The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON
Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.
Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N
2011-01-01
An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.
ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR
The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Feng; Heldebrant, David J.; Mathias, Paul M.
This manuscript provides a detailed analysis of a continuous flow, bench scale study of the CO2BOL solvent platform with and without its Polarity Swing Assisted Regeneration (PSAR). This study encompassed four months of continuous flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using decane antisolvent. In both regeneration schemes, steady state capture of >90 %CO2 was achieved using simulated flue gas at acceptable L/G ratios. Aspen Plus™ modeling was performed to assess process performance compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE’s Case 10 amine baseline.
Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.
May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J
2017-12-01
Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.
A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, I.; Chattree, M.
1988-09-01
The isothermal turbulent, swirling flow inside the METC pressurized bench-scale combustor has been simulated using ISOPCGC-2. The effects of the swirl numbers, the momentum ratio of the primary to secondary streams, the annular wall thickness, and the quarl angle on the flow and mixing patterns have been investigated. The results that with the present configuration of the combustor, an annular recirculation zone is present up to secondary swirl number of four. A central (on axis) recirculation zone can be obtained by increasing the momentum of the secondary stream by decreasing the annular area at the reactor inlet. The mixing ofmore » the primary (fuel carrier) air with the secondary air improves only slightly due to swirl unless a central recirculation zone is present. Good mixing is achieved in the quarl region when a central recirculation zone is present. A preliminary investigation of the influence of placing flow regulators inside the the combustor shows that they influence the flow field significantly and that there is a potential of obtaining optimum flow conditions using these flow regulators. 58 refs., 47 figs., 12 tabs.« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Coal Technology Program progress report, March 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less
This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...
Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.
Bousselmi, L; Geissen, S U; Schroeder, H
2004-01-01
Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.
ELECTROCHEMICAL ARSENIC REMEDIATION IN RURAL BANGLADESH
In Year 1, we built a bench-scale continuous flow prototype (dubbed “Sushi” for its sushi-like electrode roll) and completed preliminary field trials in Bangladesh. We were also able to leverage additional funding to complete preliminary field trials in arsenic-...
NASA Astrophysics Data System (ADS)
Martins, Martinho A. S.; Rial-Rivas, María E.; Machado, Ana I.; Serpa, Dalila; Prats, Sergio A.; Faria, Sílvia R.; Varela, María E. T.; González-Pelayo, Óscar; Keizer, J. Jacob
2015-04-01
Wildfires are known as one of the principal natural hazards affecting the Mediterranean region. This includes Portugal, where wildfires have affected some 100.000 ha of rural lands each year. The effects of wildfires on runoff generation and/or the associated soil (fertility) losses have been studied in Portugal for more than two decades. Some of these studies have reported strong and sometimes extreme hydrological responses in recently burnt areas. Forestry operations in such areas have increasingly come to include bench terracing in preparation of new eucalypt plantations. The hydrological impacts of bench terracing, however, have received little research attention so far and the few existing publications are limited to small spatial scales. The construction of terraces is commonly considered an effective practice for soil conservation on steep slopes, having been applied by mankind since early history. Nonetheless, the present authors have measured high rates of splash as well as inter-rill erosion on recently constructed terraces, and have regularly observed rill formation, including on forest tracks which typically constitute an extensive network in such bench terraced plantations. The present study was carried out in a 29-ha forest catchment in north-central Portugal that was burnt by a wildfire during the summer of 2010, logged during early winter 2010/11, and then bench terraced with bulldozers during late winter 2011, some 6 months after the wildfire. The catchment outlet was instrumented immediately after the fire with an automatic hydrometric station comprising two subsequent flumes with maximum discharge capacities of 120 and 1700 l sec-1. Within the catchment, rainfall was measured using several automatic and storage gauges and overland flow was monitored on two contrasting slopes using 3 micro-plots of approximately 0.25m2 on each slope.Overland flow was measured at 1- to 2-weekly intervals during the hydrological years of 2010/11 and 2011/12, i.e. during the first six months after the wildfire but before the bench terracing and during the subsequent 18 months. While data analysis is still ongoing, preliminary results suggested that bench terracing had a greater impact on runoff generation than the wildfire itself, especially at the micro-plot scale
EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON
The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...
Hosseini, Seiyed Mossa; Tosco, Tiziana
2015-08-01
The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated groundwater. This NPRW system can be considered a promising and viable technology in deep aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.
Tatari, K; Smets, B F; Albrechtsen, H-J
2013-10-15
A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Platonov, D. V.; Maslennikova, A. V.; Dekterev, D. A.; Minakov, A. V.; Abramov, A. V.
2018-01-01
In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.
Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.
2015-01-01
The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design
The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...
Foaming phenomenon in bench-scale anaerobic digesters.
Siebels, Amanda M; Long, Sharon C
2013-04-01
The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.
Evaluation of constructed wetland treatment performance for winery wastewater.
Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L
2003-01-01
Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.
USDA-ARS?s Scientific Manuscript database
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...
IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
John P. Hurley; Patty L. Kleven
2001-09-30
The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of thismore » project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.« less
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Photocatalytic degradation of phenol, chlorinated phenols, and lindane was evaluated in a continuous flow TiOz rotating disk photocatalytic reactor (RDPR). The RDPR operated at a hydraulic residence time of 0.25 day and at a disk angular velocity of 12 rpm. At low molar feed conc...
Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia
2016-01-01
Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.
PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HALGREN DL
2010-03-12
The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less
This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H.; Haas, J. P.
2003-01-01
The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1979-03-01
Experimental runs were made to determine the effect of a cooler product reservoir on metal alloy yield and recovery. The reservoir temperature had no significant effect. Difficulties were experienced with operation of an oxygen injected bench scale reactor. Many tests were terminated by burden bridging or flooding of the oxygen tuyeres with metal and slag. Runs were made in which refluxing vapors were condensed in a liquid slag. The addition of CaO decreased the tendency for formation of thick, strong burden bridges but did not completely eliminate bridging. Reduction of flame temperatures did not affect the volatilization rate in themore » bench reactor. Operation of VSR-1 pilot reactor with O injection was achieved after resolving reactor shell leakage problems, by replacing the permeable ceramic shell with impermeable fused silica. Various combustion parameters were investigated, including coke size, burden height and oxygen flow rate. Steady state operation of the oxygen-coke system was attained with smooth burden movement and a 2000/sup 0/C bed temperature in the raceway vicinity. To further reduce heat losses from the raceway area. VSR-1 was redesigned to facilitate locating an induction coil below the oxygen inlets. Further evaluation of effects of impurities on alloy purification in the bench scale unit indicated a 50% decrease in product yield for starting charges containing Fe greater than 5%. Site installation for the entire alloy purification complex was completed. Operations were continued in the bench scale units to obtain design information for the pilot commercial grade Al purification unit. Procurement of construction material was established.« less
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.
Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S
2005-01-01
In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.
Xu, Ping; Clark, Colleen; Ryder, Todd; Sparks, Colleen; Zhou, Jiping; Wang, Michelle; Russell, Reb; Scott, Charo
2017-03-01
Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 - 5 L bench-top bioreactors requires high foot-print, and running cost. The establishment of the Ambr 250 as a scale-down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (k L a) in the Ambr 250 was conducted to define optimal operational conditions. Scale-down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and k L a have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5-L and 1000-L bioreactor scales, when using k L a as a scale-down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench-top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5-L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench-top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478-489, 2017. © 2017 American Institute of Chemical Engineers.
Eruption Dynamics and Flow Morphology during the 2005 Sierra Negra Eruption, Galapagos Islands
NASA Astrophysics Data System (ADS)
Rader, E.; Harpp, K.; Geist, D.
2006-12-01
Sierra Negra volcano began erupting on October 22nd, 2005. The eruption lasted nine days and provided an opportunity to examine emplacement of lava flows and their morphology. During the first two days, fire fountaining produced a broad, unchannelized flow that coated the northern caldera wall and benches directly below the vents as it moved onto the eastern caldera floor. After the first day of the eruption, the caldera floor a'a flow grew primarily by inflation, lateral spreading along linear upwelling regions, and pahoehoe breakouts at the perimeter. Simultaneously, four 4km long rootless flows formed on the northern flanks of the volcano, supplied by spatter from the vents inboard of the caldera rim. Samples from different morphological types of lava from the caldera floor, bench, and outer flanks were collected and examined by BSE imaging. Transitions from pahoehoe to a'a and back to pahoehoe were observed in a low viscosity flow on the caldera bench that cascaded over a steep escarpment. Plagioclase microlite content in the bench flow varies little, with 27% in pahoehoe and 33% in a'a, on average. Consequently, we propose that the transformation was driven by changes in strain rate rather than cooling. As the lava first flowed over the bench edge, the increased strain rate caused it to become a'a. The elevation drop was small enough, however, that the flow remained sufficiently hot to revert to pahoehoe as it pooled on the flat surface at the base of the drop; comparable flows have been described on Kilauea. Similarly, pahoehoe breakouts from the caldera floor a'a flow were driven by pressure from the inflating flow, causing well-insulated lava to emerge from the a'a body as pahoehoe. Quenched lava collected from the incandescent breakouts have higher crystal contents than those collected closer to the vents, indicating that they experienced ~30° cooling during transport within the inflating flow. At the southern tip of the caldera floor flow, several km from the vents, lavas with toothpaste morphology were observed in breakouts. The greater crystallinity and imbricated feldspar crystals in these samples also likely reflect cooling during transport in the flow.
Coal technology program progress report, February 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Final testing of the 20-atm bench-scale system is underway in preparation for experiments with hydrogen. Laboratory-scale testing of a number of inexpensive pure compounds to improve the settling rate of solids in Solvent Refined Coal (SRC) unfiltered oil (UFO), bench-scale testing of the effect of the Tretolite additive on settling, and characterization tests on a new sample of UFO from the PAMCO-SRC process are reported. Experimental engineering support of an in situ gasification process include low-temperature pyrolyses at exceptionally low heating rates (0.3/sup 0/C/min). Highly pyrophoric chars were consistently produced. Aqueous by-products from coal conversion technologies and oil shale retortingmore » have been analyzed directly to determine major organic components. A report is being prepared discussing various aspects of the engineering evaluations of nuclear process heat for coal. A bench-scale test program on thermochemical water splitting for hydrogen production is under consideration. In the coal-fueled MIUS program, preparations for procurement of tubing for the matrix in the fluidized-bed furnace and for fabrication of the furnace continued. Analyses of the AiResearch gas turbine and recuperator under coal-fueled MIUS operating conditions are near completion. Process flow diagrams and heat and material balances were completed for most of the units in the synthoil process. Overall utilities requirements were calculated and the coal preparation flowsheets were finalized. For hydrocarbonization, the flowsheet was revised to include additional coal data. Flowsheets were finalized for the acid gas separation and recycle, and the oil-solids separation. (LTN)« less
Aerodynamic simulation strategies assessment for a fenestron in hover flight
NASA Astrophysics Data System (ADS)
Marino, M.; Gourdain, N.; Legras, G.; Alfano, D.
2017-06-01
The Fenestron® has a crucial antitorque function and its sizing is a key point of the Helicopter design, especially regarding thrust and power predictions. This paper reports the investigations done on a full scale Dauphin Fenestron®. The objectives are, first, to evaluate the in§uence of some numerical parameters on the performance of the Fenestron®; and then, the flow is analyzed for a high incidence pitch, for which the rotor blade can experience massive boundary layer separations. Simulations are carried out on a single blade passage model. Several parameters are benched such as grid quality, numerical schemes, and turbulence modeling. A comparison with test bench measurements is carried out to evaluate the capability of the numerical simulations to predict both global performance (thrust and power) and local flows (static pressure at the shroud and radial profiles inside the vein). The analysis demonstrates the capability of numerical simulations to accurately estimate the global performance of the Fenestron®, including at high pitch angles. However, some discrepancies remain on the local flow, especially in the vicinity of the rotor shroud. A more detailed analysis of the local flow is performed at a blade pitch angle of 35°, with a particular interest for the blade tip region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lail, Marty
The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed inmore » a bench-scale test unit operated at RTI.« less
NASA Astrophysics Data System (ADS)
Geistlinger, H.; Samani, S.; Pohlert, M.; Martienssen, M.; Engelmann, F.; Hüttmann, S.
2008-12-01
Within the framework of the OXYWALL field experiment we developed the direct gas injection (DGI) of oxygen as a remediation technology, which allows the cost-efficient and large-scale cleaning of groundwater contaminated with organic contaminants. That technology can be used as wide-banded, unselective remediation method for complex contaminant mixtures. Particularly, it could be proofed in field experiments that mineral oil hydrocarbons, aromatic hydrocarbons (BTEX), the rather persistent gasoline component Methyl tertiary-butyl ether (MTBE), and chlorinated aliphatic and aromatic hydrocarbons, like Trichloroethene and Monochlorobenzene, can be aerobically metabolized by autochthon microorganisms. Over the last 8 years the field site was investigated and a dense monitoring network was installed using Geoprobe direct- push technology and standard hydrogeological investigations were conducted, like EC-Logs, Injections-Logs, Gamma-Logs, TDR-probes, oxygen measurements with in-situ optodes, and tracer test with test gases SF6, Ar, and Oxygen. The key parameter for controling and regulating the DGI is the spatial and temporal distribution of the gas phase. High-resolution optical bench scale experiments were conducted in order to investigate local gas flow pattern and integral flow properties caused by point-like gas injection into water-saturated glass beads and natural sands. We observed a grain-size (dk)- and flow-rate (Q) dependent transition from incoherent to coherent flow. Conceptualizing the stationary tortuous gas flow as core-annulus flow and applying Hagen- Poiseuille flow for a straight capillary, we propose a flow-rate- and grain-size dependent stability criterion that could describe our experimental results and was used for classifying the experiments in a dk-Q-diagram (flow chart). Since DGI simulations are mainly based on continuum models, we also test the validity of the continuum approach for two-fluid flow in macroscopic homogeneous media by comparing our experimental flow pattern with the theoretical ones. It was found that a pulse-like function yields the best fit for the lateral gas saturation profile. This strange behaviour of a relatively sharp saturation transition is in contradiction to the widely anticipated picture of a smooth Gaussian-like transition, which is obtained by the continuum approach. Based on lab experiments, the proposed flow chart, and computer simulations the DGI-technology will be advanced and optimized at the field scale. A proper application of continuum models to direct gas injection should check, whether stable coherent flow is achieved; estimate the coherence length, and account for the channelized flow pattern by a realistic capillary pressure - saturation relationship. Further research is needed for modeling of direct gas injection to include appropriate stability criteria, the transition from coherent to incoherent flow, and bubble trapping. Geistlinger, H., Krauss, G., Lazik, D., and Luckner, L. (2006) Direct gas injection into saturated glass beads: transition from incoherent to coherent gas flow pattern. Water Resour. Res., 42 (7) W07403. Lazik, D., G. Krauss, H. Geistlinger, and H.-J. Vogel (2008) Multi-scale optical analyses of dynamic gas saturation during air sparging into glass beads, Transp. Porous Media. 74, 87-104.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-03-01
The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.
Sludge Characterization and Bench Scale Treatability Report
Nov. 10, 2010 letter from Mississippi Department of Environmental Quality (MDEQ) to Hercules, Inc. in Hattiesburg, MS about the findings of a August 20, 2010 Sludge Characterization and Bench Scale Treatability Report.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.
2013-01-01
Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.
Sulfur dioxide reactions on ice surfaces: Implications for dry deposition to snow
Martha H. Conklin; Richard A. Sommerfeld; S. Kay Laird; John E. Villinski
1993-01-01
Controlled exposure of ice to a reactive gas, SO2, demonstrated the importance of the chemical composition of the ice surface on the accumulation of acidity in snow. In a series of bench-scale continuous-flow column experiments run at four temperatures (-1, -8, -30 and -60°C), SO2 was shown to dissolve and to react with other species in the ice-air interfacial region...
Hot-bench simulation of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Houck, Jacob A.
1990-01-01
Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.
14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...
14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai
2015-06-01
Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Field-Integrated Studies of Long-Term Sustainability of Chromium Bioreduction at Hanford 100H Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.
2006-06-01
The objectives of the project are to investigate coupled hydraulic, geochemical, and microbial conditions, and to determine the critical biogeochemical parameters necessary to maximize the extent of Cr(VI) bioreduction and minimize Cr(III) reoxidation in groundwater. Specific goals of the project are as follows: (1) Field testing and monitoring of Cr(VI) bioreduction in ground water and its transformation into insoluble species of Cr(III) at the Hanford 100H site, to develop the optimal strategy of water sampling for chemical, microbial, stable isotope analyses, and noninvasive geophysical monitoring; (2) Bench-scale flow and transport investigations using columns of undisturbed sediments to obtain diffusion andmore » kinetic parameters needed for the development of a numerical model, predictions of Cr(VI) bioreduction, and potential of Cr(III) reoxidation; and (3) Development of a multiphase, multi-component 3D reactive transport model and a code, TOUGHREACT-BIO, to predict coupled biogeochemical-hydrological processes associated with bioremediation, and to calibrate and validate the developed code based on the results of bench-scale and field-scale Cr(VI) biostimulation experiments in ground water at the Hanford Site.« less
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-01-01
Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937
Transitioning Active Flow Control to Applications
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq
1999-01-01
Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.
DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS
The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...
Pyrolysis of automotive shredder residue in a bench scale rotary kiln.
Notarnicola, Michele; Cornacchia, Giacinto; De Gisi, Sabino; Di Canio, Francesco; Freda, Cesare; Garzone, Pietro; Martino, Maria; Valerio, Vito; Villone, Antonio
2017-07-01
Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm 3 dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
COMPARING RBF WITH BENCH-SCALE CONVENTIONAL TREATMENT FOR PRECURSOR REDUCTION
The reduction of disinfection by-product (DBP) precursors upon riverbank filtration (RBF) at three drinking water utilities in the mid-Western United States was compared with that obtained using a bench-scale conventional treatment train on the corresponding river waters. The riv...
Evaluation of an Immobilized Cell Bioreactor for Degradation of Meta- and Para-Nitrobenzoate
1994-01-18
AFB IWTP. 4 Shake flask tests and continuous flow, bench-scale bioreactor tests were conducted using EDA or spent CLEPO 204 as the substrate. It was...found that the shake flask cultures completely degraded EDA when it was the sole substrate. However, using spent CLEPO 204 as the substrate caused a...microorganisms isolated, Kelly 4. Erlenmeyer flasks (250 mL) were used in studies to determine the maximal growth rate of Kelly 4 at 30" C in SMSB
Observer-based monitoring of heat exchangers.
Astorga-Zaragoza, Carlos-Manuel; Alvarado-Martínez, Víctor-Manuel; Zavala-Río, Arturo; Méndez-Ocaña, Rafael-Maxim; Guerrero-Ramírez, Gerardo-Vicente
2008-01-01
The goal of this work is to provide a method for monitoring performance degradation in counter-flow double-pipe heat exchangers. The overall heat transfer coefficient is estimated by an adaptive observer and monitored in order to infer when the heat exchanger needs preventive or corrective maintenance. A simplified mathematical model is used to synthesize the adaptive observer and a more complex model is used for simulation. The reliability of the proposed method was demonstrated via numerical simulations and laboratory experiments with a bench-scale pilot plant.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.
2004-01-01
The objective of this research is to modify the well-instrumented standard cone configuration to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. We will then develop a standard test method with pass-fail criteria for future use in spacecraft materials flammability screening. (For example, dripping of molten material will be an automatic fail.)
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design - slides
The oral presentation will be at the EWRI International LID Conference in San Francisco, on April 11-14, 2010. The slides discuss the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing...
Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...
EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY
The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...
Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water
Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...
BENCH-SCALE STUDIES ON THE SIMULTANEOUS FORMATION OF PCBS AND PCDDS/FS FROM COMBUSTION SYSTEMS
The paper reports on a bench-scale experimental study to characterize a newly built reactor system that was built to: produce levels and distributions of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) production similar to those achieved by previous re...
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL
Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...
Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...
Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments
1993-08-01
1 CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT . . 5 PART I: INTRODUCTION...141 REFERENCES ....................... .............................. 142 TABLES 1 -4 APPENDIX A: IN SITU IMPLEMENTATION CASE STUDIES...TREATMENT RESEARCH: BENCH-SCALE EXPERIMENTS PART I: INTRODUCTION Background 1 . Many US Army installations have areas of contamination requiring
Yasuda, Tomohiro; Fujita, Satoshi; Ogasawara, Riki; Sato, Yoshiaki; Abe, Takashi
2010-09-01
Single-joint resistance training with blood flow restriction (BFR) results in significant increases in arm or leg muscle size and single-joint strength. However, the effect of multijoint BFR training on both blood flow restricted limb and non-restricted trunk muscles remain poorly understood. To examine the impact of BFR bench press training on hypertrophic response to non-restricted (chest) and restricted (upper-arm) muscles and multi-joint strength, 10 young men were randomly divided into either BFR training (BFR-T) or non-BFR training (CON-T) groups. They performed 30% of one repetition maximal (1-RM) bench press exercise (four sets, total 75 reps) twice daily, 6 days week(-1) for 2 weeks. During the exercise session, subjects in the BFR-T group placed elastic cuffs proximally on both arms, with incremental increases in external compression starting at 100 mmHg and ending at 160 mmHg. Before and after the training, triceps brachii and pectoralis major muscle thickness (MTH), bench press 1-RM and serum anabolic hormones were measured. Two weeks of training led to a significant increase (P<0.05) in 1-RM bench press strength in BFR-T (6%) but not in CON-T (-2%). Triceps and pectoralis major MTH increased 8% and 16% (P<0.01), respectively, in BFR-T, but not in CON-T (-1% and 2%, respectively). There were no changes in baseline concentrations of anabolic hormones in either group. These results suggest that BFR bench press training leads to significant increases in muscle size for upper arm and chest muscles and 1-RM strength.
Thermally-Choked Combustor Technology
NASA Technical Reports Server (NTRS)
Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.
1993-01-01
A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.
Kreissel, K; Bösl, M; Lipp, P; Franzreb, M; Hambsch, B
2012-01-01
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.
Chemicl-looping combustion of coal with metal oxide oxygen carriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, R.; Tian, H.; Richards, G.
2009-01-01
The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C.more » The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, Sonja; House, Alan; Liu, Kun
An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. Themore » vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.« less
Groundwater flow associated with coalbed gas production, Ferron Sandstone, east-central Utah
Anna, L.O.
2003-01-01
The flow and distribution of water associated with coalbed gas production in the Ferron Sandstone was characterized utilizing a discrete fracture network model and a porous media model. A discrete fracture network model calculated fluid flux through volumes of various scales to determine scale effects, directional bulk permeability, and connectivity. The mean directional permeabilities varied by less than a factor of 6, with the northwest-southeast direction (face cleat direction) as the most conductive. Northwest southeast directed hydrofracture simulations increased permeability in all directions except the northeast-southwest, although the permeability increase was not more than a factor of 3. Cluster analysis showed that the simulated cleat network was very well connected at all simulated scales. For thick coals, the entire cleat network formed one compartment, whereas thin coals formed several compartments. Convex hulls of the compartments confirmed that the directional bulk permeability was nearly isotropic. Volumetric calculations of the Ferron coal indicated that all the water produced to date can be accounted for from the coal cleat porosity system and does not depend on contributions of water from contiguous units.Flow paths, determined from porous media modeling from recharge to discharge, indicate that the three coalbed gas (CBG) fields assessed in this study could have different groundwater chemical compositions as confirmed by geochemical data. Simulated water production from 185 wells from 1993 to 1998 showed that in 1998 the maximum head drawdown from the Drunkards Wash field was more than 365 m, and the cone of depression extended to within a short distance of the Ferron outcrop. Maximum drawdown in the Helper field was 120 m, and the maximum drawdown in the Buzzards Bench field was just over 60 m. The cone of depression for the Helper field was half the size of the Drunkards Wash field, and the cone of depression for the Buzzards Bench field was limited to just outside the field unit. Water budget calculations from the simulation indicate that none of the stream flows are affected by coalbed gas associated water production. ?? 2003 Elsevier B.V. All rights reserved.
Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...
REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS
The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...
MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR
A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...
Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlquist, D.R.
This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2011-02-11
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less
A rolling-sliding bench test for investigating rear axle lubrication
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...
2018-02-07
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
A rolling-sliding bench test for investigating rear axle lubrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.
1995-12-31
The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less
2013-01-01
Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110
An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhicheng Wang
The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This projectmore » includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.« less
Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen
2013-12-02
Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K; Paul Burket, P
2009-03-31
Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yongqi; DeVries, Nicholas; Ruhter, David
A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysismore » (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.« less
Thermal Destruction Of CB Contaminants Bound On Building ...
Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.
Ullrich, Tim Leon; Czernik, Christoph; Bührer, Christoph; Schmalisch, Gerd; Fischer, Hendrik Stefan
2018-06-01
Heated humidification is paramount during neonatal high-flow nasal cannula (HFNC) therapy. However, there is little knowledge about the influence of flow rate and mouth leak on oropharyngeal humidification and temperature. The effect of the Optiflow HFNC on oropharyngeal gas conditioning was investigated at flow rates of 4, 6 and 8 L min -1 with and without mouth leak in a bench model simulating physiological oropharyngeal air conditions during spontaneous breathing. Temperature and absolute humidity (AH) were measured using a digital thermo-hygrosensor. Without mouth leak, oropharyngeal temperature and AH increased significantly with increasing flow (P < 0.001). Mouth leak did not affect this increase up to 6 L min -1 , but at 8 L min -1 , temperature and AH plateaued, and the effect of mouth leak became statistically significant (P < 0.001). Mouth leak during HFNC had a negative impact on oropharyngeal gas conditioning when high flows were applied. However, temperature and AH always remained clinically acceptable.
Bench-scale synthesis of nanoscale materials
NASA Technical Reports Server (NTRS)
Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.
1994-01-01
A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.
Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.
Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K
2009-01-01
The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.
Lu, Yehu; Song, Guowen; Wang, Faming
2015-03-01
Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
Coughtrie, A R; Borman, D J; Sleigh, P A
2013-06-01
Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Felege, Christopher; Hahn, Emily; Hunter, Cheryl
2016-01-01
Translational research originated in the medical field during the 1990s to describe taking discovery based research through the steps of applying it to clinical research and patient-oriented care. This model is implicitly linear, depicting the flow of information from researchers' bench, to a clinical trial bedside, to a primary care physician's…
Allometric scaling of strength scores in NCAA division I-A football athletes.
Oba, Yukiya; Hetzler, Ronald K; Stickley, Christopher D; Tamura, Kaori; Kimura, Iris F; Heffernan, Thomas P
2014-12-01
This study examined population-specific allometric exponents to control for the effect of body mass (BM) on bench press, clean, and squat strength measures among Division I-A collegiate football athletes. One repetition maximum data were obtained from a university pre-season football strength assessment (bench press, n = 207; clean, n = 88; and squat n = 86) and categorized into 3 groups by positions (line, linebacker, and skill). Regression diagnostics and correlations of scaled strength data to BM were used to assess the efficacy of the allometric scaling model and contrasted with that of ratio scaling and theoretically based allometric exponents of 0.67 and 0.33. The log-linear regression models yielded the following exponents (b): b = 0.559, 0.287, and 0.496 for bench press, clean, and squat, respectively. Correlations between bench press, clean, and squat to BM were r = -0.024, -0.047, and -0.018, respectively, suggesting that the derived allometric exponents were effective in partialling out the effect of BM on these lifts and removing between-group differences. Conversely, unscaled, ratio-scaled, and allometrically scaled (b = 0.67 or 0.33) data resulted in significant differences between groups. It is suggested that the exponents derived in the present study be used for allometrically scaling strength measures in National Collegiate Athletic Association Division I-A football athletes. Use of the normative percentile rank scores provide coaches and trainers with a valid means of judging the effectiveness of their training programs by allowing comparisons between individuals without the confounding influence of BM.
Novel Process for Removal and Recovery of Vapor Phase Mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwell, Collin; Roberts, Daryl L; Albiston, Jason
We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.
Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA
Greb, S.F.; Eble, C.F.; Hower, J.C.
1999-01-01
More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.
Bench Test Evaluation of Adaptive Servoventilation Devices for Sleep Apnea Treatment
Zhu, Kaixian; Kharboutly, Haissam; Ma, Jianting; Bouzit, Mourad; Escourrou, Pierre
2013-01-01
Rationale: Adaptive servoventilation devices are marketed to overcome sleep disordered breathing with apneas and hypopneas of both central and obstructive mechanisms often experienced by patients with chronic heart failure. The clinical efficacy of these devices is still questioned. Study Objectives: This study challenged the detection and treatment capabilities of the three commercially available adaptive servoventilation devices in response to sleep disordered breathing events reproduced on an innovative bench test. Methods: The bench test consisted of a computer-controlled piston and a Starling resistor. The three devices were subjected to a flow sequence composed of central and obstructive apneas and hypopneas including Cheyne-Stokes respiration derived from a patient. The responses of the devices were separately evaluated with the maximum and the clinical settings (titrated expiratory positive airway pressure), and the detected events were compared to the bench-scored values. Results: The three devices responded similarly to central events, by increasing pressure support to raise airflow. All central apneas were eliminated, whereas hypopneas remained. The three devices responded differently to the obstructive events with the maximum settings. These obstructive events could be normalized with clinical settings. The residual events of all the devices were scored lower than bench test values with the maximum settings, but were in agreement with the clinical settings. However, their mechanisms were misclassified. Conclusion: The tested devices reacted as expected to the disordered breathing events, but not sufficiently to normalize the breathing flow. The device-scored results should be used with caution to judge efficacy, as their validity depends upon the initial settings. Citation: Zhu K; Kharboutly H; Ma J; Bouzit M; Escourrou P. Bench test evaluation of adaptive servoventilation devices for sleep apnea treatment. J Clin Sleep Med 2013;9(9):861-871. PMID:23997698
Development and Validity of a Scale of Perception of Velocity in Resistance Exercise
Bautista, Iker J.; Chirosa, Ignacio J.; Chirosa, Luis J.; Martín, Ignacio; González, Andrés; Robertson, Robert J.
2014-01-01
This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key Points Measurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES. The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocity Regular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads PMID:25177180
Development and validity of a scale of perception of velocity in resistance exercise.
Bautista, Iker J; Chirosa, Ignacio J; Chirosa, Luis J; Martín, Ignacio; González, Andrés; Robertson, Robert J
2014-09-01
This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key PointsMeasurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES.The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocityRegular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads.
Bench test evaluation of adaptive servoventilation devices for sleep apnea treatment.
Zhu, Kaixian; Kharboutly, Haissam; Ma, Jianting; Bouzit, Mourad; Escourrou, Pierre
2013-09-15
Adaptive servoventilation devices are marketed to overcome sleep disordered breathing with apneas and hypopneas of both central and obstructive mechanisms often experienced by patients with chronic heart failure. The clinical efficacy of these devices is still questioned. This study challenged the detection and treatment capabilities of the three commercially available adaptive servoventilation devices in response to sleep disordered breathing events reproduced on an innovative bench test. The bench test consisted of a computer-controlled piston and a Starling resistor. The three devices were subjected to a flow sequence composed of central and obstructive apneas and hypopneas including Cheyne-Stokes respiration derived from a patient. The responses of the devices were separately evaluated with the maximum and the clinical settings (titrated expiratory positive airway pressure), and the detected events were compared to the bench-scored values. The three devices responded similarly to central events, by increasing pressure support to raise airflow. All central apneas were eliminated, whereas hypopneas remained. The three devices responded differently to the obstructive events with the maximum settings. These obstructive events could be normalized with clinical settings. The residual events of all the devices were scored lower than bench test values with the maximum settings, but were in agreement with the clinical settings. However, their mechanisms were misclassified. The tested devices reacted as expected to the disordered breathing events, but not sufficiently to normalize the breathing flow. The device-scored results should be used with caution to judge efficacy, as their validity depends upon the initial settings.
Experimental Research on the Dense CFB's Riser and the Simulation Based on the EMMS Model
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Wang, S. D.; Fan, B. G.; Liao, L. L.; Jiang, F.; Xu, X.; Wu, X. Z.; Xiao, Y. H.
2010-03-01
The flow structure in the CFB (circulating fluidized bed) riser has been investigated. Experimental studies were performed in a cold square section unit with 270 mm×270 mm×10 m. Since the drag force model based on homogeneous two-phase flow such as the Gidaspow drag model could not depict the heterogeneous structures of the gas-solid flow, the structure-dependent energy-minimization multi-scale (EMMS) model based on the heterogenerity was applied in the paper and a revised drag force model based on the EMMS model was proposed. A 2D two-fluid model was used to simulate a bench-scale square cross-section riser of a cold CFB. The typical core-annulus structure and the back-mixing near the wall of the riser were observed and the assembly and fragmentation processes of clusters were captured. By comparing with the Gidaspow drag model, the results obtained by the revised drag model based on EMMS shows better consistency with the experimental data. The model can also depict the difference from the two exit configurations. This study once again proves the key role of drag force in CFD (Computational Fluid Dynamics) simulation and also shows the availability of the revised drag model to describe the gas-solid flow in CFB risers.
NASA Astrophysics Data System (ADS)
Ola, Max; Thomas, Christiane; Hesse, Ullrich
2017-08-01
Compressor performance test procedures are defined by the standard DIN EN 13771, wherein a variety of possible calorimeter and flow rate measurement methods are suggested. One option is the selection of two independent measurement methods. The accuracies of both selected measurement methods are essential. The second option requires only one method. However the measurement accuracy of the used device has to be verified and recalibrated on a regular basis. The compressor performance test facility at the Technische Universitaet Dresden uses a calibrated flow measurement sensor, a hot gas bypass and a mixed flow heat exchanger. The test bench can easily be modified for tests of various compressor types at different operating ranges and with various refrigerants. In addition, the modified test setup enables the investigation of long term liquid slug and its effects on the compressor. The modification comprises observational components, adjustments of the control system, safety measures and a customized oil recirculation system for compressors which do not contain an integrated oil sump or oil level regulation system. This paper describes the setup of the test bench, its functional principle, the key modifications, first test results and an evaluation of the energy balance.
Li, Chenxi; Champagne, Pascale; Anderson, Bruce C
2014-01-01
Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.
Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales
NASA Astrophysics Data System (ADS)
Kurowski, M.; Smolarkiewicz, P. K.; Grabowski, W.
2015-12-01
Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained applying a consistent numerical framework for dis- crete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate bench- mark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible so- lutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they di- minish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.
1997-10-01
This report discusses the results of a bench scale study conducted to evaluate the potential inhibitory effects of untreated AFFF wastewater to the...untreated AFFF wastewater to the nitrification process of the Virginia Initiative Plant biological nutrient removal system. Under this testing, bench...scale reactors simulating the nitrification process were loaded at various AFFF concentrations and the influence on the process performance was
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P
2008-11-14
The long-term management of dissolved plumes originating from a coal tar creosote source is a technical challenge. For some sites stabilization of the source may be the best practical solution to decrease the contaminant mass loading to the plume and associated off-site migration. At the bench-scale, the deposition of manganese oxides, a permanganate reaction byproduct, has been shown to cause pore plugging and the formation of a manganese oxide layer adjacent to the non-aqueous phase liquid creosote which reduces post-treatment mass transfer and hence mass loading from the source. The objective of this study was to investigate the potential of partial permanganate treatment to reduce the ability of a coal tar creosote source zone to generate a multi-component plume at the pilot-scale over both the short-term (weeks to months) and the long-term (years) at a site where there is >10 years of comprehensive synoptic plume baseline data available. A series of preliminary bench-scale experiments were conducted to support this pilot-scale investigation. The results from the bench-scale experiments indicated that if sufficient mass removal of the reactive compounds is achieved then the effective solubility, aqueous concentration and rate of mass removal of the more abundant non-reactive coal tar creosote compounds such as biphenyl and dibenzofuran can be increased. Manganese oxide formation and deposition caused an order-of-magnitude decrease in hydraulic conductivity. Approximately 125 kg of permanganate were delivered into the pilot-scale source zone over 35 days, and based on mass balance estimates <10% of the initial reactive coal tar creosote mass in the source zone was oxidized. Mass discharge estimated at a down-gradient fence line indicated >35% reduction for all monitored compounds except for biphenyl, dibenzofuran and fluoranthene 150 days after treatment, which is consistent with the bench-scale experimental results. Pre- and post-treatment soil core data indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.
USDA-ARS?s Scientific Manuscript database
Juice production is a multibillion dollar industry and an economical way to use fruit past seasonal harvests. To evaluate how production steps influence not-from-concentrate (NFC) blueberry (Vaccinium sp.) juice recovery, bench top and pilot scale experiments were performed. In bench-top, southern h...
Streamflow characteristics at hydrologic bench-mark stations
Lawrence, C.L.
1987-01-01
The Hydrologic Bench-Mark Network was established in the 1960's. Its objectives were to document the hydrologic characteristics of representative undeveloped watersheds nationwide and to provide a comparative base for studying the effects of man on the hydrologic environment. The network, which consists of 57 streamflow gaging stations and one lake-stage station in 39 States, is planned for permanent operation. This interim report describes streamflow characteristics at each bench-mark site and identifies time trends in annual streamflow that have occurred during the data-collection period. The streamflow characteristics presented for each streamflow station are (1) flood and low-flow frequencies, (2) flow duration, (3) annual mean flow, and (4) the serial correlation coefficient for annual mean discharge. In addition, Kendall's tau is computed as an indicator of time trend in annual discharges. The period of record for most stations was 13 to 17 years, although several stations had longer periods of record. The longest period was 65 years for Merced River near Yosemite, Calif. Records of flow at 6 of 57 streamflow sites in the network showed a statistically significant change in annual mean discharge over the period of record, based on computations of Kendall's tau. The values of Kendall's tau ranged from -0.533 to 0.648. An examination of climatological records showed that changes in precipitation were most likely the cause for the change in annual mean discharge.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Tanaka, K. L.
2010-01-01
The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.
Removal of bromide and bromate from drinking water using granular activated carbon.
Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua
2015-03-01
Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.
Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng
2015-01-01
This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.
Predicting Power Output of Upper Body using the OMNI-RES Scale.
Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J
2014-12-09
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.
Predicting Power Output of Upper Body using the OMNI-RES Scale
Bautista, Iker J.; Chirosa, Ignacio J.; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E.; Chirosa, Luis J.; Robertson, Robert J.
2014-01-01
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI–RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = −0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI–RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone. PMID:25713677
Composition and Structure of Mauna Loa's Submarine West Flank, Hawaii
NASA Astrophysics Data System (ADS)
Borchers, D.; Morgan, J. K.; Clague, D. A.; Moore, G. F.
2003-12-01
James Moore's pioneering work on submarine landslides in the Hawaiian Islands contributed significantly to early models for the structure and evolution of Mauna Loa's submarine western flank. The west flank experienced catastrophic failure in the past, generating massive blocks and debris fields offshore. Moore recognized that the midslope bench near the base of the submarine flank must have postdated the debris avalanche, but little data existed to determine if it formed in response to further landsliding or to deeper volcanic processes. As the processes that shaped Mauna Loa are thought to be analogous to those currently active at Kilauea, an improved understanding of Mauna Loa's history can provide valuable insight into the future of the younger Hawaiian volcanoes. Several recent marine surveys in the area, including submersible surveys conducted by MBARI and JAMSTEC, and a multi-channel seismic (MCS) survey carried out by the University of Hawaii, provide important new data about the composition and structure of Mauna Loa's submarine west flank. We carried out detailed geochemical, petrographic and structural analyses of rock samples and dive videos collected from the exposed northern wall of the midslope bench, documenting a repeated sequences of volcaniclastic sandstones and breccias. This stratigraphy contrasts with the predominantly subaerially erupted basalts composing the upper flank. Several thick ponded flows or sill-like diabase units are also interspersed in the section. The volcaniclastic units are highly cemented, and many contain hydrothermal alteration products, including chlorite, zeolites, and actinolite. The most altered rocks occur near the base of the bench and the degree of alteration decreases upward in the section. Samples collected from the outer scarp of the bench show evidence for intense shearing and cataclasis at all scales. The new MCS line crosses Mauna Loa's southern submarine flank and central bench. More than 500 m of finely layered slope strata overlie the upper flank to the south, and are truncated above the Ka Lae avalanche scar. The central bench to the north, sampled by the MBARI dives, shows only thin sediment cover above a poorly reflective interior. Strong deep reflections in both locations begin to resolve the underlying oceanic crust, as well as probable fault planes that may be responsible for flank deformation in this area. The abundance of volcaniclastic rocks with Mauna Loa affinities within the bench supports the idea that giant landslides from Mauna Loa were the source of much of the offshore debris. The stratal repetition, deformation fabrics, and cementation of the volcaniclastics also suggest that the rocks composing the bench were once deeply buried and have been subsequently exhumed by thrusting, most likely driven by deep volcanic spreading.
Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben
2015-12-01
For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.
NASA Astrophysics Data System (ADS)
Leviton, Douglas B.; Frey, Brad J.; Madison, Larry E.; Parker, James A.; Sheinman, Oren E.
2003-03-01
The Swift optical bench is a roughly 2.7 m diameter, 0.1 m thick composite structure carrying the Burst Alert Telescope (BAT), X-ray Telescope (XRT), and the Ultraviolet Optical Telescope (UVOT) as well as various attitude control instrumentation for the spacecraft. A high precision test of the optical bench using multi-aperture optical deflectometry was developed to verify that the relative boresights of the XRT and UVOT instruments would not change by more than several arcseconds when a worst case on-orbit temperature gradient is imposed through the thickness of the bench. Results of validation tests in a laminar flow cleanroom environment without vibration isolation demonstrated a differential measurement capability with 0.2 arcsecond sensitivity and 0.5 arcsecond accuracy per day. The technique is easily adaptable to similar deflection monitoring requirements for other large spacecraft structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
Verbal messages strengthen bench press efficacy.
Wise, James B; Posner, Amy E; Walker, Gretchen L
2004-02-01
This study examined the effects of verbal messages on bench press efficacy: the confidence to lift progressively heavier weights for 1 repetition. Thirty-two women who had not bench pressed within the previous 18 months were assigned to 1 of 2 groups and exposed to 2 sources of efficacy information. First, subjects in both groups performed 10 repetitions on a fixed movement, vertical bench press machine and completed the bench press efficacy scale. Next, each group received 1 of 2 possible verbal messages. Both messages included the speaker's strength training qualifications. In addition, one message conveyed specific performance feedback while the other contained more general information. Then efficacy was measured again. Results indicated both messages strengthened efficacy. Strength professionals who work one-on-one with novice women should: (a) make sure lifters are aware of their professional qualifications, (b) provide specific feedback, and (c) profess their beliefs in the lifters' abilities to perform the exercises.
Piezoelectric energy harvesting computer controlled test bench
NASA Astrophysics Data System (ADS)
Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.
2016-09-01
In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.
Piezoelectric energy harvesting computer controlled test bench.
Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D
2016-09-01
In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S.
2016-01-15
This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flamemore » stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.« less
NASA Astrophysics Data System (ADS)
Lemaire, R.; Menanteau, S.
2016-01-01
This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.
Ahmad, Farrukh; Schnitker, Stephen P; Newell, Charles J
2007-02-20
Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h(-1) based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.
Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale
NASA Astrophysics Data System (ADS)
Crook, A. J. L.; Yu, J. G.; Thornton, D. A.
2010-05-01
The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an extension of a previously published approach (Crook et al., 2006a, 2006b) that focused on predictive modelling of structure evolution in 2-D sandbox experiments, and in particular two extensional sand box experiments that exhibit complex fault development including a series of superimposed crestal collapse graben systems (McClay, 1990) . The formulation adopts a finite strain Lagrangian method, complemented by advanced localization prediction algorithms and robust and efficient automated adaptive meshing techniques. The sediment is represented by an elasto-viscoplastic constitutive model based on extended critical state concepts, which enables representation of the combined effect of mechanical and chemical compaction. This is achieved by directly coupling the evolution of the material state boundary surface with both the mechanically and chemically driven porosity change. Using these procedures the evolution of the geological structures arises naturally from the imposed boundary conditions without the requirement of seeding using initial imperfections. Simulations are presented for regional bench-scale models based on the analogue experiments presented by Fort et al. (2004), together with additional insights provided by the numerical models. It is shown that the behaviour observed in both the extensional and compressional zones of these analogue models arises naturally in the finite element simulations. Extension of these models to the field-scale is then discussed and several simulations are presented to highlight important issues related to practical field-scale numerical modelling.
Loading Intensity Prediction by Velocity and the OMNI-RES 0-10 Scale in Bench Press.
Naclerio, Fernando; Larumbe-Zabala, Eneko
2017-02-01
Naclerio, F and Larumbe-Zabala, E. Loading intensity prediction by velocity and the OMNI-RES 0-10 scale in bench press. J Strength Cond Res 32(1): 323-329, 2017-This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press (BP) exercise. A total of 308 young, healthy, resistance trained athletes (242 men and 66 women) performed a progressive strength test up to the one repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity (AV) and the OMNI-Resistance Exercise Scales (OMNI-RES 0-10 scale), considering sets as the time-related variable. Load associated with the AV and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct 2 adjusted predictive equations: Relative load = 107.75 - 62.97 × average velocity; and Relative load = 29.03 + 7.26 × OMNI-RES 0-10 scale value. The 2 models were capable of estimating the relative load with an accuracy of 84 and 93%, respectively. These findings confirm the ability of the 2 calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in BP.
Universal Verification Methodology Based Register Test Automation Flow.
Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu
2016-05-01
In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.
Development and Validation of an NPSS Model of a Small Turbojet Engine
NASA Astrophysics Data System (ADS)
Vannoy, Stephen Michael
Recent studies have shown that integrated gas turbine engine (GT)/solid oxide fuel cell (SOFC) systems for combined propulsion and power on aircraft offer a promising method for more efficient onboard electrical power generation. However, it appears that nobody has actually attempted to construct a hybrid GT/SOFC prototype for combined propulsion and electrical power generation. This thesis contributes to this ambition by developing an experimentally validated thermodynamic model of a small gas turbine (˜230 N thrust) platform for a bench-scale GT/SOFC system. The thermodynamic model is implemented in a NASA-developed software environment called Numerical Propulsion System Simulation (NPSS). An indoor test facility was constructed to measure the engine's performance parameters: thrust, air flow rate, fuel flow rate, engine speed (RPM), and all axial stage stagnation temperatures and pressures. The NPSS model predictions are compared to the measured performance parameters for steady state engine operation.
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.
Martins, Erick F; Flesch, Carlos A; Flesch, Rodolfo C C; Borges, Maikon R
2011-07-01
Refrigerant compressor performance tests play an important role in the evaluation of the energy characteristics of the compressor, enabling an increase in the quality, reliability, and efficiency of these products. Due to the nonexistence of a refrigerating capacity standard, it is common to use previously conditioned compressors for the intercomparison and evaluation of the temporal drift of compressor performance test panels. However, there are some limitations regarding the use of these specific compressors as standards. This study proposes the development of a refrigerating capacity standard which consists of a mass flow meter and a variable-capacity compressor, whose speed is set based on the mass flow rate measured by the meter. From the results obtained in the tests carried out on a bench specifically developed for this purpose, it was possible to validate the concept of a capacity standard. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Diesel particulate abatement via wall-flow traps based on perovskite catalysts.
Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito
2003-01-01
It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.
Influence of Dissipative Particle Dynamics parameters and wall models on planar micro-channel flows
NASA Astrophysics Data System (ADS)
Wang, Yuyi; She, Jiangwei; Zhou, Zhe-Wei; microflow Group Team
2017-11-01
Dissipative Particle Dynamics (DPD) is a very effective approach in simulating mesoscale hydrodynamics. The influence of solid boundaries and DPD parameters are typically very strong in DPD simulations. The present work studies a micro-channel Poisseuille flow. Taking the neutron scattering experiment and molecular dynamics simulation result as bench mark, the DPD results of density distribution and velocity profile are systematically studied. The influence of different levels of coarse-graining, the number densities of wall and fluid, conservative force coefficients, random and dissipative force coefficients, different wall model and reflective boundary conditions are discussed. Some mechanisms behind such influences are discussed and the artifacts in the simulation are identified with the bench mark. Chinese natural science foundation (A020405).
Charrois, Jeffrey W A; Hrudey, Steve E
2007-02-01
North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.
Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.
Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating wasmore » effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.« less
Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.
During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilary Wheeler; Crystal Densmore
2007-07-31
The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).
Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J
2017-06-14
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.
Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Caraher, Joel; Chen, Wei
2015-03-31
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less
Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.
2017-01-01
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.; Williams, M.; Restivo, M.
All prior testing with SuperLig® 639 has been done with the aqueous concentration of LAW at ~5 M [Na+], where the resin sinks, and can be used in a conventional down-flow column orientation. However, the aqueous LAW stream from the Waste Treatment Plant is expected to be ~8 M [Na+]. The resin would float in this higher density liquid, potentially disrupting the ability to achieve a good decontamination due to poor packing of the resin that leads to channeling. Testing was completed with a higher salt concentration in the feed simulant (7.8 M [Na+]) in an engineering-scale apparatus with twomore » columns, each containing ~0.9 L of resin. Testing of this system used a simulant of the LAW solution, and substituted ReO4 - as a surrogate for TcO4 -. Results were then compared using computer modeling. Bench-scale testing was also performed, and examined an unconstrained resin bed, while engineering-scale tests used both constrained and unconstrained beds in a two-column, lead and lag sequential arrangement.« less
Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment
Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.
2011-01-01
Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112
Coal desulfurization by low temperature chlorinolysis, phase 1
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.
1977-01-01
The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.
Use of a Terrestrial LIDAR Sensor for Drift Detection in Vineyard Spraying
Gil, Emilio; Llorens, Jordi; Llop, Jordi; Fàbregas, Xavier; Gallart, Montserrat
2013-01-01
The use of a scanning Light Detection and Ranging (LIDAR) system to characterize drift during pesticide application is described. The LIDAR system is compared with an ad hoc test bench used to quantify the amount of spray liquid moving beyond the canopy. Two sprayers were used during the field test; a conventional mist blower at two air flow rates (27,507 and 34,959 m3·h−1) equipped with two different nozzle types (conventional and air injection) and a multi row sprayer with individually oriented air outlets. A simple model based on a linear function was used to predict spray deposit using LIDAR measurements and to compare with the deposits measured over the test bench. Results showed differences in the effectiveness of the LIDAR sensor depending on the sprayed droplet size (nozzle type) and air intensity. For conventional mist blower and low air flow rate; the sensor detects a greater number of drift drops obtaining a better correlation (r = 0.91; p < 0.01) than for the case of coarse droplets or high air flow rate. In the case of the multi row sprayer; drift deposition in the test bench was very poor. In general; the use of the LIDAR sensor presents an interesting and easy technique to establish the potential drift of a specific spray situation as an adequate alternative for the evaluation of drift potential. PMID:23282583
Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.
2006-02-14
The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOPmore » and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.« less
Coal desulfurization by low temperature chlorinolysis, phase 3
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.
1981-01-01
Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.
Attrition and carbon formation on iron catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, S.D.; Harrington, M.S.; Jackson, N.B.
1994-08-01
A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less
Influence of UV dose on the UV/H2O2 process for the degradation of carbamazepine in wastewater.
Somathilake, Purnima; Dominic, John Albino; Achari, Gopal; Langford, Cooper H; Tay, Joo-Hwa
2018-05-02
This study evaluates the influence of UV dose on degradation of carbamazepine (CBZ) in wastewater under UV-C (λ = 254 nm) photolysis with and without H 2 O 2 . The rate of degradation of CBZ exhibited a direct dependence on the intensity of incident UV irradiation as the rate of degradation was observed to increase linearly (R 2 = 0.98) with UV intensity between 1.67 and 8.95 × 10 17 photons/s. More than 95% of the CBZ that spiked in wastewater rapidly degraded within 4 min with a first-order rate constant of 1.2 min -1 for an optimum H 2 O 2 dose of 100 mg/L. Bench-scale continuous flow reactor experiments also showed that CBZ degraded with first-order kinetics at a rate constant of 1.02 min -1 . The kinetic parameters obtained for a continuous bench-scale reactor were in good agreement with the relationships developed through batch experiments with only a marginal deviation of ± 6.5%. The relationship between UV intensity and CBZ degradation rate obtained in this study was extrapolated to the UV disinfection unit of a wastewater treatment plant to predict possible degradation of CBZ during UV disinfection. The addition of 100 mg/L of H 2 O 2 to the secondary-treated effluent entering the UV disinfection unit is predicted to achieve over 60% degradation of CBZ.
Liang, Ling; Li, Chenlin; Xu, Feng; ...
2017-07-24
For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Ling; Li, Chenlin; Xu, Feng
For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, R.D.; Alderfer, R.B.
Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposedmore » to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.« less
From the Lab Bench: Can cattle meet their nutrient needs on toxic tall fescue pasture?
USDA-ARS?s Scientific Manuscript database
A column is written to provide information on nutrient utilization by cattle grazing toxic endophyte-infected tall fescue. We have considerable knowledge and understanding of ergot alkaloid-induced constriction of blood flow to peripheral tissues, but what about blood flow to other parts of the bod...
Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies
Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
A hierarchical model calibration and validation is proposed for quantifying the confidence level of mass transfer prediction using a computational fluid dynamics (CFD) model, where the solvent-based carbon dioxide (CO2) capture is simulated and simulation results are compared to the parallel bench-scale experimental data. Two unit problems with increasing level of complexity are proposed to breakdown the complex physical/chemical processes of solvent-based CO2 capture into relatively simpler problems to separate the effects of physical transport and chemical reaction. This paper focuses on the calibration and validation of the first unit problem, i.e. the CO2 mass transfer across a falling ethanolaminemore » (MEA) film in absence of chemical reaction. This problem is investigated both experimentally and numerically using nitrous oxide (N2O) as a surrogate for CO2. To capture the motion of gas-liquid interface, a volume of fluid method is employed together with a one-fluid formulation to compute the mass transfer between the two phases. Bench-scale parallel experiments are designed and conducted to validate and calibrate the CFD models using a general Bayesian calibration. Two important transport parameters, e.g. Henry’s constant and gas diffusivity, are calibrated to produce the posterior distributions, which will be used as the input for the second unit problem to address the chemical adsorption of CO2 across the MEA falling film, where both mass transfer and chemical reaction are involved.« less
Assessing sorbent injection mercury control effectiveness in flue gas streams
Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.
2000-01-01
One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.
Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Benjamin; Genovese, Sarah; Perry, Robert
2013-12-31
A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395more » °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.« less
Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak
2013-07-01
Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.
Strontium Removal: Full-Scale Ohio Demonstrations
The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David J
PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600more » cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present« less
Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2016-04-01
Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and illustrate the importance of charge effects on pH fronts propagation in porous media. [1] Giambalvo, E. R., C. I. Steefel, A. T. Fisher, N. D. Rosenberg, and C. G. Wheat (2002), Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 66, 1739-1757. [2] Appelo, C. A. J., and P. Wersin (2007), Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002-5007. [3] Rolle, M., M. Muniruzzaman, C. M. Haberer, and P. Grathwohl (2013), Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Acta, 120, 195-205. [4] Muniruzzaman, M., C. M. Haberer, P. Grathwohl, and M. Rolle (2014), Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: Experiments and model-based interpretation, Geochim. Cosmochim. Acta, 141, 656-669. [5] Rolle, M., G. Chiogna, D. L. Hochstetler, and P. K. Kitanidis (2013), On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale, J. Contam. Hydrol., 153, 51-68.
Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo
2008-09-12
As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.
CO 2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David
This report outlines the comprehensive bench-scale testing of the CO 2-binding organic liquids (CO 2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO 2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO 2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.
Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... scientific or engineering literature, data from trial tests (e.g., bench scale or pilot scale tests), waste...
GLYPHOSATE REMOVAL FROM DRINKING WATER
Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...
Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs
2006-05-01
Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.
Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces
This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...
THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM
Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technol- ogies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstra...
EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS
Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...
Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Cabezas, J.
2009-05-15
Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less
Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M
2009-10-01
This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.
HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES
The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...
Endotoxin Studies And Biosolids Stabilization Research
This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...
TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS
Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...
Buell, G.R.; Grams, S.C.
1985-01-01
Significant temporal trends in monthly pH, specific conductance, total alkalinity, hardness, total nitrite-plus-nitrite nitrogen, and total phosphorus measurements at five stream sites in Georgia were identified using a rank correlation technique, the seasonal Kendall test and slope estimator. These sites include a U.S. Geological Survey Hydrologic Bench-Mark site, Falling Creek near Juliette, and four periodic water-quality monitoring sites. Comparison of raw data trends with streamflow-residual trends and, where applicable, with chemical-discharge trends (instantaneous fluxes) shws that some of these trends are responses to factors other than changing streamflow. Percentages of forested, agricultural, and urban cover with each basin did not change much during the periods of water-quality record, and therefore these non-flow-related trends are not obviously related to changes in land cover or land use. Flow-residual water-quality trends at the Hydrologic Bench-Mark site and at the Chattooga River site probably indicate basin reponses to changes in the chemical quality of atmospheric deposition. These two basins are predominantly forested and have received little recent human use. Observed trends at the other three sites probably indicate basin responses to various land uses and water uses associated with agricultural and urban land or to changes in specific uses. (USGS)
Wax Modeling and Image Analysis for Classroom-Scale Lava Flow Simulations.
NASA Astrophysics Data System (ADS)
Rader, E. L.; Clarke, A. B.; Vanderkluysen, L.
2016-12-01
The use of polyethylene glycol wax (PEG 600) as an analog for lava allows for a visual representation of the complex physical process occurring in natural lava flows, including cooling, breakouts, and crust and lobe formation. We used a series of cameras positioned around a tank filled with chilled water as a lab bench to observe and quantify lava flow morphology and motion. A peristaltic pump connected to a vent at the base of the tank delivered dyed wax simulating effusive eruptions similar to those of Kilauea in Hawai`i. By varying the eruptive conditions such as wax temperature and eruption rate, students can observe how the crust forms on wax flows, how different textures result, and how a flow field evolves with time. Recorded footage of the same `eruption' can then be quantitatively analyzed using free software like ImageJ and Tracker to quantify time-series of spreading rate, change in height, and appearance of different surface morphologies. Additional dye colors can be added periodically to further illustrate how lava is transported from the vent to the periphery of a flow field (e.g., through a tube system). Data collected from this activity can be compared to active lava flow footage from Hawai`i and with numerical models of lava flow propagation, followed by discussions of the application of these data and concepts to predicting the behavior of lava in hazard management situations and interpreting paleomagnetic, petrologic, and mapping of older eruptions.
NASA Astrophysics Data System (ADS)
Lan, Tian
The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.K.
1999-05-10
Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS
Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...
An elegant Breadboard of the optical bench for eLISA/NGO
NASA Astrophysics Data System (ADS)
d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis
2017-11-01
The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.
Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator.
Kim, J K; Cho, H C; Kim, S C
2001-01-01
A pneumatic triboelectrostatic beneficiation system of fly ash was studied using a continuous, bench-scale electroseparator composed of two vertical electrode plates and an ejector-tribocharger. Tests were conducted to evaluate the charge density and the separation efficiency at various operating conditions. It was found that the higher charge densities were obtained at (1) the air flow rate of 1.75 m3/min. (2) the feed rate of less than 50 kg/h. and (3) the relative humidity of less than 30% with use of a stainless ejector tribocharger. With these optimum conditions, the clean ash of less than LOI 3% was recovered with a yield over 75% when operated at the diffuser slit gap of 4mm, the diffuser outlet velocity of 16.1-18.6 m/s, and the distance of 15 cm between diffuser slit and splitter. The optimum feed rate was found to be 740 kg/h per m2 of electrode surface area, which can be used as a scale-up factor of electroseparator.
Microfluidic devices to enrich and isolate circulating tumor cells
Myung, J. H.; Hong, S.
2015-01-01
Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749
NASA Astrophysics Data System (ADS)
Aksenov, A. A.; Danilishin, A. M.; Dubenko, A. M.; Kozhukov, Y. V.
2017-08-01
Design modernization of the centrifugal compressor stage test bench with three dimensional impeller blades was carried out for the possibility of holding a series of experimental studies of different 3D impeller models. The studies relates to the problem of joint work of the impeller and the stationary channels of the housing when carrying out works on modernization with the aim of improving the parameters of the volumetric capacity or pressure in the presence of design constraints. The object of study is the experimental single end centrifugal compressor stage with the 3D impeller. Compressor stage consists of the 3D impeller, vaneless diffuser (VLD), outlet collector - folded side scroll and downstream pipe. The drive is a DC motor 75 kW. The increase gear (multiplier) was set between the compressor and DC motor, gear ratio is i = 9.8. To obtain the characteristics of the compressor and the flow area the following values were measured: total pressure, static pressure, direction (angles) of the stream in different cross sections. Additional pneumometric probes on the front wall of the VLD of the test bench have been installed. Total pressure probes and foster holes for the measurement of total and static pressure by the new drainage scheme. This allowed carrying out full experimental studies for two elements of centrifugal compressor stage. After the experimental tests the comprehensive information about the performance of model stage were obtained. Was measured geometric parameters and the constructed virtual model of the experimental bench flow part with the help of Creo Parametric 3.0 and ANSYS v. 16.2. Conducted CFD calculations and verification with experimental data. Identifies the steps for further experimental and virtual works.
SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM
Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...
MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS
The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...
Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
NASA Astrophysics Data System (ADS)
Fang, Tiegang
2014-05-01
In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.
Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde
2010-01-01
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793
A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab
2015-01-01
The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.
WASHING STUDIES FOR PCP AND CREOSOTE-CONTAMINATED SOIL
The Environmental Protection Agency has conducted a series of bench-scale and pilot-scale studies to evaluate the feasibility of washing pentachlorophenol (PCP) and creosote from the soil at an abandoned wood-treatment Superfund site in Pensacola, FL. The high sand content and lo...
INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS
Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...
Rain Garden Research at EPA’s Urban Watershed Research Facility
Summary of the ongoing rain garden research at UWMB. The context for the study was described as well as the experimental design for the full-scale study, instrumentation, and stormwater collection system. Supporting bench scale research on hydraulic properties of media and soil...
When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...
Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.
Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon
2008-02-01
This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, J.B.; Terry, J.C.; Schubert, S.A.
The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less
Optical Bench for LISA-like missions
NASA Astrophysics Data System (ADS)
Mueller, Guido
The detection of B-modes in the μ-Wave background has rattled the scientific community and further enhanced the large scientific interest in gravitational waves and gravitational wave astronomy. The first direct detection of gravitational waves by Advanced LIGO and maybe also by pulsar timing arrays in the second half of this decade will be another watershed event which will start a new era in astronomy and astrophysics. However, the holy grail of gravitational wave astronomy will be opened by a LISA-like mission. Only space provides the environment that allows to cover the signal-rich mHz frequency range where we expect to see gravitational waves from massive black hole mergers, compact galactic binaries, and many other sources. All mature concepts use laser interferometry between free falling test masses separated by millions of km. The central piece in all these concepts is a stable optical bench which is used to prepare and exchange the laser beams between the different arms. It has always been assumed that the base material for the optical bench has to be one of the ultra-low expansion glasses such as Zerodur or ULE to meet the pm/#Hz stability requirements. This very conservative approach was a reflection of the state-of-the-art in frequency stabilization experiments which used optical reference cavities in the early ‘90s. It is not surprising that the LISA pathfinder (LPF) uses also an all Zerodur bench where each optical component is precision bonded to the bench using hydroxide bonding, a nonreversible bonding technique. The manufacturing of this bench was a very time consuming one-mirror-a-day effort and was one of the highest risk items in terms of schedule and cost. The original LISA design uses the same approach except that the LISA bench is far more complex than the LPF bench and manufacturing of the required 10+ benches, six flight units and at least four pre-flight models and spares, will be even more time consuming and expensive. We question the need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.
Visualization of dyed NAPL concentration in transparent porous media using color space components.
Kashuk, Sina; Mercurio, Sophia R; Iskander, Magued
2014-07-01
Finding a correlation between image pixel information and non-aqueous phase liquid (NAPL) saturation is an important issue in bench-scale geo-environmental model studies that employ optical imaging techniques. Another concern is determining the best dye color and its optimum concentration as a tracer for use in mapping NAPL zones. Most bench scale flow studies employ monochromatic gray-scale imaging to analyze the concentration of mostly red dyed NAPL tracers in porous media. However, the use of grayscale utilizes a third of the available information in color images, which typically contain three color-space components. In this study, eight color spaces consisting of 24 color-space components were calibrated against dye concentration for three color-dyes. Additionally, multiple color space components were combined to increase the correlation between color-space data and dyed NAPL concentration. This work is performed to support imaging of NAPL migration in transparent synthetic soils representing the macroscopic behavior of natural soils. The transparent soil used in this study consists of fused quartz and a matched refractive index mineral-oil solution that represents the natural aquifer. The objective is to determine the best color dye concentration and ideal color space components for rendering dyed sucrose-saturated fused quartz that represents contamination of the natural aquifer by a dense NAPL (DNAPL). Calibration was achieved for six NAPL zone lengths using 3456 images (24 color space components×3 dyes×48 NAPL combinations) of contaminants within a defined criteria expressed as peak signal to noise ratio. The effect of data filtering was also considered and a convolution average filter is recommended for image conditioning. The technology presented in this paper is fast, accurate, non-intrusive and inexpensive method for quantifying contamination zones using transparent soil models. Copyright © 2014 Elsevier B.V. All rights reserved.
Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.
This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was tomore » investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.« less
Ventrain: an ejector ventilator for emergency use.
Hamaekers, A E W; Borg, P A J; Enk, D
2012-06-01
A small, flow-regulated, manually operated ventilator designed for ventilation through a narrow-bore transtracheal catheter (TTC) has become available (Ventrain, Dolphys Medical BV, Eindhoven, The Netherlands). It is driven by a predetermined flow of oxygen from a high-pressure source and facilitates expiration by suction. The aim of this bench study was to test the efficacy of this new ventilator. The driving pressure, generated insufflation, and suction pressures and also the suction capacity of the Ventrain were measured at different oxygen flows. The minute volume achieved in an artificial lung through a TTC with an inner diameter (ID) of 2 mm was determined at different settings. Oxygen flows of 6-15 litre min(-1) resulted in driving pressures of 0.5-2.3 bar. Insufflation pressures, measured proximal to the TTC, ranged from 23 to 138 cm H(2)O. The maximal subatmospheric pressure build-up was -217 cm H(2)O. The suction capacity increased to a maximum of 12.4 litre min(-1) at an oxygen flow of 15 litre min(-1). At this flow, the achievable minute volume through the TTC ranged from 5.9 to 7.1 litres depending on the compliance of the artificial lung. The results of this bench study suggest that the Ventrain is capable of achieving a normal minute volume for an average adult through a 2 mm ID TTC. Further in vivo studies are needed to determine the value of the Ventrain as a portable emergency ventilator in a 'cannot intubate, cannot ventilate' situation.
Huang, Xinyan; Rein, Guillermo
2016-05-01
The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rapid growing clay coatings to reduce the fire threat of furniture.
Kim, Yeon Seok; Li, Yu-Chin; Pitts, William M; Werrel, Martin; Davis, Rick D
2014-02-12
Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam.
Wall and corner fire tests on selected wood products
H. C. Tran; M. L. Janssens
1991-01-01
As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...
Filtration of micron-sized particles for coal liquids: carbonaceous precoats. [5 refs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, B.R.
Carbonaceous precoats, such as bituminous coal and char from hydrocarbonization, are shown to be effective, inexpensive substitutes for traditional diatomaceous earth materials, both at laboratory-scale and bench-scale. Model equations are developed for filtration of Solvent Refined Coal-Unfiltered Oil (SRC-UFO).
Biochemical Process Development and Integration | Bioenergy | NREL
Process Development We develop and scale fermentation processes that produce fuels and chemicals from guide experimental designs. Our newly updated fermentation laboratory houses 38 bench-scale fermentors current projects cover the fermentation spectrum including anaerobic, micro-aerobic, aerobic, and gas-to
Hunik, J H; Tramper, J
1993-01-01
Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
On the hydrological-hydraulic modelling of hillslope dry-stone walls
NASA Astrophysics Data System (ADS)
Perlotto, Chiara; Michelini, Tamara; D'Agostino, Vincenzo
2015-04-01
Terraces are among the most evident human signatures on the landscape as they cover large cultivated territories of the Earth. The importance of dry-stone walls to realize bench terraces has always played a key role in the management of the agricultural hilly/mountain areas. These works are generally built to allow tractors and ploughs to operate under acceptable conditions, to make human work in the slopes easy and comfortable, and to promote irrigation. Few studies in literature are available on rainfall-runoff transformation and flood risk mitigation in terrace areas. Then, research results in this field are still scarce. Bench terraces reduce the terrain slope and the length of the overland flow, quantitatively controlling the runoff flow velocity, facilitating the drainage and thus leading to a reduction of soil erosion. As to the hydrological response, a terraced slope should result in a reduction in the peak runoff at the toe of hillslope and in a delay in the passage of the peak flows. This fact occurs mainly due to the change of the original land topography. The goal of this study is highlighting the benefit in terms of runoff reduction, which is provided by sequence of dry-stone walls under different space arrangements along the hillslope. In particular, the FLO-2D model was recursively applied to a schematic hillslope simulating both the local variations of the hydrological soil characteristics and the morphological stepped profile of the bench terraces. The simulations have been carried out by varying the main parameters underlying the design of the terrace system (spacing, height and number of terraces). The results have shown an interesting clear linkage between the peak-discharge reduction of the overland flows and the area extent, which is consolidated by means of the dry-stone walls. The modelling outcomes well support and inform design criteria, cost-benefit analysis and the assessment of the functionality level of this historical consolidation system.
Unloading work of breathing during high-frequency oscillatory ventilation: a bench study
van Heerde, Marc; Roubik, Karel; Kopelent, Vitek; Plötz, Frans B; Markhorst, Dick G
2006-01-01
Introduction With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. Methods An external gas flow controller (demand-flow system) accommodates the ventilator fresh gas flow during spontaneous breathing simulation. A control algorithm detects breathing effort and regulates the demand-flow valve. The effectiveness of this system has been evaluated in a bench test. The Campbell diagram and pressure time product (PTP) are used to quantify the imposed workload. Results Using the demand-flow system, imposed WOB is considerably reduced. The demand-flow system reduces inspiratory imposed WOB by 30% to 56% and inspiratory imposed PTP by 38% to 59% compared to continuous fresh gas flow. Expiratory imposed WOB was decreased as well by 12% to 49%. In simulations of shallow to normal breathing for an adult, imposed WOB is 0.5 J l-1 at maximum. Fluctuations in mean airway pressure on account of spontaneous breathing are markedly reduced. Conclusion The use of the demand-flow system during HFOV results in a reduction of both imposed WOB and fluctuation in mean airway pressure. The level of imposed WOB was reduced to the physiological range of WOB. Potentially, this makes maintenance of spontaneous breathing during HFOV possible and easier in a clinical setting. Early initiation of HFOV seems more possible with this system and the possibility of weaning of patients directly on a high-frequency oscillatory ventilator is not excluded either. PMID:16848915
Coal-oil coprocessing at HTI - development and improvement of the technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalzer, R.H.; Lee, L.K.; Hu, J.
1995-12-31
Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less
Vázquez, Enrique
2017-01-01
Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers. PMID:29292790
Alvarez-Campana, Manuel; López, Gregorio; Vázquez, Enrique; Villagrá, Víctor A; Berrocal, Julio
2017-12-08
Internet of Things platforms for Smart Cities are technologically complex and deploying them at large scale involves high costs and risks. Therefore, pilot schemes that allow validating proof of concepts, experimenting with different technologies and services, and fine-tuning them before migrating them to actual scenarios, are especially important in this context. The IoT platform deployed across the engineering schools of the Universidad Politécnica de Madrid in the Moncloa Campus of International Excellence represents a good example of a test bench for experimentation with Smart City services. This paper presents the main features of this platform, putting special emphasis on the technological challenges faced and on the solutions adopted, as well as on the functionality, services and potential that the platform offers.
Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)
Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...
EMERGING TECHNOLOGY SUMMARY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER
A series of bench-scale tests and an onsite pilot scale demonstration of Bio-Recovery Systems' AlgaSORB® technology for the removal and recovery of mercury-contaminated groundwaters were conducted under the SITE program. The AlgaSORB® process is based on the natural, very st...
Electrochemical degradation (ECD) is a promising technology for in situ remediation of diversely contaminated environmental matrices by application of a low level electric potential gradient. This investigation, prompted by successful bench-scale ECD of trichloroethylene,...
Impact of virus surface characteristics on removal mechanisms within membrane bioreactors.
Chaudhry, Rabia M; Holloway, Ryan W; Cath, Tzahi Y; Nelson, Kara L
2015-11-01
In this study we investigated the removal of viruses with similar size and shape but with different external surface capsid proteins by a bench-scale membrane bioreactor (MBR). The goal was to determine which virus removal mechanisms (retention by clean backwashed membrane, retention by cake layer, attachment to biomass, and inactivation) were most impacted by differences in the virus surface properties. Seven bench-scale MBR experiments were performed using mixed liquor wastewater sludge that was seeded with three lab-cultured bacteriophages with icosahedral capsids of ∼30 nm diameter (MS2, phiX174, and fr). The operating conditions were designed to simulate those at a reference, full-scale MBR facility. The virus removal mechanism most affected by virus type was attachment to biomass (removals of 0.2 log for MS2, 1.2 log for phiX174, and 3 log for fr). These differences in removal could not be explained by electrostatic interactions, as the three viruses had similar net negative charge when suspended in MBR permeate. Removals by the clean backwashed membrane (less than 1 log) and cake layer (∼0.6 log) were similar for the three viruses. A comparison between the clean membrane removals seen at the bench-scale using a virgin membrane (∼1 log), and the full-scale using 10-year old membranes (∼2-3 logs) suggests that irreversible fouling, accumulated on the membrane over years of operation that cannot be removed by cleaning, also contributes towards virus removal. This study enhances the current mechanistic understanding of virus removal in MBRs and will contribute to more reliable treatment for water reuse applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Kim, Juyoung; Kim, Heonki; Annable, Michael D
2015-01-01
Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.
liquid chromatography analysis Bench-scale methods Education B.S., Chemistry (Mathematics Minor), Adams ;Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, S.R.
1987-02-01
The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less
Commercial Ion Exchange Resin Vitrification in Borosilicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicero-Herman, C.A.; Workman, P.; Poole, K.
1998-05-01
Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less
Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments
NASA Astrophysics Data System (ADS)
Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.
1996-07-01
Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.
The International Ground Water Modeling Center has established a Groundwater Research Data Center that provides information on datasets resulting from publicly funded field experiments and related bench studies in soil and groundwater pollution and distributes datasets for tes...
The International Ground Water Modeling Center has established a Groundwater Research Data Center which provides information on research datasets resulting from publicly funded field experiments regarding soil and groundwater pollution and related laboratory bench studies, and wh...
Test Bench for Coupling and Shielding Magnetic Fields
NASA Astrophysics Data System (ADS)
Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.
2016-05-01
This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.
Calibrating/testing meters in hot water test bench VM7
NASA Astrophysics Data System (ADS)
Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.
A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.
Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin
2018-02-01
Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Dali; Le, Loan; Martinez, Ronald; ...
2013-06-21
Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less
Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J
2008-11-01
A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.
In the VOC regulations both Granular Activated Carbon (GAC) and Packed Tower Aeration (PTA) have been designated as Best Available Treatment. DWRD has performed a great deal of research both at the bench, pilot and field scale on the use of GAC and pilot and field scale research ...
In a recently completed test program, bench-scale laboratory studies at Arizona State University (ASU) in Tempe, AZ, and pilot-scale studies in a simulated field test situation at Zentox Corp in Ocala, FL, were performed to evaluate the integration of gas-solid ultraviolet (UV) p...
OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94
Fiscal year 1994 (FY94, October 1, 1993 through September 30,1994) saw the continuation of incineration research testing efforts at the IRF. uring the year, two major pilot-scale programs were completed and a third carried to near-completion, and two bench-scale test programs of ...
The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...
Lightweight, high-opacity paper : process costs and energy use reduction
John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr
1999-01-01
Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...
Control of air emissions from POTWs using biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, T.S.; Devinny, J.S.; Torres, E.M.
1995-12-31
The University of Southern California (USC), in collaboration with the County Sanitation Districts of Orange County (CSDOC), the South Coast Air Quality Management District (SCAQMD), Southern California Edison (SCE), the Water Environment Research Foundation (WERF), and Huntingdon Environmental Engineering, Inc. (HEEI), is conducting a research project to evaluate the application of biofiltration to remove volatile organic compounds (VOCs), odor-causing air pollutants, and toxics from a publicly owned treatment works (POTW) waste airstream. As part of this project, bench-scale and pilot-scale experiments are being conducted to test the effectiveness of biofiltration and determine the optimum parameters for applying biofiltration to POTWs.more » Results from the bench-scale experiments demonstrate that biofiltration is effective in reducing the concentration of hydrogen sulfide (H{sub 2}S) and total VOCs present in waste airstreams by over 99% and up to 90%, respectively. Average reduction of specific aromatic and carbonyl compounds ranged from 55% to 91%. Removal efficiencies for chlorinated hydrocarbons were variable, ranging from 6% to 88%. Overall, biofiltration appears to be a promising technology for full-scale implementation at POTWs for VOC and odor emission compliance.« less
Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong
2016-03-01
The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.
2012-01-01
Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG. PMID:23407455
Burch, Tucker R; Sadowsky, Michael J; Lapara, Timothy M
2013-01-01
Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs). In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A), tet(W), and erm(B) decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X) increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W) to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of ARGs in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch vs. continuous-flow) and the specific ARG.
Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities.
Barstow, Christina K; Dotson, Aaron D; Linden, Karl G
2014-12-01
Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb. The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Zhijie; Pan, Wenxiao
2016-01-01
To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji
Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less
Bench Scale Saltcake Dissolution Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
BECHTOLD, D.B.; PACQUET, E.A.
A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity;more » saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.« less
Scale-down/scale-up studies leading to improved commercial beer fermentation.
Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A
2011-08-01
Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... judgement, a catalyst aging bench that follows the SBC and delivers the appropriate exhaust flow, exhaust... set must consist of randomly procured vehicles from actual customer use. The vehicles selected for... submit an analysis which evaluates whether the durability objective will be achieved for the vehicle...
CAPSULE REPORT: AQUEOUS MERCURY TREATMENT
This report describes established technologies and identifies evolving methods for treating aqueous mercury. The information provided encompasses full-, pilot- and bench-scale treatment results as presented in the technical literature. The report describes alternative technologi...
GREENSCOPE Technical User’s Guide
GREENSCOPE’s methodology has been developed and its software tool designed such that it can be applied to an entire process, to a piece of equipment or process unit, or at the investigatory bench scale.
Letter report on PCT/Monolith glass ceramic corrosion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Charles L.
2015-09-24
The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less
NASA Astrophysics Data System (ADS)
Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri
2013-02-01
Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.
Water Treatment Residuals and Scrap Tire Rubber as Green Sorbents for Removal of Stormwater Metals.
Deng, Yang; Morris, Ciapha; Rakshit, Sudipta; Landa, Edward; Punamiya, Pravin; Sarkar, Dibyendu
2016-06-01
Bench scale tests were performed to evaluate two recycled wastes, water treatment residuals (WTR) and scrap tire rubber (STR), for adsorption of selected metals from urban stormwater, and assess their release from used sorbents. Aluminum-WTR alone could rapidly and effectively remove Cu, Pb, and Zn, while STR alone continuously released Zn accompanied with Cu and Pb adsorption. Zn leaching from STR was significantly reduced in the presence of WTR. Very little metals released from used combined adsorbents in NaNO3 solution, and only part of them were extracted with EDTA (a strong chelating agent), suggesting that metal release is not a concern in a typical stormwater condition. A combination of WTR and STR is a new, effective method for mitigation of urban stormwater metals-WTR can inhibit the STR leaching, and STR improves the hydraulic permeability of WTR powders, a limiting factor for stormwater flow when WTR is used alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binovi, R.D.; Ng, E.K.; Tetla, R.A.
1987-01-01
This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatmentmore » should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.« less
Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R
2005-01-01
When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.
Christenson, Logan B; Sims, Ronald C
2012-07-01
Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.
The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less
Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes
The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, D.S.; Knudsen, S.D.
The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in themore » capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.« less
A simple and inexpensive method for maintaining a defined flora mouse colony.
Sedlacek, R S; Mason, K A
1977-10-01
The use of autoclaved cages, feed, bedding, water, and filter caps combined with aseptic techniques of animal husbandry in an existing mouse colony was ineffective in maintaining a defined flora colony. The addition of a laminar air flow bench equipped with a high efficiency particulate air filter provided a sterile environment in which to manipulate mice when the filter caps were removed. The installation of a duct to direct all air entering the room through the bench filter reduced the airborne bacterial counts in the room. This modification combined with the culling or marking of infected cages so that no future breeders would be taken from these cages eliminated a number of bacterial contaminants (Staphylococcus aureus, S epidermidis, and streptococci) from the colony.
Evaluation of Hydrogel Technologies for the Decontamination ...
Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.
Mark A. Dietenberger
2010-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...
Ignition and flame travel on realistic building and landscape objects in changing environments
Mark A. Dietenberger
2007-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...
Pennycress protein isolate: Pilot plant production and application in films polymeric composites
USDA-ARS?s Scientific Manuscript database
This work scaled up the process of producing pennycress protein isolates (PPI) using 5 kg starting material (previously 100 g in bench-scale research). Defatted press cake, produced by prepressing and hexane extraction, was mixed with preheated 50 L of aqueous NaOH (pH 10) for 90 min in a jacketed k...
Design and Development of a Segmented Magnet Homopolar Torque Converter
1975-02-01
seals . They will be designed for low leakage and wear at operating speeds from zero to 500 rpm in either direction. 1-7 — . E.M. 4648 SECTION 2...to flow in a manner that would minimize the pressure drop across the seals , thus minimizing leakage flow. As an example, the liquid metal might be...included seal wear, leakage and operating temperature leaicage. 6-2 J E.M. 4648 order to obtain bench mark performance data on standard seal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staub, J.R.; Richards, B.K.
1993-07-01
Coals from the No. 5 Block coal beds (Westphalian D) of the central Appalachian basin are noted for their blocky, dull character and their low ash and low sulfur content. The beds are multiple benched, with rock partings separating benches. Individual benches have limited lateral extent and, where thick, are dominated by bright, high-ash coal at the base and dull, low-ash coal in the upper parts. The duller coals contain more exinite-group and inertinite-group macerals than the brighter coals. These coal beds are encased in sandstone units dominated by fining-upward sequences. The overall depositional setting is an alluvial-plain environment withmore » northwest-flowing channels spaced approximately 20 km apart. The channels were flanked by clastic swamps about 7 km wide. Low-ash peat accumulated in areas of the flood plain most distant from the channels. These peat-accumulating swamps were about 8 km across. In a few instances low-frequency flood events introduced fine siliciclastic sediment into the peat swamps, depositing a thin layer of sediment on top of the peat. This sediment layer is thicker where the underlying coal is the thickest. These thick coal areas are topographically lower than surrounding coal areas. This relationship between coal thickness, parting thickness, and topography indicates that these peat swamps were planar at the time of deposition. Individual coal benches contain abundant preserved cellular tissue (telocollinite, semifusinite, and fusinite) at most locations, suggesting that robust vegetation was widespread in the swamps and that the morphology was planar. The high concentrations of exinite-group an inertinite-group macerals in the upper parts of benches resulted from selective decomposition and oxidation of the peat in subaerial and aquatic planar-swamp environments.« less
NASA Astrophysics Data System (ADS)
Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe
2017-11-01
Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.
CPAP Devices for Emergency Prehospital Use: A Bench Study.
Brusasco, Claudia; Corradi, Francesco; De Ferrari, Alessandra; Ball, Lorenzo; Kacmarek, Robert M; Pelosi, Paolo
2015-12-01
CPAP is frequently used in prehospital and emergency settings. An air-flow output minimum of 60 L/min and a constant positive pressure are 2 important features for a successful CPAP device. Unlike hospital CPAP devices, which require electricity, CPAP devices for ambulance use need only an oxygen source to function. The aim of the study was to evaluate and compare on a bench model the performance of 3 orofacial mask devices (Ventumask, EasyVent, and Boussignac CPAP system) and 2 helmets (Ventukit and EVE Coulisse) used to apply CPAP in the prehospital setting. A static test evaluated air-flow output, positive pressure applied, and FIO2 delivered by each device. A dynamic test assessed airway pressure stability during simulated ventilation. Efficiency of devices was compared based on oxygen flow needed to generate a minimum air flow of 60 L/min at each CPAP setting. The EasyVent and EVE Coulisse devices delivered significantly higher mean air-flow outputs compared with the Ventumask and Ventukit under all CPAP conditions tested. The Boussignac CPAP system never reached an air-flow output of 60 L/min. The EasyVent had significantly lower pressure excursion than the Ventumask at all CPAP levels, and the EVE Coulisse had lower pressure excursion than the Ventukit at 5, 15, and 20 cm H2O, whereas at 10 cm H2O, no significant difference was observed between the 2 devices. Estimated oxygen consumption was lower for the EasyVent and EVE Coulisse compared with the Ventumask and Ventukit. Air-flow output, pressure applied, FIO2 delivered, device oxygen consumption, and ability to maintain air flow at 60 L/min differed significantly among the CPAP devices tested. Only the EasyVent and EVE Coulisse achieved the required minimum level of air-flow output needed to ensure an effective therapy under all CPAP conditions. Copyright © 2015 by Daedalus Enterprises.
Removal of Multiple Contaminants: Biological Treatment
This presentation contains (1) background material on nitrate, perchlorate and ammonia contamination in the continental US; (2) scientific background on biological drinking water treatment; (3) results of bench-scale anaerobic and aerobic treatment studies; (4) results of pilot-s...
Pervious Pavement System Evaluation
Pervious pavement is a low impact development stormwater control. The Urban Watershed Management Branch of the U.S. Environmental Protection Agency in Edison, NJ, is evaluating concrete pavers as a popular implementation. The pollutant removal of a bench-scale permeable interlo...
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, Eunyoung; Seagren, Eric A; Davis, Allen P
2006-02-01
One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.
Performance of ultrafiltration membrane process combined with coagulation/sedimentation.
Jang, N Y; Watanabe, Y; Minegishi, S
2005-01-01
Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.
Gurunathan, Baskar; Sahadevan, Renganathan
2012-07-01
Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.
Rate and extent NOM removal during oxidation and biofiltration.
Black, Kerry E; Bérubé, Pierre R
2014-04-01
The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel Approach to Simulate Sleep Apnea Patients for Evaluating Positive Pressure Therapy Devices.
Isetta, Valentina; Montserrat, Josep M; Santano, Raquel; Wimms, Alison J; Ramanan, Dinesh; Woehrle, Holger; Navajas, Daniel; Farré, Ramon
2016-01-01
Bench testing is a useful method to characterize the response of different automatic positive airway pressure (APAP) devices under well-controlled conditions. However, previous models did not consider the diversity of obstructive sleep apnea (OSA) patients' characteristics and phenotypes. The objective of this proof-of-concept study was to design a new bench test for realistically simulating an OSA patient's night, and to implement a one-night example of a typical female phenotype for comparing responses to several currently-available APAP devices. We developed a novel approach aimed at replicating a typical night of sleep which includes different disturbed breathing events, disease severities, sleep/wake phases, body postures and respiratory artefacts. The simulated female OSA patient example that we implemented included periods of wake, light sleep and deep sleep with positional changes and was connected to ten different APAP devices. Flow and pressure readings were recorded; each device was tested twice. The new approach for simulating female OSA patients effectively combined a wide variety of disturbed breathing patterns to mimic the response of a predefined patient type. There were marked differences in response between devices; only three were able to overcome flow limitation to normalize breathing, and only five devices were associated with a residual apnea-hypopnea index of <5/h. In conclusion, bench tests can be designed to simulate specific patient characteristics, and typical stages of sleep, body position, and wake. Each APAP device behaved differently when exposed to this controlled model of a female OSA patient, and should lead to further understanding of OSA treatment.
Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm
2018-03-13
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae
2007-06-01
A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.
Simulating maar-diatreme volcanic systems in bench-scale experiments
NASA Astrophysics Data System (ADS)
Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.
2015-12-01
Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahnam, Mehrdad; Gel, Aytekin; Subramaniyan, Arun K.
Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has themore » most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows that the predicted syngas composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in experiments as well) but also by variation in the coal flow rate and particle diameter (which was not observed in experiments). The carbon monoxide mole fraction is underpredicted at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is observed for the carbon dioxide mole fraction. These discrepancies are attributed to either excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the selection of reaction models, where different reaction models and kinetics can lead to different syngas compositions throughout the gasifier. To improve quality of numerical models used, the effect that uncertainties in reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature were investigated. The global sensitivity analysis showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gases and solid that leads to stronger heterogeneous reactions. This report is a compilation of three manuscripts published in peer-reviewed journals for the series of studies mentioned above.« less
The first purpose of this project is to complete bench and pilot scale testing of promising mercury sorbents. This work would apply findings from fundamental, mechanistic efforts over the past three years that have developed sorbents which show improved capture of elemental and ...
TREATMENT STUDIES OF CCL CONTAMINANTS
Bench-scale screening-level treatment data are presented for compounds listed in the Contaminant Candidate List (CCL). All of the CCl compounds are predicted to be economically removed by either activated carbon or air stripping technologies. To complete the screening-level treat...
CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH
Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION
The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...
Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G
2013-11-01
The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S
2014-05-20
Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
NASA Astrophysics Data System (ADS)
Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.
2013-12-01
Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.
NASA Technical Reports Server (NTRS)
Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim
2004-01-01
The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.
Treating contaminated organics using the DETOX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsberry, K.D.; Dhooge, P.M.
1993-05-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, Michael C.
1992-01-01
The two principal objectives of this research were to achieve an improved understanding of the mechanisms involved in the onset and development of dynamic stall under compressible flow conditions, and to investigate the feasibility of employing adaptive airfoil geometry as an active flow control device in the dynamic stall engine. Presented here are the results of a quantitative (PDI) study of the compressibility effects on dynamic stall over the transiently pitching airfoil, as well as a discussion of a preliminary technique developed to measure the deformation produced by the adaptive geometry control device, and bench test results obtained using an airfoil equipped with the device.
Treatment of highly polluted groundwater by novel iron removal process.
Sim, S J; Kang, C D; Lee, J W; Kim, W S
2001-01-01
The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizeq, George; West, Janice; Frydman, Arnaldo
Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less
Inspiratory Tube Condensation During High-Flow Nasal Cannula Therapy: A Bench Study.
Chikata, Yusuke; Unai, Kazuaki; Izawa, Masayo; Okuda, Nao; Oto, Jun; Nishimura, Masaji
2016-03-01
High-flow nasal cannula (HFNC) therapy provides better humidification than conventional oxygen therapy. To allay loss of vapor as condensation, a servo-controlled heating wire is incorporated in the inspiratory tube, but condensation is not completely avoidable. We investigated factors that might affect condensation: thermal characteristics of the inspiratory tube, HFNC flow, and ambient temperature. We evaluated 2 types of HFNC tubes, SLH Flex 22-mm single tube and RT202. Both tubes were connected to a heated humidifier with water reservoir. HFNC flow was set at 20, 40, and 60 L/min, and FIO2 was set at 0.21. Air conditioning was used maintain ambient temperature at close to either 20 or 25°C. We weighed the tubes on a digital scale before (0 h) and at 3, 6, and 24 h after, turning on the heated humidifier, and calculated the amount of condensation by simple subtraction. The amount of distilled water used during 24 h was also recorded. At 25°C, there was little condensation, but at 20°C and HFNC flow of 20, 40, and 60 L/min for 24 h, the amount of condensation with the SLH was 50.2 ± 10.7, 44.3 ± 17.7, and 56.6 ± 13.9 mg, and the amount with the RT202 was 96.0 ± 35.1, 72.8 ± 8.2, and 64.9 ± 0.8 mg. When ambient temperature was set to 20°C, condensation with the RT202 was statistically significantly greater than with the SLH at all flow settings (P < .001). Ambient temperature statistically significantly influenced the amount of condensation in the tubes. Copyright © 2016 by Daedalus Enterprises.
GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS
Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...
Evaluation of mechanical and corrosion properties of MMFX reinforcing steel for concrete
DOT National Transportation Integrated Search
2004-01-01
The corrosion performance of MMFX and conventional reinforcing steels is compared based on macrocell and bench-scale tests. The conventional steel includes epoxy-coated and uncoated bars. Macrocell tests are conducted on bare bars and bars symmetrica...
BENCH-SCALE PERFORMANCE OF PARTITIONING ELECTRON DONORS FOR TCE DNAPL BIOREMEDIATION
The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethen...
Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.
Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D
2012-09-04
In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.
Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D
2015-01-01
Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
NASA Astrophysics Data System (ADS)
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Mechanics of Granular Materials (MGM0 Flight Hardware in Bench Test
NASA Technical Reports Server (NTRS)
2000-01-01
Engineering bench system hardware for the Mechanics of Granular Materials (MGM) experiment is tested on a lab bench at the University of Colorado in Boulder. This is done in a horizontal arrangement to reduce pressure differences so the tests more closely resemble behavior in the microgravity of space. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).
Marston, Thomas M.; Heilweil, Victor M.
2012-01-01
The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger cells were used in the northern and southern portions of the model where water-level data were limited. Vertically, the aquifer system was divided into 10 layers, which incorporated the Navajo Sandstone and Kayenta Formation. The model simulated recharge to the groundwater system as natural infiltration of precipitation and as infiltration of managed aquifer recharge from Sand Hollow Reservoir. Groundwater discharge was simulated as well withdrawals, shallow drains at the base of reservoir dams, and seepage to the Virgin River. During calibration, variables were adjusted within probable ranges to minimize differences among model-simulated and observed water levels, groundwater travel times, drain discharges, and monthly estimated reservoir recharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, M.S.
1988-01-01
Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a systemmore » is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.« less
Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser
Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji
2017-11-21
Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less
Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji
2013-09-01
Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.
EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS
An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...
DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE
Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...
DESIGN AND EVALUATION OF BENCH-SCALE COMPOST TREATMENT SYSTEM FOR HAZARDOUS WASTE
Soil bound contamination presents a significant set of problems to those attempting to remediate the soil. Bioremediation has received considerable attention, as a potential answer to the obvious remediation needs. Composting technology represents a promising means to use indigen...
Bacterial Mercury Methylation At The Sediment-Water Interface Of Mercury Contaminated Sediments
Bench scale experiments were conducted to improve our understanding of bacterial mediation of mercury transformation (methylation), specifically those factors which govern the production of methyl mercury (MeHg) at the sediment-water interface. The greatest cause for concern re...
Low temperature fluidized wood chip drying with monoterpene analysis
Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell
2011-01-01
This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.
Removal and Transformation of Estrogens During the Coagulation Process
Estrogenic compounds have been shown to be present in surface waters, leading to concerns over the possible presence of endocrine disrupting compounds in finished drinking waters. Bench-scale studies (jar tests) simulating coagulation were conducted to evaluate the ability of tw...
FILTRATION MODEL FOR COAL FLY ASH WITH GLASS FABRICS
The report describes a new mathematical model for predicting woven glass filter performance with coal fly ash aerosols from utility boilers. Its data base included: an extensive bench- and pilot-scale laboratory investigation of several dust/fabric combinations; field data from t...
This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.
A bench-scale evaluation of the reuse of water at highway rest areas.
DOT National Transportation Integrated Search
1975-01-01
A pilot laboratory treatment system was successfully employed to investigate the reuse of wastewater for flushing toilets at highway rest areas. This extended aeration unit used a synthetic waste to determine if the biological system could operate ef...
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
BENCH-SCALE EVALUATION OF AMMONIA REMOVAL FROM WASTEWATER BY STEAM STRIPPING
The purpose of the study was to generate laboratory data to support the development of wastewater discharge standards for ammonia in nonferrous metal winning processes. The objective was accomplished by studying ammonia removal from synthetically compounded 'wastewater' samples u...
Self-Rated Accuracy of Rating of Perceived Exertion-Based Load Prescription in Powerlifters.
Helms, Eric R; Brown, Scott R; Cross, Matt R; Storey, Adam; Cronin, John; Zourdos, Michael C
2017-10-01
This study assessed male (n = 9) and female (n = 3) powerlifters' (18-49 years) ability to select loads using the repetitions in reserve-based rating of perceived exertion (RPE) scale for a single set for squat, bench press, and deadlift. Subjects trained 3× per week. For 3 weeks on nonconsecutive days in the weekly order of hypertrophy (8 repetitions at 8 RPE), power (2 repetitions at 8 RPE), and strength (3 repetitions at 9 RPE), using subject-selected loads intended to match the target RPE. Bench press and squat were performed every session and deadlift during strength and power only. Mean absolute RPE differences (|reported RPE-target RPE|) ranged from 0.22-0.44, with a mean of 0.33 ± 0.28 RPE. There were no significant RPE differences within lifts between sessions for squat or deadlift. However, bench press was closer to the target RPE for strength (0.15 ± 0.42 RPE) vs. power (-0.21 ± 0.35 RPE, p = 0.05). There were no significant differences within session between lifts for power and strength. However, bench press was closer (0.14 ± 0.44 RPE) to the target RPE than squat (-0.19 ± 0.21 RPE) during hypertrophy (p = 0.02). Squat power was closer to the target RPE in week 3 (0.08 ± 0.29 RPE) vs. 1 (-0.46 ± 0.69 RPE, p = 0.03). It seems that powerlifters can accurately select loads to reach a prescribed RPE. However, accuracy for 8-repetition sets at 8 RPE may be better for bench press compared with squat. Rating squat power-type training may take 3 weeks to reach peak accuracy. Finally, bench press RPE accuracy seems better closer rather than further from failure (i.e., 3-repetition 9 RPE sets vs. 2-repetition 8 RPE sets).
Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage
NASA Astrophysics Data System (ADS)
Zheng, Y.; Yang, Y.; Rogowska, M.; Gundlach, C.
2017-09-01
To achieve the 2°C target made in the 2016 Paris Agreement, it is essential to reduce the emission of CO2 into the atmosphere. Carbon Capture and Storage (CCS) has been given increasing importance over the last decade. One of the suggested methods for CCS is to inject CO2 into geologic settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection. The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk.
Can Energy Cost During Low-Intensity Resistance Exercise be Predicted by the OMNI-RES Scale?
Vianna, Jefferson M.; Reis, Victor M.; Saavedra, Francisco; Damasceno, Vinicius; Silva, Sérgio G.; Goss, Fredric
2011-01-01
The aim of the present study was to assess the precision of the OMNI-RES scale to predict energy cost (EC) at low intensity in four resistance exercises (RE). 17 male recreational body builders (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body weight = 79.0 ± 11.1 kg and percent body fat = 10.5 ± 4.6%) served as subjects. Initially tests to determine 1RM for four resistance exercises (bench press, half squat, lat pull down and triceps extension) were administered. Subjects also performed resistance exercise at 12, 16, 20, and 24% of 1RM at a rate of 40 bpm until volitional exhaustion. Oxygen uptake (VO2) and rate of perceived exertion (RPE) using the OMNI-RES were obtained during and after all RE. EC was calculated using VO2 and the caloric values of VO2 for non-protein RER. Regression analyses were performed for every RE, using EC as the dependent and RPE as the predictor variable. The triceps extension, lat pull down and bench press, RPE correlated strongly with EC (R > 0.97) and predicted EC with a error of less than 0.2 kcal.min−1. In conclusion, RPE using the OMNI-RES scale can be considered as an accurate indicator of EC in the bench press, lat pull down and triceps extension performed by recreational bodybuilders, provided lower intensities are used (up to 24% of 1-RM) and provided each set of exercise is performed for the maximal sustainable duration. It would be interesting in future studies to consider having the subjects exercise at low intensities for longer durations than those in the present study. PMID:23486188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Moss, T. A.
1993-06-01
Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.
Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.; Fowley, M.
2015-04-28
This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recoverymore » strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.« less
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
....) Flowrate (l.p.m.) Number of tests Penetration 1 (p.p.m.) Minimum life 2 (min.) Ammonia As received NH3 1000... minimum life shall be one-half that shown for each type of gas or vapor. Where a respirator is designed... at predetermined concentrations and rates of flow, and that has means for determining the test life...
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
....) Flowrate (l.p.m.) Number of tests Penetration 1 (p.p.m.) Minimum life 2 (min.) Ammonia As received NH3 1000... minimum life shall be one-half that shown for each type of gas or vapor. Where a respirator is designed... at predetermined concentrations and rates of flow, and that has means for determining the test life...
42 CFR 84.207 - Bench tests; gas and vapor tests; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
....) Flowrate (l.p.m.) Number of tests Penetration 1 (p.p.m.) Minimum life 2 (min.) Ammonia As received NH3 1000... minimum life shall be one-half that shown for each type of gas or vapor. Where a respirator is designed... at predetermined concentrations and rates of flow, and that has means for determining the test life...
A series of seven technical presentations involving chemical oxidation will be given to faculty, graduate students, and environmental professionals at the Chinese Academy of Sciences in Beijing, China (April 21-22, 2010). Chemical oxidation technologies include in-situ chemical o...
Analytical model of flame spread in full-scale room/corner tests (ISO9705)
Mark Dietenberger; Ondrej Grexa
1999-01-01
A physical, yet analytical, model of fire growth has predicted flame spread and rate of heat release (RHR) for an ISO9705 test scenario using bench-scale data from the cone calorimeter. The test scenario simulated was the propane ignition burner at the comer with a 100/300 kW program and the specimen lined on the walls only. Four phases of fire growth were simulated....
Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar
2014-01-01
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434
Fate of glucuronide conjugated estradiol in the environment
USDA-ARS?s Scientific Manuscript database
The fate and transport of conjugated reproductive hormones, which are polar compared to parent hormones, are little understood. Laboratory bench-scale soil (Hamar; Sandy, mixed, frigid typic Endoaquolls) sorption studies were conducted using [14C] 17ß-estradiol-3-glucuronide for a range of concentra...
SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING OF EXPLOSIVES
This treatability study was conducted by Atlantic Research Corporation for the U.S. Army Toxic and Hazardous Material Agency. The objective of this bench-scale study was to determine the extent to which TNT and RDX concentrations were reduced by composting for a six week peri...
U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM: 1991 UPDATE
The Emerging Technology Program (ETP) supports the development of technologies successfully tested at the bench- and pilot-scale level. The ETP is part of the Superfund Innovative Technology Evaluation (SITE) Program which was established in 1986 under the Superfund Amendments an...
The objective of this research is to investigate chlorinated by-products of a selected number of steroids representing both estrogens and androgens. Highly controlled reaction conditions were used to ascertain product distribution. Bench-scale studies were conducted to identify...
SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: SOIL TREATMENT PILOT STUDY BRIO/DOP SITE
Bench and pilot-scale studies were conducted to demonstrate the feasibility of using solid-phase biodegradation for destroying portions of organic constituents present in the soil. The predominant constituents at the BRIO DOP site located in Texas were volatile compounds such...
BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES
The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...
LAND TREATMENT OF TWO PLATEAU MATERIALS CONTAMINATED WITH PAHS
This study was designed to evaluate several treatments for their ability to enhance the biological removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and sediment. Previously land-treated material was used to test the treatments in a 13 week bench scale stu...
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design (Presentation)
Rain garden design manuals and guidelines typically recommend using native soils or engineered media that meet specifications for low content of clay, silt, fine and very fine sands, and organic matter. These characteristics promote stormwater infiltration and sorption of heavy ...
Hydraulic Test of a Bioretention Media Carbon Amendment
Rain gardens effectively remove some stressors from stormwater, but in most cases they show much smaller removal rates of nitrate, likely due to the high sand and low organic matter content of rain garden media inhibiting denitrification. A bench-scale experiment was conducted to...
The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five year...
REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES
Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...
Interests Ryan M. Ness is a research technician in the Biomass Analysis group within the National Renewable , wet chemical analysis, and instrumental analysis of lignocellulosic biomass feedstocks. Bench-scale Publications "The Effect of Biomass Densification on Structural Sugar Release and Yield in Biofuel
HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN
The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES (SLIDES)
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; Van't Hof, Wouter; Wagey, Ravenska
2013-01-01
Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization. PMID:24101671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil.more » CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.« less
Vala, Anjana K; Sachaniya, Bhumi; Dudhagara, Dushyant; Panseriya, Haresh Z; Gosai, Haren; Rawal, Rakesh; Dave, Bharti P
2018-03-01
L-asparaginase (LA), an enzyme with anticancer activities, produced by marine-derived Aspergillus niger was subjected to purification and characterization. The purified enzyme was observed to have molecular weight ∼90KDa. The enzyme retained activity over a wide range of pH, i.e. pH 4-10. The enzyme was quite stable in temperature range 20-40°C. Tween 80 and Triton X-100 were observed to enhance LA activity while inhibition of LA activity was observed in presence of heavy metals. The values for K m was found to be 0.8141 mM and V max was 6.228μM/mg/min. The enzyme exhibited noteworthy antiproliferative activity against various cancer cell lines tested. Successful bench scale production (in 5L bioreacator) of LA using groundnut oil cake as low cost substrate has also been carried out. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Bibo, Amin; Guo, Yi
2016-08-21
In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it - this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacellemore » through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.« less
Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Bibo, Amin; Guo, Yi
2016-08-01
In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through amore » series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.« less
Evaluation of empirical process design relationships for ozone disinfection of water and wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, G.R.; Smith, D.W.
A research program was undertaken to examine the dose-response of Escherichia coli ATCC 11775 in ozone demand-free phosphate buffer solution and in a high quality secondary wastewater effluent with a total organic carbon content of 8 mg/L and a chemical oxygen demand of 26 mg/L. The studies were conducted in bench-scale batch reactors for both water types. In addition, studies using secondary effluent also were conducted in a pilot-scale, semi-batch reactor to evaluate scale-up effects. It was found that the ozone dose was the most important design parameter in both types of water. Contact time was of some importance inmore » the ozone demand-free water and had no detectable effect in the secondary effluent. Pilot-scale data confirmed the results obtained at bench-scale for the secondary effluent. Regression analysis of the logarithm of the E. coli response on the logarithm of the utilized ozone dose revealed that there was lack-of-fit using the model form which has been used frequently for the design of wastewater disinfection systems. This occurred as a result of a marked tailing effect of the log-log plot as the ozone dose increased and the kill increased. It was postulated that this was caused by some unknown physiological differences within the E. coli population due to age or another factor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, D.T.; Turley, S.D.
1992-03-01
The toxicity of contaminated Old O-Field (Edgewood Area of Aberdeen Proving Ground) groundwater and the reduction and/or elimination of toxicity by various treatment processes were evaluated. The study was divided into a bench scale and pilot scale study. The bench scale studies consisted of 48-h definitive acute toxicity tests run with daphnid neonates (Daphnia magna) and juvenile fathead minnows (Pimephales promelas) exposed to untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H 2O2 ), carbon adsorption, and carbon adsorption/biological sludge. The pilot scale studies consisted of several 96-h definitive acute toxicity tests run with two freshwatermore » and two saltwater invertebrates and fish and Ames mutagenicity assays. Acute toxicity tests were run on untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H2O2), air stripping, and carbon adsorption during the pilot scale study. The freshwater invertebrate and fish used in the study were daphnid neonates and juvenile fathead minnows, respectively. The saltwater invertebrate and fish were juvenile mysids (Mysidopsis bahia) and juvenile sheepshead minnows (Cyprinodon variegatus). Ames tests were run on untreated groundwater, UV oxidation-treated groundwater, and carbon-treated groundwater.... Groundwater, Aquatic, Toxicity, Daphnia, Daphnia magna, Fathead minnow, Pimephales promelas, Mysid, Mysidopsis bahia, Sheepshead minnow, Cyprinodon variegatus.« less
A Distribution-Free Description of Fragmentation by Blasting Based on Dimensional Analysis
NASA Astrophysics Data System (ADS)
Sanchidrián, José A.; Ouchterlony, Finn
2017-04-01
A model for fragmentation in bench blasting is developed from dimensional analysis adapted from asteroid collision theory, to which two factors have been added: one describing the discontinuities spacing and orientation and another the delay between successive contiguous shots. The formulae are calibrated by nonlinear fits to 169 bench blasts in different sites and rock types, bench geometries and delay times, for which the blast design data and the size distributions of the muckpile obtained by sieving were available. Percentile sizes of the fragments distribution are obtained as the product of a rock mass structural factor, a rock strength-to-explosive energy ratio, a bench shape factor, a scale factor or characteristic size and a function of the in-row delay. The rock structure is described by means of the joints' mean spacing and orientation with respect to the free face. The strength property chosen is the strain energy at rupture that, together with the explosive energy density, forms a combined rock strength/explosive energy factor. The model is applicable from 5 to 100 percentile sizes, with all parameters determined from the fits significant to a 0.05 level. The expected error of the prediction is below 25% at any percentile. These errors are half to one-third of the errors expected with the best prediction models available to date.
Patterson, Jeffrey M.; Oppenheimer, Nicole E.; Feser, Erin H.
2015-01-01
Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Twenty participants were recruited to test two forms of instability: using one dumbbell rather than two and lifting on the COR bench compared to a flat bench. Electromyography (EMG) amplitudes of the pectoralis major, middle trapezius, external oblique, and internal oblique were recorded and compared. Differences in range of motion (ROM) were evaluated by measuring an angular representation of the shoulder complex. Four separate conditions of unilateral bench press were tested while lifting on a: flat bench with one dumbbell, flat bench with two dumbbells, COR Bench with one dumbbell, and COR Bench with two dumbbells. The results imply that there are no differences in EMG amplitude or ROM between the COR bench and traditional bench. However, greater ROM was found to be utilized in the single dumbbell condition, both in the COR bench and the flat bench. PMID:26528421
Humidification performance of two high-flow nasal cannula devices: a bench study.
Chikata, Yusuke; Izawa, Masayo; Okuda, Nao; Itagaki, Taiga; Nakataki, Emiko; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji
2014-08-01
Delivering heated and humidified medical gas at 20-60 L/min, high-flow nasal cannula (HFNC) creates low levels of PEEP and ameliorates respiratory mechanics. It has become a common therapy for patients with respiratory failure. However, independent measurement of heat and humidity during HFNC and comparison of HFNC devices are lacking. We evaluated 2 HFNC (Airvo 2 and Optiflow system) devices. Each HFNC was connected to simulated external nares using the manufacturer's standard circuit. The Airvo 2 outlet-chamber temperature was set at 37°C. The Optiflow system incorporated an O2/air blender and a heated humidifier, which was set at 40°C/3. For both systems, HFNC flow was tested at 20, 40, and 50 L/min. Simulating spontaneous breathing using a mechanical ventilator and TTL test lung, we tested tidal volumes (VT) of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. The TTL was connected to the simulated external nares with a standard ventilator circuit. To prevent condensation, the circuit was placed in an incubator maintained at 37°C. Small, medium, and large nasal prongs were tested. Absolute humidity (AH) of inspired gas was measured at the simulated external nares. At 20, 40, and 50 L/min of flow, respective AH values for the Airvo 2 were 35.3 ± 2.0, 37.1 ± 2.2, and 37.6 ± 2.1 mg/L, and for the Optiflow system, 33.1 ± 1.5, 35.9 ± 1.7, and 36.2 ± 1.8 mg/L. AH was lower at 20 L/min of HFNC flow than at 40 and 50 L/min (P < .01). While AH remained constant at 40 and 50 L/min, at 20 L/min of HFNC flow, AH decreased as VT increased for both devices. During bench use of HFNC, AH increased with increasing HFNC flow. When the inspiratory flow of spontaneous breathing exceeded the HFNC flow, AH was influenced by VT. At all experimental settings, AH remained > 30 mg/L.
Plaza-Puche, Ana B; Alió, Jorge L; MacRae, Scott; Zheleznyak, Len; Sala, Esperanza; Yoon, Geunyoung
2015-05-01
To investigate the correlations existing between a trifocal intraocular lens (IOL) and a varifocal IOL using the "ex vivo" optical bench through-focus image quality analysis and the clinical visual performance in real patients by study of the defocus curves. This prospective, consecutive, nonrandomized, comparative study included a total of 64 eyes of 42 patients. Three groups of eyes were differentiated according to the IOL implanted: 22 eyes implanted with the varifocal Lentis Mplus LS-313 IOL (Oculentis GmbH, Berlin, Germany); 22 eyes implanted with the trifocal FineVision IOL (Physiol, Liege, Belgium), and 20 eyes implanted with the monofocal Acrysof SA60AT IOL (Alcon Laboratories, Inc., Fort Worth, TX). Visual outcomes and defocus curve were evaluated postoperatively. Optical bench through-focus performance was quantified by computing an image quality metric and the cross-correlation coefficient between an unaberrated reference image and captured retinal images from a model eye with a 3.0-mm artificial pupil. Statistically significant differences among defocus curves of different IOLs were detected for the levels of defocus from -4.00 to -1.00 diopters (D) (P < .01). Significant correlations were found between the optical bench image quality metric results and logMAR visual acuity scale in all groups (Lentis Mplus group: r = -0.97, P < .01; FineVision group: r = -0.82, P < .01; Acrys of group: r = -0.99, P < .01). Linear predicting models were obtained. Significant correlations were found between logMAR visual acuity and image quality metric for the multifocal and monofocal IOLs analyzed. This finding enables surgeons to predict visual outcomes from the optical bench analysis. Copyright 2015, SLACK Incorporated.
A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions
NASA Astrophysics Data System (ADS)
Danner, Rolf; Dailey, D.; Lillie, C.
2011-09-01
The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.
Geology of the Selk crater region on Titan from Cassini VIMS observations
Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, Christophe; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2010-01-01
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. ?? 2010 Elsevier Inc.
Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar
2015-02-01
An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Attached cultivation for improving the biomass productivity of Spirulina platensis.
Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong
2015-04-01
To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne
2016-06-30
Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less
Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang
2016-12-01
Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis
2017-06-15
Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection
NASA Astrophysics Data System (ADS)
Seto, C. J.; Haidari, A. S.; McRae, G. J.
2009-12-01
Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.
Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.
Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A
2015-06-01
A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.
Grid-to-rod flow-induced impact study for PWR fuel in reactor
Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...
2016-06-10
The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology.
Villaverde, Alejandro F; Henriques, David; Smallbone, Kieran; Bongard, Sophia; Schmid, Joachim; Cicin-Sain, Damjan; Crombach, Anton; Saez-Rodriguez, Julio; Mauch, Klaus; Balsa-Canto, Eva; Mendes, Pedro; Jaeger, Johannes; Banga, Julio R
2015-02-20
Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging. The community has already developed many methods and software packages which aim to facilitate these tasks. However, there is a lack of suitable benchmark problems which allow a fair and systematic evaluation and comparison of these contributions. Here we present BioPreDyn-bench, a set of challenging parameter estimation problems which aspire to serve as reference test cases in this area. This set comprises six problems including medium and large-scale kinetic models of the bacterium E. coli, baker's yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The level of description includes metabolism, transcription, signal transduction, and development. For each problem we provide (i) a basic description and formulation, (ii) implementations ready-to-run in several formats, (iii) computational results obtained with specific solvers, (iv) a basic analysis and interpretation. This suite of benchmark problems can be readily used to evaluate and compare parameter estimation methods. Further, it can also be used to build test problems for sensitivity and identifiability analysis, model reduction and optimal experimental design methods. The suite, including codes and documentation, can be freely downloaded from the BioPreDyn-bench website, https://sites.google.com/site/biopredynbenchmarks/ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1978-12-01
The parameters of charge content, reaction temperatures and residence time were studied in a bench reactor concerning the production of Al--Si and Fe--Si alloys. Results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C. Residence time varied with initial charge concentration. Fe/sub 2/O/sub 3/ additions to the charge produced a significant increase in metallic yield. A burden preparation procedure was developed for making acceptable agglomerates containing Fe/sub 2/O/sub 3/, bauxite, clay and coke. Particle size distribution of starting materials was correlated with agglomerate strength. A new bench scale reactor was designed and built to facilitate semi-continuous operation,more » using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. In a number of runs bridging of the burden material occurred due to condensation of volatilized sub-oxides in the cooler zones of the reactor. The reactor operated smoothly as an iron blast furnace at 1500/sup 0/C, demonstrating the validity of the equipment and test procedures. Initial construction of pilot reactor VSR-1 was completed. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product concentration and yield. High levels of impurities formed intermetallic complexes with Al and reduced product yield.« less
WHY DOES FLUE GAS ELEMENTAL MERCURY CONCENTRATION INCREASE ACROSS A WET SCRUBBER?
The paper describes the results of research investigating the potential reduction of oxidized mercury (Hg2+) to elemental mercury (Hg0) and subsequent emission of Hg0 from wet scrubbers. Experiments were performed in a bench-scale, wet scrubber simulator containing solutions used...
BENCH-SCALE STUDIES TO IDENTIFY PROCESS PARAMETERS CONTROLLING REBURNING WITH PULVERIZED COAL
The report addresses the evaluation of a technology which is a combination of two technologies used to control the atmospheric emission of NOx by stationary sources: (1) combustion modification (controls flame temperature and maximizes fuel-rich residence time to minimize NOx for...
A BENCH SCALE STUDY ON BIODEGRADATION AND VOLATILIZATION OF ETHYLBENZOATE IN AQUIFERS. (R825549C039)
Experiments were conducted to investigate the fate of ethylbenzoate and soil microorganisms in shallow aquifers. Biodegradation and volatilization have been identified as the major mechanisms in attenuating ethylbenzoate in contaminated soils. The rate of volatilization was ex...
HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT
The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...
EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER
This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...
SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS
The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...
Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....
REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION
Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditio...
DEWATERING WASTEWATER TREATMENT SLUDGE BY CLATHRATE FREEZING: A BENCH-SCALE FEASIBILITY STUDY
Laboratory studies were performed to prove the concept and feasibility for a novel technology to dewater sludges. This involves the formation of solid hydrate crystals of water and specific clathrate-forming agents followed by separation of the hydrate crystal solids from the slu...
PRACTICAL APPLICATIONS FROM OBSERVATIONS OF MERCURY OXIDATION AND BINDING MECHANISMS
This paper describes a bench-scale program at the U.S. EPA. The goals of this program are to (a) isolate individual mechanisms of elemental mercury oxidation and oxidized mercury capture, (b) compete these mechanisms over a broad temperature range to determine which are dominant...
NASA Astrophysics Data System (ADS)
Kimura, J.; Sisson, T. W.; Coombs, M.; Lipman, P. W.
2002-12-01
Lava samples recovered from off-shore Hawaii Island, using remote and manned submersibles during JAMSTEC cruises in 1998, 1999, and 2001, were analyzed for major and trace elements. On the scarp below the Hilina bench (~ 3000 m bmsl), clasts of alkali and transitional basalt were recovered from debris-flow breccias, but tholeiite basalt of modern Kilauea type is absent (Sisson et al., 2002). In 2001 (dive K508), a succession of in-place pillow lavas of alkali basalt was found for the first time on the slope above the Hilina bench, along a well-exposed a rib. These in-place samples of alklic material in relative shallow water depths provide a critical link between modern-day and ancestral Kilauea. The rib is part of ancient Kilauea volcano that has remained in place, while the Hilina Bench contains slide/slump material from Kilauea (Lipman et al., 2002). At the same water depths but ~15 km to the southwest, Dive K207 sampled a series of alkali basalt breccia clasts that are compositionally similar to the in-place lavas of K208. In contrast, a dive on Papa'u Seamount (K509), located at the upper southwest margin of the bench, traversed massive breccias of subaerially erupted tholeiitic basalt. The breccias are compositionally similar to Mauna Loa lavas, and must be ancient landslide material from this volcano. Geochemical characteristics of transitional basalts from the slope above the Hilina bench are related to historical Kilauea tholeiites in major and trace elements. Alkali basalts from both the lower flank of the Hilina bench and the upper rib are more Ti rich than the transitional basalts, with elevated light-rare-earth and large-ion-lithophile elements. Various binary plots between highly incompatible trace element pairs define confined straight lines, including historical Kilauea tholeiite, the transitional basalts, and the Hilina alkalic pillows, suggesting a common mantle source with different degrees of partial melting. However, chemistry of these basalts differ from the more alkalic basanite and nephelinite lava clasts from the lower flank (Sisson et al., 2002). The highly alkaline lavas would have derived from different mantle sources, perhaps from perimeters of the Hawaiian mantle plume, whereas alkali, transitional, and tholeiitic basalts are from more central parts of the plume. The in-place alkalic pillow basalts provides new insights on earlier growth history and changes in states of basalt sources during the magmatic evolution of Kilauea, which is still in progress.
Rice, C.A.
2003-01-01
This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in isotopes along with compositional variations imply that the Ferron reservoir is heterogeneous and compartmentalized, and that multiple flow paths may exist. ?? 2003 Published by Elsevier B.V. All rights reserved.
Development of the oil-water monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, C.
1990-04-02
The oil-water monitor is a device invented by Dr. Claude Swanson of Applied Physics Technology to respond to the petroleum-loss problem in crude oil transfers. It is a device which measures water content in crude oil and other petroleum products, in a flowing pipe such as a pipeline or tanker manifold. It is capable of accurately measuring the water contamination levels in crude oil shipments, in real time as the crude oil flows through the loading manifold into the tanker, or at the receiving point as the oil is off-loaded It has application in the verification of oil volumes andmore » concentration of contaminants at petroleum transfer points. The industry-estimated level of water loss at transfer points due to inadequate monitoring technology amounts to several billion dollars per year, so there is a definite perceived need within the petroleum community for this type of accurate water monitoring technology. The device has been patented, and initial feasibility experiments have been conducted. The present research is directed toward developing and demonstrating a bench model prototype of the oil-water monitor, complete with the computer software and automated microwave equipment and electronics which will demonstrate the performance of the invention, for implementation in full-scale fielded systems. 3 figs.« less
Enhanced Combustion Low NOx Pulverized Coal Burner
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Towle; Richard Donais; Todd Hellewell
2007-06-30
For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less
NASA Astrophysics Data System (ADS)
Schiavetti, Pierluigi; Del Prete, Zaccaria
2007-08-01
The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.
Schiavetti, Pierluigi; Del Prete, Zaccaria
2007-08-01
The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode.
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2014 CFR
2014-07-01
... VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging bench with an...
BENCH-SCALE PROCESS EVALUATION OF REBURNING AND SORBENT INJECTION FOR IN-FURNACE NOX/SOX REDUCTION
The report gives results of combining reburning with the injection of calcium-based sorbents to investigate the potential for combined NOx and SOx reduction. Reburning, applied to pulverized-coal-fired utility boilers, involves injecting a secondary fuel above the main firing zon...
Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic
USDA-ARS?s Scientific Manuscript database
The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...
1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS ...
1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS USED TO DESIGN, BUILD, AND EVALUATE BENCH-SCALE TECHNOLOGIES USED IN ROCKY FLATS WASTE TREATMENT PROCESSES. (1/98) - Rocky Flats Plant, Design Laboratory, Northwest quadrant of Plant, between buildings 776-777 & 771, Golden, Jefferson County, CO
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...
This document reports on the results of bench-scale tests of treatment technologies for explosive-containing sediment located in lagoons at Army ammunition plants. A companion literature search identified the appropriate explosives remediation technologies to be evaluated. ...
EVALUATION OF A TWO-STAGE PASSIVE TREATMENT APPROACH FOR MINING INFLUENCE WATERS
A two-stage passive treatment approach was assessed at bench-scale using two Colorado Mining Influenced Waters (MIWs). The first-stage was a limestone drain with the purpose of removing iron and aluminum and mitigating the potential effects of mineral acidity. The second stage w...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immedia...
ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS
Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...
Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...
GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING
The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...
Depolymerization of lignin via co-pyrolysis with 1,4-butanediol in a microwave reactor
USDA-ARS?s Scientific Manuscript database
The production of valuable compounds from low cost but abundant residual lignin has proven to be challenging. The lack of effective biochemical lignin depolymerization processes has led many to focus on thermochemical conversion methods. Bench scale microwave pyrolysis of lignin has been performed...
Livestock air treatment using PVA-coated powdered activated carbon biofilter
USDA-ARS?s Scientific Manuscript database
The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...
PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL
The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...
STUDY OF SPECIATION OF MERCURY UNDER SIMULATED SCR NOX EMISSION CONTROL CONDITIONS
The paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. It describes the results of bench-scale experiments conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures wit...
Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...
DEVELOPMENT OF AN AFFORDABLE FAMILY-SCALE BIOGAS GENERATOR
From laboratory experiments we calculated that our system would have to deliver 262 liters/hr of biogas to cook a meal. Biogas produced by slurries of various wastes was measured with a two liter bench-top digester system designed by the team. Gas volume was measured by displa...
REMOVAL OF MTBE FROM WATER BY MEMBRANE-BASED PERVAPORATION TECHNOLOGY
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water has been evaluated at both bench- and pilot-scales. In pervaporation, a liquid stream containing two or more components is placed in contact with one side of a non-porous polymeric membrane while a vac...
Using bench scale U removal capacity data with bone char, a preliminary point-of-use filter was developed using theoretical calculations. The design specifications were completed for the filter, and the manufacturing of the preliminary filter is currently underway. Through ...
Module for phosphorus separation and recycling from liquid manures
USDA-ARS?s Scientific Manuscript database
A method has been developed to extract and concentrate soluble phosphates from livestock wastewater. The research was conducted over a 10-year period and went from initial bench studies and discovery, to pilot module development, to full-scale demonstrations of the phosphorus (P) module in swine fa...
THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION
Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...
Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...
CHARACTERIZATION OF ADVANCED SORBENTS FOR DRY SO2 CONTROL
The paper discusses the development of new flyash/lime sorbents for removing SO2 from coal-fired flue gas. Flyash/lime weight ratios of 1:1 to 10:1 and several additives to these sorbents for promoting their reactivity were evaluated in a bench-scale reactor simulating conditions...
The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance
Saeterbakken, Atle Hole; Mo, Dag-André; Scott, Suzanne; Andersen, Vidar
2017-01-01
Abstract The aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes. PMID:28713459
The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance.
Saeterbakken, Atle Hole; Mo, Dag-André; Scott, Suzanne; Andersen, Vidar
2017-06-01
The aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes.
Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems
NASA Astrophysics Data System (ADS)
Chalet, David; Chesse, Pascal
2010-10-01
The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.
Detection and characterization of uranium-humic complexes during 1D transport studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesher, Emily K.; Honeyman, Bruce D.; Ranville, James F.
2013-05-01
The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity andmore » residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.« less
Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.
Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M
2015-03-01
To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.
Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance
Ondrej Grexa; Mark A. Dietenberger; Robert H. White
2012-01-01
This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...
Devices for Emergency Hypothermia and Military Applications
2004-09-01
was cooled 6.10C. BenchProto, 2 L/min Flow Rate, Ambient Bag and Evaporator 30 25 20 ýPatient I 15 Inflow•. Outflow 210- I- 5- 0 50 100 150 200 250...Ambient 30 25 S20 SPatient 1 a15- Inflow Outflow E 10- 5 0 , 15 35 55 75 95 115 135 155 Time (sec) Figure 5 Filename: Appendix U.doc Page 5 of 7 M-to-M
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.; Burton, J.; McCormick, R. L.
2013-04-01
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Proceduremore » emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Tranter; R.D. Tillotson; T.A. Todd
2005-04-01
Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less
Making A D-Latch Sensitive To Alpha Particles
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.; Nixon, Robert H.
1994-01-01
Standard complementary metal oxide/semiconductor (CMOS) D-latch integrated circuit modified to increase susceptibility to single-event upsets (SEU's) (changes in logic state) caused by impacts of energetic alpha particles. Suitable for use in relatively inexpensive bench-scale SEU tests of itself and of related integrated circuits like static random-access memories.
MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI
Prior to this project, MRI had carried out work for the Environmental Protection Agency (EPA) on the conceptual design of a solar system for solid waste disposal and a follow-on project to study the feasibility of bench-scale testing of desorption of organics from soil with destr...
The U.S. Environmental Protection Agency (EPA) through its Risk Reduction Engineering Laboratory's Release Control Branch has undertaken research and development efforts to address the problem of leaking underground storage tanks (USTs). Under this effort, EPA is currently eva...
The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...
Second International Workshop on Grid Simulator Testing of Wind Turbine
, Clemson University, USA Update on the FSU-CAPS Megawatt Scale Power Hardware in the Loop Laboratory Loop Based Anti-Islanding Testing of PV Converters-Michael Steurer, Florida State University, USA Closed-Loop Control of Modern Test Benches Advanced Control Techniques for Dynamic Testing of Wind
Cesium Eluate Physical Property Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baich, M.A.
2001-02-13
Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.
Bench-scale supercritical fluid extraction (SFE) studies were performed on soil samples obtained from a Superfund site that is contaminated with high levels of p,p,-DDT, p,p,-DDD, p,p,-DDE, toxaphene and hexachlorocyclohexane. The effectiveness of supercritical fluid extraction ...
Several vapor phase chemical treatments for dimensional stabilization of wood
H.M. Barnes; E.T. Choong; R.C. Mcllhenny
1969-01-01
A bench-scale system for the impregnation of wood with volatile compounds was constructed for the purpose of testing the system concept and evaluating various polymeric bulking materials as dimensional stabilizing agents. Provisions were incorporated for recycling the treating material, introduction of two separate materials alternately or simultaneously, timed-cycle...
This study reports on the results of work preparing 30,000 Ibs of SARM or synthetic analytical reference matrix, a surrogate Superfund soil containing a vide range of contaminants. It also reports the results ©f bench scale treatability experiments designed to simulate the EP...
Cha, Young-Lok; Yang, Jungwoo; Park, Yuri; An, Gi Hong; Ahn, Jong-Woong; Moon, Youn-Ho; Yoon, Young-Mi; Yu, Gyeong-Dan; Choi, In-Hu
2015-04-01
Miscanthus sacchariflorus 'Goedae-Uksae 1' (GU) was developed as an energy crop of high productivity in Korea. For the practical use of GU for bioethanol production, a bench-scale continuous pretreatment system was developed. The reactor performed screw extrusion, soaking and thermochemical pretreatment at the following operating conditions: 3 mm particle size, 22% moisture content, 140 °C reaction temperature, 8 min residence time, 15 g/min biomass feeding and 120 mL/min NaOH input. As a result of minimizing NaOH concentration and enzyme dosage, 90.8±0.49% glucose yield was obtained from 0.5 M NaOH-pretreated GU containing 3% glucan with 10 FPU cellulase/g cellulose at 50 °C for 72 h. The separate hydrolysis and fermentation of 0.5 M NaOH-pretreated GU containing 10% glucan with 10-30 FPU for 102 h produced 43.0-49.6 g/L bioethanol (theoretical yield, 75.8-87.6%). Thus, this study demonstrated that continuous pretreatment using a single screw reactor is effective for bioethanol production from Miscanthus biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less
Mika, K B; Imamura, G; Chang, C; Conway, V; Fernandez, G; Griffith, J F; Kampalath, R A; Lee, C M; Lin, C-C; Moreno, R; Thompson, S; Whitman, R L; Jay, J A
2009-07-01
Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0.23 and -1.02 per day, and for enterococci between -0.5 and -1.0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent.
The economic production of alcohol fuels from coal-derived synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.
1995-12-31
The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less
Huo, Shuhao; Wang, Zhongming; Zhu, Shunni; Zhou, Weizheng; Dong, Renjie; Yuan, Zhenhong
2012-10-01
Cultivation of Chlorella zofingiensis and nutrients removal in dairy wastewater were investigated in bench-scale outdoor ponds in winter, South China. The impacts of the two types of pH regulations, 5 ≈ 6% CO(2) and acetic acid (HAc) on this process were studied. After 6 days cultivation, the removal rates of total nitrogen (TN) and orthophosphate (PO(4)(3-)) using CO(2) regulation were better than those using HAc. The removal rates of PO(4)(3-) and TN were 97.5% and 51.7%, respectively using CO(2) regulation; 79.6% (TN) and 42.0% (PO(4)(3-)) were obtained using HAc regulation. Higher biomass, protein, sugar content, and stable pH control were found using CO(2) regulation. However, significantly higher lipid content (31.8%) was observed using HAc regulation. The dominant differences of fatty acids were the content of C18:1 and C18:3. The growth characteristics and environmental conditions especially during the typical logarithmic phase were also analyzed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana
2013-02-01
A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 1
NASA Technical Reports Server (NTRS)
Baker, William H., Jr.
1986-01-01
A preliminary design and analysis was completed for a SLEEC (Shingle Lap Extendible Exit Cone) which could be incorporated on the Space Transportation System (STS) Solid Rocket Booster (SRB). Studies were completed which predicted weights and performance increases and development plans were prepared for the full-scale bench and static test of SLEEC. In conjunction with the design studies, a series of supporting analyses were performed to assure the validity and feasibility of performance, fabrication, cost, and reliability for the selected design. The feasibility and required amounts of bench, static firing, and flight tests considered necessary for the successful incorporation of SLEEC on the Shuttle SRBs were determined. Preliminary plans were completed which define both a follow on study effort and a development program.
40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Aging Bench Equipment and Procedures.... 86, App. VIII Appendix VIII to Part 86—Aging Bench Equipment and Procedures This appendix provides specifications for standard aging bench equipment and aging procedures which may be used to conduct bench aging...
40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Aging Bench Equipment and Procedures.... VIII Appendix VIII to Part 86—Aging Bench Equipment and Procedures This appendix provides specifications for standard aging bench equipment and aging procedures which may be used to conduct bench aging...
40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Aging Bench Equipment and Procedures.... 86, App. VIII Appendix VIII to Part 86—Aging Bench Equipment and Procedures This appendix provides specifications for standard aging bench equipment and aging procedures which may be used to conduct bench aging...
Metal Hydrides for High-Temperature Power Generation
Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...
2015-08-10
Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m 3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less
FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Bltyhe, G M; Steen, W A
2012-02-28
Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Bench-Scale and Pilot-Scale Treatment Technologies for the ...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog
Flip-flop method: A new T1-weighted flow-MRI for plants studies.
Buy, Simon; Le Floch, Simon; Tang, Ning; Sidiboulenouar, Rahima; Zanca, Michel; Canadas, Patrick; Nativel, Eric; Cardoso, Maida; Alibert, Eric; Dupont, Guillaume; Ambard, Dominique; Maurel, Christophe; Verdeil, Jean-Luc; Bertin, Nadia; Goze-Bac, Christophe; Coillot, Christophe
2018-01-01
The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water. We describe a novel flow-MRI method which takes advantage of inflow slice sensitivity. The method involves the slice selectivity in the context of multi slice spin echo sequence. Two sequences such as a given slice is consecutively inflow and outflow sensitive are performed, offering the possiblility to perform slow flow sensitive imaging in a quite straigthforward way. The method potential is demonstrated by imaging both a slow flow measurement on a test bench (as low as 10 μm.s-1) and the Poiseuille's profile of xylemian sap flow velocity in the xylematic tissues of a tomato plant stem.
Chidley, Matthew D; Carlson, Kristen D; Richards-Kortum, Rebecca R; Descour, Michael R
2006-04-10
The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.
Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno
2016-01-01
Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.
Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David
2017-07-01
In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H 2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm 2 , and at operating cost of 0.455 US $/m 3 . Additionally, it was found that FCER emits H 2 gas enough to generate a power of 1.36 kW/m 3 . Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R 2 of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Yang, Jie; Lin, Feng K; Yang, Lei; Hua, Dan Y
2015-01-01
The effects of oxygen-releasing compound (ORC) on the control of phosphorus (P) release as well as the spatial and temporal distribution of P fractions in sediment were studied through a bench-scale test. An ORC with an extended oxygen-releasing capacity was prepared. The results of the oxygen-releasing test showed that the ORC provided a prolonged period of oxygen release with a highly effective oxygen content of 60.6% when compared with powdery CaO2. In the bench-scale test, an ORC dose of 180 g·m(-2) provided a higher inhibition efficiency for P release within 50 days. With the application of the ORC, the dissolved oxygen (DO) concentration and redox potential (ORP) of the overlying water were notably improved, and the dissolved total phosphorus (DTP) was maintained below 0.689 mg·L(-1) compared to 2.906 mg·L(-1) without the ORC treatment. According to the P fractions distribution, the summation of all detectable P fractions in each sediment layer exhibited an enhanced accumulation tendency with the application of ORC. Higher phosphorus retention efficiencies were observed in the second and third layers of sediment from days 10 to 20 with the ORC. Phosphorus was trapped mainly in the form of iron bound P (Fe-P) and organically bound P (O-P) in sediment with the ORC, whereas the effects of the ORC on exchangeable P (EX-P), apatite-associated P (A-P) and detrital P (De-P) in the sediment sample were not significant. The microbial activities of the sediment samples demonstrated that both the dehydrogenase activity (DHA) and alkaline phosphatase activity (APA) in the upper sediment layer increased with the ORC treatment, which indicated that the mineralization of P was accelerated and the microbial biomass was increased. As the accumulation of P suppressed the release of P, the sediment exhibited an increased P retention efficiency with the application of the ORC.
Ferreira, R V; Serpa, D; Machado, A I; Rodríguez-Blanco, M L; Santos, L F; Taboada-Castro, M T; Cerqueira, M A; Keizer, J J
2016-12-01
Over the past decades, wildfires have affected extensive areas of the Mediterranean region with negative impacts on the environment. Most of the studies on fire-affected areas have focused on sediment losses by overland flow, whereas few have addressed post-fire nutrient export. The present study aimed to address this research gap by assessing nitrogen (nitrate and total nitrogen) losses by overland flow in a recently burnt area in north-central Portugal. To this end, three burnt slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Overland flow samples were collected during the first six months after the wildfire on a 1- to 2-weekly basis, after which this study had to be cancelled due to bench terracing of some of the sites. A peak in total nitrogen concentrations was observed in burnt areas immediately after the first post-fire rainfall event as a response to the erosion of the N-enriched ash layer. After this initial peak, smaller peaks were observed throughout the study period, mainly as a response to overland flow and/or erosion events. Nitrogen export differed strikingly between the two types of forests on schist, being higher at the eucalypt than at the pine site, due to the lack of a protective soil layer. Parent material did not play an important role on nitrogen export by overland flow since no significant differences were found between the eucalypt sites on granite and schist. The present study provides some insight into the differences in post-fire soil fertility losses between forest types and parent materials in the Mediterranean region, which is crucial information for defining post-fire land management measures to reduce soil degradation. Copyright © 2015 Elsevier B.V. All rights reserved.
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2012 CFR
2012-07-01
.... VII Appendix VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2013 CFR
2013-07-01
.... VII Appendix VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin
Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
Hoffman, G.L.; Fishman, M. J.; Garbarino, J.R.
1996-01-01
Water samples for trace-metal determinations routinely have been prepared in open laboratories. For example, the U.S. Geological Survey method I-3485-85 (Extraction Procedure, for Water- Suspended Sediment) is performed in a laboratory hood on a laboratory bench without any special precautions to control airborne contamination. This method tends to be contamination prone for several trace metals primarily because the samples are transferred, acidified, digested, and filtered in an open laboratory environment. To reduce trace-metal contamination of digested water samples, procedures were established that rely on minimizing sample-transfer steps and using a class-100 clean bench during sample filtration. This new procedure involves the following steps: 1. The sample is acidified with HCl directly in the original water-sample bottle. 2. The water-sample bottle with the cap secured is heated in a laboratory oven. 3. The digestate is filtered in a class-100 laminar-flow clean bench. The exact conditions used (that is, oven temperature, time of heating, and filtration methods) for this digestion procedure are described. Comparisons between the previous U.S Geological Survey open-beaker method I-3485-85 and the new in-bottle procedure for synthetic and field-collected water samples are given. When the new procedure is used, blank concentrations for most trace metals determined are reduced significantly.
An evaluation of 2 new devices for nasal high-flow gas therapy.
Waugh, Jonathan B; Granger, Wesley M
2004-08-01
The traditional nasal cannula with bubble humidifier is limited to a maximum flow of 6 L/min to minimize the risk of complications. We conducted a bench study of 2 new Food and Drug Administration-approved nasal cannula/humidifier products designed to deliver at flows> 6 L/min. Using a digital psychrometer we measured the relative humidity and temperature of delivered gas from each device, at 5 L/min increments over the specified functional high-flow range. The Salter Labs unit achieved 72.5-78.7% relative humidity (5-15 L/min range) at ambient temperature (21-23 degrees C). The Vapotherm device achieved 99.9% relative humidity at a temperature setting of 37 degrees C (5-40 L/min). Both devices meet minimum humidification standards and offer practical new treatment options. The patient-selection criteria are primarily the severity of the patient's condition and cost.
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, M. C.
1994-01-01
A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.
NASA Astrophysics Data System (ADS)
Goodman, H.
2017-12-01
This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2011-02-01
The correct quantification of mixing is of utmost importance for modeling reactive transport in porous media and for assessing the fate and transport of contaminants in the subsurface. An appropriate measure of mixing in heterogeneous porous formations should correctly capture the effects on mixing intensity of various processes at different scales, such as local dispersion and the mixing enhancement due to heterogeneities. In this work, we use the concept of flux-related dilution index as a measure of transverse mixing. This quantity expresses the dilution of the mass flux of a conservative tracer solution over the total discharge of the system, and is particularly suited to address problems where a compound is continuously injected into the domain. We focus our attention on two-dimensional systems under steady state flow conditions and investigate both conservative and reactive transport in homogeneous and heterogeneous porous media at different scales. For mixing-controlled reactive systems, we introduce and illustrate the concept of critical dilution index, which represents the amount of mixing required for complete degradation of a continuously emitted plume undergoing decay upon mixing with ambient water. We perform two-dimensional numerical experiments at bench and field scales in homogeneous and heterogeneous conductivity fields. These numerical simulations show that the flux-related dilution index quantifies mixing and that the concept of critical dilution index is a useful measure to relate the mixing of conservative tracers to mixing-controlled degradation of reactive compounds.
A comparison of muscle activation between a Smith machine and free weight bench press.
Schick, Evan E; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A; Khamoui, Andy V; Tran, Tai T; Uribe, Brandon P
2010-03-01
The bench press exercise exists in multiple forms including the machine and free weight bench press. It is not clear though how each mode differs in its effect on muscle activation. The purpose of this study was to compare muscle activation of the anterior deltoid, medial deltoid, and pectoralis major during a Smith machine and free weight bench press at lower (70% 1 repetition maximum [1RM]) and higher (90% 1RM) intensities. Normalized electromyography amplitude values were used during the concentric phase of the bench press to compare muscle activity between a free weight and Smith machine bench press. Participants were classified as either experienced or inexperienced bench pressers. Two testing sessions were used, each of which entailed either all free weight or all Smith machine testing. In each testing session, each participant's 1RM was established followed by 2 repetitions at 70% of 1RM and 2 repetitions at 90% of 1RM. Results indicated greater activation of the medial deltoid on the free weight bench press than on the Smith machine bench press. Also, there was greater muscle activation at the 90% 1RM load than at the 70% 1RM load. The results of this study suggest that strength coaches should consider choosing the free weight bench press over the Smith machine bench press because of its potential for greater upper-body muscular development.
MERCURY SPECIATION IN COMBUSTION SYSTEMS: STUDIES WITH SIMULATED FLUE GASES AND MODEL FLY ASHES
The paper gives results of a bench-scale study of the effects of flue gas and fly ash parameters on the oxidation of elemental mercury in simulated flue gases containing hydrogen chloride (HCl), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and water vapor (H2O...
Mercury (Hg) is a naturally-occurring element that is ubiquitous in the environment. Although an effort has been made in recent years to decrease Hg emissions, historically-emitted Hg may be retained in the sediments of aquatic systems where they may be slowly converted to methy...
Packed-bed catalytic cracking of oak derived pyrolytic vapors
USDA-ARS?s Scientific Manuscript database
Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...
“Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...
Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toy, Lora; Choi, Young Chul; Hendren, Zachary
In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade wastemore » heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m 2·h) for flat-sheet membranes and >20 L/(m 2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data, numerical modeling was performed on the FO and MD processes to estimate engineering parameters for a larger-scale pilot unit. Based on the experimental studies and modeling results, a pilot-scale, integrated FO-MD prototype unit was designed and built for trailer-mounted operation. This prototype system was fed real industrial wastewater, which could not be further treated by conventional technologies, from an oil production facility and was successfully operated for over 15 weeks without major stoppage. About 90% water recovery was possible, while concentrating the TDS from 12,000 ppm up to 190,500 ppm. The FO-MD prototype rejected most wastewater contaminants while producing water with <300 ppm TDS, even when the feed TDS was higher than 150,000 ppm. No chemical cleaning was necessary during the pilot testing period. Flushing the system with dechlorinated tap water was sufficient to reset the membranes for the next set of test conditions. Pilot performance and membrane autopsy showed that, even though the feed was concentrated more than 10 times, membrane fouling was unnoticeable and no defects were detected on the FO and MD membrane surfaces. This project demonstrated the technical feasibility of the hybrid FO-MD process by taking water already treated to the limit with the highest level of current technologies and further concentrating it 10-fold by using mostly low-cost materials. Because no membranes suitable for full-scale plant applications are available at present, economical feasibility of the hybrid technology is still uncertain, but it is expected that broader industry participation can further reduce FO-MD process costs.« less
Coal Technology Program progress report for April 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the Hydrocarbonization Research program, two successful experiments were completed in the bench-scale hydrocarbonizer. A settling test at a lower temperature (390/sup 0/F) using 20 percent toluene in Solvent Refined Coal (SRC) Unfiltered Oil (UFO) produced a 30 percent clarified product in 2 hr. Characterization tests include distillation curves for Wilsonville's SRC-UFO and a particle size distribution of Pittsburg and Midway Coal Mining Company's (PAMCO) SRC-UFO. Studies of intermediate-temperature pyrolysis of large blocks have been maintained with char samples continuing to demonstrate pyrophoricity, even after heating to 700/sup 0/C. Simulated distillation analysis of tars produced by the last eight experimentsmore » are being compared with those performed at Laramie upon tars produced by the Hanna No. 2 experiment. In Coal-Fueled MIUS, stainless steel tubing to be used in one of the furnace tube bundles was ordered and the bid package for the furnace completed. Tests continued on the coal feed system and with the cold flow fluidized bed model. For the Synthoil process, flow diagrams, material balances, and utilities requirements were completed for the entire facility. For the Hydrocarbonization process, flowsheets were reviewed for compatibility; equipment lists were brought up to date; and utilities requirements were compiled from the individual flowsheets. The char recovery and storage subsystem flowsheet was completed. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Schmidt, Andrew J.; Hart, Todd R.
Wet waste feedstocks present an apt opportunity for biomass conversion to fuels by hydrothermal processing. In this study, grape pomace slurries from two varieties, Montepulciano and cabernet sauvignon, have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale, continuous-flow reactor system. Carbon conversion to gravity-separable biocrude product up to 56 % was accomplished at relatively low temperature (350 C) in a pressurized (sub-critical liquid water) environment (20 MPa) when using grape pomace feedstock slurry with a 16.8 wt% concentration of dry solids processed at a liquid hourly space velocity of 2.1 h-1. Direct oil recovery was achievedmore » without the use of a solvent and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup using a Ru on C catalyst in a fixed bed producing a gas composed of methane and carbon dioxide from water soluble organics. Conversion of 99.8% of the chemical oxygen demand (COD) left in the aqueous phase was demonstrated. As a result, high conversion of grape pomace to liquid and gas fuel products was found with residual organic contamination in byproduct water reduced to <150 mg/kg COD.« less
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Chien, Shih-Hsiang; Dzombak, David A.; Vidic, Radisav D.
2013-01-01
Abstract Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2–3, and 0.5–1 mg/L as Cl2 for NaOCl, preformed NH2Cl, and ClO2, respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup. PMID:23781129
Chien, Shih-Hsiang; Dzombak, David A; Vidic, Radisav D
2013-06-01
Recent studies have shown that treated municipal wastewater can be a reliable cooling water alternative to fresh water. However, elevated nutrient concentration and microbial population in wastewater lead to aggressive biological proliferation in the cooling system. Three chlorine-based biocides were evaluated for the control of biological growth in cooling systems using tertiary treated wastewater as makeup, based on their biocidal efficiency and cost-effectiveness. Optimal chemical regimens for achieving successful biological growth control were elucidated based on batch-, bench-, and pilot-scale experiments. Biocide usage and biological activity in planktonic and sessile phases were carefully monitored to understand biological growth potential and biocidal efficiency of the three disinfectants in this particular environment. Water parameters, such as temperature, cycles of concentration, and ammonia concentration in recirculating water, critically affected the biocide performance in recirculating cooling systems. Bench-scale recirculating tests were shown to adequately predict the biocide residual required for a pilot-scale cooling system. Optimal residuals needed for proper biological growth control were 1, 2-3, and 0.5-1 mg/L as Cl 2 for NaOCl, preformed NH 2 Cl, and ClO 2 , respectively. Pilot-scale tests also revealed that Legionella pneumophila was absent from these cooling systems when using the disinfectants evaluated in this study. Cost analysis showed that NaOCl is the most cost-effective for controlling biological growth in power plant recirculating cooling systems using tertiary-treated wastewater as makeup.
Evaluation of particle-based flow characteristics using novel Eulerian indices
NASA Astrophysics Data System (ADS)
Cho, Youngmoon; Kang, Seongwon
2017-11-01
The main objective of this study is to evaluate flow characteristics in complex particle-laden flows efficiently using novel Eulerian indices. For flows with a large number of particles, a Lagrangian approach leads to accurate yet inefficient prediction in many engineering problems. We propose a technique based on Eulerian transport equation and ensemble-averaged particle properties, which enables efficient evaluation of various particle-based flow characteristics such as the residence time, accumulated travel distance, mean radial force, etc. As a verification study, we compare the developed Eulerian indices with those using Lagrangian approaches for laminar flows with and without a swirling motion and density ratio. The results show satisfactory agreement between two approaches. The accumulated travel distance is modified to analyze flow motions inside IC engines and, when applied to flow bench cases, it can predict swirling and tumbling motions successfully. For flows inside a cyclone separator, the mean radial force is applied to predict the separation of particles and is shown to have a high correlation to the separation efficiency for various working conditions. In conclusion, the proposed Eulerian indices are shown to be useful tools to analyze complex particle-based flow characteristics. Corresponding author.
Testing the pyramid truth wavefront sensor for NFIRAOS in the lab
NASA Astrophysics Data System (ADS)
Mieda, Etsuko; Rosensteiner, Matthias; van Kooten, Maaike; Veran, Jean-Pierre; Lardiere, Olivier; Herriot, Glen
2016-07-01
For today and future adaptive optics observations, sodium laser guide stars (LGSs) are crucial; however, the LGS elongation problem due to the sodium layer has to be compensated, in particular for extremely large telescopes. In this paper, we describe the concept of truth wavefront sensing as a solution and present its design using a pyramid wavefront sensor (PWFS) to improve NFIRAOS (Narrow Field InfraRed Adaptive Optics System), the first light adaptive optics system for Thirty Meter Telescope. We simulate and test the truth wavefront sensor function under a controlled environment using the HeNOS (Herzberg NFIRAOS Optical Simulator) bench, a scaled-down NFIRAOS bench at NRC-Herzberg. We also touch on alternative pyramid component options because despite recent high demands for PWFSs, we suffer from the lack of pyramid supplies due to engineering difficulties.
MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts
NASA Astrophysics Data System (ADS)
Rixey, W. G.
2003-12-01
The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2017-02-01
This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.
Pearson, Simon N; Cronin, John B; Hume, Patria A; Slyfield, David
2009-09-01
Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power - an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10-100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (Pmax) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 +/- 5.7% and 70.4 +/- 5.4% of 1RM) compared to the bench press (53.3 +/- 1.7% and 49.7 +/- 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.
Chen, X; Fujiwara, T; Ohtoshi, K; Inamori, S; Nakamachi, K; Tsuno, H
2010-01-01
A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2-92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6-88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
A statistical summary of data from the U.S. Geological Survey's national water quality networks
Smith, R.A.; Alexander, R.B.
1983-01-01
The U.S. Geological Survey Operates two nationwide networks to monitor water quality, the National Hydrologic Bench-Mark Network and the National Stream Quality Accounting Network (NASQAN). The Bench-Mark network is composed of 51 stations in small drainage basins which are as close as possible to their natural state, with no human influence and little likelihood of future development. Stations in the NASQAN program are located to monitor flow from accounting units (subregional drainage basins) which collectively encompass the entire land surface of the nation. Data collected at both networks include streamflow, concentrations of major inorganic constituents, nutrients, and trace metals. The goals of the two water quality sampling programs include the determination of mean constituent concentrations and transport rates as well as the analysis of long-term trends in those variables. This report presents a station-by-station statistical summary of data from the two networks for the period 1974 through 1981. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valocchi, Albert; Werth, Charles; Liu, Wen-Tso
Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literaturemore » suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi-scale numerical models. Continuous fed-batch reactors were used to derive kinetic parameters for DMRB, and to develop an enrichment culture for elucidation of syntrophic relationships in a complex microbial community. Pore and continuum scale experiments using microfluidic and bench top flow cells were used to evaluate the impact of cell-to-cell and microbial interactions on reaction enhancement in mixing-limited bioactive zones, and the mechanisms of this interaction. Some of the microfluidic experiments were used to develop and test models that considers direct cell-to-cell interactions during metal reduction. Pore scale models were incorporated into a multi-scale hybrid modeling framework that combines pore scale modeling at the reaction interface with continuum scale modeling. New computational frameworks for combining continuum and pore-scale models were also developed« less
Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.
2016-01-01
Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; P<0.0001). Mean-difference analysis suggested that the average isometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; P<0.0001) and age (β=−0.20; P<0.0001) were positively correlated with 1-RM bench press strength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047
Evaluation of Rotating Biological Contactor Technology for Civil Works Recreational Areas.
1982-04-01
Engineers, Midland District Centre, United Kingdom , November 1972). This study investigated the diurnal variations in flow and their effect on RBC... Industrial Waste Conference (1975), p 675. With a six-stage bench-top RBC unit and a synthetic apple waste contain- ing approximately 900 mg/L of BOD, the...AO-AI16 759 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 13/2 EVALUATION OF ROTATING BIOLOGICAL CONTACTOR TECHNOLOGY FOR CIVI-ETC(U
Balances for the measurement of multiple components of force in flows of a millisecond duration
NASA Technical Reports Server (NTRS)
Mee, D. J.; Daniel, W. J.; Tuttle, S. L.; Simmons, J. M.
1995-01-01
This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.
Soluble Protein Analysis using a Compact Bench-top Flow Cytometer
NASA Technical Reports Server (NTRS)
Pappas, Dimitri; Kao, Shib-Hsin; Cyr, Johnathan
2004-01-01
Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health (blood cell count, leukocyte differential, etc.) and a wide array of biochemistry and immunology assays. research settings, the application of this technique to soluble protein analysis is also possible. Proteomic beads using fluorescent dyes for optical encoding were used to monitor six cytokines simultaneously in cell medium of cell cultures in stationary and rotating cell culture systems. The results of this work demonstrate that a compact flow cytometer, such as a system proposed for space flight, can detect a variety of soluble proteins for crew health and biotechnology experiments during long-term missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less
Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa
2015-07-01
Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.
McCurry, Daniel L; Ishida, Kenneth P; Oelker, Gregg L; Mitch, William A
2017-08-01
UV-based advanced oxidation processes (AOPs) effectively degrade N-nitrosodimethylamine (NDMA) passing through reverse osmosis (RO) units within advanced treatment trains for the potable reuse of municipal wastewater. However, certain utilities have observed the re-formation of NDMA after the AOP from reactions between residual chloramines and NDMA precursors in the AOP product water. Using kinetic modeling and bench-scale RO experiments, we demonstrate that the low pH in the RO permeate (∼5.5) coupled with the effective rejection of NH 4 + promotes conversion of the residual monochloramine (NH 2 Cl) in the permeate to dichloramine (NHCl 2 ) via the reaction: 2 NH 2 Cl + H + ↔ NHCl 2 + NH 4 + . Dichloramine is the chloramine species known to react with NDMA precursors to form NDMA. After UV/AOP, utilities generally use lime or other techniques to increase the pH of the finished water to prevent distribution system corrosion. Modeling indicated that, while the increase in pH halts dichloramine formation, it converts amine-based NDMA precursors to their more reactive, neutral forms. With modeling, and experiments at both bench-scale and field-scale, we demonstrate that reducing the time interval between RO treatment and final pH adjustment can significantly reduce NDMA re-formation by minimizing the amount of dichloramine formed prior to reaching the final target pH.
Relationship of pectoralis major muscle size with bench press and bench throw performances.
Akagi, Ryota; Tohdoh, Yukihiro; Hirayama, Kuniaki; Kobayashi, Yuji
2014-06-01
This study examined the relationship of muscle size indices of the pectoralis major muscle with bench press and bench throw performances in 18 male collegiate athletes. The maximal cross-sectional area (MCSAMAx) and volume (MV) of the pectoralis major muscle were determined by magnetic resonance imaging. First, subjects were tested for their one repetition maximum bench press strength (1RMBP) using a Smith machine. At a later date, subjects performed bench throws using the Smith machine with several different loads ranging from 30.0 kg to 90% of 1RMBP. Barbell positions were measured by a linear position transducer, and bench throw power was calculated using a dynamic equation. Three trials were performed for each load. In all the trials, the maximal peak power was adopted as bench throw peak power (PPBT). The 1RMBP was significantly correlated with MCSAMAx. Similarly, the correlation coefficient between MV and PPBT was significant. In contrast to the y-intercept of the MV-PPBT regression line, that of the MCSAMAx-1RMBP regression line was not significantly different from 0. These results suggested that, although the dependence on pectoralis major muscle size is slightly different between bench press strength and bench throw power, the pectoralis major muscle size has a significant impact on bench press and throw performances. Greater muscle size leads to heavier body weight, which can be a negative factor in some sports. We therefore recommend that athletes and their coaches develop training programs for improving sports performance by balancing the advantage of increased muscle size and the potential disadvantage of increased body weight.
This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...
ERIC Educational Resources Information Center
Smith, York R.; Fuchs, Alan; Meyyappan, M.
2010-01-01
Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…
2005-11-01
101 Task 6 - Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM numerical simulator...hydrogen sparging in a bench scale three-dimensional sand pack model. (6) Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM ...Incorporation of the heterogeneity enhanced mechanisms in the UTCHEM numerical simulator. Simulation model for foam in porous media and
Project of electro-cyclotron resonance ion source test-bench for material investigation.
Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V
2014-02-01
Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.
Project of electro-cyclotron resonance ion source test-bench for material investigation
NASA Astrophysics Data System (ADS)
Kulevoy, T. V.; Chalykh, B. B.; Kuibeda, R. P.; Kropachev, G. N.; Ziiatdinova, A. V.
2014-02-01
Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.
Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.
2009-01-01
Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.
Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, R.F.; Coless, L.A.; Davis, S.M.
In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less