

  20. Release of ‘Beniquez’ White Bean (Phaseolus vulgaris L.) Cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean golden yellow mosaic virus (BGYMV), a whitefly [Bemisia tabaci (Gennadius)]-transmitted begomovirus, can cause significant reductions in common bean (Phaseolus vulgaris L.) seed yield when susceptible bean cultivars are planted in Central America and the Caribbean. Bean common mosaic virus (BCM...

  1. Dynamics of the endosymbiont Rickettsia in an insect pest.

    PubMed

    Cass, Bodil N; Yallouz, Rachel; Bondy, Elizabeth C; Mozes-Daube, Netta; Horowitz, A Rami; Kelly, Suzanne E; Zchori-Fein, Einat; Hunter, Martha S

    2015-07-01

    A new heritable bacterial association can bring a fresh set of molecular capabilities, providing an insect host with an almost instantaneous genome extension. Increasingly acknowledged as agents of rapid evolution, inherited microbes remain underappreciated players in pest management programs. A Rickettsia bacterium was tracked sweeping through populations of an invasive whitefly provisionally described as the "B" or "MEAM1" of the Bemisia tabaci species complex, in the southwestern USA. In this population, Rickettsia provides strong fitness benefits and distorts whitefly sex ratios under laboratory conditions. In contrast, whiteflies in Israel show few apparent fitness benefits from Rickettsia under laboratory conditions, only slightly decreasing development time. A survey of B. tabaci B samples revealed the distribution of Rickettsia across the cotton-growing regions of Israel and the USA. Thirteen sites from Israel and 22 sites from the USA were sampled. Across the USA, Rickettsia frequencies were heterogeneous among regions, but were generally very high, whereas in Israel, the infection rates were lower and declining. The distinct outcomes of Rickettsia infection in these two countries conform to previously reported phenotypic differences. Intermediate frequencies in some areas in both countries may indicate a cost to infection in certain environments or that the frequencies are in flux. This suggests underlying geographic differences in the interactions between bacterial symbionts and this serious agricultural pest.

  2. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species

    PubMed Central

    Su, Ming-Ming; Guo, Lei; Tao, Yun-Li; Zhang, You-Jun; Wan, Fang-Hao; Chu, Dong

    2016-01-01

    Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation. PMID:27008327

  3. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  4. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  5. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  6. Plant genomics: an overview.

    PubMed

    Campos-de Quiroz, Hugo

    2002-01-01

    Recent technological advancements have substantially expanded our ability to analyze and understand plant genomes and to reduce the gap existing between genotype and phenotype. The fast evolving field of genomics allows scientists to analyze thousand of genes in parallel, to understand the genetic architecture of plant genomes and also to isolate the genes responsible for mutations. Furthermore, whole genomes can now be sequenced. This review addresses these issues and also discusses ways to extract biological meaning from DNA data. Although genomic issuesare addressed from a plant perspective, this review provides insights into the genomic analyses of other organisms. PMID:12462991

  7. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  8. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  9. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  10. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  11. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  12. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  13. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  14. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  15. Whole-exome/genome sequencing and genomics.

    PubMed

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  16. HeteroGenome: database of genome periodicity

    PubMed Central

    Chaley, Maria; Kutyrkin, Vladimir; Tulbasheva, Gayane; Teplukhina, Elena; Nazipova, Nafisa

    2014-01-01

    We present the first release of the HeteroGenome database collecting latent periodicity regions in genomes. Tandem repeats and highly divergent tandem repeats along with the regions of a new type of periodicity, known as profile periodicity, have been collected for the genomes of Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Drosophila melanogaster. We obtained data with the aid of a spectral-statistical approach to search for reliable latent periodicity regions (with periods up to 2000 bp) in DNA sequences. The original two-level mode of data presentation (a broad view of the region of latent periodicity and a second level indicating conservative fragments of its structure) was further developed to enable us to obtain the estimate, without redundancy, that latent periodicity regions make up ∼10% of the analyzed genomes. Analysis of the quantitative and qualitative content of located periodicity regions on all chromosomes of the analyzed organisms revealed dominant characteristic types of periodicity in the genomes. The pattern of density distribution of latent periodicity regions on chromosome unambiguously characterizes each chromosome in genome. Database URL: http://www.jcbi.ru/lp_baze/ PMID:24857969

  17. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend.

  18. State of cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren; Driscoll, Carlos; Pontius, Joan; Pecon-Slattery, Jill; Menotti-Raymond, Marilyn

    2008-06-01

    Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.

  19. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  20. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  1. Genome packaging in viruses.

    PubMed

    Sun, Siyang; Rao, Venigalla B; Rossmann, Michael G

    2010-02-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy (cryo-EM) structures became available. Here we discuss various aspects of genome packaging and compare the mechanisms proposed for packaging motors on the basis of structural information. PMID:20060706

  2. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  3. Disentangling associated genomes.

    PubMed

    Sloan, Daniel B; Bennett, Gordon M; Engel, Philipp; Williams, David; Ochman, Howard

    2013-01-01

    The recovery and assembly of genome sequences from samples containing communities of organisms pose several challenges. Because it is rarely possible to disassociate the resident organisms prior to sequencing, a major obstacle is the assignment of sequences to a single genome that can be fully assembled. This chapter delineates many of the decisions, methodologies, and approaches that can lead to the generation of complete or nearly complete microbial genome sequences from heterogeneous samples-that is, the procedures that allow us to turn metagenomes into genomes.

  4. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

  5. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  6. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  7. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  8. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  9. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  10. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  11. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2009-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (genome.ucsc.edu) is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks”. The annotations—generated by the UCSC Genome Bioinformatics Group and external collaborators—display gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload data as custom annotation tracks in both browsers for research or educational use. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks. PMID:19957273

  12. National Human Genome Research Institute

    MedlinePlus

    ... Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... study, led by researchers at the National Human Genome Research Institute and the Eunice Kennedy Shriver National ...

  13. Tomato spotted wilt virus infection reduces the fitness of a nonvector herbivore on pepper.

    PubMed

    Pan, Huipeng; Chen, Gong; Li, Fei; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Liu, Baiming; Xu, Baoyun; Zhang, Youjun

    2013-04-01

    Plant pathogens and insect herbivores often share hosts under natural conditions. Hence, pathogen-induced changes in a host plant can affect the herbivore and vice versa. Even though plant viruses are ubiquitous in the field, little is known about plant-mediated interactions between viruses and nonvector herbivores. Here we tested whether the performance of the sweet potato whitefly, Bemisia tabaci (Gennadius) biotype Q, was altered when raised on pepper infected with Tomato spotted wilt virus (TSWV). TSWV infection reduced B. tabaci fecundity and longevity and increased B. tabaci developmental time but did not affect the insect's survival or female body lengths. Our results demonstrate that TSWV infection can decrease the fitness of B. tabaci biotype Q on pepper plants.

  14. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  15. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  16. The UCSC Genome Browser

    PubMed Central

    Karolchik, Donna; Hinrichs, Angie S.; Kent, W. James

    2011-01-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation “tracks.” The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. PMID:21975940

  17. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  18. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  19. The UCSC Genome Browser.

    PubMed

    Karolchik, Donna; Hinrichs, Angie S; Kent, W James

    2012-12-01

    The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation "tracks." The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks.

  20. NCBI viral genomes resource.

    PubMed

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  1. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  2. The banana genome hub.

    PubMed

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D'Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world's favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/

  3. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  4. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.

  5. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  6. Genomics and plant breeding.

    PubMed

    Aljanabi, S

    2001-01-01

    Much of our most basic understanding of genetics has its roots in plant genetics and crop breeding. The study of plants has led to important insights into highly conserved biological process and a wealth of knowledge about development. Agriculture is now well positioned to take its share benefit from genomics. The primary sequences of most plant genes will be determined over the next few years. Informatics and functional genomics will help identify those genes that can be best utilized to crop production and quality through genetic engineering and plant breeding. Recent developments in plant genomics are reviewed.

  7. What Is a Genome?

    PubMed

    Goldman, Aaron David; Landweber, Laura F

    2016-07-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  8. Sampling in landscape genomics.

    PubMed

    Manel, Stéphanie; Albert, Cécile H; Yoccoz, Nigel G

    2012-01-01

    Landscape genomics, based on the sampling of individuals genotyped for a large number of markers, may lead to the identification of regions of the genome correlated to selection pressures caused by the environment. In this chapter, we discuss sampling strategies to be used in a landscape genomics approach. We suggest that designs based on model-based stratification using the climatic and/or biological spaces are in general more efficient than designs based on the geographic space. More work is needed to identify designs that allow disentangling environmental selection pressures versus other processes such as range expansions or hierarchical population structure.

  9. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  10. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  11. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  12. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.

  13. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  14. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  15. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine

    PubMed Central

    Elsik, Christine G.; Tayal, Aditi; Diesh, Colin M.; Unni, Deepak R.; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  16. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search. PMID:26578564

  17. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine.

    PubMed

    Elsik, Christine G; Tayal, Aditi; Diesh, Colin M; Unni, Deepak R; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Hymenoptera Genome Database (HGD) (http://HymenopteraGenome.org), a model organism database for insect species of the order Hymenoptera (ants, bees and wasps). HGD maintains genomic data for 9 bee species, 10 ant species and 1 wasp, including the versions of genome and annotation data sets published by the genome sequencing consortiums and those provided by NCBI. A new data-mining warehouse, HymenopteraMine, based on the InterMine data warehousing system, integrates the genome data with data from external sources and facilitates cross-species analyses based on orthology. New genome browsers and annotation tools based on JBrowse/WebApollo provide easy genome navigation, and viewing of high throughput sequence data sets and can be used for collaborative genome annotation. All of the genomes and annotation data sets are combined into a single BLAST server that allows users to select and combine sequence data sets to search.

  18. The rise of genomics.

    PubMed

    Weissenbach, Jean

    2016-01-01

    A brief history of the development of genomics is provided. Complete sequencing of genomes of uni- and multicellular organisms is based on important progress in sequencing and bioinformatics. Evolution of these methods is ongoing and has triggered an explosion in data production and analysis. Initial analyses focused on the inventory of genes encoding proteins. Completeness and quality of gene prediction remains crucial. Genome analyses profoundly modified our views on evolution, biodiversity and contributed to the detection of new functions, yet to be fully elucidated, such as those fulfilled by non-coding RNAs. Genomics has become the basis for the study of biology and provides the molecular support for a bunch of large-scale studies, the omics.

  19. Vita Genomics, Inc.

    PubMed

    Shih-Hsin Wu, Lawrence; Su, Chun-Lin; Chen, Ellson

    2007-06-01

    Vita Genomics, Inc., centered in Taiwan and China, aims to be a premier genomics-based biotechnological and biopharmaceutical company in the Asia-Pacific region. The company focuses on conducting pharmacogenomics research, in vitro diagnosis product development and specialty contract research services in both genomics and pharmacogenomics fields. We are now initiating a drug rescue program designed to resurrect drugs that have failed in the previous clinical trials owing to low efficacies. This program applies pharmacogenomics approaches using biomarkers to screen subsets of patients who may respond better or avoid adverse responses to the test drugs. Vita Genomics, Inc. has envisioned itself as an important player in the healthcare industry offering advanced molecular diagnostic products and services, revolutionizing thedrug-development process and providing pharmacogenomic solutions.

  20. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes. PMID:23274056

  1. Surveying genome replication

    PubMed Central

    Kearsey, Stephen

    2002-01-01

    Two recent studies have added microarrays to the toolkit used to analyze the origins of replication in yeast chromosomes, providing a fuller picture of how genomic DNA replication is organized. PMID:12093380

  2. Epidemiology & Genomics Research Program

    Cancer.gov

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  3. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  4. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  5. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  6. Lophotrochozoan mitochondrial genomes

    SciTech Connect

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  7. The genomics of adaptation.

    PubMed

    Radwan, Jacek; Babik, Wiesław

    2012-12-22

    The amount and nature of genetic variation available to natural selection affect the rate, course and outcome of evolution. Consequently, the study of the genetic basis of adaptive evolutionary change has occupied biologists for decades, but progress has been hampered by the lack of resolution and the absence of a genome-level perspective. Technological advances in recent years should now allow us to answer many long-standing questions about the nature of adaptation. The data gathered so far are beginning to challenge some widespread views of the way in which natural selection operates at the genomic level. Papers in this Special Feature of Proceedings of the Royal Society B illustrate various aspects of the broad field of adaptation genomics. This introductory article sets up a context and, on the basis of a few selected examples, discusses how genomic data can advance our understanding of the process of adaptation.

  8. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes.

  9. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  10. Genomic definition of species

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  11. An Introduction to Genome Annotation.

    PubMed

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  12. Biobanks for Genomics and Genomics for Biobanks

    PubMed Central

    Ducournau, Pascal; Gourraud, Pierre-Antoine; Pontille, David

    2003-01-01

    Biobanks include biological samples and attached databases. Human biobanks occur in research, technological development and medical activities. Population genomics is highly dependent on the availability of large biobanks. Ethical issues must be considered: protecting the rights of those people whose samples or data are in biobanks (information, autonomy, confidentiality, protection of private life), assuring the non-commercial use of human body elements and the optimal use of samples and data. They balance other issues, such as protecting the rights of researchers and companies, allowing long-term use of biobanks while detailed information on future uses is not available. At the level of populations, the traditional form of informed consent is challenged. Other dimensions relate to the rights of a group as such, in addition to individual rights. Conditions of return of results and/or benefit to a population need to be defined. With ‘large-scale biobanking’ a marked trend in genomics, new societal dimensions appear, regarding communication, debate, regulation, societal control and valorization of such large biobanks. Exploring how genomics can help health sector biobanks to become more rationally constituted and exploited is an interesting perspective. For example, evaluating how genomic approaches can help in optimizing haematopoietic stem cell donor registries using new markers and high-throughput techniques to increase immunogenetic variability in such registries is a challenge currently being addressed. Ethical issues in such contexts are important, as not only individual decisions or projects are concerned, but also national policies in the international arena and organization of democratic debate about science, medicine and society. PMID:18629026

  13. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  14. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  15. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  16. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  17. Human Social Genomics

    PubMed Central

    Cole, Steven W.

    2014-01-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural “social signal transduction” pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving. PMID:25166010

  18. Ebolavirus comparative genomics

    DOE PAGES

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; et al

    2015-07-14

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less

  19. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  20. A Review on Genomics APIs

    PubMed Central

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W.; Lin, Simon M.

    2015-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  1. A Review on Genomics APIs.

    PubMed

    Swaminathan, Rajeswari; Huang, Yungui; Moosavinasab, Soheil; Buckley, Ronald; Bartlett, Christopher W; Lin, Simon M

    2016-01-01

    The constant improvement and falling prices of whole human genome Next Generation Sequencing (NGS) has resulted in rapid adoption of genomic information at both clinics and research institutions. Considered together, the complexity of genomics data, due to its large volume and diversity along with the need for genomic data sharing, has resulted in the creation of Application Programming Interface (API) for secure, modular, interoperable access to genomic data from different applications, platforms, and even organizations. The Genomics APIs are a set of special protocols that assist software developers in dealing with multiple genomic data sources for building seamless, interoperable applications leading to the advancement of both genomic and clinical research. These APIs help define a standard for retrieval of genomic data from multiple sources as well as to better package genomic information for integration with Electronic Health Records. This review covers three currently available Genomics APIs: a) Google Genomics, b) SMART Genomics, and c) 23andMe. The functionalities, reference implementations (if available) and authentication protocols of each API are reviewed. A comparative analysis of the different features across the three APIs is provided in the Discussion section. Though Genomics APIs are still under active development and have yet to reach widespread adoption, they hold the promise to make building of complicated genomics applications easier with downstream constructive effects on healthcare. PMID:26702340

  2. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ .

  3. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  4. GenomeVista

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suitemore » of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program to find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  5. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome

    PubMed Central

    Dalrymple, Brian P; Kirkness, Ewen F; Nefedov, Mikhail; McWilliam, Sean; Ratnakumar, Abhirami; Barris, Wes; Zhao, Shaying; Shetty, Jyoti; Maddox, Jillian F; O'Grady, Margaret; Nicholas, Frank; Crawford, Allan M; Smith, Tim; de Jong, Pieter J; McEwan, John; Oddy, V Hutton; Cockett, Noelle E

    2007-01-01

    Background Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? Results A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. Conclusion We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited. PMID:17663790

  6. Translational genomics for plant breeding with the genome sequence explosion.

    PubMed

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  7. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  8. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics. PMID:17208760

  9. Genomics of preterm birth.

    PubMed

    Swaggart, Kayleigh A; Pavlicev, Mihaela; Muglia, Louis J

    2015-02-02

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms.

  10. Genomics, health, and society.

    PubMed

    Chan, Chee Khoon

    2002-01-01

    On June 27, 2001, the World Health Organization conducted hearings in Geneva for a Special Report on Genomics & Health. Initially intended as a document to address the ethical, legal, and social implications of the gathering genomics resolution (ELSI), the terms of reference of the report were significantly modified to give primary emphasis to a scientific and technological assessment of the implications of genomics for human health. The Citizens' Health Initiative, one of two NGOs invited to make submissions at these consultations, suggested that no less important than the scientific and technical assessment was a perspective which gave due attention to the social context and political economy of scientific/technological development and its deployment. The article below touches upon neglected health priorities of poor countries, intellectual property rights and patents, risk management, insurance and discrimination, and predictive (prenatal) testing, reproductive choice, and eugenics.

  11. Pancreatic cancer genomics.

    PubMed

    Chang, David K; Grimmond, Sean M; Biankin, Andrew V

    2014-02-01

    Pancreatic cancer is one of the most lethal malignancies. The overall median survival even with treatment is only 6-9 months, with almost 90% succumbing to the disease within a year of diagnosis. It is characterised by an intense desmoplastic stroma that may contribute to therapeutic resistance, and poses significant challenges for genomic sequencing studies. It is recalcitrant to almost all therapies and consequently remains the fourth leading cause of cancer death in Western societies. Genomic studies are unveiling a vast heterogeneity of mutated genes, and this diversity may explain why conventional clinical trial designs have mostly failed to demonstrate efficacy in unselected patients. Those that are available offer only marginal benefits overall, but are associated with clinically significant responses in as yet undefined subgroups. This chapter describes our current understanding of the genomics of pancreatic cancer and the potential impact of these findings on our approaches to treatment.

  12. Domestication and plant genomes.

    PubMed

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  13. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  14. Berkeley Quantitative Genome Browser

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation.more » The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.« less

  15. Berkeley Quantitative Genome Browser

    SciTech Connect

    Hechmer, Aaron

    2008-02-29

    The Berkeley Quantitative Genome Browser provides graphical browsing functionality for genomic data organized, at a minimum, by sequence and position. While supporting the annotation browsing features typical of many other genomic browsers, additional emphasis is placed on viewing and utilizing quantitative data. Data may be read from GFF, SGR, FASTA or any column delimited format. Once the data has been read into the browser's buffer, it may be searched. filtered or subjected to mathematical transformation. The browser also supplies some graphical design manipulation functionality geared towards preparing figures for presentations or publication. A plug-in mechanism enables development outside the core functionality that adds more advanced or esoteric analysis capabilities. BBrowse's development and distribution is open-source and has been built to run on Linux, OSX and MS Windows operating systems.

  16. Genomics of Salmonella Species

    NASA Astrophysics Data System (ADS)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  17. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  18. Genes, genome and Gestalt.

    PubMed

    Grisolia, Cesar Koppe

    2005-01-01

    According to Gestalt thinking, biological systems cannot be viewed as the sum of their elements, but as processes of the whole. To understand organisms we must start from the whole, observing how the various parts are related. In genetics, we must observe the genome over and above the sum of its genes. Either loss or addition of one gene in a genome can change the function of the organism. Genomes are organized in networks of genes, which need to be well integrated. In the case of genetically modified organisms (GMOs), for example, soybeans, rats, Anopheles mosquitoes, and pigs, the insertion of an exogenous gene into a receptive organism generally causes disturbance in the networks, resulting in the breakdown of gene interactions. In these cases, genetic modification increased the genetic load of the GMO and consequently decreased its adaptability (fitness). Therefore, it is hard to claim that the production of such organisms with an increased genetic load does not have ethical implications.

  19. Ebolavirus comparative genomics

    PubMed Central

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; Uberbacher, Edward C.; Land, Miriam; Zhang, Qian; Wanchai, Visanu; Chai, Juanjuan; Nielsen, Morten; Trolle, Thomas; Lund, Ole; Buzard, Gregory S.; Pedersen, Thomas D.; Wassenaar, Trudy M.; Ussery, David W.

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). PMID:26175035

  20. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the ... and lead to a disease such as cancer. DNA Sequencing Sequencing simply means determining the exact order ...

  1. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria. PMID:27217180

  2. Methanococcus jannaschii genome: revisited

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Olsen, G. J.; Klenk, H. P.; White, O.; Woese, C. R.

    1996-01-01

    Analysis of genomic sequences is necessarily an ongoing process. Initial gene assignments tend (wisely) to be on the conservative side (Venter, 1996). The analysis of the genome then grows in an iterative fashion as additional data and more sophisticated algorithms are brought to bear on the data. The present report is an emendation of the original gene list of Methanococcus jannaschii (Bult et al., 1996). By using a somewhat more updated database and more relaxed (and operator-intensive) pattern matching methods, we were able to add significantly to, and in a few cases amend, the gene identification table originally published by Bult et al. (1996).

  3. The genomics of mycobacteria.

    PubMed

    Viale, M N; Zumárraga, M J; Araújo, F R; Zarraga, A M; Cataldi, A A; Romano, M I; Bigi, F

    2016-04-01

    The species Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis are the causal agents, respectively, of tuberculosis and paratuberculosis in animals. Both mycobacteria, especially M. bovis, are also important to public health because they can infect humans. In recent years, this and the impact of tuberculosis and paratuberculosis on animal production have led to significant advances in knowledge about both pathogens and their host interactions. This article describes the contribution of genomics and functional genomics to studies of the evolution, virulence, epidemiology and diagnosis of both these pathogenic mycobacteria.

  4. The cancer genome

    PubMed Central

    Stratton, Michael R.; Campbell, Peter J.; Futreal, P. Andrew

    2010-01-01

    All cancers arise as a result of changes that have occurred in the DNA sequence of the genomes of cancer cells. Over the past quarter of a century much has been learnt about these mutations and the abnormal genes that operate in human cancers. We are now, however, moving into an era in which it will be possible to obtain the complete DNA sequence of large numbers of cancer genomes. These studies will provide us with a detailed and comprehensive perspective on how individual cancers have developed. PMID:19360079

  5. Genomic standards consortium projects.

    PubMed

    Field, Dawn; Sterk, Peter; Kottmann, Renzo; De Smet, J Wim; Amaral-Zettler, Linda; Cochrane, Guy; Cole, James R; Davies, Neil; Dawyndt, Peter; Garrity, George M; Gilbert, Jack A; Glöckner, Frank Oliver; Hirschman, Lynette; Klenk, Hans-Peter; Knight, Rob; Kyrpides, Nikos; Meyer, Folker; Karsch-Mizrachi, Ilene; Morrison, Norman; Robbins, Robert; San Gil, Inigo; Sansone, Susanna; Schriml, Lynn; Tatusova, Tatiana; Ussery, Dave; Yilmaz, Pelin; White, Owen; Wooley, John; Caporaso, Gregory

    2014-06-15

    The Genomic Standards Consortium (GSC) is an open-membership community that was founded in 2005 to work towards the development, implementation and harmonization of standards in the field of genomics. Starting with the defined task of establishing a minimal set of descriptions the GSC has evolved into an active standards-setting body that currently has 18 ongoing projects, with additional projects regularly proposed from within and outside the GSC. Here we describe our recently enacted policy for proposing new activities that are intended to be taken on by the GSC, along with the template for proposing such new activities.

  6. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    SciTech Connect

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  7. The Brachypodium genome sequence: a resource for oat genomics research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat (Avena sativa) is an important cereal crop used as both an animal feed and for human consumption. Genetic and genomic research on oat is hindered because it is hexaploid and possesses a large (13 Gb) genome. Diploid Avena relatives have been employed for genetic and genomic studies, but only mod...

  8. Tick Genomics: The Ixodes genome project and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks and mites (subphylum Chelicerata; subclass Acari) are important pests of animals and plants worldwide. The Ixodes scapularis (black-legged tick) genome sequencing project marks the beginning of the genomics era for the field of acarology. This project is the first to sequence the genome of a...

  9. Sixty years of genome biology

    PubMed Central

    2013-01-01

    Sixty years after Watson and Crick published the double helix model of DNA's structure, thirteen members of Genome Biology's Editorial Board select key advances in the field of genome biology subsequent to that discovery. PMID:23651518

  10. Genomic Data Commons launches - TCGA

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  11. Recent Advances in Cotton Genomics

    PubMed Central

    Zhang, Hong-Bin; Li, Yaning; Wang, Baohua; Chee, Peng W.

    2008-01-01

    Genome research promises to promote continued and enhanced plant genetic improvement. As a world's leading crop and a model system for studies of many biological processes, genomics research of cottons has advanced rapidly in the past few years. This article presents a comprehensive review on the recent advances of cotton genomics research. The reviewed areas include DNA markers, genetic maps, mapped genes and QTLs, ESTs, microarrays, gene expression profiling, BAC and BIBAC libraries, physical mapping, genome sequencing, and applications of genomic tools in cotton breeding. Analysis of the current status of each of the genome research areas suggests that the areas of physical mapping, QTL fine mapping, genome sequencing, nonfiber and nonovule EST development, gene expression profiling, and association studies between gene expression and fiber trait performance should be emphasized currently and in near future to accelerate utilization of the genomics research achievements for enhancing cotton genetic improvement. PMID:18288253

  12. The tomato genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tomato genome sequence was undertaken at a time when state-of-the-art sequencing methodologies were undergoing a transition to co-called next generation methodologies. The result was an international consortium undertaking a strategy merging both old and new approaches. Because biologists were...

  13. The Nostoc punctiforme Genome

    SciTech Connect

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  14. Genetics, genomics and fertility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to enhance the sustainability of dairy businesses, new management tools are needed to increase the fertility of dairy cattle. Genomic selection has been successfully used by AI studs to screen potential sires and significantly decrease the generation interval of bulls. Buoyed by the success...

  15. Genomics in Cardiovascular Disease

    PubMed Central

    Roberts, Robert; Marian, A.J.; Dandona, Sonny; Stewart, Alexandre F.R.

    2013-01-01

    A paradigm shift towards biology occurred in the 1990’s subsequently catalyzed by the sequencing of the human genome in 2000. The cost of DNA sequencing has gone from millions to thousands of dollars with sequencing of one’s entire genome costing only $1,000. Rapid DNA sequencing is being embraced for single gene disorders, particularly for sporadic cases and those from small families. Transmission of lethal genes such as associated with Huntington’s disease can, through in-vitro fertilization, avoid passing it on to one’s offspring. DNA sequencing will meet the challenge of elucidating the genetic predisposition for common polygenic diseases, especially in determining the function of the novel common genetic risk variants and identifying the rare variants, which may also partially ascertain the source of the missing heritability. The challenge for DNA sequencing remains great, despite human genome sequences being 99.5% identical, the 3 million single nucleotide polymorphisms (SNPs) responsible for most of the unique features add up to 60 new mutations per person which, for 7 billion people, is 420 billion mutations. It is claimed that DNA sequencing has increased 10,000 fold while information storage and retrieval only 16 fold. The physician and health user will be challenged by the convergence of two major trends, whole genome sequencing and the storage/retrieval and integration of the data. PMID:23524054

  16. The Human Genome Program

    SciTech Connect

    Bell, G.I.

    1989-01-01

    Early in 1986, Charles DeLisi, then head of the Office of Health and Environmental Research at the Department of Energy (DOE) requested the Los Alamos National Laboratory (LANL) to organize a workshop charged with inquiring whether the state of technology and potential payoffs in biological knowledge and medical practice were such as to justify an organized program to map and sequence the human genome. The DOE's interest arose from its mission to assess the effects of radiation and other products of energy generation on human health in general and genetic material in particular. The workshop concluded that the technology was ripe, the benefits would be great, and a national program should be promptly initiated. Later committees, reporting to DOE, to the NIH, to the Office of Technology Assessment of the US Congress, and to the National Academy of Science have reviewed these issues more deliberately and come to the same conclusion. As a consequence, there has been established in the United States, a Human Genome Program, with funding largely from the NIH and the DOE, as indicated in Table 1. Moreover, the Program has attracted international interest, and Great Britain, France, Italy, and the Soviet Union, among other countries, have been reported to be starting human genome initiatives. Coordination of these programs, clearly in the interests of each, remains to be worked out, although an international Human Genome Organization (HUGO) is considering such coordination. 5 refs., 1 fig., 2 tabs.

  17. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  18. Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas.

    PubMed

    Alabi, Olufemi J; Villegas, Cecilia; Gregg, Lori; Murray, K Daniel

    2016-06-01

    Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus. PMID:27016928

  19. Sweepoviruses Cause Disease in Sweet Potato and Related Ipomoea spp.: Fulfilling Koch's Postulates for a Divergent Group in the Genus Begomovirus

    PubMed Central

    Márquez-Martín, Belén; Moriones, Enrique; Navas-Castillo, Jesús

    2011-01-01

    Sweet potato (Ipomoea batatas) and related Ipomoea species are frequently infected by monopartite begomoviruses (genus Begomovirus, family Geminiviridae), known as sweepoviruses. Unlike other geminiviruses, the genomes of sweepoviruses have been recalcitrant to rendering infectious clones to date. Thus, Koch's postulates have not been fullfilled for any of the viruses in this group. Three novel species of sweepoviruses have recently been described in Spain: Sweet potato leaf curl Lanzarote virus (SPLCLaV), Sweet potato leaf curl Spain virus (SPLCSV) and Sweet potato leaf curl Canary virus (SPLCCaV). Here we describe the generation of the first infectious clone of an isolate (ES:MAL:BG30:06) of SPLCLaV. The clone consisted of a complete tandem dimeric viral genome in a binary vector. Successful infection by agroinoculation of several species of Ipomoea (including sweet potato) and Nicotiana benthamiana was confirmed by PCR, dot blot and Southern blot hybridization. Symptoms observed in infected plants consisted of leaf curl, yellowing, growth reduction and vein yellowing. Two varieties of sweet potato, ‘Beauregard’ and ‘Promesa’, were infected by agroinoculation, and symptoms of leaf curl and interveinal loss of purple colouration were observed, respectively. The virus present in agroinfected plants was readily transmitted by the whitefly Bemisia tabaci to I. setosa plants. The progeny virus population present in agroinfected I. setosa and sweet potato plants was isolated and identity to the original isolate was confirmed by sequencing. Therefore, Koch's postulates were fulfilled for the first time for a sweepovirus. PMID:22073314

  20. Use of Posttranscription Gene Silencing in Squash to Induce Resistance against the Egyptian Isolate of the Squash Leaf Curl Virus.

    PubMed

    Taha, Omnia; Farouk, Inas; Abdallah, Abdelhadi; Abdallah, Naglaa A

    2016-01-01

    Squash leaf curl virus (SqLCV) is a bipartite begomovirus affecting squash plants. It is transmitted by whitefly Bemisia tabaci biotype B causing severe leaf curling, vein banding, and molting ending by stunting. In this study full-length genomic clone of SqLCV Egyptian isolated and posttranscriptional gene silencing (PTGS) has been induced to develop virus resistance. The Noubaria SqLCV has more than 95% homology with Jordon, Israel, Lebanon, Palestine, and Cairo isolates. Two genes fragment from SqLCV introduced in sense and antisense orientations using pFGC5049 vector to be expressed as hairpin RNA. The first fragment was 348 bp from replication associated protein gene (Rep). The second fragment was 879 bp representing the full sequence of the movement protein gene (BC1). Using real-time PCR, a silencing record of 97% has been recorded to Rep/TrAP construct; as a result it has prevented the appearance of viral symptoms in most tested plants up to two months after infection, while construct containing the BC1 gene scored a reduction in the accumulation of viral genome expression as appearing in real-time PCR results 4.6-fold giving a silencing of 79%, which had a positive effect on symptoms development in most tested plants. PMID:27034922

  1. Use of Posttranscription Gene Silencing in Squash to Induce Resistance against the Egyptian Isolate of the Squash Leaf Curl Virus

    PubMed Central

    Taha, Omnia; Farouk, Inas; Abdallah, Abdelhadi

    2016-01-01

    Squash leaf curl virus (SqLCV) is a bipartite begomovirus affecting squash plants. It is transmitted by whitefly Bemisia tabaci biotype B causing severe leaf curling, vein banding, and molting ending by stunting. In this study full-length genomic clone of SqLCV Egyptian isolated and posttranscriptional gene silencing (PTGS) has been induced to develop virus resistance. The Noubaria SqLCV has more than 95% homology with Jordon, Israel, Lebanon, Palestine, and Cairo isolates. Two genes fragment from SqLCV introduced in sense and antisense orientations using pFGC5049 vector to be expressed as hairpin RNA. The first fragment was 348 bp from replication associated protein gene (Rep). The second fragment was 879 bp representing the full sequence of the movement protein gene (BC1). Using real-time PCR, a silencing record of 97% has been recorded to Rep/TrAP construct; as a result it has prevented the appearance of viral symptoms in most tested plants up to two months after infection, while construct containing the BC1 gene scored a reduction in the accumulation of viral genome expression as appearing in real-time PCR results 4.6-fold giving a silencing of 79%, which had a positive effect on symptoms development in most tested plants. PMID:27034922

  2. Replication of tomato yellow leaf curl virus (TYLCV) DNA in agroinoculated leaf discs from selected tomato genotypes.

    PubMed

    Czosnek, H; Kheyr-Pour, A; Gronenborn, B; Remetz, E; Zeidan, M; Altman, A; Rabinowitch, H D; Vidavsky, S; Kedar, N; Gafni, Y

    1993-09-01

    The leaf disc agroinoculation system was applied to study tomato yellow leaf curl virus (TYLCV) replication in explants from susceptible and resistant tomato genotypes. This system was also evaluated as a potential selection tool in breeding programmes for TYLCV resistance. Leaf discs were incubated with a head-to-tail dimer of the TYLCV genome cloned into the Ti plasmid of Agrobacterium tumefaciens. In leaf discs from susceptible cultivars (Lycopersicon esculentum) TYLCV single-stranded genomic DNA and its double-stranded DNA forms appeared within 2-5 days after inoculation. Whiteflies (Bemisia tabaci) efficiently transmitted the TYLCV disease to tomato test plants following acquisition feeding on agroinoculated tomato leaf discs. This indicates that infective viral particles have been produced and have reached the phloem cells of the explant where they can be acquired by the insects. Plants regenerated from agroinfected leaf discs of sensitive tomato cultivars exhibited disease symptoms and contained TYLCV DNA concentrations similar to those present in field-infected tomato plants, indicating that TYLCV can move out from the leaf disc into the regenerating plant. Leaf discs from accessions of the wild tomato species immune to whitefly-mediated inoculation, L. chilense LA1969 and L. hirsutum LA1777, did not support TYLCV DNA replication. Leaf discs from plants tolerant to TYLCV issued from breeding programmes behaved like leaf discs from susceptible cultivars. PMID:8400142

  3. CGAT: computational genomics analysis toolkit.

    PubMed

    Sims, David; Ilott, Nicholas E; Sansom, Stephen N; Sudbery, Ian M; Johnson, Jethro S; Fawcett, Katherine A; Berlanga-Taylor, Antonio J; Luna-Valero, Sebastian; Ponting, Chris P; Heger, Andreas

    2014-05-01

    Computational genomics seeks to draw biological inferences from genomic datasets, often by integrating and contextualizing next-generation sequencing data. CGAT provides an extensive suite of tools designed to assist in the analysis of genome scale data from a range of standard file formats. The toolkit enables filtering, comparison, conversion, summarization and annotation of genomic intervals, gene sets and sequences. The tools can both be run from the Unix command line and installed into visual workflow builders, such as Galaxy.

  4. TUTORIAL ON NETWORK GENOMICS.

    SciTech Connect

    Forst, C.

    2001-01-01

    With the ever-increasing genomic information pouring into the databases researchers start to look for pattern in genomes. Key questions are the identification of function. In the past function was mainly understood to be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison fo single genes and their products (proteins) as well as of intergenic space are a consequence of a well established one-gene one-function interpretation. prediction of function solely by sequence similarity searches are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST algorithm by Altschul et al. [2] provide essential methods for sequence based determination of function. Similar outstanding contributions to determination of function have been archived in the area of structure prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned ehre. With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked for that deviate from the single gene at a time method. Especially with the identification of surprisingly few human genes the emerging perception in the scientific community that the concept of function has to be extended to include other sequence based as well as non-sequenced based information. A schema of determination of function by different concepts is shown in Figure 1. The tutorial is comprised of the following sections: The first two sections discuss the differences between genomic and non-genomic based context information, section three will cover combined methods. Finally, section four lsits web-resources and databases. All presented approaches extensively employ comparative methods.

  5. Plant functional genomics.

    PubMed

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-06-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  6. Mitochondrial genomes as living 'fossils'.

    PubMed

    Small, Ian

    2013-04-15

    The huge variation between mitochondrial genomes makes untangling their evolutionary histories difficult. Richardson et al. report on the remarkably unaltered 'fossil' genome of the tulip tree, giving us many clues as to how the mitochondrial genomes of flowering plants have evolved over the last 150 million years, and raising questions about how such extraordinary sequence conservation can be maintained.

  7. Personal genomes: no bad news?

    PubMed

    Chadwick, Ruth

    2011-02-01

    Issues in genetics and genomics have been centre stage in Bioethics for much of its history, and have given rise to both negative and positive imagined futures. Ten years after the completion of the Human Genome Project, it is a good time to assess developments. The promise of whole genome sequencing of individuals requires reflection on personalization, genetic determinism, and privacy.

  8. Genomic selection in plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  9. Analysis of genomic DNA with the UCSC genome browser.

    PubMed

    Pevsner, Jonathan

    2009-01-01

    Genomic DNA is being sequenced and annotated at a rapid rate, with terabases of DNA currently deposited in GenBank and other repositories. Genome browsers provide an essential collection of resources to visualize and analyze chromosomal DNA. The University of California, Santa Cruz (UCSC) Genome Browser provides annotations from the level of single nucleotides to whole chromosomes for four dozen metazoan and other species. The Genome Browser may be used to address a wide range of problems in bioinformatics (e.g., sequence analysis), comparative genomics, and evolution.

  10. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    PubMed

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  11. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  12. Host range and genetic diversity of croton yellow vein mosaic virus, a weed-infecting monopartite begomovirus causing leaf curl disease in tomato.

    PubMed

    Pramesh, D; Mandal, Bikash; Phaneendra, Chigurupati; Muniyappa, V

    2013-03-01

    Croton yellow vein mosaic virus (CYVMV) is a widely occurring begomovirus in Croton bonplandianum, a common weed in the Indian subcontinent. In this study, CYVMV (genus Begomovirus, family Geminiviridae) was transmitted by whiteflies (Bemisia tabaci) to as many as 35 plant species belonging to 11 families, including many vegetables, tobacco varieties, ornamentals and weeds. CYVMV produced bright yellow vein symptoms in croton, whereas in all the other host species, the virus produced leaf curl symptoms. CYVMV produced leaf curl in 13 tobacco species and 22 cultivars of Nicotiana tabacum and resembled tobacco leaf curl virus (TobLCV) in host reactions. However, CYVMV was distinguished from TobLCV in four differential hosts, Ageratum conyzoides, C. bonplandianum, Euphorbia geniculata and Sonchus bracyotis. The complete genome sequences of four isolates originating from northern, eastern and southern India revealed that a single species of DNA-A and a betasatellite, croton yellow vein mosaic betasatellite (CroYVMB) were associated with the yellow vein mosaic disease of croton. The sequence identity among the isolates of CYVMV DNA-A and CroYVMB occurring in diverse plant species was 91.8-97.9 % and 83.3-100 %, respectively. The CYVMV DNA-A and CroYVMB generated through rolling-circle amplification of the cloned DNAs produced typical symptoms of yellow vein mosaic and leaf curling in croton and tomato, respectively. The progeny virus from both the croton and tomato plants was transmitted successfully by B. tabaci. The present study establishes the etiology of yellow vein mosaic disease of C. bonplandianum and provides molecular evidence that a weed-infecting monopartite begomovirus causes leaf curl in tomato.

  13. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies.

    PubMed

    Wang, Lan-Lan; Wang, Xin-Ru; Wei, Xue-Mei; Huang, Huang; Wu, Jian-Xiang; Chen, Xue-Xin; Liu, Shu-Sheng; Wang, Xiao-Wei

    2016-09-01

    Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector. PMID:27310765

  14. Informational laws of genome structures

    NASA Astrophysics Data System (ADS)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  15. Informational laws of genome structures

    PubMed Central

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  16. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  17. Informational laws of genome structures.

    PubMed

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  18. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  19. Pharmacogenetics and personal genomes

    PubMed Central

    Wagner, Michael J

    2010-01-01

    While pharmacogenetics - the correlation of genotype and response to medicines - currently has a small but measurable impact on the prescribing practice of clinicians, the advent of the `personal genome' is likely to change this significantly. Advances in high-throughput technologies aimed at characterizing human genetic variation, including chip-based genotyping and next-generation sequencing, are poised to provide a flood of information that will affect both pharmacogenetic discovery and pharmacogenetic application in clinical practice. In order for this flood of information to not overwhelm both researchers and clinicians alike, a variety of new and expanded information management tools will be needed, including electronic medical records, bioinformatic algorithms for analyzing sequence data, information management systems for storing, retrieving and interpreting whole-genome sequence data, and pharmacogenetic decision tools for prescribers. PMID:20190862

  20. Viruses within animal genomes.

    PubMed

    De Brognier, A; Willems, L

    2016-04-01

    Viruses and their hosts can co-evolve to reach a fragile equilibrium that allows the survival of both. An excess of pathogenicity in the absence of a reservoir would be detrimental to virus survival. A significant proportion of all animal genomes has been shaped by the insertion of viruses that subsequently became 'fossilised'. Most endogenous viruses have lost the capacity to replicate via an infectious cycle and now replicate passively. The insertion of endogenous viruses has contributed to the evolution of animal genomes, for example in the reproductive biology of mammals. However, spontaneous viral integration still occasionally occurs in a number of virus-host systems. This constitutes a potential risk to host survival but also provides an opportunity for diversification and evolution.

  1. [Genomics in medicine].

    PubMed

    Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel Angel; Arenas-Aranda, Diego Julio; Salamanca-Gómez, Fabio

    2014-01-01

    The development of new fields of study in genetics, as the -omic sciences (transcriptomics, proteomics, metabolomics), has allowed the study of the regulation and expression of genomes. Therefore, nowadays it is possible to study global alterations--in the whole genome--and their effect at the protein and metabolic levels. Importantly, this new way of studying genetics has opened new areas of knowledge, and new cellular mechanisms that regulate the functioning of biological systems have been elucidated. In the clinical field, in the last years new molecular tools have been implemented. These tools are favorable to a better classification, diagnosis and prognosis of several human diseases. Additionally, in some cases best treatments, which improve the quality of life of patients, have been established. Due to the previous assertion, it is important to review and divulge changes in the study of genetics as a result of the development of the -omic sciences, which is the aim of this review.

  2. [Genomics medicine and oncology].

    PubMed

    Michielin, Olivier; Coukos, George

    2014-05-01

    Progress in genomics with, in particular, high throughput next generation sequencing is revolutionizing oncology. The impact of these techniques is seen on the one hand the identification of germline mutations that predispose to a given type of cancer, allowing for a personalized care of patients or healthy carriers and, on the other hand, the characterization of all acquired somatic mutation of the tumor cell, opening the door to personalized treatment targeting the driver oncogenes. In both cases, next generation sequencing techniques allow a global approach whereby the integrality of the genome mutations is analyzed and correlated with the clinical data. The benefits on the quality of care delivered to our patients are extremely impressive. PMID:24800772

  3. Lessons from Structural Genomics*

    PubMed Central

    Terwilliger, Thomas C.; Stuart, David; Yokoyama, Shigeyuki

    2010-01-01

    A decade of structural genomics, the large-scale determination of protein structures, has generated a wealth of data and many important lessons for structural biology and for future large-scale projects. These lessons include a confirmation that it is possible to construct large-scale facilities that can determine the structures of a hundred or more proteins per year, that these structures can be of high quality, and that these structures can have an important impact. Technology development has played a critical role in structural genomics, the difficulties at each step of determining a structure of a particular protein can be quantified, and validation of technologies is nearly as important as the technologies themselves. Finally, rapid deposition of data in public databases has increased the impact and usefulness of the data and international cooperation has advanced the field and improved data sharing. PMID:19416074

  4. Profiling the cancer genome.

    PubMed

    Cowin, Prue A; Anglesio, Michael; Etemadmoghadam, Dariush; Bowtell, David D L

    2010-01-01

    Cancer profiling studies have had a profound impact on our understanding of the biology of cancers in a number of ways, including providing insights into the biological heterogeneity of specific cancer types, identification of novel oncogenes and tumor suppressors, and defining pathways that interact to drive the growth of individual cancers. Several large-scale genomic studies are underway that aim to catalog all biologically significant mutational events in each cancer type, and these findings will allow researchers to understand how mutational networks function within individual tumors. The identification of molecular predictive and prognostic tools to facilitate treatment decisions is an important step for individualized patient therapy and, ultimately, in improving patient outcomes. Whereas there are still significant challenges to implementing genomic testing and targeted therapy into routine clinical practice, rapid technological advancements provide hope for overcoming these obstacles.

  5. eGenomics: Cataloguing Our Complete Genome Collection III

    PubMed Central

    Field, Dawn; Garrity, George; Gray, Tanya; Selengut, Jeremy; Sterk, Peter; Thomson, Nick; Tatusova, Tatiana; Cochrane, Guy; Glöckner, Frank Oliver; Kottmann, Renzo; Lister, Allyson L.; Tateno, Yoshio; Vaughan, Robert

    2007-01-01

    This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS) specification (v1.1), consensus on a variety of features to be added to the Genome Catalogue (GCat), agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates) and working towards a single, global list of all public genomes and metagenomes.

  6. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.

  7. Genomic landscape of liposarcoma

    PubMed Central

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B.; Said, Jonathan W.; Mohith, S.; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A.; Silberman, Allan W.; Forscher, Charles; Tyner, Jeffrey W.; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  8. Genome sequencing conference II

    SciTech Connect

    Not Available

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  9. Clinical Genomic Database

    PubMed Central

    Solomon, Benjamin D.; Nguyen, Anh-Dao; Bear, Kelly A.; Wolfsberg, Tyra G.

    2013-01-01

    Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and the availability of specific medical interventions. The CGD currently includes a total of 2,616 genes organized clinically by affected organ systems and interventions (including preventive measures, disease surveillance, and medical or surgical interventions) that could be reasonably warranted by the identification of pathogenic mutations. To aid independent analysis and optimize new data incorporation, the CGD also includes all genetic conditions for which genetic knowledge may affect the selection of supportive care, informed medical decision-making, prognostic considerations, reproductive decisions, and allow avoidance of unnecessary testing, but for which specific interventions are not otherwise currently available. For each entry, the CGD includes the gene symbol, conditions, allelic conditions, clinical categorization (for both manifestations and interventions), mode of inheritance, affected age group, description of interventions/rationale, links to other complementary databases, including databases of variants and presumed pathogenic mutations, and links to PubMed references (>20,000). The CGD will be regularly maintained and updated to keep pace with scientific discovery. Further content-based expert opinions are actively solicited. Eventually, the CGD may assist the rapid curation of individual genomes as part of active medical care. PMID:23696674

  10. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  11. Genomic landscape of liposarcoma.

    PubMed

    Kanojia, Deepika; Nagata, Yasunobu; Garg, Manoj; Lee, Dhong Hyun; Sato, Aiko; Yoshida, Kenichi; Sato, Yusuke; Sanada, Masashi; Mayakonda, Anand; Bartenhagen, Christoph; Klein, Hans-Ulrich; Doan, Ngan B; Said, Jonathan W; Mohith, S; Gunasekar, Swetha; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Myklebost, Ola; Yang, Henry; Dugas, Martin; Meza-Zepeda, Leonardo A; Silberman, Allan W; Forscher, Charles; Tyner, Jeffrey W; Ogawa, Seishi; Koeffler, H Phillip

    2015-12-15

    Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach. PMID:26643872

  12. Marsupial and monotreme genomes.

    PubMed

    Koina, E; Fong, J; Graves, J A Marshall

    2006-01-01

    Marsupials and monotremes are 'alternative mammals', independent experiments of mammalian evolution that diverged from placental mammals 180 and 210 million years ago (MYA), respectively. Marsupials (e.g. kangaroo, opossum) and monotremes (e.g. platypus) differ from placental mammals in many characteristics, particularly reproduction. With their early divergence from placentals, they fill the phylogenetic gap between the mammal-reptile divergence 310 MYA and the placental radiation 100 MYA. Their genomes are similar in size to those of placentals, but their chromosomes are quite distinctive. Marsupials have a few very large and very conserved chromosomes, while monotremes show a reptile-like size dichotomy and have a unique chain of ten sex chromosomes. Studies of gene arrangement in marsupials and monotremes have delivered many surprises that necessitate re-evaluation of the function and control of several genes in all mammals including humans, and provide new insights into the evolution of the mammalian genome, particularly the sex chromosomes. With the imminent sequencing of the genomes of two marsupials (the short-tailed grey Brazilian opossum and an Australian model kangaroo) and the platypus, much more detailed comparisons become possible. Even the first few analyses of marsupial and platypus sequences confirm the value of sequence comparisons for finding new genes and regulatory regions and exploring their function, as well as deducing how they evolved. PMID:18753774

  13. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  14. Aedes aegypti genomics.

    PubMed

    Severson, David W; Knudson, Dennis L; Soares, Marcelo B; Loftus, Brendan J

    2004-07-01

    The mosquito, Aedes aegypti, is the primary, worldwide arthropod vector for the yellow fever and dengue viruses. As it is also one of the most tractable mosquito species for laboratory studies, it has been and remains one of the most intensively studied arthropod species. This has resulted in the development of detailed genetic and physical maps for Ae. aegypti and considerable insight into its genome organization. The research community is well-advanced in developing important molecular tools that will facilitate a whole genome sequencing effort. This includes generation of BAC clone end sequences, physical mapping of selected BAC clones and generation of EST sequences. Whole genome sequence information for Ae. aegypti will provide important insight into mosquito chromosome evolution and allow for the identification of genes and gene function. These functions may be common to all mosquitoes or perhaps unique to individual species, possibly specific to host-seeking and blood-feeding behaviors, as well as the innate immune response to pathogens encountered during blood-feeding. This information will be invaluable to the global effort to develop novel strategies for preventing arthropod-borne disease transmission.

  15. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    PubMed

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  16. Genome of horsepox virus.

    PubMed

    Tulman, E R; Delhon, G; Afonso, C L; Lu, Z; Zsak, L; Sandybaev, N T; Kerembekova, U Z; Zaitsev, V L; Kutish, G F; Rock, D L

    2006-09-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses.

  17. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  18. Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore.

    PubMed

    Su, Qi; Mescher, Mark C; Wang, Shaoli; Chen, Gong; Xie, Wen; Wu, Qingjun; Wang, Wenkai; Zhang, Youjun

    2016-03-01

    Plants frequently engage in simultaneous interactions with diverse classes of biotic antagonists. Differential induction of plant defence pathways by these antagonists, and interactions between pathways, can have important ecological implications; however, these effects are currently not well understood. We explored how Tomato yellow leaf curl virus (TYLCV) influenced the performance of its vector (Bemisia tabaci) and a non-vector herbivore (Tetranychus urticae) occurring separately or together on tomato plants (Solanum lycopersicum). TYLCV enhanced the performance of B. tabaci, although this effect was statistically significant only in the absence of T. urticae, which adversely affected B. tabaci performance regardless of infection status. In contrast, the performance of T. urticae was enhanced (only) by the combined presence of TYLCV and B. tabaci. Analyses of phytohormone levels and defence gene expression in wild-type tomatoes and various plant-defence mutants indicate that the enhancement of herbivore performance (for each species) entails the disruption of downstream defences in the jasmonic acid (JA) pathway. For T. urticae, this disruption appears to involve antagonistic effects of salicylic acid (SA), which is cumulatively induced to high levels by B. tabaci and TYLCV. In contrast, TYLCV was found to suppress JA-mediated responses to B. tabaci via mechanisms independent of SA. PMID:26436779

  19. The fungal genome initiative and lessons learned from genome sequencing.

    PubMed

    Cuomo, Christina A; Birren, Bruce W

    2010-01-01

    The sequence of Saccharomyces cerevisiae enabled systematic genome-wide experimental approaches, demonstrating the power of having the complete genome of an organism. The rapid impact of these methods on research in yeast mobilized an effort to expand genomic resources for other fungi. The "fungal genome initiative" represents an organized genome sequencing effort to promote comparative and evolutionary studies across the fungal kingdom. Through such an approach, scientists can not only better understand specific organisms but also illuminate the shared and unique aspects of fungal biology that underlie the importance of fungi in biomedical research, health, food production, and industry. To date, assembled genomes for over 100 fungi are available in public databases, and many more sequencing projects are underway. Here, we discuss both examples of findings from comparative analysis of fungal sequences, with a specific emphasis on yeast genomes, and on the analytical approaches taken to mine fungal genomes. New sequencing methods are accelerating comparative studies of fungi by reducing the cost and difficulty of sequencing. This has driven more common use of sequencing applications, such as to study genome-wide variation in populations or to deeply profile RNA transcripts. These and further technological innovations will continue to be piloted in yeasts and other fungi, and will expand the applications of sequencing to study fungal biology. PMID:20946837

  20. The Saccharomyces Genome Database: Exploring Genome Features and Their Annotations.

    PubMed

    Cherry, J Michael

    2015-12-01

    Genomic-scale assays result in data that provide information over the entire genome. Such base pair resolution data cannot be summarized easily except via a graphical viewer. A genome browser is a tool that displays genomic data and experimental results as horizontal tracks. Genome browsers allow searches for a chromosomal coordinate or a feature, such as a gene name, but they do not allow searches by function or upstream binding site. Entry into a genome browser requires that you identify the gene name or chromosomal coordinates for a region of interest. A track provides a representation for genomic results and is displayed as a row of data shown as line segments to indicate regions of the chromosome with a feature. Another type of track presents a graph or wiggle plot that indicates the processed signal intensity computed for a particular experiment or set of experiments. Wiggle plots are typical for genomic assays such as the various next-generation sequencing methods (e.g., chromatin immunoprecipitation [ChIP]-seq or RNA-seq), where it represents a peak of DNA binding, histone modification, or the mapping of an RNA sequence. Here we explore the browser that has been built into the Saccharomyces Genome Database (SGD).