DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less
Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Caraher, Joel; Chen, Wei
2015-03-31
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less
Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less
Kreissel, K; Bösl, M; Lipp, P; Franzreb, M; Hambsch, B
2012-01-01
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.
The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1979-03-01
Experimental runs were made to determine the effect of a cooler product reservoir on metal alloy yield and recovery. The reservoir temperature had no significant effect. Difficulties were experienced with operation of an oxygen injected bench scale reactor. Many tests were terminated by burden bridging or flooding of the oxygen tuyeres with metal and slag. Runs were made in which refluxing vapors were condensed in a liquid slag. The addition of CaO decreased the tendency for formation of thick, strong burden bridges but did not completely eliminate bridging. Reduction of flame temperatures did not affect the volatilization rate in themore » bench reactor. Operation of VSR-1 pilot reactor with O injection was achieved after resolving reactor shell leakage problems, by replacing the permeable ceramic shell with impermeable fused silica. Various combustion parameters were investigated, including coke size, burden height and oxygen flow rate. Steady state operation of the oxygen-coke system was attained with smooth burden movement and a 2000/sup 0/C bed temperature in the raceway vicinity. To further reduce heat losses from the raceway area. VSR-1 was redesigned to facilitate locating an induction coil below the oxygen inlets. Further evaluation of effects of impurities on alloy purification in the bench scale unit indicated a 50% decrease in product yield for starting charges containing Fe greater than 5%. Site installation for the entire alloy purification complex was completed. Operations were continued in the bench scale units to obtain design information for the pilot commercial grade Al purification unit. Procurement of construction material was established.« less
Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments
1993-08-01
1 CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT . . 5 PART I: INTRODUCTION...141 REFERENCES ....................... .............................. 142 TABLES 1 -4 APPENDIX A: IN SITU IMPLEMENTATION CASE STUDIES...TREATMENT RESEARCH: BENCH-SCALE EXPERIMENTS PART I: INTRODUCTION Background 1 . Many US Army installations have areas of contamination requiring
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lail, Marty
The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed inmore » a bench-scale test unit operated at RTI.« less
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1978-12-01
The parameters of charge content, reaction temperatures and residence time were studied in a bench reactor concerning the production of Al--Si and Fe--Si alloys. Results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C. Residence time varied with initial charge concentration. Fe/sub 2/O/sub 3/ additions to the charge produced a significant increase in metallic yield. A burden preparation procedure was developed for making acceptable agglomerates containing Fe/sub 2/O/sub 3/, bauxite, clay and coke. Particle size distribution of starting materials was correlated with agglomerate strength. A new bench scale reactor was designed and built to facilitate semi-continuous operation,more » using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. In a number of runs bridging of the burden material occurred due to condensation of volatilized sub-oxides in the cooler zones of the reactor. The reactor operated smoothly as an iron blast furnace at 1500/sup 0/C, demonstrating the validity of the equipment and test procedures. Initial construction of pilot reactor VSR-1 was completed. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product concentration and yield. High levels of impurities formed intermetallic complexes with Al and reduced product yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shiaoguo
A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy usemore » and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO₂ capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.« less
Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard
One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less
Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...
2018-03-01
One of the main technical hurdles associated with adsorbent based hydrogen storage systems is relative to their ability to discharge hydrogen effectively, as dictated by fuel cell requirements. In this study, a new honeycomb finned heat exchanger concept was examined to evaluate its potential as a heat transfer system for hydrogen desorption. A bench scale 0.5 L vessel was equipped with the proposed heat exchanger, filled with MOF-5® adsorbent material. The heating power, required to desorb hydrogen, was provided by a 100 W electric heater placed in the center of the honeycomb structure. Two desorption tests, at room temperature andmore » under cryogenic temperatures, were carried out to evaluate the hydrogen desorption performance of the proposed system under different operating conditions. The bench scale vessel performance was verified from both an experimental and a modeling point of view, demonstrating the ability to desorb about 45% of the adsorbed hydrogen in reduced time and applying low heating power. Further modeling analyses were also carried out showing the potential of the proposed system to reach high hydrogen discharging rates at cryogenic temperature conditions and operating pressures between 100 bar and 5 bar. The proposed adsorption system also demonstrated to be able to discharge all the available hydrogen in less than 500 s operating at cryogenic conditions and with a nominal heating power of 100 W.« less
CAPSULE REPORT: AQUEOUS MERCURY TREATMENT
This report describes established technologies and identifies evolving methods for treating aqueous mercury. The information provided encompasses full-, pilot- and bench-scale treatment results as presented in the technical literature. The report describes alternative technologi...
GREENSCOPE Technical User’s Guide
GREENSCOPE’s methodology has been developed and its software tool designed such that it can be applied to an entire process, to a piece of equipment or process unit, or at the investigatory bench scale.
Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlquist, D.R.
This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.
1995-12-31
The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less
Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.
Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro
2015-05-14
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, Sonja; House, Alan; Liu, Kun
An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. Themore » vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.« less
HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN
The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yongqi; DeVries, Nicholas; Ruhter, David
A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysismore » (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.« less
Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J
2017-06-14
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.
Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.
2017-01-01
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
The Computerization of the National Library in Paris.
ERIC Educational Resources Information Center
Lerin, Christian; Bernard, Annick
1986-01-01
Describes the organization and automation plan of the Bibliotheque Nationale (Paris, France) that was begun in 1981. Highlights include the method of moving toward computerization; technical choices; the choosing procedure (pre-qualification, bench-mark test); short term and pilot operations; and preparation for the implementation of the…
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
A series of seven technical presentations involving chemical oxidation will be given to faculty, graduate students, and environmental professionals at the Chinese Academy of Sciences in Beijing, China (April 21-22, 2010). Chemical oxidation technologies include in-situ chemical o...
Hartley, T F
2010-01-01
The aim of this study was to design an audit questionnaire that focuses on the management of the technical activities in a Diagnostic Pathology Laboratory. The ISO 15189 Standard is written in such a way that it continually moves back and forth from topics where the auditor needs to question bench level staff, to topics where the auditor needs to question Technical Management Staff. This makes for a disjointed audit process - both Bench Staff and Technical Managers are repeatedly interrupted. The solution was to do a clause by clause analysis of the Standard and assign the major responsibility for the compliance to each clause to either Technical Managers or Bench Staff. The Clauses were then grouped under four topic headings regardless of whether they were a Section 4 or Section 5 Clause. Two questionnaires have emerged - the one described in this work and one directed primarily towards the activities of bench staff. There are 95 questions and it takes approximately two hours to complete.
This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rachid B. Slimane; Francis S. Lau; Javad Abbasian
2000-10-01
The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor withmore » H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.« less
Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found tomore » be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasbir Gill
2010-08-30
Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less
Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toy, Lora; Choi, Young Chul; Hendren, Zachary
In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade wastemore » heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m 2·h) for flat-sheet membranes and >20 L/(m 2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data, numerical modeling was performed on the FO and MD processes to estimate engineering parameters for a larger-scale pilot unit. Based on the experimental studies and modeling results, a pilot-scale, integrated FO-MD prototype unit was designed and built for trailer-mounted operation. This prototype system was fed real industrial wastewater, which could not be further treated by conventional technologies, from an oil production facility and was successfully operated for over 15 weeks without major stoppage. About 90% water recovery was possible, while concentrating the TDS from 12,000 ppm up to 190,500 ppm. The FO-MD prototype rejected most wastewater contaminants while producing water with <300 ppm TDS, even when the feed TDS was higher than 150,000 ppm. No chemical cleaning was necessary during the pilot testing period. Flushing the system with dechlorinated tap water was sufficient to reset the membranes for the next set of test conditions. Pilot performance and membrane autopsy showed that, even though the feed was concentrated more than 10 times, membrane fouling was unnoticeable and no defects were detected on the FO and MD membrane surfaces. This project demonstrated the technical feasibility of the hybrid FO-MD process by taking water already treated to the limit with the highest level of current technologies and further concentrating it 10-fold by using mostly low-cost materials. Because no membranes suitable for full-scale plant applications are available at present, economical feasibility of the hybrid technology is still uncertain, but it is expected that broader industry participation can further reduce FO-MD process costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyler, James R.
2015-12-21
The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less
Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.
Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K
2009-01-01
The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design
The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...
Foaming phenomenon in bench-scale anaerobic digesters.
Siebels, Amanda M; Long, Sharon C
2013-04-01
The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.
2015-06-19
DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less
OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94
Fiscal year 1994 (FY94, October 1, 1993 through September 30,1994) saw the continuation of incineration research testing efforts at the IRF. uring the year, two major pilot-scale programs were completed and a third carried to near-completion, and two bench-scale test programs of ...
Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; Van't Hof, Wouter; Wagey, Ravenska
2013-01-01
Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization. PMID:24101671
Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design
1996-02-01
feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Tanaka, K. L.
2010-01-01
The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
A pure thermochemical cycle is a system of linked regenerative chemical reactions which accepts only water and heat and produces hydrogen. Thermochemical cycles are potentially a more efficient and cheaper means of producing hydrogen from water than is the generation of electricity followed by electrolysis. The Energy Storage Systems Division of the Department of Energy is currently funding a national program on thermochemical hydrogen production. The National Aeronautics and Space Administration is responsible for the technical management of this program. The goal is to develop a cycle which can potentially operate with an efficiency greater than 40% using a heat source providing a maximum available temperature of 1150 K. A closed bench-scale demonstration of such a cycle would follow. This cycle would be labeled a 'reference cycle' and would serve as a baseline against which future cycles would be compared.
Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde
2010-01-01
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin
Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less
Tatari, K; Smets, B F; Albrechtsen, H-J
2013-10-15
A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of virus surface characteristics on removal mechanisms within membrane bioreactors.
Chaudhry, Rabia M; Holloway, Ryan W; Cath, Tzahi Y; Nelson, Kara L
2015-11-01
In this study we investigated the removal of viruses with similar size and shape but with different external surface capsid proteins by a bench-scale membrane bioreactor (MBR). The goal was to determine which virus removal mechanisms (retention by clean backwashed membrane, retention by cake layer, attachment to biomass, and inactivation) were most impacted by differences in the virus surface properties. Seven bench-scale MBR experiments were performed using mixed liquor wastewater sludge that was seeded with three lab-cultured bacteriophages with icosahedral capsids of ∼30 nm diameter (MS2, phiX174, and fr). The operating conditions were designed to simulate those at a reference, full-scale MBR facility. The virus removal mechanism most affected by virus type was attachment to biomass (removals of 0.2 log for MS2, 1.2 log for phiX174, and 3 log for fr). These differences in removal could not be explained by electrostatic interactions, as the three viruses had similar net negative charge when suspended in MBR permeate. Removals by the clean backwashed membrane (less than 1 log) and cake layer (∼0.6 log) were similar for the three viruses. A comparison between the clean membrane removals seen at the bench-scale using a virgin membrane (∼1 log), and the full-scale using 10-year old membranes (∼2-3 logs) suggests that irreversible fouling, accumulated on the membrane over years of operation that cannot be removed by cleaning, also contributes towards virus removal. This study enhances the current mechanistic understanding of virus removal in MBRs and will contribute to more reliable treatment for water reuse applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
A bench-scale evaluation of the reuse of water at highway rest areas.
DOT National Transportation Integrated Search
1975-01-01
A pilot laboratory treatment system was successfully employed to investigate the reuse of wastewater for flushing toilets at highway rest areas. This extended aeration unit used a synthetic waste to determine if the biological system could operate ef...
Scale-down/scale-up studies leading to improved commercial beer fermentation.
Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A
2011-08-01
Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panaccione, Charles; Staab, Greg; Meuleman, Erik
ION has developed a mathematically driven model for a contacting device incorporating mass transfer, heat transfer, and computational fluid dynamics. This model is based upon a parametric structure for purposes of future commercialization. The most promising design from modeling was 3D printed and tested in a bench scale CO 2 capture unit and compared to commercially available structured packing tested in the same unit.
Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Andraka, C. E.; Moss, T. A.
During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.
Federsel, Hans-Jürgen
2009-05-19
In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a reduction to under 10 years for the specific segment covering preclinical development through launch. This change puts enormous pressure on the entire organization, and the implication for PR&D is that the time allowed for conducting route design and scale-up has shrunk accordingly. Furthermore, molecular complexity has become extremely challenging in many instances, and demand steadily grows for process understanding and knowledge generation about low-level byproduct, which often must be controlled even at trace concentrations to meet regulatory specifications (especially in the case of potentially genotoxic impurities). In this Account, we paint a broad picture of the technical challenges the PR&D community is grappling with today, focusing on what measures have been taken over the years to create more efficiency and effectiveness.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
AnaBench: a Web/CORBA-based workbench for biomolecular sequence analysis
Badidi, Elarbi; De Sousa, Cristina; Lang, B Franz; Burger, Gertraud
2003-01-01
Background Sequence data analyses such as gene identification, structure modeling or phylogenetic tree inference involve a variety of bioinformatics software tools. Due to the heterogeneity of bioinformatics tools in usage and data requirements, scientists spend much effort on technical issues including data format, storage and management of input and output, and memorization of numerous parameters and multi-step analysis procedures. Results In this paper, we present the design and implementation of AnaBench, an interactive, Web-based bioinformatics Analysis workBench allowing streamlined data analysis. Our philosophy was to minimize the technical effort not only for the scientist who uses this environment to analyze data, but also for the administrator who manages and maintains the workbench. With new bioinformatics tools published daily, AnaBench permits easy incorporation of additional tools. This flexibility is achieved by employing a three-tier distributed architecture and recent technologies including CORBA middleware, Java, JDBC, and JSP. A CORBA server permits transparent access to a workbench management database, which stores information about the users, their data, as well as the description of all bioinformatics applications that can be launched from the workbench. Conclusion AnaBench is an efficient and intuitive interactive bioinformatics environment, which offers scientists application-driven, data-driven and protocol-driven analysis approaches. The prototype of AnaBench, managed by a team at the Université de Montréal, is accessible on-line at: . Please contact the authors for details about setting up a local-network AnaBench site elsewhere. PMID:14678565
Electrochemical Membrane for Carbon Dioxide Capture and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less
Evaluation of constructed wetland treatment performance for winery wastewater.
Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L
2003-01-01
Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.
Issues in mass spectrometry between bench chemists and regulatory laboratory managers
USDA-ARS?s Scientific Manuscript database
At the 123rd AOAC Annual Meeting in Philadelphia, 45 residue chemists gathered for a roundtable discussion of mass spectrometry (MS) for regulatory purposes involving chemical residues analysis. The session was conceived to address current technical and communication issues about MS between “bench ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, S.R.
1987-02-01
The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less
Comparison of the goals and MISTELS scores for the evaluation of surgeons on training benches.
Wolf, Rémi; Medici, Maud; Fiard, Gaëlle; Long, Jean-Alexandre; Moreau-Gaudry, Alexandre; Cinquin, Philippe; Voros, Sandrine
2018-01-01
Evaluation of surgical technical abilities is a major issue in minimally invasive surgery. Devices such as training benches offer specific scores to evaluate surgeons but cannot transfer in the operating room (OR). A contrario, several scores measure performance in the OR, but have not been evaluated on training benches. Our aim was to demonstrate that the GOALS score, which can effectively grade in the OR the abilities involved in laparoscopy, can be used for evaluation on a laparoscopic testbench (MISTELS). This could lead to training systems that can identify more precisely the skills that have been acquired or must still be worked on. 32 volunteers (surgeons, residents and medical students) performed the 5 tasks of the MISTELS training bench and were simultaneously video-recorded. Their performance was evaluated with the MISTELS score and with the GOALS score based on the review of the recording by two experienced, blinded laparoscopic surgeons. The concurrent validity of the GOALS score was assessed using Pearson and Spearman correlation coefficients with the MISTELS score. The construct validity of the GOALS score was assessed with k-means clustering and accuracy rates. Lastly, abilities explored by each MISTELS task were identified with multiple linear regression. GOALS and MISTELS scores are strongly correlated (Pearson correlation coefficient = 0.85 and Spearman correlation coefficient = 0.82 for the overall score). The GOALS score proves to be valid for construction for the tasks of the training bench, with a better accuracy rate between groups of level after k-means clustering, when compared to the original MISTELS score (accuracy rates, respectively, 0.75 and 0.56). GOALS score is well suited for the evaluation of the performance of surgeons of different levels during the completion of the tasks of the MISTELS training bench.
Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
Beta-glucan production by Botryosphaeria rhodina in different bench-top bioreactors.
Selbmann, L; Crognale, S; Petruccioli, M
2004-01-01
Evaluation of the technical feasibility of transferring beta-glucan production by Botryosphaeria rhodina DABAC-P82 from shaken flasks to bench-top bioreactors. Three different bioreactors were used: 3 l stirred tank reactor (STR-1) equipped with two different six-blade turbines; STR as above but equipped with a three-blade marine propeller plus draft-tube (STR-2); 2 l air-lift column reactor (ALR) equipped with an external loop. STR-1, tested at three different stirrer speeds (300, 500 and 700 rev min(-1)) appeared to be less suitable for beta-glucan production by the fungus, being maximum production (19.4 g l(-1)), productivity (0.42 g l(-1) h(-1)) and yield (0.48 g g(-1) of glucose consumed) markedly lower than those obtained in shaken culture (29.7 g l(-1), 1.23 g l(-1) h(-1) and 0.61 g g(-1), respectively). Better performances were obtained with both STR-2 and ALR. With the latter, in particular, the increase of production was accompanied by reduced fermentation time (25.7 g l(-1) after only 22 h); productivity and yield were highest (1.17 g l(-1) h(-1) and 0.62 g g(-1) of glucose consumed, respectively). Using an air-lift reactor with external loop, the scaling up from shaken flasks to bench-top bioreactor of the beta-glucan production by B. rhodina DABAC-P82 is technically feasible. Although culture conditions are still to be optimized, the results obtained using the ARL are highly promising.
PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL
The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Kataria, Atish; Soukri, Mustapha
It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the resultsmore » of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.« less
Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiguang; Shou, S.; Pyrzynski, Travis
2013-12-31
This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less
MINIPILOT SOLAR SYSTEM: DESIGN/OPERATION OF SYSTEM AND RESULTS OF NON-SOLAR TESTING AT MRI
Prior to this project, MRI had carried out work for the Environmental Protection Agency (EPA) on the conceptual design of a solar system for solid waste disposal and a follow-on project to study the feasibility of bench-scale testing of desorption of organics from soil with destr...
Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection
NASA Astrophysics Data System (ADS)
Seto, C. J.; Haidari, A. S.; McRae, G. J.
2009-12-01
Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.
2013-01-01
Objectives To establish the current state of knowledge on the effect of surgical simulation on the development of technical competence during surgical training. Methods Using a defined search strategy, the medical and educational literature was searched to identify empirical research that uses simulation as an educational intervention with surgical trainees. Included studies were analysed according to guidelines adapted from a Best Evidence in Medical Education review. Results A total of 32 studies were analysed, across 5 main categories of surgical simulation technique - use of bench models and box trainers (9 studies); Virtual Reality (14 studies); human cadavers (4 studies); animal models (2 studies) and robotics (3 studies). An improvement in technical skill was seen within the simulated environment across all five categories. This improvement was seen to transfer to the real patient in the operating room in all categories except the use of animals. Conclusions Based on current evidence, surgical trainees should be confident in the effects of using simulation, and should have access to formal, structured simulation as part of their training. Surgical simulation should incorporate the use of bench models and box trainers, with the use of Virtual Reality where resources allow. Alternatives to cadaveric and animal models should be considered due to the ethical and moral issues surrounding their use, and due to their equivalency with other simulation techniques. However, any use of surgical simulation must be tailored to the individual needs of trainees, and should be accompanied by feedback from expert tutors.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-03-01
The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David J
PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600more » cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present« less
Sludge Characterization and Bench Scale Treatability Report
Nov. 10, 2010 letter from Mississippi Department of Environmental Quality (MDEQ) to Hercules, Inc. in Hattiesburg, MS about the findings of a August 20, 2010 Sludge Characterization and Bench Scale Treatability Report.
Performance of ultrafiltration membrane process combined with coagulation/sedimentation.
Jang, N Y; Watanabe, Y; Minegishi, S
2005-01-01
Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.
Hot-bench simulation of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Houck, Jacob A.
1990-01-01
Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.
Coal-oil coprocessing at HTI - development and improvement of the technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalzer, R.H.; Lee, L.K.; Hu, J.
1995-12-31
Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less
Pathe, P P; Kumar, M Suresh; Kharwade, M R; Kaul, S N
2004-05-01
Effluent treatment plants need land for construction, capital cost, power and specialized manpower for their operation and maintenance. Because of these constraints, small scale tanneries can not afford to have their own effluent treatment facilities and therefore, combined effluent from all tanneries are to be brought to a centralized place for treatment. This facility is called a Common Effluent Treatment Plant (CETP). For operation and maintenance of CETP, small scale tanners formed a co-operative society. The expenses for operation and maintenance of CETP are being shared by participating tanneries. Wastewater management for the cluster of small scale tanneries was studied in details and various measures were incorporated to improve performance of the CETP and also to improve treated effluent quality to confirm standard prescribed by regulatory agencies. Performance of existing CETP was evaluated. Based on the results, bench scale laboratory treatability studies were conducted for improvement in treated effluent quality and also to suggest appropriate modifications to the CETP. These studies are detailed in this paper.
14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...
14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
de Montbrun, Sandra L; Roberts, Patricia L; Lowry, Ann C; Ault, Glenn T; Burnstein, Marcus J; Cataldo, Peter A; Dozois, Eric J; Dunn, Gary D; Fleshman, James; Isenberg, Gerald A; Mahmoud, Najjia N; Reznick, Richard K; Satterthwaite, Lisa; Schoetz, David; Trudel, Judith L; Weiss, Eric G; Wexner, Steven D; MacRae, Helen
2013-12-01
To develop and evaluate an objective method of technical skills assessment for graduating subspecialists in colorectal (CR) surgery-the Colorectal Objective Structured Assessment of Technical Skill (COSATS). It may be reasonable for the public to assume that surgeons certified as competent have had their technical skills assessed. However, technical skill, despite being the hallmark of a surgeon, is not directly assessed at the time of certification by surgical boards. A procedure-based, multistation technical skills examination was developed to reflect a sample of the range of skills necessary for CR surgical practice. These consisted of bench, virtual reality, and cadaveric models. Reliability and construct validity were evaluated by comparing 10 graduating CR residents with 10 graduating general surgery (GS) residents from across North America. Expert CR surgeons, blinded to level of training, evaluated performance using a task-specific checklist and a global rating scale. The mean global rating score was used as the overall examination score and a passing score was set at "borderline competent for CR practice." The global rating scale demonstrated acceptable interstation reliability (0.69) for a homogeneous group of examinees. Both the overall checklist and global rating scores effectively discriminated between CR and GS residents (P < 0.01), with 27% of the variance attributed to level of training. Nine CR residents but only 3 GS residents were deemed competent. The Colorectal Objective Structured Assessment of Technical Skill effectively discriminated between CR and GS residents. With further validation, the Colorectal Objective Structured Assessment of Technical Skill could be incorporated into the colorectal board examination where it would be the first attempt of a surgical specialty to formally assess technical skill at the time of certification.
Photocatalytic degradation of phenol, chlorinated phenols, and lindane was evaluated in a continuous flow TiOz rotating disk photocatalytic reactor (RDPR). The RDPR operated at a hydraulic residence time of 0.25 day and at a disk angular velocity of 12 rpm. At low molar feed conc...
Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai
2015-06-01
Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-01-01
Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937
Xu, Ping; Clark, Colleen; Ryder, Todd; Sparks, Colleen; Zhou, Jiping; Wang, Michelle; Russell, Reb; Scott, Charo
2017-03-01
Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 - 5 L bench-top bioreactors requires high foot-print, and running cost. The establishment of the Ambr 250 as a scale-down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (k L a) in the Ambr 250 was conducted to define optimal operational conditions. Scale-down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and k L a have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5-L and 1000-L bioreactor scales, when using k L a as a scale-down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench-top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5-L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench-top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478-489, 2017. © 2017 American Institute of Chemical Engineers.
Ormsbee, Michael J; Carzoli, Joseph P; Klemp, Alex; Allman, Brittany R; Zourdos, Michael C; Kim, Jeong-Su; Panton, Lynn B
2017-03-13
Autoregulation (AR) is the practice of adjusting training variables in response to athlete feedback. One component of AR postulated to enhance resistance training adaptations involves implementing a resistance training-specific rating of perceived exertion (RPE) scale measuring repetitions in reserve (RIR). The purpose of this study was to examine the efficacy of this method using the bench press exercise. Twenty-seven college-aged men were assigned to one of two groups based upon training age: experience benchers (EB) (n=14, training age: 4.7±2.0 yrs) and novice benchers (NB) (n=13, training age: 1.1±0.6 yrs). Subjects performed one-repetition maximum (1RM) followed by single-repetition sets with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Subjects reported a corresponding RPE, based on RIR, for every set. Average velocity was recorded for each single-repetition set along with the first and last repetitions of the 8-repetition set at 70% 1RM. Average velocity at 100% of 1RM in EB was slower (0.14±0.04 m[BULLET OPERATOR]s) compared to NB (0.20±0.05 m[BULLET OPERATOR]s) (p<0.001). EB recorded greater RPE than NB at 1RM (EB: 9.86±0.14 vs. NB: 9.35±0.36) (p=0.011). No between-group differences existed for average velocity or RPE at any other intensity. Both EB (r=0.85, p<0.001) and NB (r=0.85, p<0.001) had strong inverse significant correlations between average velocity and RPE at all intensities. Our findings suggest that the RIR-based RPE scale may be an efficacious approach for AR of bench press training load and volume in college-aged men.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less
Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael
2016-08-01
The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.
Ravnic, Dino J; Leberfinger, Ashley N; Koduru, Srinivas V; Hospodiuk, Monika; Moncal, Kazim K; Datta, Pallab; Dey, Madhuri; Rizk, Elias; Ozbolat, Ibrahim T
2017-07-01
: Three-dimensional (3D) bioprinting is a revolutionary technology in building living tissues and organs with precise anatomic control and cellular composition. Despite the great progress in bioprinting research, there has yet to be any clinical translation due to current limitations in building human-scale constructs, which are vascularized and readily implantable. In this article, we review the current limitations and challenges in 3D bioprinting, including in situ techniques, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside. A detailed discussion is made on the technical barriers in the fabrication of scalable constructs that are vascularized, autologous, functional, implantable, cost-effective, and ethically feasible. Clinical considerations for implantable bioprinted tissues are further expounded toward the correction of end-stage organ dysfunction and composite tissue deficits.
Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.
This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was tomore » investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.« less
NASA Astrophysics Data System (ADS)
Martins, Martinho A. S.; Rial-Rivas, María E.; Machado, Ana I.; Serpa, Dalila; Prats, Sergio A.; Faria, Sílvia R.; Varela, María E. T.; González-Pelayo, Óscar; Keizer, J. Jacob
2015-04-01
Wildfires are known as one of the principal natural hazards affecting the Mediterranean region. This includes Portugal, where wildfires have affected some 100.000 ha of rural lands each year. The effects of wildfires on runoff generation and/or the associated soil (fertility) losses have been studied in Portugal for more than two decades. Some of these studies have reported strong and sometimes extreme hydrological responses in recently burnt areas. Forestry operations in such areas have increasingly come to include bench terracing in preparation of new eucalypt plantations. The hydrological impacts of bench terracing, however, have received little research attention so far and the few existing publications are limited to small spatial scales. The construction of terraces is commonly considered an effective practice for soil conservation on steep slopes, having been applied by mankind since early history. Nonetheless, the present authors have measured high rates of splash as well as inter-rill erosion on recently constructed terraces, and have regularly observed rill formation, including on forest tracks which typically constitute an extensive network in such bench terraced plantations. The present study was carried out in a 29-ha forest catchment in north-central Portugal that was burnt by a wildfire during the summer of 2010, logged during early winter 2010/11, and then bench terraced with bulldozers during late winter 2011, some 6 months after the wildfire. The catchment outlet was instrumented immediately after the fire with an automatic hydrometric station comprising two subsequent flumes with maximum discharge capacities of 120 and 1700 l sec-1. Within the catchment, rainfall was measured using several automatic and storage gauges and overland flow was monitored on two contrasting slopes using 3 micro-plots of approximately 0.25m2 on each slope.Overland flow was measured at 1- to 2-weekly intervals during the hydrological years of 2010/11 and 2011/12, i.e. during the first six months after the wildfire but before the bench terracing and during the subsequent 18 months. While data analysis is still ongoing, preliminary results suggested that bench terracing had a greater impact on runoff generation than the wildfire itself, especially at the micro-plot scale
Simulation in Surgical Education
de Montbrun, Sandra L.; MacRae, Helen
2012-01-01
The pedagogical approach to surgical training has changed significantly over the past few decades. No longer are surgical skills solely acquired through a traditional apprenticeship model of training. The acquisition of many technical and nontechnical skills is moving from the operating room to the surgical skills laboratory through the use of simulation. Many platforms exist for the learning and assessment of surgical skills. In this article, the authors provide a broad overview of some of the currently available surgical simulation modalities including bench-top models, laparoscopic simulators, simulation for new surgical technologies, and simulation for nontechnical surgical skills. PMID:23997671
Coal technology program progress report, February 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Final testing of the 20-atm bench-scale system is underway in preparation for experiments with hydrogen. Laboratory-scale testing of a number of inexpensive pure compounds to improve the settling rate of solids in Solvent Refined Coal (SRC) unfiltered oil (UFO), bench-scale testing of the effect of the Tretolite additive on settling, and characterization tests on a new sample of UFO from the PAMCO-SRC process are reported. Experimental engineering support of an in situ gasification process include low-temperature pyrolyses at exceptionally low heating rates (0.3/sup 0/C/min). Highly pyrophoric chars were consistently produced. Aqueous by-products from coal conversion technologies and oil shale retortingmore » have been analyzed directly to determine major organic components. A report is being prepared discussing various aspects of the engineering evaluations of nuclear process heat for coal. A bench-scale test program on thermochemical water splitting for hydrogen production is under consideration. In the coal-fueled MIUS program, preparations for procurement of tubing for the matrix in the fluidized-bed furnace and for fabrication of the furnace continued. Analyses of the AiResearch gas turbine and recuperator under coal-fueled MIUS operating conditions are near completion. Process flow diagrams and heat and material balances were completed for most of the units in the synthoil process. Overall utilities requirements were calculated and the coal preparation flowsheets were finalized. For hydrocarbonization, the flowsheet was revised to include additional coal data. Flowsheets were finalized for the acid gas separation and recycle, and the oil-solids separation. (LTN)« less
DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS
The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...
Prince, Bryan; Lundevall, Jeremy
2014-01-01
This is an ongoing discussion and analysis of powder-handling safety in the compounding pharmacy laboratory that started in the November/December 2013 issue of the International Journal of Pharmaceutical Compounding. In the previous technical article, we established that most chemical powders handled during compounding procedures have an established occupational exposure limits and that powders are micronized during manipulation. All micronized powders handled on an open bench create health hazards to the technicians and create a potential for cross-contamination to the lab environment. Proper identification of the chemical hazard and established standard operating procedures in direct correlation to Good Lab Practices when working inside a powder hood will positively improve the compounding pharmacy's work environment.
Research and Development on the Storage Ring Vacuum System for the APS Upgrade Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillwell, B.; Brajuskovic, B.; Carter, J.
A number of research and development activities are underway at Argonne National Laboratory to build confidence in the designs for the storage ring vacuum system required for the Advanced Photon Source Up-grade project (APS-U) [1]. The predominant technical risks are: excessive residual gas pressures during operation; insufficient beam position monitor stability; excessive beam impedance; excessive heating by induced electrical surface currents; and insufficient operational reliability. Present efforts to mitigate these risks include: building and evaluating mockup assemblies; performing mechanical testing of chamber weld joints; developing computational tools; investigating design alternatives; and performing electrical bench measurements. Status of these activities andmore » some of what has been learned to date will be shared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina
The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less
Test bench for measurements of NOvA scintillator properties at JINR
NASA Astrophysics Data System (ADS)
Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.
2018-04-01
The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
COMPARING RBF WITH BENCH-SCALE CONVENTIONAL TREATMENT FOR PRECURSOR REDUCTION
The reduction of disinfection by-product (DBP) precursors upon riverbank filtration (RBF) at three drinking water utilities in the mid-Western United States was compared with that obtained using a bench-scale conventional treatment train on the corresponding river waters. The riv...
2013-01-01
Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110
Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen
2013-12-02
Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.
Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N
2011-01-01
An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design - slides
The oral presentation will be at the EWRI International LID Conference in San Francisco, on April 11-14, 2010. The slides discuss the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing...
Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.; Sjostrom, S.; Smith, J.
1996-11-06
The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less
Rolling-Element Fatigue Testing and Data Analysis - A Tutorial
NASA Technical Reports Server (NTRS)
Vlcek, Brian L.; Zaretsky, Erwin V.
2011-01-01
In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.
Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.
Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J
2017-06-07
An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY
The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...
Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water
Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...
BENCH-SCALE STUDIES ON THE SIMULTANEOUS FORMATION OF PCBS AND PCDDS/FS FROM COMBUSTION SYSTEMS
The paper reports on a bench-scale experimental study to characterize a newly built reactor system that was built to: produce levels and distributions of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) production similar to those achieved by previous re...
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL
Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...
Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, M.D.
The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less
NASA. Langley Research Center dry powder towpreg system
NASA Technical Reports Server (NTRS)
Baucom, Robert M.; Marchello, Joseph M.
1990-01-01
Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.
Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.
2015-01-01
The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036
Christenson, Logan B; Sims, Ronald C
2012-07-01
Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts. Copyright © 2012 Wiley Periodicals, Inc.
Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...
REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS
The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...
MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR
A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2011-02-11
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Raul Subia
GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less
1983-07-01
TEST CHART NATIONAL BVIREAU OF StANARS-1963- I AQUATIC PLANT CONTROL RESEARCH PROGRAM TECHNICAL REPORT A-78-2 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF...Waterways Experiment Station P. 0. Box 631, Vicksburg, Miss. 39180 83 11 01 018 - I ., lit I III I | LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE...No. 3. RECIPIENT’S CATALOG NUMBER Technical Report A-78-2 Aa 1 Lj 19 ________5!1___ A. TITLE (Ad Subtitle) LARGE-SCALE OPERATIONS MANAGEMENT S. TYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thibodeaux, J.; Hensley, J.
2013-01-01
The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way ofmore » two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, David; Vidal, Rafael; Russell, Tania
2014-12-31
The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorbermore » off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.« less
Enhanced DOC removal using anion and cation ion exchange resins.
Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L
2016-01-01
Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
Flue gas conditioning for improved particle collection in electrostatic precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, M.D.
1992-04-27
The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less
Jia, Tongying; Yuan, Huiyun
2017-04-12
Many large-scaled public hospitals have established branched hospitals in China. This study is to provide evidence for strategy making on the management and development of multi-branched hospitals by evaluating and comparing the operational efficiencies of different hospitals before and after their establishment of branched hospitals. DEA (Data Envelopment Analysis) window analysis was performed on a 7-year data pool from five public hospitals provided by health authorities and institutional surveys. The operational efficiencies of sample hospitals measured in this study (including technical efficiency, pure technical efficiency and scale efficiency) had overall trends towards increase during this 7-year period of time, however, a temporary downturn occurred shortly after the establishment of branched hospitals; pure technical efficiency contributed more to the improvement of technical efficiency compared to scale efficiency. The establishment of branched-hospitals did not lead to a long-term negative effect on hospital operational efficiencies. Our data indicated the importance of improving scale efficiency via the optimization of organizational management, as well as the advantage of a different form of branch-establishment, merging and reorganization. This study brought an insight into the practical application of DEA window analysis on the assessment of hospital operational efficiencies.
An ultra stable optical bench for the magnetic survey satellite
NASA Technical Reports Server (NTRS)
Wingate, C. A., Jr.; Coughlin, T. B.; Sullivan, R. M.
1978-01-01
The Magsat optical bench has been designed and built to hold the alignment of five optical elements to deflections of 1-2 arcsec during orbital operation. The bench has been designed to withstand alignment changes during the launch and prestabilization phases of the mission. Severe weight constraints, in conjunction with the thermal and structural requirements, led to the choice of graphite-fiber-reinforced epoxy egg crate core and face sheets for the bench construction. Active temperature control was necessary to meet thermal deflection objectives, and novel kinematic mountings were required to prevent spacecraft bending from deflecting the bench.
A rolling-sliding bench test for investigating rear axle lubrication
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...
2018-02-07
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
A rolling-sliding bench test for investigating rear axle lubrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.
An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less
IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
John P. Hurley; Patty L. Kleven
2001-09-30
The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of thismore » project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.« less
Cha, Young-Lok; Yang, Jungwoo; Park, Yuri; An, Gi Hong; Ahn, Jong-Woong; Moon, Youn-Ho; Yoon, Young-Mi; Yu, Gyeong-Dan; Choi, In-Hu
2015-04-01
Miscanthus sacchariflorus 'Goedae-Uksae 1' (GU) was developed as an energy crop of high productivity in Korea. For the practical use of GU for bioethanol production, a bench-scale continuous pretreatment system was developed. The reactor performed screw extrusion, soaking and thermochemical pretreatment at the following operating conditions: 3 mm particle size, 22% moisture content, 140 °C reaction temperature, 8 min residence time, 15 g/min biomass feeding and 120 mL/min NaOH input. As a result of minimizing NaOH concentration and enzyme dosage, 90.8±0.49% glucose yield was obtained from 0.5 M NaOH-pretreated GU containing 3% glucan with 10 FPU cellulase/g cellulose at 50 °C for 72 h. The separate hydrolysis and fermentation of 0.5 M NaOH-pretreated GU containing 10% glucan with 10-30 FPU for 102 h produced 43.0-49.6 g/L bioethanol (theoretical yield, 75.8-87.6%). Thus, this study demonstrated that continuous pretreatment using a single screw reactor is effective for bioethanol production from Miscanthus biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P
2008-11-14
The long-term management of dissolved plumes originating from a coal tar creosote source is a technical challenge. For some sites stabilization of the source may be the best practical solution to decrease the contaminant mass loading to the plume and associated off-site migration. At the bench-scale, the deposition of manganese oxides, a permanganate reaction byproduct, has been shown to cause pore plugging and the formation of a manganese oxide layer adjacent to the non-aqueous phase liquid creosote which reduces post-treatment mass transfer and hence mass loading from the source. The objective of this study was to investigate the potential of partial permanganate treatment to reduce the ability of a coal tar creosote source zone to generate a multi-component plume at the pilot-scale over both the short-term (weeks to months) and the long-term (years) at a site where there is >10 years of comprehensive synoptic plume baseline data available. A series of preliminary bench-scale experiments were conducted to support this pilot-scale investigation. The results from the bench-scale experiments indicated that if sufficient mass removal of the reactive compounds is achieved then the effective solubility, aqueous concentration and rate of mass removal of the more abundant non-reactive coal tar creosote compounds such as biphenyl and dibenzofuran can be increased. Manganese oxide formation and deposition caused an order-of-magnitude decrease in hydraulic conductivity. Approximately 125 kg of permanganate were delivered into the pilot-scale source zone over 35 days, and based on mass balance estimates <10% of the initial reactive coal tar creosote mass in the source zone was oxidized. Mass discharge estimated at a down-gradient fence line indicated >35% reduction for all monitored compounds except for biphenyl, dibenzofuran and fluoranthene 150 days after treatment, which is consistent with the bench-scale experimental results. Pre- and post-treatment soil core data indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.
Errors of car wheels rotation rate measurement using roller follower on test benches
NASA Astrophysics Data System (ADS)
Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.
2018-03-01
The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.
Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levasseur, Armand
2014-04-30
Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale testsmore » at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.« less
Development of the Write Process for Pipeline-Ready Heavy Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Brecher; Charles Mones; Frank Guffey
Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establishmore » a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.« less
EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.
2009-08-14
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processesmore » using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).« less
Thermal Destruction Of CB Contaminants Bound On Building ...
Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Biological Conversion of Sugars to Hydrocarbons Technology Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan; Biddy, Mary J.; Tan, Eric
2013-03-31
In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Kevin
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
Wang, Chao; Xu, Zhijie; Lai, Kevin; ...
2017-10-24
Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less
Retrofit designs for small bench-type blood cell counters.
Ferris, C D
1991-01-01
This paper describes several retrofit designs to correct operational problems associated with small bench-type blood cell counters. Replacement electronic circuits as well as modifications to the vacuum systems are discussed.
Coal Technology Program progress report, March 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less
Lu, Yehu; Song, Guowen; Wang, Faming
2015-03-01
Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
Metal Hydrides for High-Temperature Power Generation
Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...
2015-08-10
Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m 3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less
FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Bltyhe, G M; Steen, W A
2012-02-28
Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Bench Scale Development and Testing of Aerogel Sorbents for CO 2 Capture Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begag, Redouane
The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO 2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO 2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO 2 capacity, respectively (@ 40 °C adsorption / 100more » – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO 2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO 2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO 2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO 2 capture capacity after 20 cycles in the presence of 40 ppm SO 2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post combustion CO 2 capture process using a bituminous coal fired, super-critical steam cycle power plant producing 550 MWe net generation with 90% CO 2 capture using a methylethylamine (MEA) solvent. Using the NETL report as guidance, the designed CO 2 capture system was analyzed on a cost basis to determine relative cost estimates between the benchmark MEA system and the AFA sorbent system.« less
Allometric scaling of strength scores in NCAA division I-A football athletes.
Oba, Yukiya; Hetzler, Ronald K; Stickley, Christopher D; Tamura, Kaori; Kimura, Iris F; Heffernan, Thomas P
2014-12-01
This study examined population-specific allometric exponents to control for the effect of body mass (BM) on bench press, clean, and squat strength measures among Division I-A collegiate football athletes. One repetition maximum data were obtained from a university pre-season football strength assessment (bench press, n = 207; clean, n = 88; and squat n = 86) and categorized into 3 groups by positions (line, linebacker, and skill). Regression diagnostics and correlations of scaled strength data to BM were used to assess the efficacy of the allometric scaling model and contrasted with that of ratio scaling and theoretically based allometric exponents of 0.67 and 0.33. The log-linear regression models yielded the following exponents (b): b = 0.559, 0.287, and 0.496 for bench press, clean, and squat, respectively. Correlations between bench press, clean, and squat to BM were r = -0.024, -0.047, and -0.018, respectively, suggesting that the derived allometric exponents were effective in partialling out the effect of BM on these lifts and removing between-group differences. Conversely, unscaled, ratio-scaled, and allometrically scaled (b = 0.67 or 0.33) data resulted in significant differences between groups. It is suggested that the exponents derived in the present study be used for allometrically scaling strength measures in National Collegiate Athletic Association Division I-A football athletes. Use of the normative percentile rank scores provide coaches and trainers with a valid means of judging the effectiveness of their training programs by allowing comparisons between individuals without the confounding influence of BM.
Technical data on new engineering products
NASA Astrophysics Data System (ADS)
1985-02-01
New grades of permanently magnetic materials; automatic digital radiolocator; bench winder; analog induction gauge; programmable pulse generator; portable defibrillators; pipe welders; two-component electromagnetic log; sulphur content analyzer; peristaltic pumps; function generators; welding manipulator; and tonsiometer are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, M; Kochergin, V; Hess, R
2005-03-31
Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less
Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA
Greb, S.F.; Eble, C.F.; Hower, J.C.
1999-01-01
More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.
Development and Validity of a Scale of Perception of Velocity in Resistance Exercise
Bautista, Iker J.; Chirosa, Ignacio J.; Chirosa, Luis J.; Martín, Ignacio; González, Andrés; Robertson, Robert J.
2014-01-01
This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key Points Measurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES. The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocity Regular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads PMID:25177180
Development and validity of a scale of perception of velocity in resistance exercise.
Bautista, Iker J; Chirosa, Ignacio J; Chirosa, Luis J; Martín, Ignacio; González, Andrés; Robertson, Robert J
2014-09-01
This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key PointsMeasurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES.The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocityRegular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads.
Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, R.F.; Coless, L.A.; Davis, S.M.
In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, R.F.; Coless, L.A.; Davis, S.M.
In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less
1997-10-01
This report discusses the results of a bench scale study conducted to evaluate the potential inhibitory effects of untreated AFFF wastewater to the...untreated AFFF wastewater to the nitrification process of the Virginia Initiative Plant biological nutrient removal system. Under this testing, bench...scale reactors simulating the nitrification process were loaded at various AFFF concentrations and the influence on the process performance was
Evaluation of seismic testing for quality assurance of lime-stabilized soil.
DOT National Transportation Integrated Search
2013-08-01
This study sought to determine the technical feasibility of using seismic techniques to measure the : laboratory and field seismic modulus of lime-stabilized soils (LSS), and to compare/correlate test results : from bench-top (free-free resonance) se...
Marketing information: The technical report as product
NASA Technical Reports Server (NTRS)
Stoher, F. F.; Pinelli, T. E.
1981-01-01
Technical reports constitute a product, the primary means for communicating the results of research to the user. The Langley scientific and technical information (STI) review and evaluation project undertook a review of the technical report as an effective product for information communication. Style manuals describing theory and practice in technical report preparation; publication manuals covering such factors as design, layout, and type style; and copies of technical reports were obtained from industrial, academic, governmental, and research organizations. Based on an analysis of this material, criteria will be established for the report components, for the relationship of the components within the report context, and for the overall report organization. The criteria will be used as bench marks and compared with the publication standards currently used to prepare NASA technical reports.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
Project of electro-cyclotron resonance ion source test-bench for material investigation.
Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V
2014-02-01
Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.
Project of electro-cyclotron resonance ion source test-bench for material investigation
NASA Astrophysics Data System (ADS)
Kulevoy, T. V.; Chalykh, B. B.; Kuibeda, R. P.; Kropachev, G. N.; Ziiatdinova, A. V.
2014-02-01
Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.
USDA-ARS?s Scientific Manuscript database
Juice production is a multibillion dollar industry and an economical way to use fruit past seasonal harvests. To evaluate how production steps influence not-from-concentrate (NFC) blueberry (Vaccinium sp.) juice recovery, bench top and pilot scale experiments were performed. In bench-top, southern h...
NASA Astrophysics Data System (ADS)
Vaganova, N. A.
2017-12-01
Technogenic and climatic influences have a significant impact on the degradation of permafrost. Long-term forecasts of such changes during long-time periods have to be taken into account in the oil and gas and construction industries in view to development the Arctic and Subarctic regions. There are considered constantly operating technical systems (for example, oil and gas wells) that affect changes in permafrost, as well as the technical systems that have a short-term impact on permafrost (for example, flare systems for emergency flaring of associated gas). The second type of technical systems is rather complex for simulation, since it is required to reserve both short and long-scales in computations with variable time steps describing the complex technological processes. The main attention is paid to the simulation of long-term influence on the permafrost from the second type of the technical systems.
Estimation of light commercial vehicles dynamics by means of HIL-testbench simulation
NASA Astrophysics Data System (ADS)
Groshev, A.; Tumasov, A.; Toropov, E.; Sereda, P.
2018-02-01
The high level of active safety of vehicles is impossible without driver assistance electronic systems. Electronic stability control (ESC) system is one of them. Nowadays such systems are obligatory for installation on vehicles of different categories. The approval of active safety level of vehicles with ESC is possible by means of high speed road tests. The most frequently implemented tests are “fish hook” and “sine with dwell” tests. Such kind of tests provided by The Global technical regulation No. 8 are published by the United Nations Economic Commission for Europe as well as by ECE 13-11. At the same time, not only road tests could be used for estimation of vehicles dynamics. Modern software and hardware technologies allow imitating real tests with acceptable reliability and good convergence between real test data and simulation results. ECE 13-11 Annex 21 - Appendix 1 “Use Of The Dynamic Stability Simulation” regulates demands for special Simulation Test bench that could be used not only for preliminary estimation of vehicles dynamics, but also for official vehicles homologation. This paper describes the approach, proposed by the researchers from Nizhny Novgorod State Technical University n.a. R.E. Alekseev (NNSTU, Russia) with support of engineers of United Engineering Center GAZ Group, as well as specialists of Gorky Automobile Plant. The idea of approach is to use the special HIL (hardware in the loop) -test bench, that consists of Real Time PC with Real Time Software and braking system components including electronic control unit (ECU) of ESC system. The HIL-test bench allows imitating vehicle dynamics in condition of “fish hook” and “sine with dwell” tests. The paper describes the scheme and structure of HIL-test bench and some peculiarities that should be taken into account during HIL-simulation.
Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N
2016-09-15
Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recent reflux receiver developments under the US DOE program
NASA Astrophysics Data System (ADS)
Andraka, C. E.; Diver, R. B.; Moreno, J. B.; Moss, T. A.; Adkins, D. R.
The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a 'thermal transformer' to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections. Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has amassed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been demonstrated.
Recent reflux receiver developments under the US DOE program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C.E.; Diver, R.B.; Moreno, J.B.
1994-10-01
The United States Department of Energy (DOE) Solar Thermal Program, through Sandia National Laboratories (SNL), is cooperating with industry to commercialize dish-Stirling technology. Sandia and the DOE have actively encouraged the use of liquid metal reflux receivers in these systems to improve efficiency and lower the levelized cost of electricity. The reflux receiver uses two-phase heat transfer as a {open_quotes}thermal transformer{close_quotes} to transfer heat from a parabolic tracking-concentrator to the heater heads of the Stirling engine. The two-phase system leads to a higher available input temperature, lower thermal stresses, longer life, and independent design of the absorber and engine sections.more » Two embodiments of reflux receivers have been investigated: Pool boilers and heat pipes. Several pool-boiler reflux receivers have been successfully demonstrated on sun at up to 64 kWt throughput at SNL. In addition, a bench-scale device was operated for 7500 hours to investigate materials compatibility and boiling stability. Significant progress has also been made on heat pipe receiver technology. Sintered metal wick heat pipes have been investigated extensively for application to 7.5 kWe and 25 kWe systems. One test article has a massed over 1800 hours of on-sun operation. Another was limit tested at Sandia to 65 kWt throughput. These devices incorporate a nickel-powder thick wick structure with condensate return directly to the wick surface. Circumferential tubular arteries are optionally employed to improve the operating margin. In addition, DOE has begun a development program for advanced wick structures capable of supporting the Utility Scale Joint Venture Program, requiring up to 100 kWt throughput. Promising technologies include a brazed stainless steel powdered metal wick and a stainless steel metal felt wick. Bench-scale testing has been encouraging, and on-sun testing is expected this fall. Prototype gas-fired hybrid solar receivers have also been.« less
Hydrogen Production via a High-Efficiency Low-Temperature Reformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul KT Liu; Theo T. Tsotsis
2006-05-31
Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposedmore » to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.« less
Removal of bromide and bromate from drinking water using granular activated carbon.
Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua
2015-03-01
Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.
Predicting Power Output of Upper Body using the OMNI-RES Scale.
Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J
2014-12-09
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.
Predicting Power Output of Upper Body using the OMNI-RES Scale
Bautista, Iker J.; Chirosa, Ignacio J.; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E.; Chirosa, Luis J.; Robertson, Robert J.
2014-01-01
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI–RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = −0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI–RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone. PMID:25713677
Evaluation of a Bench Top Mechanical Delinter
USDA-ARS?s Scientific Manuscript database
This presentation will report on current research associated with a new mechancial delinter being developed at the Cotton Production and Processing Research Unit in conjunction with Cotton Inc. A bench-top version of the new mechanical delinter was built and evaluated to determine operational speeds...
Bench-test comparison of 26 emergency and transport ventilators.
L'Her, Erwan; Roy, Annie; Marjanovic, Nicolas
2014-10-15
Numerous emergency and transport ventilators are commercialized and new generations arise constantly. The aim of this study was to evaluate a large panel of ventilators to allow clinicians to choose a device, taking into account their specificities of use. This experimental bench-test took into account general characteristics and technical performances. Performances were assessed under different levels of FIO2 (100%, 50% or Air-Mix), respiratory mechanics (compliance 30,70,120 mL/cmH2O; resistance 5,10,20 cmH2O/mL/s), and levels of leaks (3.5 to 12.5 L/min), using a test lung. In total 26 emergency and transport ventilators were analyzed and classified into four categories (ICU-like, n = 5; Sophisticated, n = 10; Simple, n = 9; Mass-casualty and military, n = 2). Oxygen consumption (7.1 to 15.8 L/min at FIO2 100%) and the Air-Mix mode (FIO2 45 to 86%) differed from one device to the other. Triggering performance was heterogeneous, but several sophisticated ventilators depicted triggering capabilities as efficient as ICU-like ventilators. Pressurization was not adequate for all devices. At baseline, all the ventilators were able to synchronize, but with variations among respiratory conditions. Leak compensation in most ICU-like and 4/10 sophisticated devices was able to correct at least partially for system leaks, but with variations among ventilators. Major differences were observed between devices and categories, either in terms of general characteristics or technical reliability, across the spectrum of operation. Huge variability of tidal volume delivery with some devices in response to modifications in respiratory mechanics and FIO2 should make clinicians question their use in the clinical setting.
Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities.
Torres-Acosta, Mario A; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco
2018-06-07
Aqueous two-phase systems (ATPS) have proved to be an efficient and integrative operation to enhance recovery of industrially relevant bioproducts. After ATPS discovery, a variety of works have been published regarding their scaling from 10 to 1000 L. Although ATPS have achieved high recovery and purity yields, there is still a gap between their bench-scale use and potential industrial applications. In this context, this review paper critically analyzes ATPS scale-up strategies to enhance the potential industrial adoption. In particular, large-scale operation considerations, different phase separation procedures, the available optimization techniques (univariate, response surface methodology, and genetic algorithms) to maximize recovery and purity and economic modeling to predict large-scale costs, are discussed. ATPS intensification to increase the amount of sample to process at each system, developing recycling strategies and creating highly efficient predictive models, are still areas of great significance that can be further exploited with the use of high-throughput techniques. Moreover, the development of novel ATPS can maximize their specificity increasing the possibilities for the future industry adoption of ATPS. This review work attempts to present the areas of opportunity to increase ATPS attractiveness at industrial levels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.
2006-02-14
The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOPmore » and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.« less
Verbal messages strengthen bench press efficacy.
Wise, James B; Posner, Amy E; Walker, Gretchen L
2004-02-01
This study examined the effects of verbal messages on bench press efficacy: the confidence to lift progressively heavier weights for 1 repetition. Thirty-two women who had not bench pressed within the previous 18 months were assigned to 1 of 2 groups and exposed to 2 sources of efficacy information. First, subjects in both groups performed 10 repetitions on a fixed movement, vertical bench press machine and completed the bench press efficacy scale. Next, each group received 1 of 2 possible verbal messages. Both messages included the speaker's strength training qualifications. In addition, one message conveyed specific performance feedback while the other contained more general information. Then efficacy was measured again. Results indicated both messages strengthened efficacy. Strength professionals who work one-on-one with novice women should: (a) make sure lifters are aware of their professional qualifications, (b) provide specific feedback, and (c) profess their beliefs in the lifters' abilities to perform the exercises.
Piezoelectric energy harvesting computer controlled test bench
NASA Astrophysics Data System (ADS)
Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.
2016-09-01
In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.
Piezoelectric energy harvesting computer controlled test bench.
Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D
2016-09-01
In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.
Shamim Khan, Mohammad; Ahmed, Kamran; Gavazzi, Andrea; Gohil, Rishma; Thomas, Libby; Poulsen, Johan; Ahmed, Munir; Jaye, Peter; Dasgupta, Prokar
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: A competent urologist should not only have effective technical skills, but also other attributes that would make him/her a complete surgeon. These include team-working, communication and decision-making skills. Although evidence for effectiveness of simulation exists for individual simulators, there is a paucity of evidence for utility and effectiveness of these simulators in training programmes that aims to combine technical and non-technical skills training. This article explains the process of development and validation of a centrally coordinated simulation program (Participants - South-East Region Specialist Registrars) under the umbrella of the British Association for Urological Surgeons (BAUS) and the London Deanery. This program incorporated training of both technical (synthetic, animal and virtual reality models) and non-technical skills (simulated operating theatres). To establish the feasibility and acceptability of a centralized, simulation-based training-programme. Simulation is increasingly establishing its role in urological training, with two areas that are relevant to urologists: (i) technical skills and (ii) non-technical skills. For this London Deanery supported pilot Simulation and Technology enhanced Learning Initiative (STeLI) project, we developed a structured multimodal simulation training programme. The programme incorporated: (i) technical skills training using virtual-reality simulators (Uro-mentor and Perc-mentor [Symbionix, Cleveland, OH, USA], Procedicus MIST-Nephrectomy [Mentice, Gothenburg, Sweden] and SEP Robotic simulator [Sim Surgery, Oslo, Norway]); bench-top models (synthetic models for cystocopy, transurethral resection of the prostate, transurethral resection of bladder tumour, ureteroscopy); and a European (Aalborg, Denmark) wet-lab training facility; as well as (ii) non-technical skills/crisis resource management (CRM), using SimMan (Laerdal Medical Ltd, Orpington, UK) to teach team-working, decision-making and communication skills. The feasibility, acceptability and construct validity of these training modules were assessed using validated questionnaires, as well as global and procedure/task-specific rating scales. In total 33, three specialist registrars of different grades and five urological nurses participated in the present study. Construct-validity between junior and senior trainees was significant. Of the participants, 90% rated the training models as being realistic and easy to use. In total 95% of the participants recommended the use of simulation during surgical training, 95% approved the format of the teaching by the faculty and 90% rated the sessions as well organized. A significant number of trainees (60%) would like to have easy access to a simulation facility to allow more practice and enhancement of their skills. A centralized simulation programme that provides training in both technical and non-technical skills is feasible. It is expected to improve the performance of future surgeons in a simulated environment and thus improve patient safety. © 2012 BJU International.
Bench-scale research in biomass liquefaction in support of the Albany, Oregon experimental facility
NASA Astrophysics Data System (ADS)
Elliott, D. C.
1981-03-01
The liquefaction of solid materials (wood, newsprint, animal manure) by beating to produce useful liquid fuels was investigated. Highlights of work performed include: (1) catalyst mechanism studies; (2) analytical reports on TR8 and TR9 product oils; (3) liquid chromatography/mass spectroscopy analysis of wood oil; (4) batch conversion tests on bottom material; (5) vapor pressure studies; and (6) product evaluation. It was confirmed that the key process parameters and the effects of varying operating conditions are in support of biomass liquefaction.
Characterization of Fernald Silo 3 Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.A.
This report summarizes characterization results for uranium residues from the Fernald Environmental Management Project (FEMP) Operable Unit (OU-4). These residues are currently stored in a one-million-gallon concrete silo, Silo 3, at the DOE Fernald Site, Ohio. Characterization of the Silo 3 waste is the first part of a three part study requested by Rocky Mountain Remedial Services (RMRS) through a Work for others Agreement, WFO-00-007, between the Westinghouse Savannah River Company (WSRC) and RMRS. Parts 2 and 3 of this effort include bench- and pilot-scale testing.
Development of Novel Carbon Sorbents for CO{sub 2} Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer
2013-11-30
An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which >more » 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO{sub 2}. A capture efficiency of 85 to 95% CO{sub 2} was achieved under steady-state conditi ons. The CO{sub 2} adsorption capacity did not change significantly during the field test, as determined from the CO{sub 2} adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO{sub 2} capture using the carbon sorbent and compared with the no-CO{sub 2} capture and CO{sub 2} capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO{sub 2} capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO{sub 2}, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO{sub 2} capture. The results indicate that further long-term testing with a flue gas from a pulverized coal fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing , and the use of low-cost construction materials.« less
Weigl, Matthias; Stefan, Philipp; Abhari, Kamyar; Wucherer, Patrick; Fallavollita, Pascal; Lazarovici, Marc; Weidert, Simon; Euler, Ekkehard; Catchpole, Ken
2016-02-01
Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon's intra-operative workload and technical performance. In a full-scale OR simulation, 19 surgeons were randomly allocated to either of the two disruption scenarios (telephone call vs. patient discomfort). Using a mixed virtual reality simulator with a computerized, high-fidelity mannequin, all surgeons were trained in performing a vertebroplasty procedure and subsequently performed such a procedure under experimental conditions. Standardized measures on subjective workload and technical performance (trocar positioning deviation from expert-defined standard, number, and duration of X-ray acquisitions) were collected. Intra-operative workload during simulated disruption scenarios was significantly higher compared to training sessions (p < .01). Surgeons in the telephone call scenario experienced significantly more distraction compared to their colleagues in the patient discomfort scenario (p < .05). However, workload tended to be increased in surgeons who coped with distractions due to patient discomfort. Technical performance was not significantly different between both disruption scenarios. We found a significant association between surgeons' intra-operative workload and technical performance such that surgeons with increased mental workload tended to perform worse (β = .55, p = .04). Surgical flow disruptions affect surgeons' intra-operative workload. Increased mental workload was associated with inferior technical performance. Our simulation-based findings emphasize the need to establish smooth surgical flow which is characterized by a low level of process deviations and disruptions.
Bench vise adapter grips tubing securely and safely
NASA Technical Reports Server (NTRS)
Howland, B. T.; Jones, A. S., Jr.
1966-01-01
Plastic self-compressing adapter with grooves, attached to the jaws of a bench vise, secures thin-wall tubing vertically or horizontally during cutting and flaring operations without marring or damaging it. Magnets incorporated in both sections of the adapter prevent detachment from the jaws when the vise is opened.
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Novel Payload Architectures for LISA
NASA Astrophysics Data System (ADS)
Johann, Ulrich A.; Gath, Peter F.; Holota, Wolfgang; Schulte, Hans Reiner; Weise, Dennis
2006-11-01
As part of the current LISA Mission Formulation Study, and based on prior internal investigations, Astrium Germany has defined and preliminary assessed novel payload architectures, potentially reducing overall complexity and improving budgets and costs. A promising concept is characterized by a single active inertial sensor attached to a single optical bench and serving both adjacent interferometer arms via two rigidly connected off-axis telescopes. The in-plane triangular constellation ``breathing angle'' compensation is accomplished by common telescope in-field of view pointing actuation of the transmit/received beams line of sight. A dedicated actuation mechanism located on the optical bench is required in addition to the on bench actuators for differential pointing of the transmit and receive direction perpendicular to the constellation plane. Both actuators operate in a sinusoidal yearly period. A technical challenge is the actuation mechanism pointing jitter and the monitoring and calibration of the laser phase walk which occurs while changing the optical path inside the optical assembly during re-pointing. Calibration or monitoring of instrument internal phase effects e.g. by a laser metrology truss derived from the existing interferometry is required. The architecture exploits in full the two-step interferometry (strap down) concept, separating functionally inter spacecraft and intra-spacecraft interferometry (reference mass laser metrology degrees of freedom sensing). The single test mass is maintained as cubic, but in free-fall in the lateral degrees of freedom within the constellation plane. Also the option of a completely free spherical test mass with full laser interferometer readout has been conceptually investigated. The spherical test mass would rotate slowly, and would be allowed to tumble. Imperfections in roundness and density would be calibrated from differential wave front sensing in a tetrahedral arrangement, supported by added attitude information via a grid of tick marks etched onto the surface and monitored by the laser readout.
Advanced structural design for precision radial velocity instruments
NASA Astrophysics Data System (ADS)
Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam
2016-07-01
The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.
Loading Intensity Prediction by Velocity and the OMNI-RES 0-10 Scale in Bench Press.
Naclerio, Fernando; Larumbe-Zabala, Eneko
2017-02-01
Naclerio, F and Larumbe-Zabala, E. Loading intensity prediction by velocity and the OMNI-RES 0-10 scale in bench press. J Strength Cond Res 32(1): 323-329, 2017-This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press (BP) exercise. A total of 308 young, healthy, resistance trained athletes (242 men and 66 women) performed a progressive strength test up to the one repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity (AV) and the OMNI-Resistance Exercise Scales (OMNI-RES 0-10 scale), considering sets as the time-related variable. Load associated with the AV and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct 2 adjusted predictive equations: Relative load = 107.75 - 62.97 × average velocity; and Relative load = 29.03 + 7.26 × OMNI-RES 0-10 scale value. The 2 models were capable of estimating the relative load with an accuracy of 84 and 93%, respectively. These findings confirm the ability of the 2 calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in BP.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
Simulation in surgery: a review.
Tan, Shaun Shi Yan; Sarker, Sudip K
2011-05-01
The ability to acquire surgical skills requires consistent practice, and evidence suggests that many of these technical skills can be learnt away from the operating theatre. The aim of this review article is to discuss the importance of surgical simulation today and its various types, exploring the effectiveness of simulation in the clinical setting and its challenges for the future. Surgical simulation offers the opportunity for trainees to practise their surgical skills prior to entering the operating theatre, allowing detailed feedback and objective assessment of their performance. This enables better patient safety and standards of care. Surgical simulators can be divided into organic or inorganic simulators. Organic simulators, consisting of live animal and fresh human cadaver models, are considered to be of high-fidelity. Inorganic simulators comprise virtual reality simulators and synthetic bench models. Current evidence suggests that skills acquired through training with simulators, positively transfers to the clinical setting and improves operative outcome. The major challenge for the future revolves around understanding the value of this new technology and developing an educational curriculum that can incorporate surgical simulators.
Bench-Scale Trace Contaminant Testing of SA9T at Ambient and Reduced Pressure Conditions
NASA Technical Reports Server (NTRS)
Broerman, Craig; Sweterlitsch, Jeff
2011-01-01
A principal concern for air revitalization technology in a closed loop system is the capability to control carbon dioxide (CO2) and humidity (H2O). An amine based sorbent technology, SA9T, has been evaluated for use in this application and several programs are evaluating it for use in both cabin and space suit applications. While the CO2 and H2O performance of the sorbent has been tested extensively, the question of how trace contaminants impact performance requires further evaluation. This paper presents experimental results of bench-scale SA9T testing that was performed under a variety of test conditions and with several different trace contaminants. Tests were conducted to determine if the capacity of the SA9T media to sufficiently remove CO2 and H2O is compromised after exposure to a fully saturated trace contaminant at ambient conditions. Tests also were conducted to evaluate the performance of SA9T at ambient conditions in a continuous 30-day test with a mixed trace contaminant stream. In addition, testing also evaluated the impact of CO2 and H2O removal performance at suit loop pressures (29.6 KPa/4.3 psia) during cyclic operation with a constant inlet contaminant load.
Charrois, Jeffrey W A; Hrudey, Steve E
2007-02-01
North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.
NASA Technical Reports Server (NTRS)
1977-01-01
The 20x9 TDI array was developed to meet the LANDSAT Thematic Mapper Requirements. This array is based upon a self-aligned, transparent gate, buried channel process. The process features: (1) buried channel, four phase, overlapping gate CCD's for high transfer efficiency without fat zero; (2) self-aligned transistors to minimize clock feedthrough and parasitic capacitance; and (3) transparent tin oxide electrode for high quantum efficiency with front surface irradiation. The requirements placed on the array and the performance achieved are summarized. This data is the result of flat field measurements only, no imaging or dynamic target measurements were made during this program. Measurements were performed with two different test stands. The bench test equipment fabricated for this program operated at the 8 micro sec line time and employed simple sampling of the gated MOSFET output video signal. The second stand employed Correlated Doubled Sampling (CDS) and operated at 79.2 micro sec line time.
Optimising Microbial Growth with a Bench-Top Bioreactor
ERIC Educational Resources Information Center
Baker, A. M. R.; Borin, S. L.; Chooi, K. P.; Huang, S. S.; Newgas, A. J. S.; Sodagar, D.; Ziegler, C. A.; Chan, G. H. T.; Walsh, K. A. P.
2006-01-01
The effects of impeller size, agitation and aeration on the rate of yeast growth were investigated using bench-top bioreactors. This exercise, carried out over a six-month period, served as an effective demonstration of the importance of different operating parameters on cell growth and provided a means of determining the optimisation conditions…
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
RTO Technical Publications: A Quarterly Listing
NASA Technical Reports Server (NTRS)
2005-01-01
A quarterly listing of RTO technical publications is presented. The topics include: Handbook on the Analysis of Smaller-Scale Contingency Operations in Long Term Defence Planning; 2) Radar Polarimetry and Interferometry; 3) Combat Casualty Care in Ground-Based Tactical Situations: Trauma Technology and Emergency Medical Procedures; and 4) RTO Technical Publications: A Quarterly Listing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilary Wheeler; Crystal Densmore
2007-07-31
The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).
Prototype design for a predictive model to improve evacuation operations : technical report.
DOT National Transportation Integrated Search
2011-08-01
Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...
Coal desulfurization by low temperature chlorinolysis, phase 1
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.
1977-01-01
The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.
Water Extraction from Coal-Fired Power Plant Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings
2006-06-30
The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the powermore » plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.« less
Machine Shop. Module 3: Bench Work and Material Science. Instructor's Guide.
ERIC Educational Resources Information Center
Walden, Charles H.; Nobles, Jack
This document consists of materials for an 11-unit course on the following topics: (1) hacksawing; (2) filing and deburring; (3) locating centers for drilling; (4) cutting threads with tap and die; (5) using a hand reamer; (6) pedestal/bench grinder operation; (7) whetting, polishing, and lapping; (8) screw, drill, and tap extraction; (9) arbor…
Electrodeposition of metals and metal/cermet composites in low gravity
NASA Technical Reports Server (NTRS)
Riley, Clyde; Coble, Dwain; Maybee, George
1987-01-01
Electrodeposition experiments were carried out on the bench and a KC-135 aircraft at 0.01 g in anticipation of microgravity flights on NASA's Space Transportation System Shuttle. Experimental results obtained by interferometry compare concentration gradients as a function of time in the vicinity of a reducing electrode (cathode) for Cu(+2) and Co(+2) electrodeposition cells. No difference was found between bench and 0.01 g produced gradients for a .1M CuSO4 cell, but a significant difference was noted between the gradients in a 1M CoSO4 cell even though the bench cells were operated in a nonconvecting shielded (cathode over anode) mode. The gradient for Co(+2) depletion produced at 0.01 g was greater and the entire layer was thicker than found on the bench. Neutral buoyancy/matched density codeposition experiments were performed on the bench in an attempt to physically duplicate the results of metal/cermet codepositions in microgravity. Polystyrene spheres with average diameter 11.8 microns and density approximately matching that of 1M CoSO4 were utilized to emulate nonsedimenting cermets in microgravity. The cells were operated in a shielded convectionless mode. Comparison with literature data on codeposition with stirred cells indicate significant improvement in volume percent neutral occluded in the depositing metal matrix. A multicell electrodeposition flight apparatus that has been designed, constructed and is undergoing testing is discussed.
Auto Body Repair and Refinishing 2; Automotive Refinishing 1: 9035.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This course will provide the student with the general information, technical knowledge, basic skills, attitudes and values required for job entry as an auto body repair helper. Course content includes goals, specific objectives, orientation, service tools and bench skills, paint spray equipment, paint materials, and preparation of automobile body…
Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian
2013-01-01
A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M. S.; Miller, D. H.
The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2012-01-01
The purpose of this technical report is to document the piloting and scaling of new easyCBM mathematics test items aligned with the Common Core State Standards (CCSS) and to describe the process used to revise and supplement the 2012 research version easyCBM CCSS math tests in Grades 6-8. For all operational 2012 research version test forms (10…
Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bradley; Davis, Kevin; Senior, Constance
Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent inmore » the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.« less
Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies
Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
A hierarchical model calibration and validation is proposed for quantifying the confidence level of mass transfer prediction using a computational fluid dynamics (CFD) model, where the solvent-based carbon dioxide (CO2) capture is simulated and simulation results are compared to the parallel bench-scale experimental data. Two unit problems with increasing level of complexity are proposed to breakdown the complex physical/chemical processes of solvent-based CO2 capture into relatively simpler problems to separate the effects of physical transport and chemical reaction. This paper focuses on the calibration and validation of the first unit problem, i.e. the CO2 mass transfer across a falling ethanolaminemore » (MEA) film in absence of chemical reaction. This problem is investigated both experimentally and numerically using nitrous oxide (N2O) as a surrogate for CO2. To capture the motion of gas-liquid interface, a volume of fluid method is employed together with a one-fluid formulation to compute the mass transfer between the two phases. Bench-scale parallel experiments are designed and conducted to validate and calibrate the CFD models using a general Bayesian calibration. Two important transport parameters, e.g. Henry’s constant and gas diffusivity, are calibrated to produce the posterior distributions, which will be used as the input for the second unit problem to address the chemical adsorption of CO2 across the MEA falling film, where both mass transfer and chemical reaction are involved.« less
Assessing sorbent injection mercury control effectiveness in flue gas streams
Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.
2000-01-01
One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.
Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Benjamin; Genovese, Sarah; Perry, Robert
2013-12-31
A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395more » °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.« less
PNNL Supports Hanford Waste Treatment
None
2018-04-16
For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the siteâs waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
Oxford NOTECHS II: a modified theatre team non-technical skills scoring system.
Robertson, Eleanor R; Hadi, Mohammed; Morgan, Lauren J; Pickering, Sharon P; Collins, Gary; New, Steve; Griffin, Damian; Griffin, Damien; McCulloch, Peter; Catchpole, Ken C
2014-01-01
We previously developed and validated the Oxford NOTECHS rating system for evaluating the non-technical skills of an entire operating theatre team. Experience with the scale identified the need for greater discrimination between levels of performance within the normal range. We report here the development of a modified scale (Oxford NOTECHS II) to facilitate this. The new measure uses an eight-point instead of a four point scale to measure each dimension of non-technical skills, and begins with a default rating of 6 for each element. We evaluated this new scale in 297 operations at five NHS sites in four surgical specialities. Measures of theatre process reliability (glitch count) and compliance with the WHO surgical safety checklist were scored contemporaneously, and relationships with NOTECHS II scores explored. Mean team Oxford NOTECHS II scores was 73.39 (range 37-92). The means for surgical, anaesthetic and nursing sub-teams were 24.61 (IQR 23, 27); 24.22 (IQR 23, 26) and 24.55 (IQR 23, 26). Oxford NOTECHS II showed good inter-rater reliability between human factors and clinical observers in each of the four domains. Teams with high WHO compliance had higher mean Oxford NOTECHS II scores (74.5) than those with low compliance (71.1) (p = 0.010). We observed only a weak correlation between Oxford NOTECHS II scores and glitch count; r = -0.26 (95% CI -0.36 to -0.15). Oxford NOTECHS II scores did not vary significantly between 5 different hospital sites, but a significant difference was seen between specialities (p = 0.001). Oxford NOTECHS II provides good discrimination between teams while retaining reliability and correlation with other measures of teamwork performance, and is not confounded by technical performance. It is therefore suitable for combined use with a technical performance scale to provide a global description of operating theatre team performance.
Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator.
Kim, J K; Cho, H C; Kim, S C
2001-01-01
A pneumatic triboelectrostatic beneficiation system of fly ash was studied using a continuous, bench-scale electroseparator composed of two vertical electrode plates and an ejector-tribocharger. Tests were conducted to evaluate the charge density and the separation efficiency at various operating conditions. It was found that the higher charge densities were obtained at (1) the air flow rate of 1.75 m3/min. (2) the feed rate of less than 50 kg/h. and (3) the relative humidity of less than 30% with use of a stainless ejector tribocharger. With these optimum conditions, the clean ash of less than LOI 3% was recovered with a yield over 75% when operated at the diffuser slit gap of 4mm, the diffuser outlet velocity of 16.1-18.6 m/s, and the distance of 15 cm between diffuser slit and splitter. The optimum feed rate was found to be 740 kg/h per m2 of electrode surface area, which can be used as a scale-up factor of electroseparator.
Solar stills for agricultural purposes
NASA Technical Reports Server (NTRS)
Selcuk, M. K.; Tran, V. V.
1975-01-01
Basic concepts of using desalinated water for agricultural purposes are outlined. A mathematical model describing heat and mass transfer in a system combining a solar still with a greenhouse, its solution, and test results of a small-scale unit built at the Middle East Technical University, Ankara, Turkey, are discussed. The unit was employed to demonstrate the technical feasibility of the system. Further development and modifications are necessary for larger-scale operations. The basis of an optimization study which is underway at the Brace Research Institute of McGill University in Montreal, Canada, aimed at finding the best combination of design and operation parameters is also presented.
Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method
NASA Astrophysics Data System (ADS)
Matin, Hashfi Hawali Abdul; Hadiyanto
2018-02-01
An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.
Strontium Removal: Full-Scale Ohio Demonstrations
The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chenlin; Liang, Ling; Sun, Ning
The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less
Li, Chenlin; Liang, Ling; Sun, Ning; ...
2017-01-05
The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less
Options and processes for spent catalyst handling and utilization.
Marafi, M; Stanislaus, A
2003-07-18
The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.
Selective depression behavior of guar gum on talc-type scheelite flotation
NASA Astrophysics Data System (ADS)
Zhang, Yong-zhong; Gu, Guo-hua; Wu, Xiang-bin; Zhao, Kai-le
2017-08-01
The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum's highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.
Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas.
Zhang, Guangyi; Li, Chunxing; Ma, Dachao; Zhang, Zhikai; Xu, Guangwen
2015-09-01
Antibiotic residues are difficult to be treated or utilized because of their high water content and residual antibiotics. This article is devoted to investigating the possibility of biogas production from cephalosporin C residue (CPCAR), one typical type of antibiotic residues, via anaerobic digestion in combination with hydrothermal pretreatment (HTPT). The results from the bench-scale experiments showed that the combination of HTPT and anaerobic digestion can provide a viable way to convert CPCAR into biogas, and the biogas and methane yields reached 290 and 200 ml(g TS)(-1), respectively. This article further evaluated the proposed technology in terms of energy balance and technical feasibility based on theoretical calculation using the data from a pilot HTPT test. It was shown that the process is totally self-sufficient in energy and its main challenging problem of ammonia inhibition can be solved via ammonia stripping. Copyright © 2015 Elsevier Ltd. All rights reserved.
SP2Bench: A SPARQL Performance Benchmark
NASA Astrophysics Data System (ADS)
Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg
A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.
Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo
2008-09-12
As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linville, Jessica L.; Shen, Yanwen; Ignacio-de Leon, Patricia A.
Here, a modified version of an in-situ CO 2 removal process was applied during AD of food waste with two types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g VS added) -1 fine WSB amended digestersmore » produced biogas with 77.5-98.1% CH 4 content by removing 40-96% of the CO 2 compared to the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added) -1, the fine WSB amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse WSB amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO3 from 2,800 mg L -1 in the control digesters to 4,800-6,800 mg L -1 providing process stability for food waste AD.« less
Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem
2017-06-01
A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.
Linville, Jessica L.; Shen, Yanwen; Ignacio-de Leon, Patricia A.; ...
2017-05-10
Here, a modified version of an in-situ CO 2 removal process was applied during AD of food waste with two types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g VS added) -1 fine WSB amended digestersmore » produced biogas with 77.5-98.1% CH 4 content by removing 40-96% of the CO 2 compared to the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added) -1, the fine WSB amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse WSB amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO3 from 2,800 mg L -1 in the control digesters to 4,800-6,800 mg L -1 providing process stability for food waste AD.« less
CO 2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heldebrant, David
This report outlines the comprehensive bench-scale testing of the CO 2-binding organic liquids (CO 2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO 2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO 2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.
An economical bioreactor for evaluating biogas potential of particulate biomass.
Wilkie, Ann C; Smith, P H; Bordeaux, F M
2004-03-01
An economical bioreactor designed for evaluating the biogas potential of particulate biomass is described. The bioreactor uses a simple stirring apparatus, called the Bordeaux stirrer, to enable gas-tight mixing of fermentation cultures. The apparatus consists of a low-rpm motor connected to a bent steel stir rod, which is placed in a length of flexible plastic tubing inserted through a rubber stopper in a gas-tight manner. This stirrer is suitable for providing intermittent or continuous mixing in bench-scale anaerobic cultures containing particulate biomass. The reactor system may be operated as a batch-fed or semi-continuously fed digester. This communication documents the advantages of the stirring apparatus, describes the details of reactor fabrication and operation, and outlines the type of experimental work for which the bioreactor is suitable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doran, Glenn; Leong, Lawrence Y.C.
2000-05-01
The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation ofmore » four operational scenarios, two industrial waters levels and two irrigation/potable water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binovi, R.D.; Ng, E.K.; Tetla, R.A.
1987-01-01
This is a report of a survey of the Victor Wastewater Reclamation Authority Sewerage system, the sewage treatment plant, and effluent from the various operations at George AFB, California. The scope of work included the characterization of the wastewater from George AFB, as well as characterization of effluents from 29 oil/water separators servicing industrial operations on base, flow measurements at three locations on base, a microbiological evaluation of aeration basin foam, bench-scale activated-sludge studies, and a review of results from previous surveys. Recommendations: (1) AFFF (Aqueous Film Forming Foam) should never be discharged to the sewer. (2) Programming for pretreatmentmore » should proceed at selected operations. (3) More waste and wastestream analysis be performed. (4) Upgrade waste accumulation points. (5) Implement an aggressive inspection program for oil/water separators. (6) Cut down on nonessential washing.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip
2011-02-28
This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Douglas; Solom, Matthew
This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solom, Matthew; Ross, Kyle; Cardoni, Jeffrey N.
This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.
Testing of the X-33 umbilical system at KSC
NASA Technical Reports Server (NTRS)
1999-01-01
At the Launch Equipment Test Facility, Mike Solomon, with Lockheed Martin Technical Operations, studies a part of the X-33 umbilical system during testing. Pointing to the part is Will Reaves, also with Lockheed Martin Technical Operations. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar.
1999-06-18
At the Launch Equipment Test Facility, Mike Solomon, with Lockheed Martin Technical Operations, studies a part of the X-33 umbilical system during testing. Pointing to the part is Will Reaves, also with Lockheed Martin Technical Operations. A team of Kennedy Space Center experts developed the umbilical system, comprising panels, valves and hoses that provide the means to load the X-33 with super-cold propellant. The X-33, under construction at Lockheed Martin Skunk Works in Palmdale, Calif., is a half-scale prototype of the planned operational reusable launch vehicle dubbed VentureStar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, M.J.
1981-04-01
Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSRmore » prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S.
2016-01-15
This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flamemore » stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.« less
NASA Astrophysics Data System (ADS)
Lemaire, R.; Menanteau, S.
2016-01-01
This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... scientific or engineering literature, data from trial tests (e.g., bench scale or pilot scale tests), waste...
GLYPHOSATE REMOVAL FROM DRINKING WATER
Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...
Technical and scale efficiency in public and private Irish nursing homes - a bootstrap DEA approach.
Ni Luasa, Shiovan; Dineen, Declan; Zieba, Marta
2016-10-27
This article provides methodological and empirical insights into the estimation of technical efficiency in the nursing home sector. Focusing on long-stay care and using primary data, we examine technical and scale efficiency in 39 public and 73 private Irish nursing homes by applying an input-oriented data envelopment analysis (DEA). We employ robust bootstrap methods to validate our nonparametric DEA scores and to integrate the effects of potential determinants in estimating the efficiencies. Both the homogenous and two-stage double bootstrap procedures are used to obtain confidence intervals for the bias-corrected DEA scores. Importantly, the application of the double bootstrap approach affords true DEA technical efficiency scores after adjusting for the effects of ownership, size, case-mix, and other determinants such as location, and quality. Based on our DEA results for variable returns to scale technology, the average technical efficiency score is 62 %, and the mean scale efficiency is 88 %, with nearly all units operating on the increasing returns to scale part of the production frontier. Moreover, based on the double bootstrap results, Irish nursing homes are less technically efficient, and more scale efficient than the conventional DEA estimates suggest. Regarding the efficiency determinants, in terms of ownership, we find that private facilities are less efficient than the public units. Furthermore, the size of the nursing home has a positive effect, and this reinforces our finding that Irish homes produce at increasing returns to scale. Also, notably, we find that a tendency towards quality improvements can lead to poorer technical efficiency performance.
Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces
This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...
THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM
Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technol- ogies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstra...
EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS
Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...
Surfactant studies for bench-scale operation
NASA Technical Reports Server (NTRS)
Hickey, Gregory S.; Sharma, Pramod K.
1992-01-01
A phase 2 study was initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate surfactant, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the surfactant produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen; Wong, Michael; Gupta, Mayank
The Rice University research team developed a hybrid carbon dioxide (CO 2) absorption process combining absorber and stripper columns using a high surface area ceramic foam gas-liquid contactor for enhanced mass transfer and utilizing waste heat for regeneration. This integrated absorber/desorber arrangement will reduce space requirements, an important factor for retrofitting existing coal-fired power plants with CO 2 capture technology. Described in this report, we performed an initial analysis to estimate the technical and economic feasibility of the process. A one-dimensional (1D) CO 2 absorption column was fabricated to measure the hydrodynamic and mass transfer characteristics of the ceramic foam.more » A bench-scale prototype was constructed to implement the complete CO 2 separation process and tested to study various aspects of fluid flow in the process. A model was developed to simulate the two-dimensional (2D) fluid flow and optimize the CO 2 capture process. Test results were used to develop a final technoeconomic analysis and identify the most appropriate absorbent as well as optimum operating conditions to minimize capital and operating costs. Finally, a technoeconomic study was performed to assess the feasibility of integrating the process into a 600 megawatt electric (MWe) coal-fired power plant. With process optimization, $82/MWh of COE can be achieved using our integrated absorber/desorber CO 2 capture technology, which is very close to DOE's target that no more than a 35% increase in COE with CCS. An environmental, health, and safety (EH&S) assessment of the capture process indicated no significant concern in terms of EH&S effects or legislative compliance.« less
Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M
2009-10-01
This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.
High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Ben; Turk, Brian; Denton, David
Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilotmore » scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H 2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit was designed and constructed on schedule and under budget and was operated for approximately 1,500 total hours utilizing ~20% of the IGCC’s total syngas as feed (~1.5 MM scfh of dry syngas). The WDP system reduced total sulfur levels to ~10 ppmv (~99.9% removal) from raw syngas that contained as high as 14,000 ppmv of total sulfur. The integration of WDP with the activated amine process enabled further reduction of total sulfur in the final treated syngas to the anticipated sub-ppmv concentrations (>99.99% removal), suitable for stringent syngas applications such as chemicals, fertilizers, and fuels. Techno-economic assessments by RTI and by third parties indicate potential for significant (up to 50%) capital and operating cost reductions for the entire syngas cleanup block when WDP technology is integrated with a broad spectrum of conventional and emerging carbon capture or acid gas removal technologies. This final scientific/technical report covers the pre-FEED, FEED, EPC, commissioning, and operation phases of this project, as well as system performance results. In addition, the report addresses other parallel-funded R&D efforts focused on development and testing of trace contaminant removal process (TCRP) sorbents, a direct sulfur recovery process (DSRP), and a novel sorbent for warm carbon dioxide capture, as well as pre-FEED, FEED, and techno-economic studies to consider the potential benefit for use of WDP for polygeneration of electric power and ammonia/urea fertilizers.« less
Li, Chenlin; Liang, Ling; Sun, Ning; Thompson, Vicki S; Xu, Feng; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R; Simmons, Blake A; Singh, Seema
2017-01-01
Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and IL recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.
HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES
The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...
Endotoxin Studies And Biosolids Stabilization Research
This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...
TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS
Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...
Behavior and structure of metal vapor arc plasma between molten electrodes
NASA Astrophysics Data System (ADS)
Zanner, F. J.; Williamson, R. L.; Hareland, W. A.; Bertram, L. A.
A metal vapor arc is utilized in the industrially important vacuum arc remelting (VAR) process to produce materials by melting and resolidification which have improved structure and chemical homogeneity. Homogeneity is dependent on achieving quasi-steady conditions in the plasma because of its thermal and MHD coupling with the molten pool atop the ingot. Optimal operating conditions of low pressure (approx. = 0.01 torr) and short electrode gap (less than 15 mm) produce a diffuse arc and cathode spot behavior similar to that observed for the vacuum breaker arc. Under these conditions the arc provides a quasi-steady heat source that is considered to be the bench mark arc of the VAR process. Previous work has shown that deviation from the bench mark arc behavior can occur under production conditions, and is caused by electrode irregularities and liberation of gases such as CO from the molten pool. This study is an effort to characterize these behavioral deviations and discover operational conditions which stabilize the bench mark arc.
NASA Astrophysics Data System (ADS)
Lan, Tian
The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.
Automotive Mechanics as Applied to Auto Body; Auto Body Repair and Refinishing 3: 9037.02.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This is a course in which the student will receive the general information, technical knowledge, basic skills, attitudes, and values required for job entry level as an auto body repair helper. Course content includes general and specific goals, orientation, instruction in service tools and bench skills, and auto mechanics as applied to auto body.…
Crash Testing of Helicopter Airframe Fittings
NASA Technical Reports Server (NTRS)
Clarke, Charles W.; Townsend, William; Boitnott, Richard
2004-01-01
As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.K.
1999-05-10
Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.
Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.
Bousselmi, L; Geissen, S U; Schroeder, H
2004-01-01
Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
Technical information report: Plasma melter operation, reliability, and maintenance analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, D.W.
1995-03-14
This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.
Method, apparatus and system for managing queue operations of a test bench environment
Ostler, Farrell Lynn
2016-07-19
Techniques and mechanisms for performing dequeue operations for agents of a test bench environment. In an embodiment, a first group of agents are each allocated a respective ripe reservation and a second set of agents are each allocated a respective unripe reservation. Over time, queue management logic allocates respective reservations to agents and variously changes one or more such reservations from unripe to ripe. In another embodiment, an order of servicing agents allocated unripe reservations is based on relative priorities of the unripe reservations with respect to one another. An order of servicing agents allocated ripe reservations is on a first come, first served basis.
Sawvel, Russell A; Kim, Byung; Alvarez, Pedro J J
2008-11-01
A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m(-3) hr(-1) were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m(-3) hr(-1). Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.
PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS
Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...
Non-technical skills assessment in surgery.
Sharma, Bharat; Mishra, Amit; Aggarwal, Rajesh; Grantcharov, Teodor P
2011-09-01
Adverse events in surgery have highlighted the importance of non-technical skills, such as communication, decision-making, teamwork, situational awareness and leadership, to effective organizational performance. These skills carry particular importance to surgical oncology, as members of a multidisciplinary team must work cohesively to formulate effective patient care plans. Several non-technical skills evaluation tools have been developed for use in surgery, without adequate comparison and consensus on which should be standard for training. Eleven articles describing the use of three non-technical evaluation tools related to surgery: NOTSS (Non Technical Skills for Surgeons), NOTECHS (Non Technical Skills) and OTAS (Observational Teamwork Assessment for Surgery) were analyzed with respect to scale formulation, validity, reliability and feasibility. Furthermore, their use in training thus far and the future of non-technical rating scales in surgical curricula was discussed. Future work should focus on incorporating these assessment tools into training and into a real operating room setting to provide formative evaluations for surgical residents. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Salazar, LeRoy; And Others
This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…
An elegant Breadboard of the optical bench for eLISA/NGO
NASA Astrophysics Data System (ADS)
d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis
2017-11-01
The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.
Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent
2009-01-01
Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (P<.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor with five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622
Thille, Arnaud W; Lyazidi, Aissam; Richard, Jean-Christophe M; Galia, Fabrice; Brochard, Laurent
2009-08-01
To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators in terms of trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements, and expiratory resistance. Bench study at a research laboratory in a university hospital. Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O). Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering delays from 42 to 88 ms for all conditions averaged (P < 0.001). Under difficult conditions, the triggering delay was longer than 100 ms and the pressurization was poor for five ventilators at PSV5 and three at PSV10, suggesting an inability to unload patient's effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a bench comparison in 2000. Technical performance of trigger function, pressurization capacity, and expiratory resistance differs considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately.
Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A
2004-10-01
After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.
Bio-Response Operational Testing and Evaluation (BOTE) ...
Report and technical brief and informational video The Bio-response Operational Testing and Evaluation (BOTE) Project was a multi-agency effort designed to operationally test and evaluate, at the scale of a moderately sized building, a response to a B. anthracis spore release from initial public health and law enforcement investigation through environmental remediation.
SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM
Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...
MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS
The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...
Biofiltration of odors, toxics and volatile organic compounds from publicly owned treatment works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, T.S.; Devinny, J.S.; Torres, E.M.
1996-12-31
Increasing federal and state regulation has made it necessary to apply air pollution control measures at publicly owned treatment works (POTWs). Traditional control technologies may not be suitable for treating the low and variable contaminant concentrations often found in POTW off-gases. An alternative control technology, biofiltration, was studied. An experiment using bench- and pilot-scale reactors established optimal operating conditions for a full-scale conceptual design. The waste airstream contained ppmv levels of hydrogen sulfide and ppbv levels of specific volatile organic compounds (VOCs). Granular activated carbon (GAC) and yard waste compost (YWG) were tested as possible biofilter media with and withoutmore » pH control. The 16-month field study bench reactors achieved 99% removal of hydrogen sulfide, 53 to 98% removal of aromatic hydrocarbons, 37 to 95% removal of aldehydes and ketones, and 0 to 85% removal of chlorinated compounds. The GAC and YWC pilot reactors removed more than 80% and 65% of the total VOCs at 17 second and 70 second empty bed retention times, respectively. The YWC reactors performed poorly at empty bed retention times of 30 and 45 seconds, removing less than 40% of total VOCs. Declining pH had little negative effect on contaminant removal, suggesting costly control measures may not be necessary. Biofiltration appears to be a feasible alternative to traditional control technologies in treating off-gases from POTWs. 13 refs., 3 figs., 4 tabs.« less
Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.
Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S
2005-01-01
In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.
Bates, Richard B.; Ghoniem, Ahmed F.; Jablonski, Whitney S.; ...
2017-02-02
During fluidized bed biomass gasification, complex gas-solid mixing patterns and numerous chemical and physical phenomena make identification of optimal operating conditions challenging. In this work, a parametric experimental campaign was carried out alongside the development of a coupled reactor network model which successfully integrates the individually validated sub-models to predict steady-state reactor performance metrics and outputs. The experiments utilized an integrated gasification system consisting of an externally-heated, bench-scale, 4-in., 5 kWth, fluidized bed steam/air blown gasifier fed with woody biomass equipped with a molecular beam mass spectrometer to directly measure tar species. The operating temperature (750-850°C) and air/fuel equivalence ratiomore » (ER = 0-0.157) were independently varied to isolate their effects. Elevating temperature is shown to improve the char gasification rate and reduce tar concentrations. In conclusion, air strongly impacts the composition of tar, accelerating the conversion of lighter polycyclic-aromatic hydrocarbons into soot precursors, while also improving the overall carbon conversion.« less
Active transmission isolation/rotor loads measurement system
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Defelice, J. J.
1973-01-01
Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.
Kobayashi, Makoto; Akiho, Hiroyuki
2017-12-01
Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Feng; Heldebrant, David J.; Mathias, Paul M.
This manuscript provides a detailed analysis of a continuous flow, bench scale study of the CO2BOL solvent platform with and without its Polarity Swing Assisted Regeneration (PSAR). This study encompassed four months of continuous flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using decane antisolvent. In both regeneration schemes, steady state capture of >90 %CO2 was achieved using simulated flue gas at acceptable L/G ratios. Aspen Plus™ modeling was performed to assess process performance compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE’s Case 10 amine baseline.
Integrated information systems for translational medicine.
Winter, A; Funkat, G; Haeber, A; Mauz-Koerholz, C; Pommerening, K; Smers, S; Stausberg, J
2007-01-01
Translational medicine research needs a two-way information highway between 'bedside' and 'bench'. Unfortunately there are still weak links between successfully integrated information roads for bench, i.e. research networks, and bedside, i.e. regional or national health information systems. The question arises, what measures have to be taken to overcome the deficiencies. It is examined how patient care-related costs of clinical research can be separated and shared by health insurances, whether quality of patient care data is sufficient for research, how patient identity can be maintained without conflict to privacy, how care and research records can be archived, and how information systems for care and research can be integrated. Since clinical trials improve quality of care, insurers share parts of the costs. Quality of care data has to be improved by introducing minimum basic data sets. Pseudonymization solves the conflict between needs for patient identity and privacy. Archiving patient care records and research records is similar and XML and CDISC can be used. Principles of networking infrastructures for care and research still differ. They have to be bridged first and harmonized later. To link information systems for care (bed) and for research (bench) needs technical infrastructures as well as economic and organizational regulations.
WASHING STUDIES FOR PCP AND CREOSOTE-CONTAMINATED SOIL
The Environmental Protection Agency has conducted a series of bench-scale and pilot-scale studies to evaluate the feasibility of washing pentachlorophenol (PCP) and creosote from the soil at an abandoned wood-treatment Superfund site in Pensacola, FL. The high sand content and lo...
INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS
Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...
Rain Garden Research at EPA’s Urban Watershed Research Facility
Summary of the ongoing rain garden research at UWMB. The context for the study was described as well as the experimental design for the full-scale study, instrumentation, and stormwater collection system. Supporting bench scale research on hydraulic properties of media and soil...
When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...
Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.
Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon
2008-02-01
This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, J.B.; Terry, J.C.; Schubert, S.A.
The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less
Surfactant studies for bench-scale operation
NASA Technical Reports Server (NTRS)
Hickey, Gregory S.; Sharma, Pramod K.
1993-01-01
A phase 2 study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the surfactant concentration. An increase in coal conversions and upgrading of the liquid product quality due to surfactant addition was observed for all runs.
High performance bilateral telerobot control.
Kline-Schoder, Robert; Finger, William; Hogan, Neville
2002-01-01
Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.
NASA Astrophysics Data System (ADS)
Haslinger, Edith; Goldbrunner, Johann; Dietzel, Martin; Leis, Albrecht; Boch, Ronny; Knauss, Ralf; Hippler, Dorothee; Shirbaz, Andrea; Fröschl, Heinz; Wyhlidal, Stefan; Plank, Otmar; Gold, Marlies; Elster, Daniel
2017-04-01
During the exploitation of thermal water for the use in a geothermal plant a series of hydrochemical reactions such as solution and precipitation processes (scaling) or corrosion processes can be caused by pressure and temperature changes and degassing of the thermal water. Operators of hydrogeothermal plants are often confronted with precipitations in water-bearing parts of their plant, such as heat exchangers and pipes, which result in considerable costs for cleaning or remediation or the use of inhibitors. In the worst case, scaling and corrosion can lead to the abandonment of the system. The effects of the fluids on the technical facilities of hydrogeothermal plants are usually difficult to predict. This applies in particular to the long-term effects in the exploitation and use as well as the aspect of the reinjection of the fluids. In publications and guides for thermal water use in Austria, it is emphasized that the hydrochemical conditions have to be checked during the operation of geothermal plants, but precise directives and thus guidance for operators as well as a scientific investigations on this topic are almost completely missing today. The aim of the research project NoScale was the assessment of deep thermal water bodies in different geological reservoirs in Austria and Bavaria and therefore different hydrochemical compositions with regard to their scaling and corrosion potential in geothermal use. In the course of parallel chemical and mineralogical laboratory investigations, conclusions were drawn about the effects of thermal water on different technical components of hydrogeothermal plants and on the other hand a data basis for the model simulation of the relevant hydrochemical processes was developed. Subsequently, on the basis of detailed hydrochemical model calculations, possible effects of the use of the thermal waters on the technical components of the geothermal plants were shown. This approach of complex process modeling, detailed laboratory studies and experimental approaches has not been followed in Austria so far. The research results contribute significantly to the increased visibility of potential risks of the exploitation and use of thermal water. Thus, the project NoScale supports the operators of hydrogeothermal plants to assess risks of scaling in corrosion already in the pre-drilling phase, which leads to a much more energy and cost efficient operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, David
The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing,more » and refining.« less
Wind Fins: Novel Lower-Cost Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Morris; Dr. Will D. Swearingen
This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less
Optical Bench for LISA-like missions
NASA Astrophysics Data System (ADS)
Mueller, Guido
The detection of B-modes in the μ-Wave background has rattled the scientific community and further enhanced the large scientific interest in gravitational waves and gravitational wave astronomy. The first direct detection of gravitational waves by Advanced LIGO and maybe also by pulsar timing arrays in the second half of this decade will be another watershed event which will start a new era in astronomy and astrophysics. However, the holy grail of gravitational wave astronomy will be opened by a LISA-like mission. Only space provides the environment that allows to cover the signal-rich mHz frequency range where we expect to see gravitational waves from massive black hole mergers, compact galactic binaries, and many other sources. All mature concepts use laser interferometry between free falling test masses separated by millions of km. The central piece in all these concepts is a stable optical bench which is used to prepare and exchange the laser beams between the different arms. It has always been assumed that the base material for the optical bench has to be one of the ultra-low expansion glasses such as Zerodur or ULE to meet the pm/#Hz stability requirements. This very conservative approach was a reflection of the state-of-the-art in frequency stabilization experiments which used optical reference cavities in the early ‘90s. It is not surprising that the LISA pathfinder (LPF) uses also an all Zerodur bench where each optical component is precision bonded to the bench using hydroxide bonding, a nonreversible bonding technique. The manufacturing of this bench was a very time consuming one-mirror-a-day effort and was one of the highest risk items in terms of schedule and cost. The original LISA design uses the same approach except that the LISA bench is far more complex than the LPF bench and manufacturing of the required 10+ benches, six flight units and at least four pre-flight models and spares, will be even more time consuming and expensive. We question the need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.
Review of problems in the small-scale farm production of ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, H.M.
1983-07-01
This report reviews the current status of small, farmer-operated ethanol production facilities. The characteristics and operating problems associated with present plants are reviewed with respect to technical, economic, and institutional issues. Information was obtained from recent publications and numerous telephone calls to state and federal officials and the producers themselves. It is concluded that, in most parts of the country, small-scale alcohol production has been reduced to relatively few farm plants, due primarily to several unfavorable economic factors. While both large and small facilities have been squeezed by rising feedstock costs and lower alcohol selling prices, the farmer-producer is burdenedmore » by additional constraints because of the small scale of his operations. It is not usually profitable for him to recover all the valuable by-products from the feedstock, such as gluten, corn oil, and carbon dioxide from corn conversion. He may not be able to use or market the wet alcohol and stillage he produces. Other difficulties often include high fuel costs, lack of financial and technical assistance, and excessive labor requirements.« less
Coal desulfurization by low temperature chlorinolysis, phase 3
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.
1981-01-01
Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.
Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.; Henry, M.P.; Fedde, P.A.
1982-01-01
Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less
Attrition and carbon formation on iron catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, S.D.; Harrington, M.S.; Jackson, N.B.
1994-08-01
A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Winschel, R.A.; Burke, F.P.
In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less
Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.
Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong
2012-01-01
This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.
Huang, Xinyan; Rein, Guillermo
2016-05-01
The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rapid growing clay coatings to reduce the fire threat of furniture.
Kim, Yeon Seok; Li, Yu-Chin; Pitts, William M; Werrel, Martin; Davis, Rick D
2014-02-12
Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam.
System for Measuring Flexing of a Large Spaceborne Structure
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Kuhnert, Andreas; Kovalik, Joseph; Hadaegh, Fred; Shaddock, Daniel
2008-01-01
An optoelectronic metrology system is used for determining the attitude and flexing of a large spaceborne radar antenna or similar structure. The measurements are needed for accurate pointing of the antenna and correction and control of the phase of the radar signal wavefront. The system includes a dual-field-of-view star tracker; a laser ranging unit (LRU) and a position-sensitive-detector (PSD)-based camera mounted on an optical bench; and fiducial targets at various locations on the structure. The fiducial targets are illuminated in sequence by laser light coupled via optical fibers. The LRU and the PSD provide measurements of the position of each fiducial target in a reference frame attached to the optical bench. During routine operation, the star tracker utilizes one field of view and functions conventionally to determine the orientation of the optical bench. During operation in a calibration mode, the star tracker also utilizes its second field of view, which includes stars that are imaged alongside some of the fiducial targets in the PSD; in this mode, the PSD measurements are traceable to star measurements.
Wall and corner fire tests on selected wood products
H. C. Tran; M. L. Janssens
1991-01-01
As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...
Filtration of micron-sized particles for coal liquids: carbonaceous precoats. [5 refs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, B.R.
Carbonaceous precoats, such as bituminous coal and char from hydrocarbonization, are shown to be effective, inexpensive substitutes for traditional diatomaceous earth materials, both at laboratory-scale and bench-scale. Model equations are developed for filtration of Solvent Refined Coal-Unfiltered Oil (SRC-UFO).
Biochemical Process Development and Integration | Bioenergy | NREL
Process Development We develop and scale fermentation processes that produce fuels and chemicals from guide experimental designs. Our newly updated fermentation laboratory houses 38 bench-scale fermentors current projects cover the fermentation spectrum including anaerobic, micro-aerobic, aerobic, and gas-to
Clarke, C; Andrews, S P
2014-12-01
An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Portable bench tester for piezo weigh-in-motion equipment : final report, June 2006.
DOT National Transportation Integrated Search
2006-06-01
The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...
Producing fired bricks using coal slag from a gasification plant in indiana
Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.
2009-01-01
Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.
Nanofiltration for concentration of roasted coffee extract: From bench to pilot
NASA Astrophysics Data System (ADS)
Dat, Lai Quoc; Quyen, Nguyen Thi Ngoc
2017-09-01
This paper focused on the application of nanofiltration (NF) for concentration of the roasted coffee extract in instant coffee processing. Three kinds of NF membranes were screened for separation capacity of total dry solid (TDS), polyphenols (PPs) and caffeine in roasted coffee extract and NF99 membrane showed the good performance for the NF of the extract. The crossflow NF with NF99 membrane at pilot scale was investigated for technical assessment of concentration of roasted coffee extract. Maximum theoretical concentration was estimated as 6.06. Recovery yields of TDS, PPs and caffeine were higher than 70% at 4.4 of concentration factor. The content of TDS in accumulative permeate was lower than 2.0 g/L. The fouling of NF was also solved by the suitable cleaning procedure with recovery index being 97.7%. Results of research indicate that it is feasible to apply NF for concentration of the roasted coffee extract in instant coffee production.
A Comprehensive Approach for the Ergonomic Evaluation of 13 Emergency and Transport Ventilators.
Marjanovic, Nicolas; L'Her, Erwan
2016-05-01
Mechanical ventilation is an important part of emergency medicine and is frequently used for transportation. Human errors during ventilator settings are frequent and may be associated with high morbidity/mortality. The aim of the study was to provide a complete ergonomic evaluation of emergency and transport ventilators, taking into account objective and subjective human-machine interface assessments and individual mental work load. We performed a prospective bench ergonomic evaluation of 13 emergency and transport ventilators, using standardized conditions and a global methodological approach. The study was performed in an evaluation laboratory dedicated to respiratory care, and 12 emergency physicians unfamiliar with the tested devices were included in the evaluation. The ventilators were classified into 3 categories (simple, sophisticated, and ICU-like). Objective chronometric evaluations were conducted considering 9 tasks, and subjective evaluations were performed (ease of use, willingness to use, and user-friendliness of monitoring) using Likert scales. Mental work load evaluation was performed using the NASA Task Load Index scale. Overall task failure rate represented 4% of all attempts. Setting modifications, ventilation mode changes, and powering down durations were different between simple and other emergency and transport ventilator categories (P < .005). There was no difference between ventilator categories for the ease of use and user-friendliness of the monitoring. In contrast, the willingness to use was lower for simple devices, compared with sophisticated and ICU-like emergency and transport ventilators (2.9 ± 1.4 vs 3.9 ± 1.2, P = .002 and 4.3 ± 1, P < .001). No differences were observed between devices regarding the mental work load, except for several specific devices in the sophisticated category. A comprehensive ergonomic evaluation provides valuable information while investigating operational friendliness in emergency and transport ventilators. The choice of a device not only depends on its technical characteristics but should take into account its clinical operational setting and ergonomics in order to decrease mental work load. Sophisticated emergency and transport ventilators should only be used by clinicians who demonstrate expertise in mechanical ventilation. Copyright © 2016 by Daedalus Enterprises.
PROBLEM OF FORMING IN A MAN-OPERATOR A HABIT OF TRACKING A MOVING TARGET,
Cybernetics stimulated the large-scale use of the method of functional analogy which makes it possible to compare technical and human activity systems...interesting and highly efficient human activity because of the psychological control factor involved in its operation. The human tracking system is
ERIC Educational Resources Information Center
Silvester, June P.; And Others
This report describes a new automated process that pioneers full-scale operational use of subject switching by the NASA (National Aeronautics and Space Administration) Scientific and Technical Information (STI) Facility. The subject switching process routinely translates machine-readable subject terms from one controlled vocabulary into the…
Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)
Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...
EMERGING TECHNOLOGY SUMMARY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER
A series of bench-scale tests and an onsite pilot scale demonstration of Bio-Recovery Systems' AlgaSORB® technology for the removal and recovery of mercury-contaminated groundwaters were conducted under the SITE program. The AlgaSORB® process is based on the natural, very st...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Electrochemical degradation (ECD) is a promising technology for in situ remediation of diversely contaminated environmental matrices by application of a low level electric potential gradient. This investigation, prompted by successful bench-scale ECD of trichloroethylene,...
liquid chromatography analysis Bench-scale methods Education B.S., Chemistry (Mathematics Minor), Adams ;Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass
Commercial Ion Exchange Resin Vitrification in Borosilicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicero-Herman, C.A.; Workman, P.; Poole, K.
1998-05-01
Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less
Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments
NASA Astrophysics Data System (ADS)
Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.
1996-07-01
Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.
Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D
2012-12-01
Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Technical Assessment of the National Full Scale Aerodynamic Complex Fan Blades Repair
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Dixon, Peter G.; St.Clair, Terry L.; Johns, William E.
1998-01-01
This report describes the principal activities of a technical review team formed to address National Full Scale Aerodynamic Complex (NFAC) blade repair problems. In particular, the problem of lack of good adhesive bonding of the composite overwrap to the Hyduliginum wood blade material was studied extensively. Description of action plans and technical elements of the plans are provided. Results of experiments designed to optimize the bonding process and bonding strengths obtained on a full scale blade using a two-step cure process with adhesive primers are presented. Consensus recommendations developed by the review team in conjunction with the NASA Ames Fan Blade Repair Project Team are provided along with lessons learned on this program. Implementation of recommendations resulted in achieving good adhesive bonds between the composite materials and wooden blades, thereby providing assurance that the repaired fan blades will meet or exceed operational life requirements.
Yang, W; Paetkau, M; Cicek, N
2010-01-01
Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.
Miklos, David B; Hartl, Rebecca; Michel, Philipp; Linden, Karl G; Drewes, Jörg E; Hübner, Uwe
2018-06-01
This study investigated the removal of 15 trace organic chemicals (TOrCs) occurring at ambient concentrations from municipal wastewater treatment plant effluent by advanced oxidation using UV/H 2 O 2 at pilot-scale. Pseudo first-order rate constants (k obs ) for photolytic as well as combined oxidative and photolytic degradation observed at pilot-scale were validated with results from a bench-scale collimated beam device. No significant difference was determined between pilot- and lab-scale performance. During continuous pilot-scale operation at constant UV fluence of 800 mJ/cm 2 and H 2 O 2 dosage of 10 mg/L, the removal of various TOrCs was investigated. The average observed removal for photo-susceptible (k UV >10 -3 cm 2 /mJ; like diclofenac, iopromide and sulfamethoxazole), moderately photo-susceptible (10 -4
Development of circumferential seal for helicopter transmissions: Results of bench and flight tests
NASA Technical Reports Server (NTRS)
Strom, T. N.; Ludwig, L. P.
1975-01-01
A modified circumferential segmented ring seal was designed for direct replacement of a helicopter transmission elastomeric lip seal operating on a shaft diameter of 13.91 centimeters (5.481 in.) at sliding velocities to 52.48 m/sec (10 330 ft/min). The modifications involved the garter spring tension, shaft roundness, seal housing flatness, and pumping grooves to inhibit leakage. Operation of the seals in bench tests under simulated helicopter transmission conditions revealed that the seal leakage rate was within acceptable limits and that the wear rate was negligible. The low leakage and wear rates were confirmed in flight tests of 600 and 175 hours (sliding speed, 48.11 m/sec (9470 ft/min)). An additional 200 hours of air worthiness qualification testing (aircraft tie down) demonstrated that the seal can operate at the advanced sliding conditions of 52.48 m/sec (10 330 ft/min).
Developing physician-leaders: key competencies and available programs.
Stoller, James K
2008-01-01
Because effective leadership is critical to organizational success, frontrunner organizations cultivate leaders for bench depth and pipeline development. The many challenges in healthcare today create a special need for great leadership. This paper reviews the leadership competencies needed by physician-leaders and current experience with developing physician-leaders in healthcare institution-sponsored programs. On the basis of this review, six key leadership competency domains are proposed: 1. technical skills and knowledge (regarding operational, financial, and information systems, human resources, and strategic planning), 2. industry knowledge (e.g., regarding clinical processes, regulation, and healthcare trends), 3. problem-solving skills, 4. emotional intelligence, 5. communication, and 6. a commitment to lifelong learning. Review of current experience indicates that, in addition to leadership training through degree and certificate-granting programs (e.g., by universities and/or official medical societies), healthcare institutions themselves are developing intramural programs to cultivate physician-leaders. Greater attention is needed to assessing the impact and effectiveness of such programs in developing leaders and benefiting organizational outcomes.
PHARAO space atomic clock: new developments on the laser source
NASA Astrophysics Data System (ADS)
Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.
2017-11-01
The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.
Research Notes - An Introduction to Openness and Evolvability Assessment
2016-08-01
importance of different business and technical characteristics that combine to achieve an open solution. The complexity of most large-scale systems of...process characteristic) Granularity of the architecture (size of functional blocks) Modularity (cohesion and coupling) Support for multiple...Description) OV-3 (Operational Information Exchange Matrix) SV-1 (Systems Interface Description) TV-1 ( Technical Standards Profile). Note that there
DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Hadley; R. Mike Mishra; Michael Placha
1999-01-27
The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less
Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Cabezas, J.
2009-05-15
Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.
2006-01-01
Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.
Technical Digest of the 1998 Summer Topical Meeting on Organic Optics and Optoelectronics
1998-07-01
substantially larger voltages (~2x), however, signal distortion and inter- symbol interference due to multiple RF reflections limit their...technology as data page composers. Texas Instrument’s DMD 0-7803-4953-9/98$10.00©1998 IEEE system has already been used in this capacity in several... lithography for fabricating and integrating the heads and sliders. The application of MEMS components and micromachined optical bench packaging techniques
In the VOC regulations both Granular Activated Carbon (GAC) and Packed Tower Aeration (PTA) have been designated as Best Available Treatment. DWRD has performed a great deal of research both at the bench, pilot and field scale on the use of GAC and pilot and field scale research ...
In a recently completed test program, bench-scale laboratory studies at Arizona State University (ASU) in Tempe, AZ, and pilot-scale studies in a simulated field test situation at Zentox Corp in Ocala, FL, were performed to evaluate the integration of gas-solid ultraviolet (UV) p...
The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...
Lightweight, high-opacity paper : process costs and energy use reduction
John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr
1999-01-01
Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...
Control of air emissions from POTWs using biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, T.S.; Devinny, J.S.; Torres, E.M.
1995-12-31
The University of Southern California (USC), in collaboration with the County Sanitation Districts of Orange County (CSDOC), the South Coast Air Quality Management District (SCAQMD), Southern California Edison (SCE), the Water Environment Research Foundation (WERF), and Huntingdon Environmental Engineering, Inc. (HEEI), is conducting a research project to evaluate the application of biofiltration to remove volatile organic compounds (VOCs), odor-causing air pollutants, and toxics from a publicly owned treatment works (POTW) waste airstream. As part of this project, bench-scale and pilot-scale experiments are being conducted to test the effectiveness of biofiltration and determine the optimum parameters for applying biofiltration to POTWs.more » Results from the bench-scale experiments demonstrate that biofiltration is effective in reducing the concentration of hydrogen sulfide (H{sub 2}S) and total VOCs present in waste airstreams by over 99% and up to 90%, respectively. Average reduction of specific aromatic and carbonyl compounds ranged from 55% to 91%. Removal efficiencies for chlorinated hydrocarbons were variable, ranging from 6% to 88%. Overall, biofiltration appears to be a promising technology for full-scale implementation at POTWs for VOC and odor emission compliance.« less
Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong
2016-03-01
The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.
Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M
2009-09-01
A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time
NASA Astrophysics Data System (ADS)
Salatino, P.; Solimene, R.; Chirone, R.
The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.
Tarras-Wahlberg, N H
2002-06-01
This paper considers technical measures and policy initiatives needed to improve environmental management in the Portovelo-Zaruma mining district of southern Ecuador. In this area, gold is mined by a large number of small-scale and artisanal operators, and discharges of cyanide and metal-laden tailings have had a severe impact on the shared Ecuadorian-Peruvian Puyango river system. It is shown to be technically possible to confine mining waste and tailings at a reasonable cost. However, the complex topography of the mining district forces tailings management to be communal, where all operators are connected to one central tailings impoundment. This, in turn, implies two things: (i) that a large number of operators must agree to pool resources to bring such a facility into reality; and (ii) that miners must move away from rudimentary operations that survive on a day-to-day basis, towards bigger, mechanized and longer-term sustainable operations that are based on proven ore reserves. It is deemed unlikely that existing environmental regulations and the provision of technical solutions will be sufficient to resolve the environmental problems. Important impediments relate to the limited financial resources available to each individual miner and the problems of pooling these resources, and to the fact that the main impacts of pollution are suffered downstream of the mining district and, hence, do not affect the miners themselves. Three policy measures are therefore suggested. First, the enforcement of existing regulations must be improved, and this may be achieved by the strengthening of the central authority charged with supervision and control of mining activities. Second, local government involvement and local public participation in environmental management needs to be promoted. Third, a clear policy should be defined which promotes the reorganisation of small operations into larger units that are strong enough to sustain rational exploration and environmental obligations. The case study suggests that mining policy in lesser-developed countries should develop to enable small-scale and artisanal miners to form entities that are of a sufficiently large scale to allow adequate and cost-effective environmental protection.
Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.
A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less
Flow Cytometry Scientist | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Scientist will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up-to-date, and appropriately adhered to Experience with sterile technique and tissue culture
Ambient iron-mediated aeration (IMA) for water reuse.
Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata
2013-02-01
Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.
Letter report on PCT/Monolith glass ceramic corrosion tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Charles L.
2015-09-24
The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.
Knight, Sophie; Aggarwal, Rajesh; Agostini, Aubert; Loundou, Anderson; Berdah, Stéphane; Crochet, Patrice
2018-01-01
Total Laparoscopic hysterectomy (LH) requires an advanced level of operative skills and training. The aim of this study was to develop an objective scale specific for the assessment of technical skills for LH (H-OSATS) and to demonstrate feasibility of use and validity in a virtual reality setting. The scale was developed using a hierarchical task analysis and a panel of international experts. A Delphi method obtained consensus among experts on relevant steps that should be included into the H-OSATS scale for assessment of operative performances. Feasibility of use and validity of the scale were evaluated by reviewing video recordings of LH performed on a virtual reality laparoscopic simulator. Three groups of operators of different levels of experience were assessed in a Marseille teaching hospital (10 novices, 8 intermediates and 8 experienced surgeons). Correlations with scores obtained using a recognised generic global rating tool (OSATS) were calculated. A total of 76 discrete steps were identified by the hierarchical task analysis. 14 experts completed the two rounds of the Delphi questionnaire. 64 steps reached consensus and were integrated in the scale. During the validation process, median time to rate each video recording was 25 minutes. There was a significant difference between the novice, intermediate and experienced group for total H-OSATS scores (133, 155.9 and 178.25 respectively; p = 0.002). H-OSATS scale demonstrated high inter-rater reliability (intraclass correlation coefficient [ICC] = 0.930; p<0.001) and test retest reliability (ICC = 0.877; p<0.001). High correlations were found between total H-OSATS scores and OSATS scores (rho = 0.928; p<0.001). The H-OSATS scale displayed evidence of validity for assessment of technical performances for LH performed on a virtual reality simulator. The implementation of this scale is expected to facilitate deliberate practice. Next steps should focus on evaluating the validity of the scale in the operating room.
A case study of dissolved air flotation for seasonal high turbidity water in Korea.
Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K
2004-01-01
A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme.
Adsorptive removal of catalyst poisons from coal gas for methanol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, B.L.; Golden, T.C.; Hsiung, T.H.
1991-12-01
As an integral part of the liquid-phase methanol (LPMEOH) process development program, the present study evaluated adsorptive schemes to remove traces of catalyst poisons such as iron carbonyl, carbonyl sulfide, and hydrogen sulfide from coal gas on a pilot scale. Tests were conducted with coal gas from the Cool Water gasification plant at Daggett, California. Iron carbonyl, carbonyl sulfide, and hydrogen sulfide were effectively removed from the coal gas. The adsorption capacities of Linde H-Y zeolite and Calgon BPL carbon for Fe(CO){sub 5} compared well with previous bench-scale results at similar CO{sub 2} partial pressure. Adsorption of COS by Calgonmore » FCA carbon appeared to be chemical and nonregenerable by thermal treatment in nitrogen. A Cu/Zn catalyst removed H{sub 2}S very effectively. With the adsorption system on-line, a methanol catalyst showed stable activity during 120 h operation, demonstrating the feasibility of adsorptive removal of trace catalyst poisons from the synthesis gas. Mass transfer coefficients were estimated for Fe(CO){sub 5} and COS removal which can be directly used for design and scale up.« less
Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R
2005-01-01
When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.
Metrology System for a Large, Somewhat Flexible Telescope
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Bartman, Randall; Cook, Walter; Craig, William
2009-01-01
A proposed metrology system would be incorporated into a proposed telescope that would include focusing optics on a rigid bench connected via a deployable mast to another rigid bench holding a focal-plane array of photon counting photodetectors. Deformations of the deployable mast would give rise to optical misalignments that would alter the directions (and, hence, locations) of incidence of photons on the focal plane. The metrology system would measure the relative displacement of the focusing- optics bench and the focal-plane array bench. The measurement data would be used in post-processing of the digitized photodetector outputs to compensate for the mast-deformation-induced changes in the locations of incidence of photons on the focal plane, thereby making it possible to determine the original directions of incidence of photons with greater accuracy. The proposed metrology system is designed specifically for the Nuclear Spectroscopic Telescope Array (NuSTAR) a proposed spaceborne x-ray telescope. The basic principles of design and operation are also applicable to other large, somewhat flexible telescopes, both terrestrial and spaceborne. In the NuSTAR, the structural member connecting the optical bench and the photodetector array would be a 10-m-long deployable mast, and there is a requirement to keep errors in measured directions of incidence of photons below 10 arc seconds (3 sigma). The proposed system would include three diode lasers that would be mounted on the focusing-optics bench. For clarity, only one laser is shown in the figure, which is a greatly simplified schematic diagram of the system. Each laser would be aimed at a position-sensitive photodiode that would be mounted on the detector bench alongside the aforementioned telescope photodetector array. The diode lasers would operate at a wavelength of 830 nm, each at a power of 200 mW. Each laser beam would be focused to a spot of .1-mm diameter on the corresponding position-sensitive photodiode. To reduce the effect of sunlight on the measurements, a one-stage light baffle and an 830-nm transmission filter of 10-nm bandwidth would be placed in front of the position- sensitive photodiode. For each metrology reading, the output of the position-sensitive detector would be sampled and digitized twice: once with the lasers turned on, then once with the lasers turned off. The data from these two sets of samples would be subtracted from each other to further reduce the effects of sun glints or other background light sources.
Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes
The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
Diesel Combustion Fundamentals. Phase 1. Volume 1. Technical Report.
1987-07-01
C02 ), oxides of nitrogen (NOx), oxygen (02), and unburned hydrocarbons (HC). The instruments for measuring CO and CO2 emissions were Beckman *1 model...emissions. Oxygen levels in the exhaust were measured with a Beckman model 742 amperometric analyzer. These instruments were installed in a bench...nuing the use of this sensor system. First, the location of the window was such that it did not see a large enough volume of the pre-chamber to
Evaluation of Hydrogel Technologies for the Decontamination ...
Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.
Mark A. Dietenberger
2010-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...
Ignition and flame travel on realistic building and landscape objects in changing environments
Mark A. Dietenberger
2007-01-01
Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...
Pennycress protein isolate: Pilot plant production and application in films polymeric composites
USDA-ARS?s Scientific Manuscript database
This work scaled up the process of producing pennycress protein isolates (PPI) using 5 kg starting material (previously 100 g in bench-scale research). Defatted press cake, produced by prepressing and hexane extraction, was mixed with preheated 50 L of aqueous NaOH (pH 10) for 90 min in a jacketed k...
Community air monitoring and the Village Green Project ...
Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engagement with community members. EPA’s Village Green Project (VGP) is a prototype technology designed to add value to a community environment – VGP is a park bench equipped with air and meteorological instruments that measure ozone, fine particles, wind, temperature, and humidity at a one-minute time resolution, with the open-source Arduino microprocessor operating as the system controller. The data are streamed wirelessly to a database, passed through automatic diagnostic quality checks, and then made publically available on an engaging website. The station was designed to minimize power use; it consumes an estimated 15W and operates entirely on solar power, is engineered to run for several days with minimal solar radiation, and is capable of automatically shutting down components of the system to conserve power and restarting when power availability increases. Situated outside a public library in Durham, North Carolina, VGP has also been a gathering location for air quality experts to engage with community members. During the time span of June, 2013 through January, 2014, the station collected about 3500 hours of ozone and PM2.5 data, with over 90% up-time operating only on solar po
Maqbool, Tahir; Quang, Viet Ly; Cho, Jinwoo; Hur, Jin
2016-06-01
In this study, we successfully tracked the dynamic changes in different constitutes of bound extracellular polymeric substances (bEPS), soluble microbial products (SMP), and permeate during the operation of bench scale membrane bioreactors (MBRs) via fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). Three fluorescent groups were identified, including two protein-like (tryptophan-like C1 and tyrosine-like C2) and one microbial humic-like components (C3). In bEPS, protein-like components were consistently more dominant than C3 during the MBR operation, while their relative abundance in SMP depended on aeration intensities. C1 of bEPS exhibited a linear correlation (R(2)=0.738; p<0.01) with bEPS amounts in sludge, and C2 was closely related to the stability of sludge. The protein-like components were more greatly responsible for membrane fouling. Our study suggests that EEM-PARAFAC can be a promising monitoring tool to provide further insight into process evaluation and membrane fouling during MBR operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe
2017-11-01
Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.
Bonrath, Esther M; Dedy, Nicolas J; Gordon, Lauren E; Grantcharov, Teodor P
2015-08-01
The aim of the study was to determine whether individualized coaching improved surgical technical skill in the operating room to a higher degree than current residency training. Clinical training in the operating room is a valuable opportunity for surgeons to acquire skill and knowledge; however, it often remains underutilized. Coaching has been successfully used in various industries to enhance performance, but its role in surgery has been insufficiently investigated. This randomized controlled trial was conducted at one surgical training program. Trainees undergoing a minimally invasive surgery rotation were randomized to either conventional training (CT) or comprehensive surgical coaching (CSC). CT included ward and operating room duties, and regular departmental teaching sessions. CSC comprised performance analysis, debriefing, feedback, and behavior modeling. Primary outcome measures were technical performance as measured on global and procedure-specific rating scales, and surgical safety parameters, measured by error count. Operative performance was assessed by blinded video analysis of the first and last cases recorded by the participants during their rotation. Twenty residents were randomized and 18 completed the study. At posttraining the CSC group (n = 9) scored significantly higher on a procedure-specific skill scale compared with the CT group (n = 9) [median, 3.90 (interquartile range, 3.68-4.30) vs 3.60 (2.98-3.70), P = 0.017], and made fewer technical errors [10 (7-13) vs 18 (13-21), P = 0.003]. Significant within-group improvements for all skill metrics were only noted in the CSC group. Comprehensive surgical coaching enhances surgical training and results in skill acquisition superior to conventional training.
Removal of Multiple Contaminants: Biological Treatment
This presentation contains (1) background material on nitrate, perchlorate and ammonia contamination in the continental US; (2) scientific background on biological drinking water treatment; (3) results of bench-scale anaerobic and aerobic treatment studies; (4) results of pilot-s...
Pervious Pavement System Evaluation
Pervious pavement is a low impact development stormwater control. The Urban Watershed Management Branch of the U.S. Environmental Protection Agency in Edison, NJ, is evaluating concrete pavers as a popular implementation. The pollutant removal of a bench-scale permeable interlo...
Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia
2016-01-01
Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, Eunyoung; Seagren, Eric A; Davis, Allen P
2006-02-01
One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.
Gurunathan, Baskar; Sahadevan, Renganathan
2012-07-01
Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.
Rate and extent NOM removal during oxidation and biofiltration.
Black, Kerry E; Bérubé, Pierre R
2014-04-01
The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ethanol production in small- to medium-size facilities
NASA Astrophysics Data System (ADS)
Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.
1982-04-01
In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.
Development of a pyramidal wavefront sensor test-bench at INO
NASA Astrophysics Data System (ADS)
Turbide, Simon; Wang, Min; Gauvin, Jonny; Martin, Olivier; Savard, Maxime; Bourqui, Pascal; Veran, Jean-Pierre; Deschenes, William; Anctil, Genevieve; Chateauneuf, François
2013-12-01
The key technical element of the adaptive optics in astronomy is the wavefront sensing (WFS). One of the advantages of the pyramid wavefront sensor (P-WFS) over the widely used Shack-Hartmann wavefront sensor seems to be the increased sensitivity in closed-loop applications. A high-sensitivity and large dynamic-range WFS, such as P-WFS technology, still needs to be further investigated for proper justification in future Extremely Large Telescopes application. At INO, we have recently carried out the optical design, testing and performance evaluation of a P-WFS bench setup. The optical design of the bench setup mainly consists of the super-LED fiber source, source collimator, spatial light modulator (SLM), relay lenses, tip-tilt mirror, Fourier-transforming lens, and a four-faceted glass pyramid with a large vertex angle as well as pupil re-imaged optics. The phase-only SLM has been introduced in the bench setup to generate atmospheric turbulence with a maximum phase shift of more than 2π at each pixel (256 grey levels). Like a modified Foucault knife-edge test, the refractive pyramid element is used to produce four images of the entrance pupil on a CCD camera. The Fourier-transforming lens, which is used before the pyramid prism, is designed for telecentric output to allow dynamic modulation (rotation of the beam around the pyramid-prism center) from a tip-tilt mirror. Furthermore, a P-WFS diffraction-based model has been developed. This model includes most of the system limitations such as the SLM discrete voltage steps and the CCD pixel pitch. The pyramid effects (edges and tip) are considered as well. The modal wavefront reconstruction algorithm relies on the construction of an interaction matrix (one for each modulation's amplitude). Each column of the interaction matrix represents the combination of the four pupil images for a given wavefront aberration. The nice agreement between the data and the model suggest that the limitation of the system is not the P-WFS itself, but rather its environment such as source intensity fluctuation and vibration of the optical bench. Finally, the phase-reconstruction errors of the P-WFS have been compared to those of a Shack-Hartmann, showing the regions of interest of the former system. The bench setup will be focusing on the astronomy application as well as commercial applications, such as bio-medical application etc.
"Bioneering"--Teaching Biotechnology Entrepreneurship at the Undergraduate Level
ERIC Educational Resources Information Center
Collet, Chris; Wyatt, David
2005-01-01
Purpose - The authors have developed an educational model that operates at the undergraduate level and aims to produce graduates who can comfortably operate in the gulf between the laboratory bench and the commercial marketplace. The purpose of the paper is to describe the course, approaches, activities and initial outcomes of the Bachelor of…
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
MACHINE TOOL OPERATOR--GENERAL, ENTRY, SUGGESTED GUIDE FOR A TRAINING COURSE.
ERIC Educational Resources Information Center
RONEY, MAURICE W.; AND OTHERS
THE PURPOSE OF THIS CURRICULUM GUIDE IS TO ASSIST THE ADMINISTRATOR AND INSTRUCTOR IN PLANNING AND DEVELOPING MANPOWER DEVELOPMENT AND TRAINING PROGRAMS TO PREPARE MACHINE TOOL OPERATORS FOR ENTRY-LEVEL POSITIONS. THE COURSE OUTLINE PROVIDES UNITS IN -- (1) ORIENTATION, (2) BENCH WORK, (3) SHOP MATHEMATICS, (4) BLUEPRINT READING AND SKETCHING, (5)…
Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D
2008-02-01
Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.
Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool
NASA Astrophysics Data System (ADS)
Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong
2016-06-01
The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.
ESA's CCD test bench for the PLATO mission
NASA Astrophysics Data System (ADS)
Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo
2016-08-01
PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.
Pyrolysis of automotive shredder residue in a bench scale rotary kiln.
Notarnicola, Michele; Cornacchia, Giacinto; De Gisi, Sabino; Di Canio, Francesco; Freda, Cesare; Garzone, Pietro; Martino, Maria; Valerio, Vito; Villone, Antonio
2017-07-01
Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm 3 dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard, S.; Lu, Yingzhong
The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less
Scaling of the VASIMR thruster first stage operation
NASA Astrophysics Data System (ADS)
Molvig, Kim; Batishchev, Oleg
2002-11-01
An effective helicon plasma source [1,2] is used in the variable high specific impulse VASIMR plasma thruster [3]. Experimental prototypes - VX-3 and recently up-scaled VX-10 [4] configurations operate with hydrogen, deuterium and helium plasmas. A set of models [5-7] has been developed to study VASIMR light gases helicon discharge. Using zero-dimensional model incorporating energy and mass balance equations we study scaling of the plasma source efficiency with the increased mass flow rate, applied electrical power and dimensions of the quartz tube. We compare theoretical results with existing experimental data. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, 2001; [6] O.Batishchev, K.Molvig, IEPC-01-208 paper, 27th Int. Electrical Propulsion Conf., 2001; [7] O.Batishchev, K.Molvig, AIAA technical paper 2002-0347, 2002.
Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbonmore » balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support further long term testing in a larger scale integrated system that is representative of what would be installed at a water resource recovery facility (WRRF) in order to fully assess the technical and economic viability of this technology for wastewater sludge treatment.« less
Damayanti, A; Ujang, Z; Salim, M R
2011-03-01
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests. Copyright © 2010 Elsevier Ltd. All rights reserved.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie
2016-06-01
Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Cul, G.D.; Osborne, P.E.; Beck, D.E.
1991-01-01
The Paducah Gaseous Diffusion Plant (PGDP) C-400 Decontamination Facility generates aqueous solutions that originate in drum washing, machine parts and equipment cleaning, and other decontamination processes. The chemical composition of the waste depends on the particular operation involved. In general, the waste contains uranyl, fluoride, carbonate, and nitrate ions, plus soaps, detergents, secondary contaminants, and particulate matter. The uranium content is rather variable ranging between 0.5 and 30 g/l. The main contaminants are fluoride, technetium, uranium, and other heavy metals. The plan included (1) a literature search to support best available technology (BAT) evaluation of treatment alternatives, (2) a qualitymore » assurance/quality control plan, (3) suggestion of alternative treatment options, (4) bench-scale tests studies of the proposed treatment alternatives, and (5) establishment of the final recommendation. The following report records the evaluation of items (1) to (3) of the action plan for the BAT evaluation of alternatives for the treatment and retreatment of uranium-contaminated wastewater at the PGDP C-400 treatment facility. After a thorough literature search, five major technologies were considered: (1) precipitation/coprecipitation, (2) reverse osmosis, (3) ultrafiltration, (4) supported liquid membranes, and (5) ion exchange. Biosorption was also considered, but as it is a fairly new technology with few demonstrations of its capabilities, it is mentioned only briefly in the report. Based on C-400's requirements and facilities, the precipitation/coprecipitation process appears to be the best suited for use at the plant. Four different treatment options using the precipitation/coprecipitation technology are proposed. Bench-scale studies of the four options are suggested. 37 refs.« less
Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm
2018-03-13
Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.
Simulating maar-diatreme volcanic systems in bench-scale experiments
NASA Astrophysics Data System (ADS)
Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.
2015-12-01
Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.
HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...
This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information
Non-technical skills of surgeons and anaesthetists in simulated operating theatre crises.
Doumouras, A G; Hamidi, M; Lung, K; Tarola, C L; Tsao, M W; Scott, J W; Smink, D S; Yule, S
2017-07-01
Deficiencies in non-technical skills (NTS) have been increasingly implicated in avoidable operating theatre errors. Accordingly, this study sought to characterize the impact of surgeon and anaesthetist non-technical skills on time to crisis resolution in a simulated operating theatre. Non-technical skills were assessed during 26 simulated crises (haemorrhage and airway emergency) performed by surgical teams. Teams consisted of surgeons, anaesthetists and nurses. Behaviour was assessed by four trained raters using the Non-Technical Skills for Surgeons (NOTSS) and Anaesthetists' Non-Technical Skills (ANTS) rating scales before and during the crisis phase of each scenario. The primary endpoint was time to crisis resolution; secondary endpoints included NTS scores before and during the crisis. A cross-classified linear mixed-effects model was used for the final analysis. Thirteen different surgical teams were assessed. Higher NTS ratings resulted in significantly faster crisis resolution. For anaesthetists, every 1-point increase in ANTS score was associated with a decrease of 53·50 (95 per cent c.i. 31·13 to 75·87) s in time to crisis resolution (P < 0·001). Similarly, for surgeons, every 1-point increase in NOTSS score was associated with a decrease of 64·81 (26·01 to 103·60) s in time to crisis resolution in the haemorrhage scenario (P = 0·001); however, this did not apply to the difficult airway scenario. Non-technical skills scores were lower during the crisis phase of the scenarios than those measured before the crisis for both surgeons and anaesthetists. A higher level of NTS of surgeons and anaesthetists led to quicker crisis resolution in a simulated operating theatre environment. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.
A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C
2012-06-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/
A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings
Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.
2012-01-01
Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054
Cadastral data model established and perfected with 4S technology
NASA Astrophysics Data System (ADS)
He, Beijing; He, Jiang; He, Jianpeng
1998-08-01
Considering China's social essential system and the actual case of the formation of cadastral information in urban and rural area, and based on the 4S technology and the theory and method of canton's GPS geodetic data bench developed by the authors, we thoroughly research on some correlative technical problems about establishing and perfecting all-level's microcosmic cadastral data model (called model in the following) once again. Such problems as the following are included: cadastral, feature and topographic information and its modality and expressing method, classifying and grading the model, coordinate system to be selected, data basis for the model, the collecting method and digitalization of information, database's structural model, mathematical model and the establishing technology of 3 or more dimensional model, dynamic monitoring of and the development and application of the model. Then, the domestic and overseas application prospect is revealed. It also has the tendency to intrude markets cooperated with 'data bench' technology or RS image maps' all-analysis digital surveying and mapping technology.
National Manpower Inventory. Volume 3. Technical Documentation for Software for the Model
1985-09-01
Technician APS-96 Search Radar IMA Technician USM-449 (V) & AAI 5500 Series ATE Int Maintenance Level Tech. CO CP-413/ASA-27A SACE TesI Bench IMA...MATE) Test Console IMA Technician ALQ-91/108 DECM IMA Technician ALQ-99 ECM Jammer/Tmilter & ALM-107 TesI Console IMA Technician ALQ-99 ECM Track...Receivers & ALM-109 TesI Console IMA Technician ECM Systems Intermediate Maintenance Technician ASM-347 (GT-1) SACE Programmer/Mainlenanca IMA
Aerospace Technology: Technical Data and Information on Foreign Test Facilities
1990-06-22
effects of an airflow on various active models (nozzles or rotors ) or pas- sive models (airfoils). It is specially dedicated to acoustic testing driven by...Tunnel Figure V.3: Aerospatiale Rotor Test Bench and 99 Microphones Installed Inside Test Chamber of the CEPRA 19 Anechoic Wind Tunnel Figure V.4...Figure V.26: Ground Effect Test on Airbus A320 Model in 127 Test Section of the ONERA S1MA Wind Tunnel Figure V.27: ONERA S3Ch Transonic Wind Tunnel 130
[Assessment and comparison of hospital operating efficiency under different management systems].
2017-06-18
To assess and analyze the operation efficiency of 8 commission general public hospitals managed directly by National Health and Family Planning Commission and 8 municipal general hospitals managed directly by Beijing Municipal Administration of Hospitals in Beijing and to provide suggestions on improving service capacity and designing relevant health policy. Input and output data of 8 commission hospitals and 8 municipal hospitals were obtained from Beijing Direct-Reported Health Statistics data from 2011 to 2014. Data envelopment analysis was used as the hospital operation efficiency measurement tool. The CCR and BCC models were built to calculate technical efficiency (TE), pure technical efficiency (PTE), scale efficiency (SE) and the status of scale efficiency of 16 hospitals in 2011 and 2014; the Malmquist index model was built to analyze the total factor productivity change (TFPC), technological change (TC), technical efficiency change, pure technical efficiency change and scale efficiency change of the 16 hospitals from 2011 to 2014. In 2011, the TE, PTE and SE of the commission hospitals were higher than those of the municipal hospitals, and the TEs of the commission hospitals and the municipal hospitals were 0.918 and 0.873 respectively. In 2014, the TE, PTE and SE of commission hospitals were lower than those of the municipal hospitals, and the TE of the commission hospitals and the municipal hospitals were 0.906 and 0.951, respectively, which was contrary to the results in 2011. According to the Malmquist index model, the average of TFPC of the municipal hospitals was larger than that of the commission hospitals, the former increased 5.9% and the latter increased 2.8% per year; the average of TC was greater than the one in both the municipal hospitals and the commission hospitals, with a growth of 3.2% and 2.9% per year, respectively; the average growth of PTE in the commission hospitals was lower than that of the municipal hospitals, and the average descent of SE in the commission hospitals was larger than that in the municipal hospitals. There are significant differences in the operation efficiency between different management systems and the main factors associated with operation efficiency are the technological and management level. Given scale efficiency status and macroeconomic medical policies, the commission hospitals and the municipal hospitals require further adjusting the distribution of medical resources, and it is of great significance for all the commission hospitals and the municipal hospitals to improve the management level and resource integration capability.
The first purpose of this project is to complete bench and pilot scale testing of promising mercury sorbents. This work would apply findings from fundamental, mechanistic efforts over the past three years that have developed sorbents which show improved capture of elemental and ...
TREATMENT STUDIES OF CCL CONTAMINANTS
Bench-scale screening-level treatment data are presented for compounds listed in the Contaminant Candidate List (CCL). All of the CCl compounds are predicted to be economically removed by either activated carbon or air stripping technologies. To complete the screening-level treat...
CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH
Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION
The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...
Hosseini, Seiyed Mossa; Tosco, Tiziana
2015-08-01
The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated groundwater. This NPRW system can be considered a promising and viable technology in deep aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.
Treating contaminated organics using the DETOX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsberry, K.D.; Dhooge, P.M.
1993-05-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less
Advanced direct coal liquefaction concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysismore » is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H[sub 2]O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.« less
Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1992--December 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysismore » is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H{sub 2}O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.« less
NASA Astrophysics Data System (ADS)
Moskvin, L. N.; Rakov, V. T.
2015-06-01
The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, Klaus; McClung, Aaron; Davis, John
2014-03-31
The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less
NASA Technical Reports Server (NTRS)
Britcher, Colin P.
1997-01-01
This paper will briefly review previous work in wind tunnel Magnetic Suspension and Balance Systems (MSBS) and will examine the handful of systems around the world currently known to be in operational condition or undergoing recommissioning. Technical developments emerging from research programs at NASA and elsewhere will be reviewed briefly, where there is potential impact on large-scale MSBSS. The likely aerodynamic applications for large MSBSs will be addressed, since these applications should properly drive system designs. A recently proposed application to ultra-high Reynolds number testing will then be addressed in some detail. Finally, some opinions on the technical feasibility and usefulness of a large MSBS will be given.
GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS
Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...
Evaluation of mechanical and corrosion properties of MMFX reinforcing steel for concrete
DOT National Transportation Integrated Search
2004-01-01
The corrosion performance of MMFX and conventional reinforcing steels is compared based on macrocell and bench-scale tests. The conventional steel includes epoxy-coated and uncoated bars. Macrocell tests are conducted on bare bars and bars symmetrica...
BENCH-SCALE PERFORMANCE OF PARTITIONING ELECTRON DONORS FOR TCE DNAPL BIOREMEDIATION
The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethen...
ELECTROCHEMICAL ARSENIC REMEDIATION IN RURAL BANGLADESH
In Year 1, we built a bench-scale continuous flow prototype (dubbed “Sushi” for its sushi-like electrode roll) and completed preliminary field trials in Bangladesh. We were also able to leverage additional funding to complete preliminary field trials in arsenic-...
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
Cohen, Daniel; Sevdalis, Nick; Patel, Vishal; Taylor, Michael; Lee, Henry; Vokes, Mick; Heys, Mick; Taylor, David; Batrick, Nicola; Darzi, Ara
2013-07-01
To determine feasibility and reliability of skills assessment in a multi-agency, triple-site major incident response exercise carried out in a virtual world environment. Skills assessment was carried out across three scenarios. The pre-hospital scenario required paramedics to triage and treat casualties at the site of an explosion. Technical skills assessment forms were developed using training syllabus competencies and national guidelines identified by pre-hospital response experts. Non-technical skills were assessed using a seven-point scale previously developed for use by pre-hospital paramedics. The two in-hospital scenarios, focusing on a trauma team leader and a silver/clinical major incident co-ordinator, utilised the validated Trauma-NOTECHS scale to assess five domains of performance. Technical competencies were assessed using an ATLS-style competency scale for the trauma scenario. For the silver scenario, the assessment document was developed using competencies described from a similar role description in a real-life hospital major incident plan. The technical and non-technical performance of all participants was assessed live by two experts in each of the three scenarios and inter-assessor reliability was computed. Participants also self-assessed their performance using identical proformas immediately after the scenarios were completed. Self and expert assessments were correlated (assessment cross-validation). Twenty-three participants underwent all scenarios and assessments. Performance assessments were feasible for both experts as well as the participants. Non-technical performance was generally scored higher than technical performance. Very good inter-rater reliability was obtained between expert raters across all scenarios and both technical and non-technical aspects of performance (reliability range 0.59-0.90, Ps<0.01). Significant positive correlations were found between self and expert assessment in technical skills across all three scenarios (correlation range 0.52-0.84, Ps<0.05), although no such correlations were observed in non-technical skills. This study establishes feasibility and reliability of virtual environment technical and non-technical skills assessment in major incident scenarios for the first time. The development for further scenarios and validated assessment scales will enable major incident planners to utilise virtual technologies for improved major incident preparation and training. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
1994-09-01
costs are the costs associated with a particular piece of equipment that do not change despite change in variable operating cost ( Horngren and Foster...The Operating and maintenance costs account for direct and indirect costs associated with their respective functions and vary with the utilization of...each vehicle. The operating direct cost includes all on-base and off- base fuel cost . Indirect operations costs account for bench 28 stock items
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
NASA Astrophysics Data System (ADS)
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Gnirss, R; Lesjean, B; Adam, C; Buisson, H
2003-01-01
Future stringent phosphorus regulations (down to 50 microg/L in some cases) together with the availability of more cost effective and/or innovative membrane processes, are the bases for this project. In contrast to conventional activated sludge plants, process parameters are not optimised and especially enhanced biological phosphorus (Bio-P) removal in membrane bioreactors (MBRs) are not proven yet. Current practice of P-removal in MBRs is the addition of coagulants in a co-precipitation mode. Enhanced biological phosphorus removal, when adapted to MBR technology, might be a cost-effective process. For very stringent effluent criteria additional P-adsorption on activated clay after membrane filtration can be also an interesting solution. The objective of this research project is to identify and test various phosphorus removal processes or process combinations, including MBR technologies. This should enable us to establish efficient and cost effective P-removal strategies for upgrading small sewage treatment units (up to 10,000 PE), as needed in some decentralised areas of Berlin. In particular, enhanced Bio-P removal technology was developed and optimised in MBR. Combinations of co-precipitation and post-adsorption will be tested when low P-values down to 50 microg/L are required in the effluent. One MBR bench-scale plant of 200 to 250 L and two MBR pilot plants of 1 to 3 m3 each were operated in parallel to a conventional wastewater treatment plant (Ruhleben WWTP, Berlin, Germany). The MBR bench-scale and pilot plants were operated under sludge ages of respectively 15 and 25 days. In both cases, Bio-P was possible, and phosphorus effluent concentration of about 0.1 mg/L could be achieved. A similar effluent quality was observed with the conventional WWTP. Investigations with lab columns indicated that P-adsorption could lead to concentrations down to 50 microg/L and no particle accumulation occurred in the filter media. The three tested materials exhibited great differences in break-through curves. Granulated ferric hydroxyde (GEH) showed higher capacity than activated alumina and FerroSorpPlus.
Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjerioua, Boualem; Witt, Adam M.
The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supportingmore » sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The mission of the ORNL Water Power Program is to develop technologies, decision-support tools, and methods of analysis that enable holistic management of water-dependent energy infrastructure and natural resources in support of the DOE Energy Efficiency and Renewable Energy Office (DOE-EERE), Federal hydropower agencies, Federal Energy Regulatory Commission (FERC), Nuclear Regulatory Commission (NRC), energy producers, and other entities. In support of SIM, ORNL completed technical assessments of two hydropower plants owned and operated by the Electricity Generating Authority of Thailand (EGAT): Vajiralongkorn (VRK), with an installed capacity of 300 MW, and Rajjaprabha (RPB), with an installed capacity of 240MW. Technical assessment is defined as the assessment of hydropower operation and performance, and the identification of potential opportunities for performance improvement through plant optimization. At each plant, the assessment included an initial analysis of hydropower operating and performance metrics, provided by dam owners. After this analysis, ORNL engaged with the plant management team in a skills exchange, where best practices, operational methods, and technical challenges were discussed. The technical assessment process was outlined to plant management followed by a presentation of preliminary results and analysis based on 50 days of operational data. EGAT has agreed to provide a full year of operational data so a complete and detailed assessment that captures seasonal variability can be completed. The results of these assessments and discussions will be used to develop a set of best practices, training, and procedure recommendations to improve the efficiency of the two assessed plants« less
Fixture for winding transformers
NASA Technical Reports Server (NTRS)
Mclyman, M. T.
1980-01-01
Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.
Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.
May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J
2017-12-01
Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.
Investigation of an Ultrafast Harmonic Resonant RF Kicker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu
An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to runmore » continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an ideal square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half-scale copper prototype cavity (resonant frequencies from 95.26 MHz to 857.34 MHz) was fabricated to validate the electromagnetic characteristics. With this half scale prototype, the tuning processes of multiple harmonic frequencies, unloaded quality factor measurements of each mode, and bead-pull measurements are performed. The bench measurement results matched well with the simulation results, which have validated our cavity design and construction methods. Finally, a simple mode combining experiment with five separate signal generators was performed on this prototype cavity and the desired fast rise/fall time (1.2 ns), high repetition rate (95.26 MHz) waveform was captured, which finally proved our design of this ultrafast harmonic kicker.« less
Amosa, Mutiu Kolade; Jami, Mohammed Saedi; Alkhatib, Ma'an Fahmi R; Majozi, Thokozani
2016-11-01
This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m -3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m -3 ) for such wastewater reclamation.
Michael, I; Hapeshi, E; Michael, C; Fatta-Kassinos, D
2010-10-01
Two different technical approaches based on advanced oxidation processes (AOPs), solar Fenton homogeneous photocatalysis (hv/Fe(2+)/H(2)O(2)) and heterogeneous photocatalysis with titanium dioxide (TiO(2)) suspensions were studied for the chemical degradation of the fluoroquinolone ofloxacin in secondary treated effluents. A bench-scale solar simulator in combination with an appropriate photochemical batch reactor was used to evaluate and select the optimal oxidation conditions of ofloxacin spiked in secondary treated domestic effluents. The concentration profile of the examined substrate during degradation was determined by UV/Vis spectrophotometry. Mineralization was monitored by measuring the dissolved organic carbon (DOC). The concentrations of Fe(2+) and H(2)O(2) were the key factors for the solar Fenton process, while the most important parameter of the heterogeneous photocatalysis was proved to be the catalyst loading. Kinetic analyses indicated that the photodegradation of ofloxacin can be described by a pseudo-first-order reaction. The rate constant (k) for the solar Fenton process was determined at different Fe(2+) and H(2)O(2) concentrations whereas the Langmuir-Hinshelwood (LH) kinetic expression was used to assess the kinetics of the heterogeneous photocatalytic process. The conversion of ofloxacin depends on several parameters based on the various experimental conditions, which were investigated. A Daphnia magna bioassay was used to evaluate the potential toxicity of the parent compound and its photo-oxidation by-products in different stages of oxidation. In the present study solar Fenton has been demonstrated to be more effective than the solar TiO(2) process, yielding complete degradation of the examined substrate and DOC reduction of about 50% in 30 min of the photocatalytic treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Status of SRNL radiological field lysimeter experiment-Year 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.; Roberts, K.; Bagwell, L.
The Savannah River National Laboratory (SRNL) Radiological Field Lysimeter Experiment is a one-of-a-kind field facility designed to study radionuclide geochemical processes at a larger spatial scale (from grams to tens of kilograms sediment) and temporal scale (from months to 10 years) than is readily afforded through laboratory studies. The lysimeter facility is intended to capture the natural heterogeneity of moisture and temperature regimes in the vadose zone, the unsaturated subsurface region between the surface soil and the underlying aquifer. The 48 lysimeter columns, which contain various radionuclides (and stable iodine), were opened to rainfall infiltration on July 5, 2012. Themore » objective of this report is to provide a status of the lysimeter facility operations and to compile data collected during FY13, including leachate volume, rainfall, and soil moisture and temperature in situ probe data. Radiological leachate data are not presented in this document but will be the subject of a separate document.1 Leachate samples were collected quarterly and shipped to Clemson University for radiological analyses. Rainfall, leachate volume, moisture and temperature probe data were collected continuously. During operations of the facility this year, there were four safety or technical concerns that required additional maintenance: 1) radioactivity was detected in one of the overflow bottles (captured water collected from the secondary containment that does not come in contact with the radiological source material); 2) rainwater accumulated within the sample-bottle storage sheds; 3) overflow containers collected more liquid than anticipated; and 4) significant spider infestation occurred in the sample-bottle storage sheds. To address the first three concerns, each of the lysimeter columns was re-plumbed to improve and to minimize the number of joint unions. To address the fourth concern regarding spiders, new sample-bottle water sheds were purchased and a pest control program was established. During this retrofit, the lysimeters were temporarily capped (covered to preclude additional water from entering lysimeter columns) for about two months (except the four Tc-cementitious containing lysimeters, which remain capped). At a later date, data summarized in this report will be combined with the leachate radionuclide concentration data that are presently being analyzed. Together, these data can be numerically modeled to provide bench-marking information, to test hypotheses regarding hydrogeochemical conceptual models, and to estimate effective transport parameters under field conditions.« less
Trap Design and Construction for High-Power Multinuclear Magnetic Resonance Experiments
Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; Malloy, Craig; Wright, Steven M.; McDougall, Mary P.
2016-01-01
Performing multinuclear experiments requires one or more radiofrequency (RF) coils operating at both the proton and second-nucleus frequencies; however, inductive coupling between coils must be mitigated to retain proton sensitivity and coil tuning stability. The inclusion of trap circuits simplifies placement of multinuclear RF coils while maintaining inter-element isolation. Of the commonly investigated non-proton nuclei, perhaps the most technically demanding is carbon-13, particularly when applying a proton decoupling scheme to improve the resulting spectra. This work presents experimental data for trap circuits withstanding high-power broadband proton decoupling of carbon-13 at 7 T. The advantages and challenges of building trap circuits with various inductor and capacitor components are discussed. Multiple trap designs are evaluated on the bench and utilized on an RF coil at 7 T to detect broadband proton-decoupled carbon-13 spectra from a lipid phantom. A particular trap design, built from a coaxial stub inductor and high-voltage ceramic chip capacitors, is highlighted owing to both its performance and adaptability for planar array coil elements with diverse spatial orientations. PMID:28529464
Simulation training in video-assisted urologic surgery.
Hoznek, András; Salomon, Laurent; de la Taille, Alexandre; Yiou, René; Vordos, Dimitrios; Larre, Stéphane; Abbou, Clément-Claude
2006-03-01
The current system of surgical education is facing many challenges in terms of time efficiency, costs, and patient safety. Training using simulation is an emerging area, mostly based on the experience of other high-risk professions like aviation. The goal of simulation-based training in surgery is to develop not only technical but team skills. This learning environment is stress-free and safe, allows standardization and tailoring of training, and also objectively evaluate performances. The development of simulation training is straightforward in endourology, since these procedures are video-assisted and the low degree of freedom of the instruments is easily replicated. On the other hand, these interventions necessitate a long learning curve, training in the operative room is especially costly and risky. Many models are already in use or under development in all fields of video-assisted urologic surgery: ureteroscopy, percutaneous surgery, transurethral resection of the prostate, and laparoscopy. Although bench models are essential, simulation increasingly benefits from the achievements and development of computer technology. Still in its infancy, virtual reality simulation will certainly belong to tomorrow's teaching tools.
Skillman, L C; Bajsa, O; Ho, L; Santhanam, B; Kumar, M; Ho, G
2009-07-01
Safe reuse of animal wastes to capture energy and nutrients, through anaerobic digestion processes, is becoming an increasingly desirable solution to environmental pollution. Pathogen decay is the most important safety consideration and is in general, improved at elevated temperatures and longer hydraulic residence times. During routine sampling to assess pathogen decay in thermophilic digestion, an inversely proportional relationship between levels of Clostridium perfringens and gas production was observed. Further samples were collected from pilot-scale, bench-scale thermophilic reactors and batch scale vials to assess whether gas production (predominantly methane) could be a useful indicator of decay of the thermotolerant pathogens C. perfringens and Campylobacter jejuni. Pathogen levels did appear to be lower where gas production and levels of methanogens were higher. This was evident at each operating temperature (50, 57, 65 degrees C) in the pilot-scale thermophilic digesters, although higher temperatures also reduced the numbers of pathogens detected. When methane production was higher, either when feed rate was increased, or pH was lowered from 8.2 (piggery wastewater) to 6.5, lower numbers of pathogens were detected. Although a number of related factors are known to influence the amount and rate of methane production, it may be a useful indicator of the removal of the pathogens C. perfringens and C. jejuni.
Affinity adsorption of cells to surfaces and strategies for cell detachment.
Hubble, John
2007-01-01
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, Santosh K.; McCabe, Kevin
2015-04-30
The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifiermore » (TRIG TM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H 2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.« less
Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft
NASA Technical Reports Server (NTRS)
Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.
1981-01-01
The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.
Knight, Sophie; Aggarwal, Rajesh; Agostini, Aubert; Loundou, Anderson; Berdah, Stéphane
2018-01-01
Introduction Total Laparoscopic hysterectomy (LH) requires an advanced level of operative skills and training. The aim of this study was to develop an objective scale specific for the assessment of technical skills for LH (H-OSATS) and to demonstrate feasibility of use and validity in a virtual reality setting. Material and methods The scale was developed using a hierarchical task analysis and a panel of international experts. A Delphi method obtained consensus among experts on relevant steps that should be included into the H-OSATS scale for assessment of operative performances. Feasibility of use and validity of the scale were evaluated by reviewing video recordings of LH performed on a virtual reality laparoscopic simulator. Three groups of operators of different levels of experience were assessed in a Marseille teaching hospital (10 novices, 8 intermediates and 8 experienced surgeons). Correlations with scores obtained using a recognised generic global rating tool (OSATS) were calculated. Results A total of 76 discrete steps were identified by the hierarchical task analysis. 14 experts completed the two rounds of the Delphi questionnaire. 64 steps reached consensus and were integrated in the scale. During the validation process, median time to rate each video recording was 25 minutes. There was a significant difference between the novice, intermediate and experienced group for total H-OSATS scores (133, 155.9 and 178.25 respectively; p = 0.002). H-OSATS scale demonstrated high inter-rater reliability (intraclass correlation coefficient [ICC] = 0.930; p<0.001) and test retest reliability (ICC = 0.877; p<0.001). High correlations were found between total H-OSATS scores and OSATS scores (rho = 0.928; p<0.001). Conclusion The H-OSATS scale displayed evidence of validity for assessment of technical performances for LH performed on a virtual reality simulator. The implementation of this scale is expected to facilitate deliberate practice. Next steps should focus on evaluating the validity of the scale in the operating room. PMID:29293635
2008-01-01
PDA Technical Report No. 14 has been written to provide current best practices, such as application of risk-based decision making, based in sound science to provide a foundation for the validation of column-based chromatography processes and to expand upon information provided in Technical Report No. 42, Process Validation of Protein Manufacturing. The intent of this technical report is to provide an integrated validation life-cycle approach that begins with the use of process development data for the definition of operational parameters as a basis for validation, confirmation, and/or minor adjustment to these parameters at manufacturing scale during production of conformance batches and maintenance of the validated state throughout the product's life cycle.
Addressing tomorrow's DMO technical challenges today
NASA Astrophysics Data System (ADS)
Milligan, James R.
2009-05-01
Distributed Mission Operations (DMO) is essentially a type of networked training that pulls in participants from all the armed services and, increasingly, allies to permit them to "game" and rehearse highly complex campaigns, using a mix of local, distant, and virtual players. The United States Air Force Research Laboratory (AFRL) is pursuing Science and Technology (S&T) solutions to address technical challenges associated with distributed communications and information management as DMO continues to progressively scale up the number, diversity, and geographic dispersal of participants in training and rehearsal exercises.
Multidisciplinary crisis simulations: the way forward for training surgical teams.
Undre, Shabnam; Koutantji, Maria; Sevdalis, Nick; Gautama, Sanjay; Selvapatt, Nowlan; Williams, Samantha; Sains, Parvinderpal; McCulloch, Peter; Darzi, Ara; Vincent, Charles
2007-09-01
High-reliability organizations have stressed the importance of non-technical skills for safety and of regularly providing such training to their teams. Recently safety skills training has been applied in the practice of medicine. In this study, we developed and piloted a module using multidisciplinary crisis scenarios in a simulated operating theatre to train entire surgical teams. Twenty teams participated (n = 80); each consisted of a trainee surgeon, anesthetist, operating department practitioner (ODP), and scrub nurse. Crisis scenarios such as difficult intubation, hemorrhage, or cardiac arrest were simulated. Technical and non-technical skills (leadership, communication, team skills, decision making, and vigilance), were assessed by clinical experts and by two psychologists using relevant technical and human factors rating scales. Participants received technical and non-technical feedback, and the whole team received feedback on teamwork. Trainees assessed the training favorably. For technical skills there were no differences between surgical trainees' assessment scores and the assessment scores of the trainers. However, nurses overrated their technical skill. Regarding non-technical skills, leadership and decision making were scored lower than the other three non-technical skills (communication, team skills, and vigilance). Surgeons scored lower than nurses on communication and teamwork skills. Surgeons and anesthetists scored lower than nurses on leadership. Multidisciplinary simulation-based team training is feasible and well received by surgical teams. Non-technical skills can be assessed alongside technical skills, and differences in performance indicate where there is a need for further training. Future work should focus on developing team performance measures for training and on the development and evaluation of systematic training for technical and non-technical skills to enhance team performance and safety in surgery.
EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS
An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...
DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE
Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...
DESIGN AND EVALUATION OF BENCH-SCALE COMPOST TREATMENT SYSTEM FOR HAZARDOUS WASTE
Soil bound contamination presents a significant set of problems to those attempting to remediate the soil. Bioremediation has received considerable attention, as a potential answer to the obvious remediation needs. Composting technology represents a promising means to use indigen...
Bacterial Mercury Methylation At The Sediment-Water Interface Of Mercury Contaminated Sediments
Bench scale experiments were conducted to improve our understanding of bacterial mediation of mercury transformation (methylation), specifically those factors which govern the production of methyl mercury (MeHg) at the sediment-water interface. The greatest cause for concern re...
Low temperature fluidized wood chip drying with monoterpene analysis
Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell
2011-01-01
This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.
Removal and Transformation of Estrogens During the Coagulation Process
Estrogenic compounds have been shown to be present in surface waters, leading to concerns over the possible presence of endocrine disrupting compounds in finished drinking waters. Bench-scale studies (jar tests) simulating coagulation were conducted to evaluate the ability of tw...
FILTRATION MODEL FOR COAL FLY ASH WITH GLASS FABRICS
The report describes a new mathematical model for predicting woven glass filter performance with coal fly ash aerosols from utility boilers. Its data base included: an extensive bench- and pilot-scale laboratory investigation of several dust/fabric combinations; field data from t...
This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
BENCH-SCALE EVALUATION OF AMMONIA REMOVAL FROM WASTEWATER BY STEAM STRIPPING
The purpose of the study was to generate laboratory data to support the development of wastewater discharge standards for ammonia in nonferrous metal winning processes. The objective was accomplished by studying ammonia removal from synthetically compounded 'wastewater' samples u...
Latest developments at the ALBA magnetic measurements laboratory
NASA Astrophysics Data System (ADS)
Marcos, J.; Massana, V.; García, L.; Campmany, J.
2018-02-01
ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.
Self-Rated Accuracy of Rating of Perceived Exertion-Based Load Prescription in Powerlifters.
Helms, Eric R; Brown, Scott R; Cross, Matt R; Storey, Adam; Cronin, John; Zourdos, Michael C
2017-10-01
This study assessed male (n = 9) and female (n = 3) powerlifters' (18-49 years) ability to select loads using the repetitions in reserve-based rating of perceived exertion (RPE) scale for a single set for squat, bench press, and deadlift. Subjects trained 3× per week. For 3 weeks on nonconsecutive days in the weekly order of hypertrophy (8 repetitions at 8 RPE), power (2 repetitions at 8 RPE), and strength (3 repetitions at 9 RPE), using subject-selected loads intended to match the target RPE. Bench press and squat were performed every session and deadlift during strength and power only. Mean absolute RPE differences (|reported RPE-target RPE|) ranged from 0.22-0.44, with a mean of 0.33 ± 0.28 RPE. There were no significant RPE differences within lifts between sessions for squat or deadlift. However, bench press was closer to the target RPE for strength (0.15 ± 0.42 RPE) vs. power (-0.21 ± 0.35 RPE, p = 0.05). There were no significant differences within session between lifts for power and strength. However, bench press was closer (0.14 ± 0.44 RPE) to the target RPE than squat (-0.19 ± 0.21 RPE) during hypertrophy (p = 0.02). Squat power was closer to the target RPE in week 3 (0.08 ± 0.29 RPE) vs. 1 (-0.46 ± 0.69 RPE, p = 0.03). It seems that powerlifters can accurately select loads to reach a prescribed RPE. However, accuracy for 8-repetition sets at 8 RPE may be better for bench press compared with squat. Rating squat power-type training may take 3 weeks to reach peak accuracy. Finally, bench press RPE accuracy seems better closer rather than further from failure (i.e., 3-repetition 9 RPE sets vs. 2-repetition 8 RPE sets).
Development of ITM oxygen technology for integration in IGCC and other advanced power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Phillip A.
2015-03-31
Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under thismore » five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.« less
Science guides search and rescue after the 2006 Philippine landslide.
Lagmay, Alfredo Mahar A; Tengonciang, Arlene Mae P; Rodolfo, Raymond S; Soria, Janneli Lea A; Baliatan, Eden G; Paguican, Engielle R; Ong, John Burtkenley T; Lapus, Mark R; Fernandez, Dan Ferdinand D; Quimba, Zareth P; Uichanco, Christopher L
2008-09-01
A rockslide-debris avalanche destroyed the remote village of Guinsaugon in Southern Leyte, Philippines, on 17 February 2006. Although search and rescue procedures were implemented immediately, the scale of the landslide and a lack of information about its nature resulted in unfocused and imprecise efforts in the early days of the operation. Technical support was only introduced five days after the event, provided by a team of volunteer geologists, geophysicists, and meteorologists. By the time search and rescue operations were transferred to specific target sites, however, the chances of finding survivors trapped under the rubble had diminished. In such critical situations, speed, accuracy, and the maximum appropriation of resources are crucial. We emphasise here the need for a systematic and technically informed approach to search and rescue missions in large-scale landslide disaster contexts, and the formulation of better disaster management policies in general. Standard procedures must be developed and enforced to improve how civil authorities respond to natural calamities.
Can Energy Cost During Low-Intensity Resistance Exercise be Predicted by the OMNI-RES Scale?
Vianna, Jefferson M.; Reis, Victor M.; Saavedra, Francisco; Damasceno, Vinicius; Silva, Sérgio G.; Goss, Fredric
2011-01-01
The aim of the present study was to assess the precision of the OMNI-RES scale to predict energy cost (EC) at low intensity in four resistance exercises (RE). 17 male recreational body builders (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body weight = 79.0 ± 11.1 kg and percent body fat = 10.5 ± 4.6%) served as subjects. Initially tests to determine 1RM for four resistance exercises (bench press, half squat, lat pull down and triceps extension) were administered. Subjects also performed resistance exercise at 12, 16, 20, and 24% of 1RM at a rate of 40 bpm until volitional exhaustion. Oxygen uptake (VO2) and rate of perceived exertion (RPE) using the OMNI-RES were obtained during and after all RE. EC was calculated using VO2 and the caloric values of VO2 for non-protein RER. Regression analyses were performed for every RE, using EC as the dependent and RPE as the predictor variable. The triceps extension, lat pull down and bench press, RPE correlated strongly with EC (R > 0.97) and predicted EC with a error of less than 0.2 kcal.min−1. In conclusion, RPE using the OMNI-RES scale can be considered as an accurate indicator of EC in the bench press, lat pull down and triceps extension performed by recreational bodybuilders, provided lower intensities are used (up to 24% of 1-RM) and provided each set of exercise is performed for the maximal sustainable duration. It would be interesting in future studies to consider having the subjects exercise at low intensities for longer durations than those in the present study. PMID:23486188
Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Moss, T. A.
1993-06-01
Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.
Fixture facilitates soldering operations
NASA Technical Reports Server (NTRS)
White, C. M.
1968-01-01
Soldering fixture, designed for printed circuit cards, is a basic bench-mounted, self-contained integral unit combining all soldering needs into a compact, readily available work station. All tools, materials, and accessories are available to provide an ideal station to perform critical soldering.
NASA Astrophysics Data System (ADS)
Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank
The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation is the problem of contamination of the habitable volume by EVA and sampling activities and the transport of Earth-generated contaminants to Mars.
Yang, Dali; Le, Loan; Martinez, Ronald; ...
2013-06-21
Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less
2018-01-01
Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266
Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R
2018-03-05
Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.
Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2016 ? Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Douglas; Ross, Kyle; Cardoni, Jeffrey N
This document details the Fiscal Year 2016 modeling efforts to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) experiments. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.
Hu, Shih-Cheng; Shiue, Angus; Tu, Jin-Xin; Liu, Han-Yang; Chiu, Rong-Ben
2015-12-01
For class II, type A2 biological safety cabinets (BSC), NSF/ANSI Standard 49 should be conformed in cabinet airflow velocity derivation, particle contamination, and aerodynamic flow properties. However, there exists a potential problem. It has been built that the cabinet air flow stabilize is influenced by the quantity of downflow of air and the height above the cabinet exhaust opening. Three air downflow quantities were compared as an operating apparatus was placed from 20 to 40 cm above the bench of the cabinet. The results show that the BSC air downflow velocity is a function of increased sampling height, displaying that containment is improvingly permitted over product protection as the sampling height decreases. This study investigated the concentration gradient of particles at various heights and downflow air quantity from the bench of the BSC. Experiment results indicate that performance near the bench was better than in the rest of the BSC. In terms of height, the best cleanliness was measured at a height of 10 cm over the bench; it reduced actually with add in height. The empirical curves accommodate, founded on the concentration gradient of particle created was elaborated for evaluating the particle concentration at different heights and downflow air quantity from the source of the bench of the BSC. The particle image velocimetry system applied for BSC airflow research to fix amount of airflow patterns and air distribution measurement and results of measurements show how obstructions can greatly influence the airflow and contaminant transportation in a BSC.
NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.
1994-06-01
Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system hasmore » been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.« less
Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng
2015-01-01
This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.
Transitioning Active Flow Control to Applications
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq
1999-01-01
Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.
Omondi Aduda, Dickens S; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane
2015-01-01
Voluntary medical male circumcision (VMMC) service delivery is complex and resource-intensive. In Kenya's context there is still paucity of information on resource use vis-à-vis outputs as programs scale up. Knowledge of technical efficiency, productivity and potential sources of constraints is desirable to improve decision-making. To evaluate technical efficiency and productivity of VMMC service delivery in Nyanza in 2011/2012 using data envelopment analysis. Comparative process evaluation of facilities providing VMMC in Nyanza in 2011/2012 using output orientated data envelopment analysis. Twenty one facilities were evaluated. Only 1 of 7 variables considered (total elapsed operation time) significantly improved from 32.8 minutes (SD 8.8) in 2011 to 30 minutes (SD 6.6) in 2012 (95%CI = 0.0350-5.2488; p = 0.047). Mean scale technical efficiency significantly improved from 91% (SD 19.8) in 2011 to 99% (SD 4.0) in 2012 particularly among outreach compared to fixed service delivery facilities (CI -31.47959-4.698508; p = 0.005). Increase in mean VRS technical efficiency from 84% (SD 25.3) in 2011 and 89% (SD 25.1) in 2012 was not statistically significant. Benchmark facilities were #119 and #125 in 2011 and #103 in 2012. Malmquist Productivity Index (MPI) at fixed facilities declined by 2.5% but gained by 4.9% at outreach ones by 2012. Total factor productivity improved by 83% (p = 0.032) in 2012, largely due to progress in technological efficiency by 79% (p = 0.008). Significant improvement in scale technical efficiency among outreach facilities in 2012 was attributable to accelerated activities. However, ongoing pure technical inefficiency requires concerted attention. Technological progress was the key driver of service productivity growth in Nyanza. Incorporating service-quality dimensions and using stepwise-multiple criteria in performance evaluation enhances comprehensiveness and validity. These findings highlight site-level resource use and sources of variations in VMMC service productivity, which are important for program planning.
Electrodeposition in microgravity: Ground-based experiments
NASA Technical Reports Server (NTRS)
Riley, C.; Coble, H. D.
1982-01-01
Electrodeposition was studied at one-hundreth g and compared with bench studies at 1 g. The low gravity was achieved during KC-135 aircraft parobolic flights. Flow in a simple cobalt cell (1 M CoSO4) operating under typical commercial conditions (10 to 20 mA/sq cm and 1 V) was monitored with a Schlieren optical system. Natural convection was absent at one-hundreth g. Quantitative comparisons on a cobalt cell with shielded electrodes using interferometry were carried out. Fringe shift differences indicate greater semi-infinite linear diffusion at 1 g than at one-hundreth g for cobalt. Since a shielded electrode operates under diffusion controlled conditions, no differences between 1 g and one-hundreth g would be expected. Similar comparisons on a shielded electrode copper cell were inconclusive. Bench codeposition experiments using polystyrene neutral buoyancy particles coupled with a shielded electrode cobalt cell were begun. Tracking of 12 micron particles showed no measurable difference between thermal/Brownian motion when the cell was operational or nonoperational. Initial experiments on codeposition quality showed a strong dependence upon cathode surface preparation in a shielded electrode configuration.
Analytical model of flame spread in full-scale room/corner tests (ISO9705)
Mark Dietenberger; Ondrej Grexa
1999-01-01
A physical, yet analytical, model of fire growth has predicted flame spread and rate of heat release (RHR) for an ISO9705 test scenario using bench-scale data from the cone calorimeter. The test scenario simulated was the propane ignition burner at the comer with a 100/300 kW program and the specimen lined on the walls only. Four phases of fire growth were simulated....
Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar
2014-01-01
Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434
Fate of glucuronide conjugated estradiol in the environment
USDA-ARS?s Scientific Manuscript database
The fate and transport of conjugated reproductive hormones, which are polar compared to parent hormones, are little understood. Laboratory bench-scale soil (Hamar; Sandy, mixed, frigid typic Endoaquolls) sorption studies were conducted using [14C] 17ß-estradiol-3-glucuronide for a range of concentra...
SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING OF EXPLOSIVES
This treatability study was conducted by Atlantic Research Corporation for the U.S. Army Toxic and Hazardous Material Agency. The objective of this bench-scale study was to determine the extent to which TNT and RDX concentrations were reduced by composting for a six week peri...
U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM: 1991 UPDATE
The Emerging Technology Program (ETP) supports the development of technologies successfully tested at the bench- and pilot-scale level. The ETP is part of the Superfund Innovative Technology Evaluation (SITE) Program which was established in 1986 under the Superfund Amendments an...
The objective of this research is to investigate chlorinated by-products of a selected number of steroids representing both estrogens and androgens. Highly controlled reaction conditions were used to ascertain product distribution. Bench-scale studies were conducted to identify...
SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: SOIL TREATMENT PILOT STUDY BRIO/DOP SITE
Bench and pilot-scale studies were conducted to demonstrate the feasibility of using solid-phase biodegradation for destroying portions of organic constituents present in the soil. The predominant constituents at the BRIO DOP site located in Texas were volatile compounds such...
BENCH-SCALE STUDIES ON THE FORMATION OF ENDOCRINE DISRUPTING CHEMICALS FROM COMBUSTION SOURCES
The paper discusses the formsation of endocrine disrupting compounds (EDCs) from precursors, such as phenol and chlorobenzens, under various combustion conditions. It gives results of an exploration of the effects of precursor and catalysys composition on homologue production an...
ENTRAINED-FLOW ADSORPTION OF MERCURY USING ACTIVATED CARBON
Bench-scale experiments were conducted in a flow reactor to simulate entrained-flow capture of elemental mercury (Hg) by activated carbon. Adsorption of Hg by several commercial activated carbons was examined at different carbon-to-mercury (C:Hg) ratios (by weight) (600:1 - 29000...
LAND TREATMENT OF TWO PLATEAU MATERIALS CONTAMINATED WITH PAHS
This study was designed to evaluate several treatments for their ability to enhance the biological removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and sediment. Previously land-treated material was used to test the treatments in a 13 week bench scale stu...
Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design (Presentation)
Rain garden design manuals and guidelines typically recommend using native soils or engineered media that meet specifications for low content of clay, silt, fine and very fine sands, and organic matter. These characteristics promote stormwater infiltration and sorption of heavy ...
Hydraulic Test of a Bioretention Media Carbon Amendment
Rain gardens effectively remove some stressors from stormwater, but in most cases they show much smaller removal rates of nitrate, likely due to the high sand and low organic matter content of rain garden media inhibiting denitrification. A bench-scale experiment was conducted to...
The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five year...
REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES
Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...
Interests Ryan M. Ness is a research technician in the Biomass Analysis group within the National Renewable , wet chemical analysis, and instrumental analysis of lignocellulosic biomass feedstocks. Bench-scale Publications "The Effect of Biomass Densification on Structural Sugar Release and Yield in Biofuel