Sample records for bench-scale process development

  1. Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslander, J.; Bell, R.; Robertson, D.

    1994-06-01

    Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.

  2. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    PubMed

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  3. Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lail, Marty

    The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed inmore » a bench-scale test unit operated at RTI.« less

  4. SUPERFUND TREATABILITY CLEARINGHOUSE: BENGART AND MEMEL (BENCH-SCALE), GULFPORT (BENCH AND PILOT-SCALE), MONTANA POLE (BENCH-SCALE), AND WESTERN PROCESSING (BENCH-SCALE) TREATABILITY STUDIES

    EPA Science Inventory

    This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...

  5. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less

  6. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov Websites

    Process Development We develop and scale fermentation processes that produce fuels and chemicals from guide experimental designs. Our newly updated fermentation laboratory houses 38 bench-scale fermentors current projects cover the fermentation spectrum including anaerobic, micro-aerobic, aerobic, and gas-to

  7. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development.

    PubMed

    Xu, Ping; Clark, Colleen; Ryder, Todd; Sparks, Colleen; Zhou, Jiping; Wang, Michelle; Russell, Reb; Scott, Charo

    2017-03-01

    Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 - 5 L bench-top bioreactors requires high foot-print, and running cost. The establishment of the Ambr 250 as a scale-down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (k L a) in the Ambr 250 was conducted to define optimal operational conditions. Scale-down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and k L a have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5-L and 1000-L bioreactor scales, when using k L a as a scale-down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench-top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5-L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench-top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478-489, 2017. © 2017 American Institute of Chemical Engineers.

  8. Coal Technology Program progress report, March 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Shakedown tests of the bench-scale hydrocarbonization system were successfully completed. Wyodak coal was fed to the reactor at a rate of 9.9 lb/hr where it was hydrocarbonized at 1050/sup 0/F under 20-atm hydrogen pressure. Laboratory results including settling tests, bench-scale settling tests, and sample ageing tests were continued. Two of ten compounds tested with the laboratory-scale apparatus were effective in increasing settling rates of solids in Solvent Refined Coal unfiltered oil, but bench-scale tests failed to show any improvements in the settling rate over the untreated SRC-UFO. Analytical chemistry efforts involved the removal and concentration of organic components in by-productmore » waters from fossil fuel conversion processes. A sephadex gel is being used to achieve hydrophilic-lipophilic separations in organic mixtures as a step in the analysis of fossil fuel related materials. Engineering Evaluations of the Synthiol and Hydrocarbonization Processes continued with the Synthiol process flow diagrams, heat and material balances, and utilities requirements being completed. Inspection techniques were developed for wear- and process-resistant coatings. Orders were placed for the Incoloy 800 tubing and a smaller quantity of Inconel 600 tubing for the tube matrix in the coal-fueled MIUS fluidized bed. An engineering feasibility review of General Atomic's proposal to ERDA for a bench-scale test program on thermochemical water splitting for hydrogen production was completed. (auth)« less

  9. Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.

    PubMed

    Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K

    2009-01-01

    The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.

  10. Lightweight, high-opacity paper : process costs and energy use reduction

    Treesearch

    John H. Klungness; Fabienne Pianta; Mathew L. Stroika; Marguerite Sykes; Freya Tan; Said AbuBakr

    1999-01-01

    Fiber loading is an environmentally friendly, energy efficient, and economical method for depositing precipitated calcium carbonate (PCC) partly within pulp fibers. Fiber loading can easily be done within the existing pulp processing system. This paper is a review of the process development from bench-scale to industrial-scale demonstrations, with additional...

  11. GREENSCOPE Technical User’s Guide

    EPA Pesticide Factsheets

    GREENSCOPE’s methodology has been developed and its software tool designed such that it can be applied to an entire process, to a piece of equipment or process unit, or at the investigatory bench scale.

  12. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  13. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    EPA Science Inventory

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  14. Foaming phenomenon in bench-scale anaerobic digesters.

    PubMed

    Siebels, Amanda M; Long, Sharon C

    2013-04-01

    The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.

  15. Bench Scale Process for Low Cost CO 2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less

  16. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less

  17. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less

  18. Concise Review: Guidance in Developing Commercializable Autologous/Patient-Specific Cell Therapy Manufacturing

    PubMed Central

    Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; Van't Hof, Wouter; Wagey, Ravenska

    2013-01-01

    Cell therapy is poised to play an enormous role in regenerative medicine. However, little guidance is being made available to academic and industrial entities in the start-up phase. In this technical review, members of the International Society for Cell Therapy provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Special emphasis is placed on providing guidance to small academic or biotech researchers as to what simple questions can be addressed or answered at the bench in order to make their cell therapy products more feasible for commercial-scale production. We discuss the processes that are required for scale-out at the manufacturing level, and how many questions can be addressed at the bench level. The goal of this review is to provide guidance in the form of topics that can be addressed early in the process of development to better the chances of the product being successful for future commercialization. PMID:24101671

  19. REMOVAL OF METHYL T-BUTYL ETHER (MTBE) FROM WATER BY PERVAPORATION: BENCH-SCALE AND PILOT SCALE EVALUATIONS

    EPA Science Inventory

    The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...

  20. Coal-oil coprocessing at HTI - development and improvement of the technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalzer, R.H.; Lee, L.K.; Hu, J.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less

  1. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysismore » (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.« less

  2. Evaluation of the Effects of AFFF Inputs on the VIP Biological Nutrient Removal Process and Pass-Through Toxicity. Phase 1A. Volume I.

    DTIC Science & Technology

    1997-10-01

    This report discusses the results of a bench scale study conducted to evaluate the potential inhibitory effects of untreated AFFF wastewater to the...untreated AFFF wastewater to the nitrification process of the Virginia Initiative Plant biological nutrient removal system. Under this testing, bench...scale reactors simulating the nitrification process were loaded at various AFFF concentrations and the influence on the process performance was

  3. Hot-bench simulation of the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.

  4. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study.

    PubMed

    Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco

    2016-11-01

    Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL

    EPA Science Inventory

    The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...

  6. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products.

    PubMed

    Christenson, Logan B; Sims, Ronald C

    2012-07-01

    Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts. Copyright © 2012 Wiley Periodicals, Inc.

  7. BENCH-SCALE EVALUATION OF AMMONIA REMOVAL FROM WASTEWATER BY STEAM STRIPPING

    EPA Science Inventory

    The purpose of the study was to generate laboratory data to support the development of wastewater discharge standards for ammonia in nonferrous metal winning processes. The objective was accomplished by studying ammonia removal from synthetically compounded 'wastewater' samples u...

  8. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  9. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  10. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less

  11. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  12. Optimization of a micro-scale, high throughput process development tool and the demonstration of comparable process performance and product quality with biopharmaceutical manufacturing processes.

    PubMed

    Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J

    2017-07-14

    In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry.

    PubMed

    Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana

    2013-02-01

    A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. "In-Situ Chemical Oxidation" - Sessions: #6 Technology Development, Process Fundamentals, Mechanisms;#7 Advantages and Disadvantages; #9 Oxidant Selection; #10 Bench- and Pilot-Scale Studies; #11 Monitoring; #12 Field-Scale Implementation; #13 Chemical Oxidation Regeneration of Granular Activated Carbon

    EPA Science Inventory

    A series of seven technical presentations involving chemical oxidation will be given to faculty, graduate students, and environmental professionals at the Chinese Academy of Sciences in Beijing, China (April 21-22, 2010). Chemical oxidation technologies include in-situ chemical o...

  16. Not-from-concentrate blueberry juice extraction utilizing frozen fruit, heated mash, and enzyme processes

    USDA-ARS?s Scientific Manuscript database

    Juice production is a multibillion dollar industry and an economical way to use fruit past seasonal harvests. To evaluate how production steps influence not-from-concentrate (NFC) blueberry (Vaccinium sp.) juice recovery, bench top and pilot scale experiments were performed. In bench-top, southern h...

  17. The economic production of alcohol fuels from coal-derived synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2);more » (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)« less

  18. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  19. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less

  20. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less

  1. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  2. Field-Integrated Studies of Long-Term Sustainability of Chromium Bioreduction at Hanford 100H Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Philip E.

    2006-06-01

    The objectives of the project are to investigate coupled hydraulic, geochemical, and microbial conditions, and to determine the critical biogeochemical parameters necessary to maximize the extent of Cr(VI) bioreduction and minimize Cr(III) reoxidation in groundwater. Specific goals of the project are as follows: (1) Field testing and monitoring of Cr(VI) bioreduction in ground water and its transformation into insoluble species of Cr(III) at the Hanford 100H site, to develop the optimal strategy of water sampling for chemical, microbial, stable isotope analyses, and noninvasive geophysical monitoring; (2) Bench-scale flow and transport investigations using columns of undisturbed sediments to obtain diffusion andmore » kinetic parameters needed for the development of a numerical model, predictions of Cr(VI) bioreduction, and potential of Cr(III) reoxidation; and (3) Development of a multiphase, multi-component 3D reactive transport model and a code, TOUGHREACT-BIO, to predict coupled biogeochemical-hydrological processes associated with bioremediation, and to calibrate and validate the developed code based on the results of bench-scale and field-scale Cr(VI) biostimulation experiments in ground water at the Hanford Site.« less

  3. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  4. Rapid growing clay coatings to reduce the fire threat of furniture.

    PubMed

    Kim, Yeon Seok; Li, Yu-Chin; Pitts, William M; Werrel, Martin; Davis, Rick D

    2014-02-12

    Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam.

  5. Treating contaminated organics using the DETOX process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less

  6. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were tested and the response variables were measured which included energy performance (specific power consumption, energy efficiency, drying efficiency, drying rate), physical properties [particle size distribution (PSD), geometric mean particle size (dwg), bulk density, tapped bulk density, true density, color, compressibility index (CI), Hausner ratio (HR)], and chemical properties [acid detergent fiber (ADF), neutral detergent fiber (NDF), oil, crude protein, starch, ash, etc]. The results of the bench-scale study were also compared with data from a previous plant-scale DDGS production process investigation that used similar drying strategies. Results from the experiments indicated that among all 16 drying strategies, the 10% CDS content and 60% DDGS add-back strategy achieved the least specific power consumption (SPC) while the 40% CDS content and 20% DDGS add-back strategy had the highest SPC. The energy efficiency and drying efficiency of the bench-scale data in both drying stage I and drying stage II presented similar trends as process parameters changed. The highest energy and drying efficiencies were achieved in strategies with 10% CDS content while the lowest were in strategies with 40% CDS content. A comparison of the energy and drying efficiencies for the bench-scale strategies conducted in this study with those of similar plant-scale strategies from a previous study showed a similar trend in the data for drying stage 1, even though the actual numbers were quite different for the two experimental scales. On average, the energy and drying efficiencies for the bench-scale study was 40% less than the corresponding plant-scale strategy. CDS content had the most influence on the energy performance during DDGS drying, while percent DDGS add-back had more impact on the SPC given a constant CDS content level. By comparing both the physical properties, bulk density in particular which relates to logistics, and energy performance data, the drying strategy with 20% CDS and 60% add-back performed the best. Therefore, it is not surprising why this is the strategy used by ICM drying process technology for DDGS. The particle size (dwg) and particle size distribution (PSD) of DDGS varied with the drying strategies; by varying CDS content and percent DDGS add-back. It was determined that the percent DDGS add-back had no effect on either PSD or dgw. Under the same drying strategy, drying stage I always had a higher drying rate than stage II. Also, the drying curves under the same CDS content showed similar shapes. As CDS content increased, the color of DDGS became darker; both DDGS bulk density and tapped bulk density increased. In addition, CI and HR values decreased, ADF and NDF contents decreased and oil and ash contents increased with increased CDS content. Changes in percent DDGS add-back had a negligible effect on the DDGS chemical composition. Overall, the physical and chemical composition analysis of DDGS for both bench-scale and plant-scale studies followed similar trends.

  7. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  8. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  9. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design

    EPA Science Inventory

    The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...

  10. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.

    PubMed

    Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N

    2011-01-01

    An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.

  11. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  12. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  13. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis.

    PubMed

    Ma, Kedong; Ruan, Zhiyong; Shui, Zongxia; Wang, Yanwei; Hu, Guoquan; He, Mingxiong

    2016-03-01

    The aim of present study was to develop a process for open ethanol fermentation from food waste using an acid-tolerant mutant of Zymomonas mobilis (ZMA7-2). The mutant showed strong tolerance to acid condition of food waste hydrolysate and high ethanol production performance. By optimizing fermentation parameters, ethanol fermentation with initial glucose concentration of 200 g/L, pH value around 4.0, inoculum size of 10% and without nutrient addition was considered as best conditions. Moreover, the potential of bench scales fermentation and cell reusability was also examined. The fermentation in bench scales (44 h) was faster than flask scale (48 h), and the maximum ethanol concentration and ethanol yield (99.78 g/L, 0.50 g/g) higher than that of flask scale (98.31 g/L, 0.49 g/g). In addition, the stable cell growth and ethanol production profile in five cycles successive fermentation was observed, indicating the mutant was suitable for industrial ethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids.

    PubMed

    Li, Chenlin; Liang, Ling; Sun, Ning; Thompson, Vicki S; Xu, Feng; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R; Simmons, Blake A; Singh, Seema

    2017-01-01

    Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and IL recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.

  15. A rolling-sliding bench test for investigating rear axle lubrication

    DOE PAGES

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...

    2018-02-07

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  16. A rolling-sliding bench test for investigating rear axle lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  17. The HSOB GAIA: a cryogenic high stability cesic optical bench for missions requiring sub-nanometric optical stability

    NASA Astrophysics Data System (ADS)

    Courteau, Pascal; Poupinet, Anne; Kroedel, Mathias; Sarri, Giuseppe

    2017-11-01

    Global astrometry, very demanding in term of stability, requires extremely stable material for optical bench. CeSiC developed by ECM and Alcatel Alenia Space for mirrors and high stability structures, offers the best compromise in term of structural strength, stability and very high lightweight capability, with characteristics leading to be insensitive to thermo-elastic at cryogenic T°. The HSOB GAIA study realised by Alcatel Alenia Space under ESA contract aimed to design, develop and test a full scale representative High Stability Optical Bench in CeSiC. The bench has been equipped with SAGEIS-CSO laser metrology system MOUSE1, Michelson interferometer composed of integrated optics with a nm resolution. The HSOB bench has been submitted to an homogeneous T° step under vacuum to characterise the homothetic behaviour of its two arms. The quite negligible inter-arms differential measured with a nm range reproducibility, demonstrates that a complete 3D structure in CeSiC has the same CTE homogeneity as characterisation samples, fully in line with the GAIA need (1pm at 120K). This participates to the demonstration that CeSiC properties at cryogenic T° is fully appropriate to the manufacturing of complex highly stable optical structures. This successful study confirms ECM and Alcatel Alenia Space ability to define and manufacture monolithic lightweight highly stable optical structures, based on inner cells triangular design made only possible by the unique CeSiC manufacturing process.

  18. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...

    EPA Pesticide Factsheets

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information

  19. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  20. Coal technology program progress report, February 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Final testing of the 20-atm bench-scale system is underway in preparation for experiments with hydrogen. Laboratory-scale testing of a number of inexpensive pure compounds to improve the settling rate of solids in Solvent Refined Coal (SRC) unfiltered oil (UFO), bench-scale testing of the effect of the Tretolite additive on settling, and characterization tests on a new sample of UFO from the PAMCO-SRC process are reported. Experimental engineering support of an in situ gasification process include low-temperature pyrolyses at exceptionally low heating rates (0.3/sup 0/C/min). Highly pyrophoric chars were consistently produced. Aqueous by-products from coal conversion technologies and oil shale retortingmore » have been analyzed directly to determine major organic components. A report is being prepared discussing various aspects of the engineering evaluations of nuclear process heat for coal. A bench-scale test program on thermochemical water splitting for hydrogen production is under consideration. In the coal-fueled MIUS program, preparations for procurement of tubing for the matrix in the fluidized-bed furnace and for fabrication of the furnace continued. Analyses of the AiResearch gas turbine and recuperator under coal-fueled MIUS operating conditions are near completion. Process flow diagrams and heat and material balances were completed for most of the units in the synthoil process. Overall utilities requirements were calculated and the coal preparation flowsheets were finalized. For hydrocarbonization, the flowsheet was revised to include additional coal data. Flowsheets were finalized for the acid gas separation and recycle, and the oil-solids separation. (LTN)« less

  1. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor withmore » H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.« less

  2. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenlin; Liang, Ling; Sun, Ning

    The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less

  3. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids

    DOE PAGES

    Li, Chenlin; Liang, Ling; Sun, Ning; ...

    2017-01-05

    The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less

  4. Piezoelectric energy harvesting computer controlled test bench

    NASA Astrophysics Data System (ADS)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  5. Piezoelectric energy harvesting computer controlled test bench.

    PubMed

    Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  6. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  7. PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption across a Wetted Wall Column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less

  8. Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2–Binding Organic Liquids (CO2BOLs) With and Without Polarity-Swing-Assisted Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Feng; Heldebrant, David J.; Mathias, Paul M.

    This manuscript provides a detailed analysis of a continuous flow, bench scale study of the CO2BOL solvent platform with and without its Polarity Swing Assisted Regeneration (PSAR). This study encompassed four months of continuous flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using decane antisolvent. In both regeneration schemes, steady state capture of >90 %CO2 was achieved using simulated flue gas at acceptable L/G ratios. Aspen Plus™ modeling was performed to assess process performance compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE’s Case 10 amine baseline.

  9. Development and Validity of a Scale of Perception of Velocity in Resistance Exercise

    PubMed Central

    Bautista, Iker J.; Chirosa, Ignacio J.; Chirosa, Luis J.; Martín, Ignacio; González, Andrés; Robertson, Robert J.

    2014-01-01

    This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key Points Measurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES. The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocity Regular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads PMID:25177180

  10. Development and validity of a scale of perception of velocity in resistance exercise.

    PubMed

    Bautista, Iker J; Chirosa, Ignacio J; Chirosa, Luis J; Martín, Ignacio; González, Andrés; Robertson, Robert J

    2014-09-01

    This aims of this study were twofold; 1) to development a new scale of perceived velocity in the bench press exercise and 2) to examine the scales concurrent validity. Twenty one physically active males with mean ±SD age, height and weights of: 27.5 ± 4.7 years, 1.77 ± 0.07 m, and 79.8 ± 10.3 kg respectively, took part in the study. The criterion variable used to test the validity of the new scale was the mean execution velocity (Velreal) of the bench press exercise. Three intensities (light loads [< 40% 1RM], medium loads [40% -70% 1RM] and heavy loads [> 70% 1RM]) were measured randomly during 5 days of testing. Perceived velocity (Velscale) was measured immediately after each exercise set using the new scale. A positive linear correlation (r range = 0.69 to 0.81) was found in all three intensities, analyzed individually, between the Velreal and Velscale. Pearson correlations showed a greater frequency of scale use resulted higher correlation values (range r = 0.88 to 0.96). This study provides evidence of the concurrent validity of a new scale of perceived velocity in the bench press exercise in trained adult males. These results suggest the exercise intensity of the bench press can be quantified quickly and effective using this new scale of perceived velocity, particularly when training for maximum power. Key PointsMeasurement of perception of velocity can complement other scales of perception such as the 15 category Borg scale or the OMNI-RES.The results obtained in this study show that there was a positive correlation between the perceived velocity measured by the scale and actual velocityRegular use of the new scale of perceived velocity in external resistance training provides athletes with continuous feedback of execution velocity in each repetition and set, especially with high power loads.

  11. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  12. An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhicheng Wang

    The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This projectmore » includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.« less

  13. EMERGING TECHNOLOGY REPORT: BENCH-SCALE TESTING OF PHOTOLYSIS, CHEMICAL OXIDATION AND BIODEGRADATION OF PCB CONTAMINATED SOILS AND PHOTOLYSIS OF TCDD CONTAMINATED SOILS

    EPA Science Inventory

    This report presents the results of bench-scale testing on degradation of 2,3,7,8-TCDD using W photolysis, and PCB degradation using UV photolysis, chemical oxidation and biological treatment. Bench-scale tests were conducted to investigate the feasibility of a two-phase detoxifi...

  14. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less

  15. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy usemore » and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and safety risks have been addressed through experimental tests, consultation with vendors and engineering analysis. Multiple rounds of TEA were performed to improve the GPS-based PCC process design and operation, and to compare the energy use and cost performance of a nominal 550-MWe supercritical pulverized coal (PC) plant among the DOE/NETL report Case 11 (the PC plant without CO₂ capture), the DOE/NETL report Case 12 (the PC plant with benchmark MEA-based PCC), and the PC plant using GPS-based PCC. The results reveal that the net power produced in the PC plant with GPS-based PCC is 647 MWe, greater than that of the Case 12 (550 MWe). The 20-year LCOE for the PC plant with GPS-based PCC is 97.4 mills/kWh, or 152% of that of the Case 11, which is also 23% less than that of the Case 12. These results demonstrate that the GPS-based PCC process is energy-efficient and cost-effective compared with the benchmark MEA process.« less

  16. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  17. Low-Energy Solvents For Carbon Dioxide Capture Enabled By A Combination Of Enzymes And Vacuum Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, Sonja; House, Alan; Liu, Kun

    An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. Themore » vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for enzyme-enhanced aqueous K2CO3 solvent with vacuum stripping were considered and a corresponding set of sensitivity studies were developed. The cases were evaluated using bench-scale and laboratory-based observations, AspenPlus® process simulation and modeling, AspenTech’s CCE® Parametric Software, current vendor quotations, and project partners’ know-how of unit operations. Overall, the DOE target of 90% CO2 capture could be met using the benign enzyme-enhanced aqueous K2CO3-based alternative to NETL Case 10. The model-predicted plant COE performance, scaled to 550 MWe net output, was 9% higher than NETL Case 10 for an enzyme-activated case with minimized technical risk and highest confidence in physical system performance utilizing commercially available equipment. A COE improvement of 2.8% versus NETL Case 10 was predicted when favorable features of improved enzyme longevity and additional power output from a very low pressure (VLP) turbine were combined, wherein corresponding high capital and operational costs limited the level of COE benefit. The environmental, health and safety (EH&S) profile of the system was found to be favorable and was compliant with the Federal EH&S legislation reviewed. Further work on a larger scale test unit is recommended to reduce the level of uncertainty inherent in extrapolating findings from a bench-scale unit to a full scale PCC plant, and to further investigate several identified opportunities for improvement. Production feasibility and suitability of carbonic anhydrases for scale-up testing was confirmed both through the current project and through parallel efforts.« less

  18. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    PubMed

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  19. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    NASA Technical Reports Server (NTRS)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  20. CO 2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David

    This report outlines the comprehensive bench-scale testing of the CO 2-binding organic liquids (CO 2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO 2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO 2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  1. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less

  2. NASA. Langley Research Center dry powder towpreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Dry powder polymer impregnated carbon fiber tows were produced for preform weaving and composite materials molding applications. In the process, fluidized powder is deposited on spread tow bundles and melted on the fibers by radiant heating to adhere the polymer to the fiber. Unit design theory and operating correlations were developed to provide the basis for scale up of the process to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed, resin feeder, and quality control system. Bench scale experiments, at tow speeds up to 50 cm/sec, demonstrated that process variables can be controlled to produce weavable LARC-TPI carbon fiber towpreg. The towpreg made by the dry powder process was formed into unidirectional fiber moldings and was woven and molded into preform material of good quality.

  3. Performance of ultrafiltration membrane process combined with coagulation/sedimentation.

    PubMed

    Jang, N Y; Watanabe, Y; Minegishi, S

    2005-01-01

    Effects of coagulation/sedimentation as a pre-treatment on the dead-end ultrafiltration (UF) membrane process were studied in terms of membrane fouling and removal efficiency of natural dissolved organic matter, using Chitose River water. Two types of experiment were carried out. One was a bench scale membrane filtration with jar-test and the other was membrane filtration pilot plant combined with the Jet Mixed Separator (JMS) as a pre-coagulation/sedimentation unit. In the bench scale experiment, the effects of coagulant dosage, pH and membrane operating pressure on the membrane fouling and removal efficiency of natural dissolved organic matter were investigated. In the pilot plant experiment, we also investigated the effect of pre-coagulation/sedimentation on the membrane fouling and the removal efficiency of natural dissolved organic matter. Coagulation/sedimentation prior to membrane filtration process controlled the membrane fouling and increased the removal efficiency of natural dissolved organic matter.

  4. Development and in-line validation of a Process Analytical Technology to facilitate the scale up of coating processes.

    PubMed

    Wirges, M; Funke, A; Serno, P; Knop, K; Kleinebudde, P

    2013-05-05

    Incorporation of an active pharmaceutical ingredient (API) into the coating layer of film-coated tablets is a method mainly used to formulate fixed-dose combinations. Uniform and precise spray-coating of an API represents a substantial challenge, which could be overcome by applying Raman spectroscopy as process analytical tool. In pharmaceutical industry, Raman spectroscopy is still mainly used as a bench top laboratory analytical method and usually not implemented in the production process. Concerning the application in the production process, a lot of scientific approaches stop at the level of feasibility studies and do not manage the step to production scale and process applications. The present work puts the scale up of an active coating process into focus, which is a step of highest importance during the pharmaceutical development. Active coating experiments were performed at lab and production scale. Using partial least squares (PLS), a multivariate model was constructed by correlating in-line measured Raman spectral data with the coated amount of API. By transferring this model, being implemented for a lab scale process, to a production scale process, the robustness of this analytical method and thus its applicability as a Process Analytical Technology (PAT) tool for the correct endpoint determination in pharmaceutical manufacturing could be shown. Finally, this method was validated according to the European Medicine Agency (EMA) guideline with respect to the special requirements of the applied in-line model development strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, April 1 - June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less

  6. National Alliance for Advance Biofuels and Bio-Products Final Technical Report Addendum Hydrothermal Processing Pilot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyler, James R.

    2015-12-21

    The main objective of the NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. As a part of the consortium, Genifuel’s NAABB goals was to fabricate and demonstrate a pilot-scale system to convert algae into fuels. The purpose of this pilot system was to show that processes developed in the laboratory at bench-scale during the program could be successfully scaled up to a pre-commercial level, and thereby provide visibility into the ultimate viability and cost of algae biofuels. The pilot system has now been completedmore » and tested, and this report documents what has been achieved.« less

  7. Construction and Setup of a Bench-scale Algal Photosynthetic Bioreactor with Temperature, Light, and pH Monitoring for Kinetic Growth Tests.

    PubMed

    Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J

    2017-06-14

    The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.

  8. Construction and Setup of a Bench-scale Algal Photosynthetic Bioreactor with Temperature, Light, and pH Monitoring for Kinetic Growth Tests

    PubMed Central

    Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.

    2017-01-01

    The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054

  9. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas

    2011-05-15

    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. EMERGING TECHNOLOGY SUMMARY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER

    EPA Science Inventory

    A series of bench-scale tests and an onsite pilot scale demonstration of Bio-Recovery Systems' AlgaSORB® technology for the removal and recovery of mercury-contaminated groundwaters were conducted under the SITE program. The AlgaSORB® process is based on the natural, very st...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  12. THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technol- ogies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstra...

  13. SORPTION OF MERCURY SPECIES BY ACTIVATED CARBONS AND CALCIUM-BASES SORBENTS: EFFECT OF TEMPERATURE, MERCURY CONCENTRATION AND ACID GASES

    EPA Science Inventory

    Bench-scale studies of mercury/sorbent reactions were conducted to understand mechanistic limitations of field-scale attempts to reduce emissions of mercury from combustion processes. The effects of temperature (60 - 140 degrees C), sulfur dioxide (SO2, 1000 ppm ), hydrogen chlor...

  14. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    PubMed

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-fidelity bench models.

    PubMed

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-03-01

    The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  16. Sludge Characterization and Bench Scale Treatability Report

    EPA Pesticide Factsheets

    Nov. 10, 2010 letter from Mississippi Department of Environmental Quality (MDEQ) to Hercules, Inc. in Hattiesburg, MS about the findings of a August 20, 2010 Sludge Characterization and Bench Scale Treatability Report.

  17. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chance, Ronald; Chen, Grace; Dai, Ying

    This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the project is to develop a process based on composite amine-functionalized oxide / polymer hollow fibers for use as contactors in a rapid temperature swing adsorption post-combustion carbon dioxide capture process. The hollow fiber morphology allows coupling of efficient heat transfer with effective gas contacting, potentially giving lower parasitic loads on the power plant compared to traditional contacting strategies using solid sorbents.

  18. An alternative process to treat boiler feed water for reuse.

    PubMed

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  19. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395more » °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.« less

  20. Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.

    This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was tomore » investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.« less

  1. From bench to FDA to bedside: US regulatory trends for new stem cell therapies.

    PubMed

    Knoepfler, Paul S

    2015-03-01

    The phrase "bench-to-bedside" is commonly used to describe the translation of basic discoveries such as those on stem cells to the clinic for therapeutic use in human patients. However, there is a key intermediate step in between the bench and the bedside involving governmental regulatory oversight such as by the Food and Drug Administration (FDA) in the United States (US). Thus, it might be more accurate in most cases to describe the stem cell biological drug development process in this way: from bench to FDA to bedside. The intermediate development and regulatory stage for stem cell-based biological drugs is a multifactorial, continually evolving part of the process of developing a biological drug such as a stem cell-based regenerative medicine product. In some situations, stem cell-related products may not be classified as biological drugs in which case the FDA plays a relatively minor role. However, this middle stage is generally a major element of the process and is often colloquially referred to in an ominous way as "The Valley of Death". This moniker seems appropriate because it is at this point, and in particular in the work that ensues after Phase 1, clinical trials that most drug product development is terminated, often due to lack of funding, diseases being refractory to treatment, or regulatory issues. Not surprisingly, workarounds to deal with or entirely avoid this difficult stage of the process are evolving both inside and outside the domains of official regulatory authorities. In some cases these efforts involve the FDA invoking new mechanisms of accelerating the bench to beside process, but in other cases these new pathways bypass the FDA in part or entirely. Together these rapidly changing stem cell product development and regulatory pathways raise many scientific, ethical, and medical questions. These emerging trends and their potential consequences are reviewed here. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PIPE MACHINE, WORK BENCH, SCALE, RADIAL DRILL AND STOVE (L TO R) LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  3. Pennycress protein isolate: Pilot plant production and application in films polymeric composites

    USDA-ARS?s Scientific Manuscript database

    This work scaled up the process of producing pennycress protein isolates (PPI) using 5 kg starting material (previously 100 g in bench-scale research). Defatted press cake, produced by prepressing and hexane extraction, was mixed with preheated 50 L of aqueous NaOH (pH 10) for 90 min in a jacketed k...

  4. Evaluation of a Bench Top Mechanical Delinter

    USDA-ARS?s Scientific Manuscript database

    This presentation will report on current research associated with a new mechancial delinter being developed at the Cotton Production and Processing Research Unit in conjunction with Cotton Inc. A bench-top version of the new mechanical delinter was built and evaluated to determine operational speeds...

  5. Clearing up the hazy road from bench to bedside: a framework for integrating the fourth hurdle into translational medicine.

    PubMed

    Rogowski, Wolf H; Hartz, Susanne C; John, Jürgen H

    2008-09-24

    New products evolving from research and development can only be translated to medical practice on a large scale if they are reimbursed by third-party payers. Yet the decision processes regarding reimbursement are highly complex and internationally heterogeneous. This study develops a process-oriented framework for monitoring these so-called fourth hurdle procedures in the context of product development from bench to bedside. The framework is suitable both for new drugs and other medical technologies. The study is based on expert interviews and literature searches, as well as an analysis of 47 websites of coverage decision-makers in England, Germany and the USA. Eight key steps for monitoring fourth hurdle procedures from a company perspective were determined: entering the scope of a healthcare payer; trigger of decision process; assessment; appraisal; setting level of reimbursement; establishing rules for service provision; formal and informal participation; and publication of the decision and supplementary information. Details are given for the English National Institute for Health and Clinical Excellence, the German Federal Joint Committee, Medicare's National and Local Coverage Determinations, and for Blue Cross Blue Shield companies. Coverage determination decisions for new procedures tend to be less formalized than for novel drugs. The analysis of coverage procedures and requirements shows that the proof of patient benefit is essential. Cost-effectiveness is likely to gain importance in future.

  6. Bench Scale Development and Testing of Aerogel Sorbents for CO 2 Capture Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begag, Redouane

    The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO 2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO 2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO 2 capacity, respectively (@ 40 °C adsorption / 100more » – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO 2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO 2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO 2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO 2 capture capacity after 20 cycles in the presence of 40 ppm SO 2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post combustion CO 2 capture process using a bituminous coal fired, super-critical steam cycle power plant producing 550 MWe net generation with 90% CO 2 capture using a methylethylamine (MEA) solvent. Using the NETL report as guidance, the designed CO 2 capture system was analyzed on a cost basis to determine relative cost estimates between the benchmark MEA system and the AFA sorbent system.« less

  7. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at leastmore » 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97% CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench-scale program will be used as the base technology for future pilot-scale development.« less

  8. Teaching Elliptical Excision Skills to Novice Medical Students: A Randomized Controlled Study Comparing Low- and High-Fidelity Bench Models

    PubMed Central

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-01-01

    Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937

  9. Production of aluminum--silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase B, September 1--November 30, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, M.J.

    1978-12-01

    The parameters of charge content, reaction temperatures and residence time were studied in a bench reactor concerning the production of Al--Si and Fe--Si alloys. Results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C. Residence time varied with initial charge concentration. Fe/sub 2/O/sub 3/ additions to the charge produced a significant increase in metallic yield. A burden preparation procedure was developed for making acceptable agglomerates containing Fe/sub 2/O/sub 3/, bauxite, clay and coke. Particle size distribution of starting materials was correlated with agglomerate strength. A new bench scale reactor was designed and built to facilitate semi-continuous operation,more » using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. In a number of runs bridging of the burden material occurred due to condensation of volatilized sub-oxides in the cooler zones of the reactor. The reactor operated smoothly as an iron blast furnace at 1500/sup 0/C, demonstrating the validity of the equipment and test procedures. Initial construction of pilot reactor VSR-1 was completed. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product concentration and yield. High levels of impurities formed intermetallic complexes with Al and reduced product yield.« less

  10. Cesium Eluate Physical Property Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  11. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE PAGES

    Liang, Ling; Li, Chenlin; Xu, Feng; ...

    2017-07-24

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  12. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ling; Li, Chenlin; Xu, Feng

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  13. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less

  14. ESPRESSO optical bench: from mind to reality

    NASA Astrophysics Data System (ADS)

    Tenegi, F.; Santana, S.; Gómez, J.; Rodilla, E.; Hughes, I.; Mégevand, D.; Rebolo, R.; Riva, M.; Luis-Simoes, R.

    2016-07-01

    ESPRESSO [1] is a high-resolution spectrograph under development for the VLT telescope. In general, the Optical Bench (OB) structure can be considered as a 3D one, conformed by welding thin plates of Structural Steel (St-52) with a nickelplated surface treatment, combined for getting maximum stiffness and minimum weight, that will be finally re-machined to get stringent geometrical and dimensional tolerances at I/Fs positions. TIG conventional welding procedure has been selected to minimize the cost and facilitate the own welding process. This solution follows the inheritance from HARPS [2] due to its success to achieve the required performance for the bench. This paper contains an overview of the whole process of designing and manufacturing the Optical Bench of ESPRESSO, from the very first beginning with the specifications to the current status of the bench with its integration on the Spectrograph (including the Finite Element Models and the delivery of the final structure by the supplier) and lessons learned.

  15. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  16. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    EPA Pesticide Factsheets

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  17. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Topical Report EH&S Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Farnum, Rachel; Perry, Robert

    2016-05-11

    GE Global Research was contracted by the Department of Energy to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2 capture solvent (award number DEFE0013687). As part of this program, a technology EH&S assessment (Subtask 5.1) has been completed for a CO2 capture system for a 550 MW coal-fired power plant. The assessment focuses on two chemicals used in the process, the aminosilicone solvent, GAP-0, and dodecylbenzenesulfonic acid (DDBSA), the GAP-0 carbamate formed upon reaction of the GAP-0 with CO2, and two potential byproducts formed in the process, GAP-0/SOx salts and amine-terminated, urea-containing silicone (also referred tomore » as “ureas” in this report). The EH&S assessment identifies and estimates the magnitude of the potential air and water emissions and solid waste generated by the process and reviews the toxicological profiles of the chemicals associated with the process. Details regarding regulatory requirements, engineering controls, and storage and handling procedures are also provided in the following sections.« less

  18. Hierarchical calibration and validation for modeling bench-scale solvent-based carbon capture. Part 1: Non-reactive physical mass transfer across the wetted wall column: Original Research Article: Hierarchical calibration and validation for modeling bench-scale solvent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    A hierarchical model calibration and validation is proposed for quantifying the confidence level of mass transfer prediction using a computational fluid dynamics (CFD) model, where the solvent-based carbon dioxide (CO2) capture is simulated and simulation results are compared to the parallel bench-scale experimental data. Two unit problems with increasing level of complexity are proposed to breakdown the complex physical/chemical processes of solvent-based CO2 capture into relatively simpler problems to separate the effects of physical transport and chemical reaction. This paper focuses on the calibration and validation of the first unit problem, i.e. the CO2 mass transfer across a falling ethanolaminemore » (MEA) film in absence of chemical reaction. This problem is investigated both experimentally and numerically using nitrous oxide (N2O) as a surrogate for CO2. To capture the motion of gas-liquid interface, a volume of fluid method is employed together with a one-fluid formulation to compute the mass transfer between the two phases. Bench-scale parallel experiments are designed and conducted to validate and calibrate the CFD models using a general Bayesian calibration. Two important transport parameters, e.g. Henry’s constant and gas diffusivity, are calibrated to produce the posterior distributions, which will be used as the input for the second unit problem to address the chemical adsorption of CO2 across the MEA falling film, where both mass transfer and chemical reaction are involved.« less

  19. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toy, Lora; Choi, Young Chul; Hendren, Zachary

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade wastemore » heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m 2·h) for flat-sheet membranes and >20 L/(m 2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data, numerical modeling was performed on the FO and MD processes to estimate engineering parameters for a larger-scale pilot unit. Based on the experimental studies and modeling results, a pilot-scale, integrated FO-MD prototype unit was designed and built for trailer-mounted operation. This prototype system was fed real industrial wastewater, which could not be further treated by conventional technologies, from an oil production facility and was successfully operated for over 15 weeks without major stoppage. About 90% water recovery was possible, while concentrating the TDS from 12,000 ppm up to 190,500 ppm. The FO-MD prototype rejected most wastewater contaminants while producing water with <300 ppm TDS, even when the feed TDS was higher than 150,000 ppm. No chemical cleaning was necessary during the pilot testing period. Flushing the system with dechlorinated tap water was sufficient to reset the membranes for the next set of test conditions. Pilot performance and membrane autopsy showed that, even though the feed was concentrated more than 10 times, membrane fouling was unnoticeable and no defects were detected on the FO and MD membrane surfaces. This project demonstrated the technical feasibility of the hybrid FO-MD process by taking water already treated to the limit with the highest level of current technologies and further concentrating it 10-fold by using mostly low-cost materials. Because no membranes suitable for full-scale plant applications are available at present, economical feasibility of the hybrid technology is still uncertain, but it is expected that broader industry participation can further reduce FO-MD process costs.« less

  20. Filtration of micron-sized particles for coal liquids: carbonaceous precoats. [5 refs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, B.R.

    Carbonaceous precoats, such as bituminous coal and char from hydrocarbonization, are shown to be effective, inexpensive substitutes for traditional diatomaceous earth materials, both at laboratory-scale and bench-scale. Model equations are developed for filtration of Solvent Refined Coal-Unfiltered Oil (SRC-UFO).

  1. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Removal and Transformation of Estrogens During the Coagulation Process

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over the possible presence of endocrine disrupting compounds in finished drinking waters. Bench-scale studies (jar tests) simulating coagulation were conducted to evaluate the ability of tw...

  3. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    EPA Science Inventory

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  4. DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.

    1995-11-01

    A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less

  5. Wall and corner fire tests on selected wood products

    Treesearch

    H. C. Tran; M. L. Janssens

    1991-01-01

    As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...

  6. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  7. COMPARING RBF WITH BENCH-SCALE CONVENTIONAL TREATMENT FOR PRECURSOR REDUCTION

    EPA Science Inventory

    The reduction of disinfection by-product (DBP) precursors upon riverbank filtration (RBF) at three drinking water utilities in the mid-Western United States was compared with that obtained using a bench-scale conventional treatment train on the corresponding river waters. The riv...

  8. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  9. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil.more » CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.« less

  10. Assessing sorbent injection mercury control effectiveness in flue gas streams

    USGS Publications Warehouse

    Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.

    2000-01-01

    One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.

  11. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  12. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design - slides

    EPA Science Inventory

    The oral presentation will be at the EWRI International LID Conference in San Francisco, on April 11-14, 2010. The slides discuss the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing...

  13. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less

  14. BENCH-SCALE STUDIES TO IDENTIFY PROCESS PARAMETERS CONTROLLING REBURNING WITH PULVERIZED COAL

    EPA Science Inventory

    The report addresses the evaluation of a technology which is a combination of two technologies used to control the atmospheric emission of NOx by stationary sources: (1) combustion modification (controls flame temperature and maximizes fuel-rich residence time to minimize NOx for...

  15. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT

    EPA Science Inventory

    The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...

  16. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  17. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  18. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    EPA Science Inventory

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  19. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    EPA Science Inventory

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  20. BENCH-SCALE STUDIES ON THE SIMULTANEOUS FORMATION OF PCBS AND PCDDS/FS FROM COMBUSTION SYSTEMS

    EPA Science Inventory

    The paper reports on a bench-scale experimental study to characterize a newly built reactor system that was built to: produce levels and distributions of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) production similar to those achieved by previous re...

  1. Bench-Scale Evaluation Of Chemically Bonded Phosphate Ceramic Technology To Stabilize Mercury Waste Mixtures

    EPA Science Inventory

    This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...

  2. BENCH-SCALE EVALUATION OF CALCIUM SORBENTS FOR ACID GAS EMISSION CONTROL

    EPA Science Inventory

    Calcium sorbents for acid gas emission control were evaluated for effectiveness in removing SO2/HCl and SO2/NO from simulated incinerator and boiler flue gases. All tests were conducted in a bench-scale reactor (fixed-bed) simulating fabric filter conditions in an acid gas remova...

  3. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  4. Technical Approach for In Situ Biological Treatment Research: Bench- Scale Experiments

    DTIC Science & Technology

    1993-08-01

    1 CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT . . 5 PART I: INTRODUCTION...141 REFERENCES ....................... .............................. 142 TABLES 1 -4 APPENDIX A: IN SITU IMPLEMENTATION CASE STUDIES...TREATMENT RESEARCH: BENCH-SCALE EXPERIMENTS PART I: INTRODUCTION Background 1 . Many US Army installations have areas of contamination requiring

  5. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    NASA Astrophysics Data System (ADS)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  6. Water Extraction from Coal-Fired Power Plant Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the powermore » plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.« less

  7. Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design

    DTIC Science & Technology

    1996-02-01

    feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co

  8. Study on the removal efficiency of UF membranes using bacteriophages in bench-scale and semi-technical scale.

    PubMed

    Kreissel, K; Bösl, M; Lipp, P; Franzreb, M; Hambsch, B

    2012-01-01

    To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.

  9. Low-Energy Water Recovery from Subsurface Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Chul; Kim, Gyu Dong; Hendren, Zachary

    A novel non-aqueous phase solvent (NAS) desalination process was proposed and developed in this research project. The NAS desalination process uses less energy than thermal processes, doesn’t require any additional chemicals for precipitation, and can be utilized to treat high TDS brine. In this project, our experimental work determined that water solubility changes and selective absorption are the key characteristics of NAS technology for successful desalination. Three NAS desalination mechanisms were investigated: (1) CO2 switchable, (2) high-temp absorption to low-temp desorption (thermally switchable), and (3) low-temp absorption to high-temp desorption (thermally switchable). Among these mechanisms, thermally switchable (low-temp absorption tomore » high-temp desorption) showed the highest water recovery and relatively high salt rejection. A test procedure for semi-continuous, bench scale NAS desalination process was also developed and used to assess performance under a range of conditions.« less

  10. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less

  11. BENCH-SCALE PROCESS EVALUATION OF REBURNING AND SORBENT INJECTION FOR IN-FURNACE NOX/SOX REDUCTION

    EPA Science Inventory

    The report gives results of combining reburning with the injection of calcium-based sorbents to investigate the potential for combined NOx and SOx reduction. Reburning, applied to pulverized-coal-fired utility boilers, involves injecting a secondary fuel above the main firing zon...

  12. 1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING NORTHWEST AT BUILDING 701. BUILDING 701 WAS USED TO DESIGN, BUILD, AND EVALUATE BENCH-SCALE TECHNOLOGIES USED IN ROCKY FLATS WASTE TREATMENT PROCESSES. (1/98) - Rocky Flats Plant, Design Laboratory, Northwest quadrant of Plant, between buildings 776-777 & 771, Golden, Jefferson County, CO

  13. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  14. Depolymerization of lignin via co-pyrolysis with 1,4-butanediol in a microwave reactor

    USDA-ARS?s Scientific Manuscript database

    The production of valuable compounds from low cost but abundant residual lignin has proven to be challenging. The lack of effective biochemical lignin depolymerization processes has led many to focus on thermochemical conversion methods. Bench scale microwave pyrolysis of lignin has been performed...

  15. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  16. Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination.

    PubMed

    Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis

    2017-06-15

    Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second interim technical report, Phase B, December 1, 1978-February 28, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, M.J.

    1979-03-01

    Experimental runs were made to determine the effect of a cooler product reservoir on metal alloy yield and recovery. The reservoir temperature had no significant effect. Difficulties were experienced with operation of an oxygen injected bench scale reactor. Many tests were terminated by burden bridging or flooding of the oxygen tuyeres with metal and slag. Runs were made in which refluxing vapors were condensed in a liquid slag. The addition of CaO decreased the tendency for formation of thick, strong burden bridges but did not completely eliminate bridging. Reduction of flame temperatures did not affect the volatilization rate in themore » bench reactor. Operation of VSR-1 pilot reactor with O injection was achieved after resolving reactor shell leakage problems, by replacing the permeable ceramic shell with impermeable fused silica. Various combustion parameters were investigated, including coke size, burden height and oxygen flow rate. Steady state operation of the oxygen-coke system was attained with smooth burden movement and a 2000/sup 0/C bed temperature in the raceway vicinity. To further reduce heat losses from the raceway area. VSR-1 was redesigned to facilitate locating an induction coil below the oxygen inlets. Further evaluation of effects of impurities on alloy purification in the bench scale unit indicated a 50% decrease in product yield for starting charges containing Fe greater than 5%. Site installation for the entire alloy purification complex was completed. Operations were continued in the bench scale units to obtain design information for the pilot commercial grade Al purification unit. Procurement of construction material was established.« less

  18. Pervious Pavement System Evaluation

    EPA Science Inventory

    Pervious pavement is a low impact development stormwater control. The Urban Watershed Management Branch of the U.S. Environmental Protection Agency in Edison, NJ, is evaluating concrete pavers as a popular implementation. The pollutant removal of a bench-scale permeable interlo...

  19. In-situ Subaqueous Capping of Mercury-Contaminated Sediments in a Fresh-Water Aquatic System, Part I-Bench-Scale Microcosm Study to Assess Methylmercury Production

    EPA Science Inventory

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absenc...

  20. REVIEW OF BENCH-, PILOT-, AND FULL-SCALE ORIMULSION (R) COMBUSTION TESTS

    EPA Science Inventory

    The paper gives results of a review of bench-, pilot-, and full-scale Orimulsion combustion tests. A fossil fuel marketed by its producer, Petroleos de Venezuela, S.A. (PdVSA), since the late 1980s as an alternative to coal and heavy fuel oil, Orimulsion is a bitumen-in-water em...

  1. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  2. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.

  3. Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.

    PubMed

    Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S

    2005-01-01

    In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.

  4. Evaluation of Hydrogel Technologies for the Decontamination ...

    EPA Pesticide Factsheets

    Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.

  5. Module for phosphorus separation and recycling from liquid manures

    USDA-ARS?s Scientific Manuscript database

    A method has been developed to extract and concentrate soluble phosphates from livestock wastewater. The research was conducted over a 10-year period and went from initial bench studies and discovery, to pilot module development, to full-scale demonstrations of the phosphorus (P) module in swine fa...

  6. APPLIED MERCURY CAPTURE

    EPA Science Inventory

    The first purpose of this project is to complete bench and pilot scale testing of promising mercury sorbents. This work would apply findings from fundamental, mechanistic efforts over the past three years that have developed sorbents which show improved capture of elemental and ...

  7. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    EPA Science Inventory

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  8. Bench Scale Process for Low Cost CO 2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less

  9. Rate and extent NOM removal during oxidation and biofiltration.

    PubMed

    Black, Kerry E; Bérubé, Pierre R

    2014-04-01

    The presence of natural organic matter (NOM) in drinking water treatment presents many challenges. Integrated treatment processes combining oxidation and biofiltration have been demonstrated to be very effective at reducing NOM, specifically biodegradable organics. Laboratory bench-scale experiments were carried out to investigate the effect of oxidation by ozonation or UV/H2O2 on NOM. Specifically the rate of biodegradation was studied by performing bench-scale biodegradation experiments using acclimatized biological activated carbon (BAC). For the source water investigated, oxidation did not preferentially react with the biodegradable or non-biodegradable NOM. In addition, the type or dose of oxidation applied did not affect the observed rate of biodegradation. The rate kinetics for biodegradation were constant for all oxidation conditions investigated. Oxidation prior to biofiltration increased the overall removal of organic matter, but did not affect the rate of biodegradation of NOM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Letter report on PCT/Monolith glass ceramic corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less

  11. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less

  12. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less

  13. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    EPA Science Inventory

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  14. Lightweight alumina refractory aggregate. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate,more » based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.« less

  15. Ups and downs on spreading flanks of ocean-island volcanoes: evidence from Mauna Loa and Kīlauea

    USGS Publications Warehouse

    Lipman, Peter W.; Eakins, Barry W.; Yokose, Hisayoshi

    2003-01-01

    Submarine-flank deposits of Hawaiian volcanoes are widely recognized to have formed largely by gravitationally driven volcano spreading and associated landsliding. Observations from submersibles show that prominent benches at middepths on flanks of Mauna Loa and Kilauea consist of volcaniclastic debris derived by landsliding from nearby shallow submarine and subaerial flanks of the same edifice. Massive slide breccias from the mature subaerial tholeiitic shield of Mauna Loa underlie the frontal scarp of its South Kona bench. In contrast, coarse volcaniclastic sediments derived largely from submarine-erupted preshield alkalic and transitional basalts of ancestral Kilauea underlie its Hilina bench. Both midslope benches record the same general processes of slope failure, followed by modest compression during continued volcano spreading, even though they record development during different stages of edifice growth. The dive results suggest that volcaniclastic rocks at the north end of the Kona bench, interpreted by others as distal sediments from older volcanoes that were offscraped, uplifted, and accreted to the island by far-traveled thrusts, alternatively are a largely coherent stratigraphic assemblage deposited in a basin behind the South Kona bench.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, R.D.; Alderfer, R.B.

    Bench-scale tests of the direct calcination process for Portsmouth were conducted using batch pot calcination of simulated and actual raffinate wastes. These studies included investigation of the evaporation step needed to concentrate the raffinate before calcination. Tests were conducted at calcination temperatures of 600, 700, 1000, and 1200/sup 0/F with two levels of evaporative concentration before calcination at 1000/sup 0/F. Evaporation only tests were also made. Performance of the bench-scale system was excellent. A calcination temperature of 715/sup 0/F indicated that 80 to 100% of the Tc was retained in the calcined solids, while all of the nitrates were decomposedmore » to oxides. With calcination temperatures of greater than or equal to 1000/sup 0/F, part of the Tc escaped from the calcination pot to the scrubber. Below 700/sup 0/F, not all of the nitrates were decomposed to oxides. Most of the U remained in the calcined solids for calcination temperatures of less than or equal to 1000/sup 0/F. The mass of solids remaining after calcination was 4 to 5% of the original raffinate for calcination temperatures from 700 to 1000/sup 0/F. Flow rate through the off-gas treatment system was variable. The water scrubber had a good removal efficiency for nitrate and most metals, but not for uranium. The trapping efficiency of the limestone trap for nitrate was low. Flowsheet studies indicate that enough U would pass through the scrubber and chemical traps to cause an unacceptably high release of radioactivity if the assay of the uranium exceeded 33%. A small HEPA filter after the limestone chemical traps is recommended to reduce U emissions. A flowsheet was developed for a full-scale process for the direct calcination of raffinate waste.« less

  17. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derivedmore » sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.« less

  18. Arsenic removal from water employing a combined system: photooxidation and adsorption.

    PubMed

    Lescano, Maia; Zalazar, Cristina; Brandi, Rodolfo

    2015-03-01

    A combined system employing photochemical oxidation (UV/H2O2) and adsorption for arsenic removal from water was designed and evaluated. In this work, a bench-scale photochemical annular reactor was developed being connected alternately to a pair of adsorption columns filled with titanium dioxide (TiO2) and granular ferric hydroxide (GFH). The experiences were performed by varying the relation of As concentration (As (III)/As (V) weight ratio) at constant hydrogen peroxide concentration and incident radiation. Experimental oxidation results were compared with theoretical predictions using an intrinsic kinetic model previously obtained. In addition, the effectiveness of the process was evaluated using a groundwater sample. The mathematical model of the entire system was developed. It could be used as an effective tool for the design and prediction of the behaviour of these types of systems. The combined technology is efficient and promising for arsenic removal to small and medium scale.

  19. Spray Forming Aluminum - Final Report (Phase II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less

  20. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less

  1. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorbermore » off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.« less

  2. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based systemmore » demonstrates significant advantages compared to the MEA system.« less

  3. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under thismore » five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.« less

  4. Thermal Destruction Of CB Contaminants Bound On Building ...

    EPA Pesticide Factsheets

    Symposium Paper An experimental and theoretical program has been initiated by the U.S. EPA to investigate issues of chemical/biological agent destruction in incineration systems when the agent in question is bound on common porous building interior materials. This program includes 3-dimensional computational fluid dynamics modeling with matrix-bound agent destruction kinetics, bench-scale experiments to determine agent destruction kinetics while bound on various matrices, and pilot-scale experiments to scale-up the bench-scale experiments to a more practical scale. Finally, model predictions are made to predict agent destruction and combustion conditions in two full-scale incineration systems that are typical of modern combustor design.

  5. Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities.

    PubMed

    Torres-Acosta, Mario A; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2018-06-07

    Aqueous two-phase systems (ATPS) have proved to be an efficient and integrative operation to enhance recovery of industrially relevant bioproducts. After ATPS discovery, a variety of works have been published regarding their scaling from 10 to 1000 L. Although ATPS have achieved high recovery and purity yields, there is still a gap between their bench-scale use and potential industrial applications. In this context, this review paper critically analyzes ATPS scale-up strategies to enhance the potential industrial adoption. In particular, large-scale operation considerations, different phase separation procedures, the available optimization techniques (univariate, response surface methodology, and genetic algorithms) to maximize recovery and purity and economic modeling to predict large-scale costs, are discussed. ATPS intensification to increase the amount of sample to process at each system, developing recycling strategies and creating highly efficient predictive models, are still areas of great significance that can be further exploited with the use of high-throughput techniques. Moreover, the development of novel ATPS can maximize their specificity increasing the possibilities for the future industry adoption of ATPS. This review work attempts to present the areas of opportunity to increase ATPS attractiveness at industrial levels. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology.

    PubMed

    Villaverde, Alejandro F; Henriques, David; Smallbone, Kieran; Bongard, Sophia; Schmid, Joachim; Cicin-Sain, Damjan; Crombach, Anton; Saez-Rodriguez, Julio; Mauch, Klaus; Balsa-Canto, Eva; Mendes, Pedro; Jaeger, Johannes; Banga, Julio R

    2015-02-20

    Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging. The community has already developed many methods and software packages which aim to facilitate these tasks. However, there is a lack of suitable benchmark problems which allow a fair and systematic evaluation and comparison of these contributions. Here we present BioPreDyn-bench, a set of challenging parameter estimation problems which aspire to serve as reference test cases in this area. This set comprises six problems including medium and large-scale kinetic models of the bacterium E. coli, baker's yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The level of description includes metabolism, transcription, signal transduction, and development. For each problem we provide (i) a basic description and formulation, (ii) implementations ready-to-run in several formats, (iii) computational results obtained with specific solvers, (iv) a basic analysis and interpretation. This suite of benchmark problems can be readily used to evaluate and compare parameter estimation methods. Further, it can also be used to build test problems for sensitivity and identifiability analysis, model reduction and optimal experimental design methods. The suite, including codes and documentation, can be freely downloaded from the BioPreDyn-bench website, https://sites.google.com/site/biopredynbenchmarks/ .

  7. U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM: 1991 UPDATE

    EPA Science Inventory

    The Emerging Technology Program (ETP) supports the development of technologies successfully tested at the bench- and pilot-scale level. The ETP is part of the Superfund Innovative Technology Evaluation (SITE) Program which was established in 1986 under the Superfund Amendments an...

  8. 1992 UPDATE OF U.S. EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five year...

  9. Processing of metallurgical residues by flotation - bench-scale studies on two industrial products.

    PubMed

    Rao, S R; Finch, J A

    2006-01-01

    Resource recovery from two metallurgical residues by flotation was investigated applying an electrostatic model to select initial conditions. The first, a sulphation roast/water leach residue, was processed to float lead sulphate, comparing dodecylamine and xanthate collectors. From the second, a neutralization residue, gypsum, was recovered by reverse flotation of ferric hydroxide, comparing oleate and sulphonate collectors. In both cases, further upgrading by acid leaching was considered.

  10. Simulating maar-diatreme volcanic systems in bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.

    2015-12-01

    Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  12. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less

  13. Allometric scaling of strength scores in NCAA division I-A football athletes.

    PubMed

    Oba, Yukiya; Hetzler, Ronald K; Stickley, Christopher D; Tamura, Kaori; Kimura, Iris F; Heffernan, Thomas P

    2014-12-01

    This study examined population-specific allometric exponents to control for the effect of body mass (BM) on bench press, clean, and squat strength measures among Division I-A collegiate football athletes. One repetition maximum data were obtained from a university pre-season football strength assessment (bench press, n = 207; clean, n = 88; and squat n = 86) and categorized into 3 groups by positions (line, linebacker, and skill). Regression diagnostics and correlations of scaled strength data to BM were used to assess the efficacy of the allometric scaling model and contrasted with that of ratio scaling and theoretically based allometric exponents of 0.67 and 0.33. The log-linear regression models yielded the following exponents (b): b = 0.559, 0.287, and 0.496 for bench press, clean, and squat, respectively. Correlations between bench press, clean, and squat to BM were r = -0.024, -0.047, and -0.018, respectively, suggesting that the derived allometric exponents were effective in partialling out the effect of BM on these lifts and removing between-group differences. Conversely, unscaled, ratio-scaled, and allometrically scaled (b = 0.67 or 0.33) data resulted in significant differences between groups. It is suggested that the exponents derived in the present study be used for allometrically scaling strength measures in National Collegiate Athletic Association Division I-A football athletes. Use of the normative percentile rank scores provide coaches and trainers with a valid means of judging the effectiveness of their training programs by allowing comparisons between individuals without the confounding influence of BM.

  14. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  15. Development of a SMA-Based Slat-Cove Filler for Reduction of Aeroacoustic Noise Associated With Transport-Class Aircraft Wings

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Kidd, Reggie T.; Hartl, Darren J.; Scholten, William D.

    2013-01-01

    Airframe noise is a significant part of the overall noise produced by typical, transport-class aircraft during the approach and landing phases of flight. Leading-edge slat noise is a prominent source of airframe noise. The concept of a slat-cove filler was proposed in previous work as an effective means of mitigating slat noise. Bench-top models were deployed at 75% scale to study the feasibility of producing a functioning slat-cove filler. Initial results from several concepts led to a more-focused effort investigating a deformable structure based upon pseudoelastic SMA materials. The structure stows in the cavity between the slat and main wing during cruise and deploys simultaneously with the slat to guide the aerodynamic flow suitably for low noise. A qualitative parametric study of SMA-enabled, slat-cove filler designs was performed on the bench-top. Computational models were developed and analyses were performed to assess the displacement response under representative aerodynamic load. The bench-top and computational results provide significant insight into design trades and an optimal design.

  16. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizeq, George; West, Janice; Frydman, Arnaldo

    Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    EPA Science Inventory

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  18. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    ERIC Educational Resources Information Center

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  19. Development of Bench and Full-Scale Temperature and pH Responsive Functionalized PVDF Membranes with Tunable Properties

    PubMed Central

    Xiao, Li; Isner, Austin; Waldrop, Krysta; Saad, Anthony; Takigawa, Doreen; Bhattacharyya, Dibakar

    2014-01-01

    Temperature and pH responsive polymers (poly(N-isopropylacrylamide) (PNIPAAm), and polyacrylic acid, PAA) were synthesized in one common macrofiltration PVDF membrane platform by pore-filling method. The microstructure and morphology of the PNIPAAm-PVDF, and PNIPAAm-FPAA-PVDF membranes were studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The membrane pore size was controlled by the swelling and shrinking of the PNIPAAm at the temperature around lower critical solution temperature (LCST). The composite membrane demonstrated a rapid and reversible swelling and deswelling change within a small temperature range. The controllable flux makes it possible to utilize this temperature responsive membrane as a valve to regulate filtration properties by temperature change. Dextran solution (Mw=2,000,000g/mol, 26 nm diameter) was used to evaluate the separation performance of the temperature responsive membranes. The ranges of dextran rejection are from 4% to 95% depending on the temperature, monomer amount and pressure. The full-scale membrane was also developed to confirm the feasibility of our bench-scale experimental results. The full-scale membrane also exhibited both temperature and pH responsivity. This system was also used for controlled nanoparticles synthesis and for dechlorination reaction. PMID:24944434

  20. Base Program on Energy Related Research

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The Base Research Program at Western Research Institute (WRI) is planned to develop technologies to a level that will attract industrial sponsors for continued development under the Jointly Sponsored Research (JSR) Program. The Base Cooperative Agreement (DE-FC26-98FT40322) was initiated on April 10, with funding of 500,000.Tasks approved for funding, FY 98 include the following: 1.1 CROW Process Application for Sites Contaminated With LNAPL and Chlorinated Solvents -50,000; 1.2 Petroleum residual Solubility Parameter/Polarity Map-75,000; 1.3 Laboratory and Bench-Scale Testing for Treating Used Motor Oil-135,000; 1.4 Development and Testing of a Coal-Fired Gas Turbine System- 140,000; 2.1 Evaluation of a Method Using Colloidal Gas Aphrons to Remediate Metals-Contaminated Mine Drainage Waters-15,000; 2.2 Development of a Procedure for Production of a Protective Covering for PEAC Units - 15,000; and 3.1 Heavy Oil/Plastics Co-Processing -70,000 TOTALS-500,000

  1. Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    1999-01-01

    More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.

  2. SUPERFUND TREATABILITY CLEARINGHOUSE: ENGINEERING AND DEVELOPMENT SUPPORT OF GENERAL DECON TECHNOLOGY FOR THE U.S. ARMY'S INSTALLATION/RESTORATION PROGRAM

    EPA Science Inventory

    This document reports on the results of bench-scale tests of treatment technologies for explosive-containing sediment located in lagoons at Army ammunition plants. A companion literature search identified the appropriate explosives remediation technologies to be evaluated. ...

  3. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    EPA Science Inventory

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  4. GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING

    EPA Science Inventory

    The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...

  5. DEVELOPMENT OF AN AFFORDABLE FAMILY-SCALE BIOGAS GENERATOR

    EPA Science Inventory

    From laboratory experiments we calculated that our system would have to deliver 262 liters/hr of biogas to cook a meal. Biogas produced by slurries of various wastes was measured with a two liter bench-top digester system designed by the team. Gas volume was measured by displa...

  6. USE OF BONE CHAR FOR THE REMOVAL OF ARSENIC AND URANIUM FROM GROUNDWATER ATTHE PINE RIDGE RESERVATION

    EPA Science Inventory

    Using bench scale U removal capacity data with bone char, a preliminary point-of-use filter was developed using theoretical calculations. The design specifications were completed for the filter, and the manufacturing of the preliminary filter is currently underway. Through ...

  7. CHARACTERIZATION OF ADVANCED SORBENTS FOR DRY SO2 CONTROL

    EPA Science Inventory

    The paper discusses the development of new flyash/lime sorbents for removing SO2 from coal-fired flue gas. Flyash/lime weight ratios of 1:1 to 10:1 and several additives to these sorbents for promoting their reactivity were evaluated in a bench-scale reactor simulating conditions...

  8. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, M; Kochergin, V; Hess, R

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less

  9. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 1

    NASA Technical Reports Server (NTRS)

    Baker, William H., Jr.

    1986-01-01

    A preliminary design and analysis was completed for a SLEEC (Shingle Lap Extendible Exit Cone) which could be incorporated on the Space Transportation System (STS) Solid Rocket Booster (SRB). Studies were completed which predicted weights and performance increases and development plans were prepared for the full-scale bench and static test of SLEEC. In conjunction with the design studies, a series of supporting analyses were performed to assure the validity and feasibility of performance, fabrication, cost, and reliability for the selected design. The feasibility and required amounts of bench, static firing, and flight tests considered necessary for the successful incorporation of SLEEC on the Shuttle SRBs were determined. Preliminary plans were completed which define both a follow on study effort and a development program.

  10. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests.

    PubMed

    Aziz, Nazneen; Zhao, Qin; Bry, Lynn; Driscoll, Denise K; Funke, Birgit; Gibson, Jane S; Grody, Wayne W; Hegde, Madhuri R; Hoeltge, Gerald A; Leonard, Debra G B; Merker, Jason D; Nagarajan, Rakesh; Palicki, Linda A; Robetorye, Ryan S; Schrijver, Iris; Weck, Karen E; Voelkerding, Karl V

    2015-04-01

    The higher throughput and lower per-base cost of next-generation sequencing (NGS) as compared to Sanger sequencing has led to its rapid adoption in clinical testing. The number of laboratories offering NGS-based tests has also grown considerably in the past few years, despite the fact that specific Clinical Laboratory Improvement Amendments of 1988/College of American Pathologists (CAP) laboratory standards had not yet been developed to regulate this technology. To develop a checklist for clinical testing using NGS technology that sets standards for the analytic wet bench process and for bioinformatics or "dry bench" analyses. As NGS-based clinical tests are new to diagnostic testing and are of much greater complexity than traditional Sanger sequencing-based tests, there is an urgent need to develop new regulatory standards for laboratories offering these tests. To develop the necessary regulatory framework for NGS and to facilitate appropriate adoption of this technology for clinical testing, CAP formed a committee in 2011, the NGS Work Group, to deliberate upon the contents to be included in the checklist. Results . -A total of 18 laboratory accreditation checklist requirements for the analytic wet bench process and bioinformatics analysis processes have been included within CAP's molecular pathology checklist (MOL). This report describes the important issues considered by the CAP committee during the development of the new checklist requirements, which address documentation, validation, quality assurance, confirmatory testing, exception logs, monitoring of upgrades, variant interpretation and reporting, incidental findings, data storage, version traceability, and data transfer confidentiality.

  11. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  12. Fuel alcohol production from agricultural lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L.

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less

  13. Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, U.S.A.

    USGS Publications Warehouse

    Winston, R.B.

    1988-01-01

    To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%. Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less). In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance. In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings. Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps. Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant. ?? 1988.

  14. Optical Bench for LISA-like missions

    NASA Astrophysics Data System (ADS)

    Mueller, Guido

    The detection of B-modes in the μ-Wave background has rattled the scientific community and further enhanced the large scientific interest in gravitational waves and gravitational wave astronomy. The first direct detection of gravitational waves by Advanced LIGO and maybe also by pulsar timing arrays in the second half of this decade will be another watershed event which will start a new era in astronomy and astrophysics. However, the holy grail of gravitational wave astronomy will be opened by a LISA-like mission. Only space provides the environment that allows to cover the signal-rich mHz frequency range where we expect to see gravitational waves from massive black hole mergers, compact galactic binaries, and many other sources. All mature concepts use laser interferometry between free falling test masses separated by millions of km. The central piece in all these concepts is a stable optical bench which is used to prepare and exchange the laser beams between the different arms. It has always been assumed that the base material for the optical bench has to be one of the ultra-low expansion glasses such as Zerodur or ULE to meet the pm/#Hz stability requirements. This very conservative approach was a reflection of the state-of-the-art in frequency stabilization experiments which used optical reference cavities in the early ‘90s. It is not surprising that the LISA pathfinder (LPF) uses also an all Zerodur bench where each optical component is precision bonded to the bench using hydroxide bonding, a nonreversible bonding technique. The manufacturing of this bench was a very time consuming one-mirror-a-day effort and was one of the highest risk items in terms of schedule and cost. The original LISA design uses the same approach except that the LISA bench is far more complex than the LPF bench and manufacturing of the required 10+ benches, six flight units and at least four pre-flight models and spares, will be even more time consuming and expensive. We question the need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.

  15. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  16. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.'« less

  17. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.« less

  18. Extracorporeal CO2 removal by hemodialysis: in vitro model and feasibility.

    PubMed

    May, Alexandra G; Sen, Ayan; Cove, Matthew E; Kellum, John A; Federspiel, William J

    2017-12-01

    Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO 2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO 2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO 2 volumes. Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO 2 concentrations were set at 50 and 100 mmHg. Results are reported as scaled up values. The CO 2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO 2 of 50 mmHg, the CO 2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO 2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO 2 . None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. When the bench top data is scaled up, the system removes a therapeutic amount of CO 2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.

  19. Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale

    NASA Astrophysics Data System (ADS)

    Crook, A. J. L.; Yu, J. G.; Thornton, D. A.

    2010-05-01

    The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an extension of a previously published approach (Crook et al., 2006a, 2006b) that focused on predictive modelling of structure evolution in 2-D sandbox experiments, and in particular two extensional sand box experiments that exhibit complex fault development including a series of superimposed crestal collapse graben systems (McClay, 1990) . The formulation adopts a finite strain Lagrangian method, complemented by advanced localization prediction algorithms and robust and efficient automated adaptive meshing techniques. The sediment is represented by an elasto-viscoplastic constitutive model based on extended critical state concepts, which enables representation of the combined effect of mechanical and chemical compaction. This is achieved by directly coupling the evolution of the material state boundary surface with both the mechanically and chemically driven porosity change. Using these procedures the evolution of the geological structures arises naturally from the imposed boundary conditions without the requirement of seeding using initial imperfections. Simulations are presented for regional bench-scale models based on the analogue experiments presented by Fort et al. (2004), together with additional insights provided by the numerical models. It is shown that the behaviour observed in both the extensional and compressional zones of these analogue models arises naturally in the finite element simulations. Extension of these models to the field-scale is then discussed and several simulations are presented to highlight important issues related to practical field-scale numerical modelling.

  20. EVALUATION OF SOIL WASHING TECHNOLOGY: RESULTS OF BENCH SCALE EXPERIMENTS ON PETROLEUM FUELS CONTAMINATED SOILS - EPA/600/S2-91/023

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) through its Risk Reduction Engineering Laboratory's Release Control Branch has undertaken research and development efforts to address the problem of leaking underground storage tanks (USTs). Under this effort, EPA is currently eva...

  1. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    USDA-ARS?s Scientific Manuscript database

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  2. Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor.

    PubMed

    Cha, Young-Lok; Yang, Jungwoo; Park, Yuri; An, Gi Hong; Ahn, Jong-Woong; Moon, Youn-Ho; Yoon, Young-Mi; Yu, Gyeong-Dan; Choi, In-Hu

    2015-04-01

    Miscanthus sacchariflorus 'Goedae-Uksae 1' (GU) was developed as an energy crop of high productivity in Korea. For the practical use of GU for bioethanol production, a bench-scale continuous pretreatment system was developed. The reactor performed screw extrusion, soaking and thermochemical pretreatment at the following operating conditions: 3 mm particle size, 22% moisture content, 140 °C reaction temperature, 8 min residence time, 15 g/min biomass feeding and 120 mL/min NaOH input. As a result of minimizing NaOH concentration and enzyme dosage, 90.8±0.49% glucose yield was obtained from 0.5 M NaOH-pretreated GU containing 3% glucan with 10 FPU cellulase/g cellulose at 50 °C for 72 h. The separate hydrolysis and fermentation of 0.5 M NaOH-pretreated GU containing 10% glucan with 10-30 FPU for 102 h produced 43.0-49.6 g/L bioethanol (theoretical yield, 75.8-87.6%). Thus, this study demonstrated that continuous pretreatment using a single screw reactor is effective for bioethanol production from Miscanthus biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Affinity adsorption of cells to surfaces and strategies for cell detachment.

    PubMed

    Hubble, John

    2007-01-01

    The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.

  4. Removal of bromide and bromate from drinking water using granular activated carbon.

    PubMed

    Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua

    2015-03-01

    Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.

  5. Evaluation of empirical process design relationships for ozone disinfection of water and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, G.R.; Smith, D.W.

    A research program was undertaken to examine the dose-response of Escherichia coli ATCC 11775 in ozone demand-free phosphate buffer solution and in a high quality secondary wastewater effluent with a total organic carbon content of 8 mg/L and a chemical oxygen demand of 26 mg/L. The studies were conducted in bench-scale batch reactors for both water types. In addition, studies using secondary effluent also were conducted in a pilot-scale, semi-batch reactor to evaluate scale-up effects. It was found that the ozone dose was the most important design parameter in both types of water. Contact time was of some importance inmore » the ozone demand-free water and had no detectable effect in the secondary effluent. Pilot-scale data confirmed the results obtained at bench-scale for the secondary effluent. Regression analysis of the logarithm of the E. coli response on the logarithm of the utilized ozone dose revealed that there was lack-of-fit using the model form which has been used frequently for the design of wastewater disinfection systems. This occurred as a result of a marked tailing effect of the log-log plot as the ozone dose increased and the kill increased. It was postulated that this was caused by some unknown physiological differences within the E. coli population due to age or another factor.« less

  6. Evaluation of several biological monitoring techniques for hazard assessment of potentially contaminated wastewater and groundwater. Volume 3. Old O-field groundwater. Final report, July 1990-December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, D.T.; Turley, S.D.

    1992-03-01

    The toxicity of contaminated Old O-Field (Edgewood Area of Aberdeen Proving Ground) groundwater and the reduction and/or elimination of toxicity by various treatment processes were evaluated. The study was divided into a bench scale and pilot scale study. The bench scale studies consisted of 48-h definitive acute toxicity tests run with daphnid neonates (Daphnia magna) and juvenile fathead minnows (Pimephales promelas) exposed to untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H 2O2 ), carbon adsorption, and carbon adsorption/biological sludge. The pilot scale studies consisted of several 96-h definitive acute toxicity tests run with two freshwatermore » and two saltwater invertebrates and fish and Ames mutagenicity assays. Acute toxicity tests were run on untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H2O2), air stripping, and carbon adsorption during the pilot scale study. The freshwater invertebrate and fish used in the study were daphnid neonates and juvenile fathead minnows, respectively. The saltwater invertebrate and fish were juvenile mysids (Mysidopsis bahia) and juvenile sheepshead minnows (Cyprinodon variegatus). Ames tests were run on untreated groundwater, UV oxidation-treated groundwater, and carbon-treated groundwater.... Groundwater, Aquatic, Toxicity, Daphnia, Daphnia magna, Fathead minnow, Pimephales promelas, Mysid, Mysidopsis bahia, Sheepshead minnow, Cyprinodon variegatus.« less

  7. Predicting Power Output of Upper Body using the OMNI-RES Scale.

    PubMed

    Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J

    2014-12-09

    The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.

  8. Predicting Power Output of Upper Body using the OMNI-RES Scale

    PubMed Central

    Bautista, Iker J.; Chirosa, Ignacio J.; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E.; Chirosa, Luis J.; Robertson, Robert J.

    2014-01-01

    The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI–RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = −0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI–RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone. PMID:25713677

  9. Project of electro-cyclotron resonance ion source test-bench for material investigation.

    PubMed

    Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  10. Project of electro-cyclotron resonance ion source test-bench for material investigation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Chalykh, B. B.; Kuibeda, R. P.; Kropachev, G. N.; Ziiatdinova, A. V.

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  11. Efficiency improvement of an antibody production process by increasing the inoculum density.

    PubMed

    Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander

    2014-01-01

    Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.

  12. Benchmarking network for clinical and humanistic outcomes in diabetes (BENCH-D) study: protocol, tools, and population.

    PubMed

    Nicolucci, Antonio; Rossi, Maria C; Pellegrini, Fabio; Lucisano, Giuseppe; Pintaudi, Basilio; Gentile, Sandro; Marra, Giampiero; Skovlund, Soren E; Vespasiani, Giacomo

    2014-01-01

    In the context of the DAWN-2 initiatives, the BENCH-D Study aims to test a model of regional benchmarking to improve not only the quality of diabetes care, but also patient-centred outcomes. As part of the AMD-Annals quality improvement program, 32 diabetes clinics in 4 Italian regions extracted clinical data from electronic databases for measuring process and outcome quality indicators. A random sample of patients with type 2 diabetes filled in a questionnaire including validated instruments to assess patient-centred indicators: SF-12 Health Survey, WHO-5 Well-Being Index, Diabetes Empowerment Scale, Problem Areas in Diabetes, Health Care Climate Questionnaire, Patients Assessment of Chronic Illness Care, Barriers to Medications, Patient Support, Diabetes Self-care Activities, and Global Satisfaction for Diabetes Treatment. Data were discussed with participants in regional meetings. Main problems, obstacles and solutions were identified through a standardized process, and a regional mandate was produced to drive the priority actions. Overall, clinical indicators on 78,854 patients have been measured; additionally, 2,390 patients filled-in the questionnaire. The regional mandates were officially launched in March 2012. Clinical and patient-centred indicators will be evaluated again after 18 months. A final assessment of clinical indicators will take place after 30 months. In the context of the BENCH-D study, a set of instruments has been validated to measure patient well-being and satisfaction with the care. In the four regional meetings, different priorities were identified, reflecting different organizational resources of the different areas. In all the regions, a major challenge was represented by the need of skills and instruments to address psychosocial issues of people with diabetes. The BENCH-D study allows a field testing of benchmarking activities focused on clinical and patient-centred indicators.

  13. Verbal messages strengthen bench press efficacy.

    PubMed

    Wise, James B; Posner, Amy E; Walker, Gretchen L

    2004-02-01

    This study examined the effects of verbal messages on bench press efficacy: the confidence to lift progressively heavier weights for 1 repetition. Thirty-two women who had not bench pressed within the previous 18 months were assigned to 1 of 2 groups and exposed to 2 sources of efficacy information. First, subjects in both groups performed 10 repetitions on a fixed movement, vertical bench press machine and completed the bench press efficacy scale. Next, each group received 1 of 2 possible verbal messages. Both messages included the speaker's strength training qualifications. In addition, one message conveyed specific performance feedback while the other contained more general information. Then efficacy was measured again. Results indicated both messages strengthened efficacy. Strength professionals who work one-on-one with novice women should: (a) make sure lifters are aware of their professional qualifications, (b) provide specific feedback, and (c) profess their beliefs in the lifters' abilities to perform the exercises.

  14. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of UV dose on the UV/H2O2 process for the degradation of carbamazepine in wastewater.

    PubMed

    Somathilake, Purnima; Dominic, John Albino; Achari, Gopal; Langford, Cooper H; Tay, Joo-Hwa

    2018-05-02

    This study evaluates the influence of UV dose on degradation of carbamazepine (CBZ) in wastewater under UV-C (λ = 254 nm) photolysis with and without H 2 O 2 . The rate of degradation of CBZ exhibited a direct dependence on the intensity of incident UV irradiation as the rate of degradation was observed to increase linearly (R 2  = 0.98) with UV intensity between 1.67 and 8.95 × 10 17 photons/s. More than 95% of the CBZ that spiked in wastewater rapidly degraded within 4 min with a first-order rate constant of 1.2 min -1 for an optimum H 2 O 2 dose of 100 mg/L. Bench-scale continuous flow reactor experiments also showed that CBZ degraded with first-order kinetics at a rate constant of 1.02 min -1 . The kinetic parameters obtained for a continuous bench-scale reactor were in good agreement with the relationships developed through batch experiments with only a marginal deviation of ± 6.5%. The relationship between UV intensity and CBZ degradation rate obtained in this study was extrapolated to the UV disinfection unit of a wastewater treatment plant to predict possible degradation of CBZ during UV disinfection. The addition of 100 mg/L of H 2 O 2 to the secondary-treated effluent entering the UV disinfection unit is predicted to achieve over 60% degradation of CBZ.

  16. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation.

    PubMed

    Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J

    2017-06-07

    An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.

  17. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO 2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define themore » processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO 2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO 2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.« less

  18. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China.

    PubMed

    Huo, Shuhao; Wang, Zhongming; Zhu, Shunni; Zhou, Weizheng; Dong, Renjie; Yuan, Zhenhong

    2012-10-01

    Cultivation of Chlorella zofingiensis and nutrients removal in dairy wastewater were investigated in bench-scale outdoor ponds in winter, South China. The impacts of the two types of pH regulations, 5 ≈ 6% CO(2) and acetic acid (HAc) on this process were studied. After 6 days cultivation, the removal rates of total nitrogen (TN) and orthophosphate (PO(4)(3-)) using CO(2) regulation were better than those using HAc. The removal rates of PO(4)(3-) and TN were 97.5% and 51.7%, respectively using CO(2) regulation; 79.6% (TN) and 42.0% (PO(4)(3-)) were obtained using HAc regulation. Higher biomass, protein, sugar content, and stable pH control were found using CO(2) regulation. However, significantly higher lipid content (31.8%) was observed using HAc regulation. The dominant differences of fatty acids were the content of C18:1 and C18:3. The growth characteristics and environmental conditions especially during the typical logarithmic phase were also analyzed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the samemore » six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.« less

  20. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...

    2017-08-07

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  1. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  2. Composition and Structure of Mauna Loa's Submarine West Flank, Hawaii

    NASA Astrophysics Data System (ADS)

    Borchers, D.; Morgan, J. K.; Clague, D. A.; Moore, G. F.

    2003-12-01

    James Moore's pioneering work on submarine landslides in the Hawaiian Islands contributed significantly to early models for the structure and evolution of Mauna Loa's submarine western flank. The west flank experienced catastrophic failure in the past, generating massive blocks and debris fields offshore. Moore recognized that the midslope bench near the base of the submarine flank must have postdated the debris avalanche, but little data existed to determine if it formed in response to further landsliding or to deeper volcanic processes. As the processes that shaped Mauna Loa are thought to be analogous to those currently active at Kilauea, an improved understanding of Mauna Loa's history can provide valuable insight into the future of the younger Hawaiian volcanoes. Several recent marine surveys in the area, including submersible surveys conducted by MBARI and JAMSTEC, and a multi-channel seismic (MCS) survey carried out by the University of Hawaii, provide important new data about the composition and structure of Mauna Loa's submarine west flank. We carried out detailed geochemical, petrographic and structural analyses of rock samples and dive videos collected from the exposed northern wall of the midslope bench, documenting a repeated sequences of volcaniclastic sandstones and breccias. This stratigraphy contrasts with the predominantly subaerially erupted basalts composing the upper flank. Several thick ponded flows or sill-like diabase units are also interspersed in the section. The volcaniclastic units are highly cemented, and many contain hydrothermal alteration products, including chlorite, zeolites, and actinolite. The most altered rocks occur near the base of the bench and the degree of alteration decreases upward in the section. Samples collected from the outer scarp of the bench show evidence for intense shearing and cataclasis at all scales. The new MCS line crosses Mauna Loa's southern submarine flank and central bench. More than 500 m of finely layered slope strata overlie the upper flank to the south, and are truncated above the Ka Lae avalanche scar. The central bench to the north, sampled by the MBARI dives, shows only thin sediment cover above a poorly reflective interior. Strong deep reflections in both locations begin to resolve the underlying oceanic crust, as well as probable fault planes that may be responsible for flank deformation in this area. The abundance of volcaniclastic rocks with Mauna Loa affinities within the bench supports the idea that giant landslides from Mauna Loa were the source of much of the offshore debris. The stratal repetition, deformation fabrics, and cementation of the volcaniclastics also suggest that the rocks composing the bench were once deeply buried and have been subsequently exhumed by thrusting, most likely driven by deep volcanic spreading.

  3. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  4. Loading Intensity Prediction by Velocity and the OMNI-RES 0-10 Scale in Bench Press.

    PubMed

    Naclerio, Fernando; Larumbe-Zabala, Eneko

    2017-02-01

    Naclerio, F and Larumbe-Zabala, E. Loading intensity prediction by velocity and the OMNI-RES 0-10 scale in bench press. J Strength Cond Res 32(1): 323-329, 2017-This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press (BP) exercise. A total of 308 young, healthy, resistance trained athletes (242 men and 66 women) performed a progressive strength test up to the one repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity (AV) and the OMNI-Resistance Exercise Scales (OMNI-RES 0-10 scale), considering sets as the time-related variable. Load associated with the AV and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct 2 adjusted predictive equations: Relative load = 107.75 - 62.97 × average velocity; and Relative load = 29.03 + 7.26 × OMNI-RES 0-10 scale value. The 2 models were capable of estimating the relative load with an accuracy of 84 and 93%, respectively. These findings confirm the ability of the 2 calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in BP.

  5. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  6. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Kevin; ...

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predictedmore » using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  7. Morphology of fluvial levee series along a river under human influence, Maros River, Hungary

    NASA Astrophysics Data System (ADS)

    Kiss, Tímea; Balogh, Márton; Fiala, Károly; Sipos, György

    2018-02-01

    The development and morphometry of fluvial levees reflect the connection between channel and overbank processes, which can be altered by various human activities. The aims of this study are to investigate the morphology and spatial characteristics of fluvial levees and evaluate the role of some local- and catchment-scale human activities on their medium-term (150 years) development. This study applies LiDAR data along a 53-km-long reach of the Maros River in Hungary. Six fluvial levee types are identified based on the beginning and end of their evolution. These levee types were generated by local nineteenth century channel regulation works (cutoffs) and mid-twentieth century channel narrowing, which was caused by gravel mining and water impoundment in the upstream sections. However, other human activities also influenced the development of active fluvial levees because their horizontal evolution could have been limited by embanked flood-protection levees or the widening of low-lying floodplain benches that were generated by channel narrowing. Additionally, revetment constructions influenced their vertical parameters as higher fluvial levees developed along the fixed banks. Generally, the older active fluvial levees are wider, while the younger active levees are narrower with steeper slopes but not always lower. On the low-lying floodplain levels (benches), the youngest fluvial levees evolved quite rapidly and consist of coarser material. Currently, only 9.8- to 38-year return-period floods could cover the fluvial levees, contributing to their evolution. This fact and the development of fluvial levee series with two-three members reflect a gradual decoupling of the channel from the floodplain.

  8. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less

  9. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results indicated that it is possible to modulate the product formation by limiting key nutrients of acetyl-CoA pathway and using a continuous fermentation in two-stage fermentor design to improve ethanol yields. The last experimental study was conducted to commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a bench-scale to a pilot scale 100-L fermentor. Results indicated a six-fold improvement in ethanol concentration (25.3 g L-1 at the end of 59 d) compared to previous Clostridium strain P11 and Clostridium carboxidivorans fermentations plus the formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  10. Thermo-hydrological and chemical (THC) modeling to support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, Philip H.; Jordan, Amy B.; Harp, Dylan Robert

    This report summarizes ongoing efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a hypothetical high-level waste (HLW) repository in bedded salt. The report includes work completed since the last project deliverable, “Coupled model for heat and water transport in a high level waste repository in salt”, a Level 2 milestone submitted to DOE in September 2013 (Stauffer et al., 2013). Since the last deliverable, there have been code updates to improve the integration of the salt module with the pre-existing code and development of quality assurance (QA) tests of constitutive functions and precipitation/dissolution reactions. Simulations of bench-scale experiments, bothmore » historical and currently in the planning stages have been performed. Additional simulations have also been performed on the drift-scale model that incorporate new processes, such as an evaporation function to estimate water vapor removal from the crushed salt backfill and isotopic fractionation of water isotopes. Finally, a draft of a journal paper on the importance of clay dehydration on water availability is included as Appendix I.« less

  11. Breakpoint chlorination and free-chlorine contact time: implications for drinking water N-nitrosodimethylamine concentrations.

    PubMed

    Charrois, Jeffrey W A; Hrudey, Steve E

    2007-02-01

    North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.

  12. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating wasmore » effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.« less

  13. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  14. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.

    PubMed

    Gnirss, R; Lesjean, B; Adam, C; Buisson, H

    2003-01-01

    Future stringent phosphorus regulations (down to 50 microg/L in some cases) together with the availability of more cost effective and/or innovative membrane processes, are the bases for this project. In contrast to conventional activated sludge plants, process parameters are not optimised and especially enhanced biological phosphorus (Bio-P) removal in membrane bioreactors (MBRs) are not proven yet. Current practice of P-removal in MBRs is the addition of coagulants in a co-precipitation mode. Enhanced biological phosphorus removal, when adapted to MBR technology, might be a cost-effective process. For very stringent effluent criteria additional P-adsorption on activated clay after membrane filtration can be also an interesting solution. The objective of this research project is to identify and test various phosphorus removal processes or process combinations, including MBR technologies. This should enable us to establish efficient and cost effective P-removal strategies for upgrading small sewage treatment units (up to 10,000 PE), as needed in some decentralised areas of Berlin. In particular, enhanced Bio-P removal technology was developed and optimised in MBR. Combinations of co-precipitation and post-adsorption will be tested when low P-values down to 50 microg/L are required in the effluent. One MBR bench-scale plant of 200 to 250 L and two MBR pilot plants of 1 to 3 m3 each were operated in parallel to a conventional wastewater treatment plant (Ruhleben WWTP, Berlin, Germany). The MBR bench-scale and pilot plants were operated under sludge ages of respectively 15 and 25 days. In both cases, Bio-P was possible, and phosphorus effluent concentration of about 0.1 mg/L could be achieved. A similar effluent quality was observed with the conventional WWTP. Investigations with lab columns indicated that P-adsorption could lead to concentrations down to 50 microg/L and no particle accumulation occurred in the filter media. The three tested materials exhibited great differences in break-through curves. Granulated ferric hydroxyde (GEH) showed higher capacity than activated alumina and FerroSorpPlus.

  15. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  16. Development and Experimental Validation of a Thermoelectric Test Bench for Laboratory Lessons

    ERIC Educational Resources Information Center

    Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Gurutze

    2013-01-01

    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor…

  17. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  18. Options and processes for spent catalyst handling and utilization.

    PubMed

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  19. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    NASA Astrophysics Data System (ADS)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodiummore » aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.« less

  1. Coal desulfurization by low temperature chlorinolysis, phase 1

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.

    1977-01-01

    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.

  2. SCI with Brain Injury: Bedside to Bench Modeling for Developing Treatment and Rehabilitation Strategies

    DTIC Science & Technology

    2013-10-01

    to Bench Modeling For Developing Treatment and Rehabilitation Strategies PRINCIPAL INVESTIGATOR: Geoffrey Manley, MD, PhD RECIPIENT...to Bench Modeling For Developing Treatment and Rehabilitation Strategies 5b. GRANT NUMBER W81XWH-10-1-0912 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR... treatment of this “dual- diagnosis” are lacking. This project proposed using current clinical-practice evidence to guide development of an animal model to

  3. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  4. A Distribution-Free Description of Fragmentation by Blasting Based on Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Sanchidrián, José A.; Ouchterlony, Finn

    2017-04-01

    A model for fragmentation in bench blasting is developed from dimensional analysis adapted from asteroid collision theory, to which two factors have been added: one describing the discontinuities spacing and orientation and another the delay between successive contiguous shots. The formulae are calibrated by nonlinear fits to 169 bench blasts in different sites and rock types, bench geometries and delay times, for which the blast design data and the size distributions of the muckpile obtained by sieving were available. Percentile sizes of the fragments distribution are obtained as the product of a rock mass structural factor, a rock strength-to-explosive energy ratio, a bench shape factor, a scale factor or characteristic size and a function of the in-row delay. The rock structure is described by means of the joints' mean spacing and orientation with respect to the free face. The strength property chosen is the strain energy at rupture that, together with the explosive energy density, forms a combined rock strength/explosive energy factor. The model is applicable from 5 to 100 percentile sizes, with all parameters determined from the fits significant to a 0.05 level. The expected error of the prediction is below 25% at any percentile. These errors are half to one-third of the errors expected with the best prediction models available to date.

  5. Coal liquefaction process streams characterization and evaluation: Analysis of Black Thunder coal and liquefaction products from HRI Bench Unit Run CC-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugmire, R.J.; Solum, M.S.

    This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less

  6. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, Jessica L.; Shen, Yanwen; Ignacio-de Leon, Patricia A.

    Here, a modified version of an in-situ CO 2 removal process was applied during AD of food waste with two types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g VS added) -1 fine WSB amended digestersmore » produced biogas with 77.5-98.1% CH 4 content by removing 40-96% of the CO 2 compared to the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added) -1, the fine WSB amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse WSB amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO3 from 2,800 mg L -1 in the control digesters to 4,800-6,800 mg L -1 providing process stability for food waste AD.« less

  7. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    PubMed

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  8. Genifuel Hydrothermal Processing Bench Scale Technology ...

    EPA Pesticide Factsheets

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C and 2900 psig on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350◦C and 2900 psig on the HTL aqueous phase product using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. It should be noted that HTL test results for secondary sludge may have been affected by equipment problems. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the product of HTL tests with primary sludge, secondary sludge, and

  9. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale

    DOE PAGES

    Linville, Jessica L.; Shen, Yanwen; Ignacio-de Leon, Patricia A.; ...

    2017-05-10

    Here, a modified version of an in-situ CO 2 removal process was applied during AD of food waste with two types of walnut shell biochar (WSB) at bench-scale under batch operating mode. Compared to the coarse WSB, the fine WSB has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96 - 3.83 g biochar (g VS added) -1 fine WSB amended digestersmore » produced biogas with 77.5-98.1% CH 4 content by removing 40-96% of the CO 2 compared to the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added) -1, the fine WSB amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse WSB amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO3 from 2,800 mg L -1 in the control digesters to 4,800-6,800 mg L -1 providing process stability for food waste AD.« less

  10. Adsorptive removal of catalyst poisons from coal gas for methanol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, B.L.; Golden, T.C.; Hsiung, T.H.

    1991-12-01

    As an integral part of the liquid-phase methanol (LPMEOH) process development program, the present study evaluated adsorptive schemes to remove traces of catalyst poisons such as iron carbonyl, carbonyl sulfide, and hydrogen sulfide from coal gas on a pilot scale. Tests were conducted with coal gas from the Cool Water gasification plant at Daggett, California. Iron carbonyl, carbonyl sulfide, and hydrogen sulfide were effectively removed from the coal gas. The adsorption capacities of Linde H-Y zeolite and Calgon BPL carbon for Fe(CO){sub 5} compared well with previous bench-scale results at similar CO{sub 2} partial pressure. Adsorption of COS by Calgonmore » FCA carbon appeared to be chemical and nonregenerable by thermal treatment in nitrogen. A Cu/Zn catalyst removed H{sub 2}S very effectively. With the adsorption system on-line, a methanol catalyst showed stable activity during 120 h operation, demonstrating the feasibility of adsorptive removal of trace catalyst poisons from the synthesis gas. Mass transfer coefficients were estimated for Fe(CO){sub 5} and COS removal which can be directly used for design and scale up.« less

  11. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.« less

  12. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Kevin

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less

  13. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    DOE PAGES

    Wang, Chao; Xu, Zhijie; Lai, Kevin; ...

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO 2) capture. In this study, to generate data for WWC model validation, CO 2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO 2 in MEA. In addition,more » the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO 2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N 2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO 2 reaction rate constants after using the N 2O/CO 2 analogy method. Finally, the calibrated model can be used to predict the CO 2 mass transfer in a WWC for a wider range of operating conditions.« less

  14. Cyanobacteria, Toxins and Indicators: Full-Scale Monitoring & Bench-Scale Treatment Studies

    EPA Science Inventory

    Summary of: 1) Lake Erie 2014 bloom season full-scale treatment plant monitoring data for cyanobacteria and cyanobacteria toxins; 2) Follow-up work to examine the impact of pre-oxidation on suspensions of intact toxin-producing cyanobacterial cells.

  15. Improving the large scale purification of the HIV microbicide, griffithsin.

    PubMed

    Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E

    2015-02-22

    Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of griffithsin. The methodology can be readily scaled to the bench top or industry and process components can be used for purification of additional proteins based on biophysical characteristics.

  16. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  17. Optimization of the Electrochemical Extraction and Recovery of Metals from Electronic Waste Using Response Surface Methodology

    DOE PAGES

    Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.

    2017-06-08

    The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less

  18. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  19. A novel suction/coagulation integrated probe for achieving better hemostasis: development and clinical use.

    PubMed

    Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu

    2018-06-01

    Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.

  20. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even inmore » small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.« less

  1. STOP Analysis and Optimization of a Very-Low-Distortion Space Instrument: HST WFC3 Case Study

    NASA Technical Reports Server (NTRS)

    Kunt, Cengiz; Broduer, Steve (Technical Monitor)

    2001-01-01

    New generation optical instruments with very demanding stability requirements are being proposed and developed for space applications. STOP (Structural-Thermal-Optical Performance) analysis and optimization is crucial in meeting the very tight distortion budgets of these instruments. This presentation outlines STOP analysis and optimization approach in the context of WFC3 (Wide-Field Camera 3), which is a radial instrument designed to replace the Wide-Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST). WFC3 houses two separate channels, UVIS and IR, and will have greater throughput and sensitivity than WFPC2. WFC3 line-of-sight alignment budget for the UVIS and IR channels are as small as 10 and 20 milli-arcsec, respectively. Its optical bench is the most critical subsystem effecting the optical stability of WFC3 hence our effort concentrates on the design and analysis of the bench and its interfaces. Structural analysis has accompanied the mechanical design of the bench since the initial concept study. A high fidelity structural Finite Element Model (FEM) of the bench has been developed and used for minimizing its thermally induced distortions as well as sizing it to meet the stiffness and strength requirements of a Shuttle launch. The bench is a composite honeycomb panel box structure with a very low planar Coefficient of Thermal Expansion (CTE) of approximately 0.1 ppm/C. Optic components are mounted to super-INVAR inserts bonded into the panels. The bench is kinematically supported on three HST latches via interface struts, which are tailored to exhibit negative CTE to cancel out the thermal motions of the latches. The interface struts also incorporate flexure elements to minimize the mechanical distortions coming into the bench from its enclosure. Bench FEM is coupled with the enclosure FEM to quantify these effects. Short term or on-orbit STOP analysis includes distortion due to the temperature variations of the bench, the struts, and the enclosure. Long term or ground-to-orbit STOP analysis includes distortional effects of gravity release, desorption, and assembly in addition to the ground-to-orbit temperature variations. A rigorous testing program has been implemented for verifying the material properties and the analysis predictions. STOP analysis results demonstrate that both the short-term and the long-term alignment budgets will be met. Presentation will cover design and analysis details that are critical to a successful implementation of the STOP analysis and optimization process.

  2. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  3. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David J

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600more » cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was demonstrated on the bench cart • No measurable solvent degradation was observed over 4 months of testing – even with 5 wt% water present« less

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  7. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  8. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Fowley, M.

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recoverymore » strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.« less

  9. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  10. Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater.

    PubMed

    McCurry, Daniel L; Ishida, Kenneth P; Oelker, Gregg L; Mitch, William A

    2017-08-01

    UV-based advanced oxidation processes (AOPs) effectively degrade N-nitrosodimethylamine (NDMA) passing through reverse osmosis (RO) units within advanced treatment trains for the potable reuse of municipal wastewater. However, certain utilities have observed the re-formation of NDMA after the AOP from reactions between residual chloramines and NDMA precursors in the AOP product water. Using kinetic modeling and bench-scale RO experiments, we demonstrate that the low pH in the RO permeate (∼5.5) coupled with the effective rejection of NH 4 + promotes conversion of the residual monochloramine (NH 2 Cl) in the permeate to dichloramine (NHCl 2 ) via the reaction: 2 NH 2 Cl + H + ↔ NHCl 2 + NH 4 + . Dichloramine is the chloramine species known to react with NDMA precursors to form NDMA. After UV/AOP, utilities generally use lime or other techniques to increase the pH of the finished water to prevent distribution system corrosion. Modeling indicated that, while the increase in pH halts dichloramine formation, it converts amine-based NDMA precursors to their more reactive, neutral forms. With modeling, and experiments at both bench-scale and field-scale, we demonstrate that reducing the time interval between RO treatment and final pH adjustment can significantly reduce NDMA re-formation by minimizing the amount of dichloramine formed prior to reaching the final target pH.

  11. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    PubMed

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a reduction to under 10 years for the specific segment covering preclinical development through launch. This change puts enormous pressure on the entire organization, and the implication for PR&D is that the time allowed for conducting route design and scale-up has shrunk accordingly. Furthermore, molecular complexity has become extremely challenging in many instances, and demand steadily grows for process understanding and knowledge generation about low-level byproduct, which often must be controlled even at trace concentrations to meet regulatory specifications (especially in the case of potentially genotoxic impurities). In this Account, we paint a broad picture of the technical challenges the PR&D community is grappling with today, focusing on what measures have been taken over the years to create more efficiency and effectiveness.

  12. Novel Process for Removal and Recovery of Vapor Phase Mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less

  13. Using a theory driven approach to develop and evaluate a complex mental health intervention: the friendship bench project in Zimbabwe.

    PubMed

    Chibanda, Dixon; Verhey, Ruth; Munetsi, Epiphany; Cowan, Frances M; Lund, Crick

    2016-01-01

    There is a paucity of data on how to deliver complex interventions that seek to reduce the treatment gap for mental disorders, particularly in sub-Saharan Africa. The need for well-documented protocols which clearly describe the development and the scale-up of programs and interventions is necessary if such interventions are to be replicated elsewhere. This article describes the use of a theory of change (ToC) model to develop a brief psychological intervention for common mental disorders and its' evaluation through a cluster randomized controlled trial in Zimbabwe. A total of eight ToC workshops were held with a range of stakeholders over a 6-month period with a focus on four key components of the program: formative work, piloting, evaluation and scale-up. A ToC map was developed as part of the process with defined causal pathways leading to the desired impact. Interventions, indicators, assumptions and rationale for each point along the causal pathway were considered. Political buy-in from stakeholders together with key resources, which included human, facility/infrastructure, communication and supervision were identified as critical needs using the ToC approach. Ten (10) key interventions with specific indicators, assumptions and rationale formed part of the final ToC map, which graphically illustrated the causal pathway leading to the development of a psychological intervention and the successful implementation of a cluster randomized controlled trial. ToC workshops can enhance stakeholder engagement through an iterative process leading to a shared vision that can improve outcomes of complex mental health interventions particularly where scaling up of the intervention is desired.

  14. Multi-Column Experimental Test Bed Using CaSDB MOF for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, Amy Keil; Greenhalgh, Mitchell Randy; Garn, Troy Gerry

    Processing of spent nuclear fuel produces off-gas from which several volatile radioactive components must be separated for further treatment or storage. As part of the Off-gas Sigma Team, parallel research at INL and PNNL has produced several promising sorbents for the selective capture of xenon and krypton from these off-gas streams. In order to design full-scale treatment systems, sorbents that are promising on a laboratory scale must be proven under process conditions to be considered for pilot and then full-scale use. To that end, a bench-scale multi-column system with capability to test multiple sorbents was designed and constructed at INL.more » This report details bench-scale testing of CaSDB MOF, produced at PNNL, and compares the results to those reported last year using INL engineered sorbents. Two multi-column tests were performed with the CaSDB MOF installed in the first column, followed with HZ-PAN installed in the second column. The CaSDB MOF column was placed in a Stirling cryocooler while the cryostat was employed for the HZ-PAN column. Test temperatures of 253 K and 191 K were selected for the first column while the second column was held at 191 K for both tests. Calibrated volume sample bombs were utilized for gas stream analyses. At the conclusion of each test, samples were collected from each column and analyzed for gas composition. While CaSDB MOF does appear to have good capacity for Xe, the short time to initial breakthrough would make design of a continuous adsorption/desorption cycle difficult, requiring either very large columns or a large number of smaller columns. Because of the tenacity with which Xe and Kr adhere to the material once adsorbed, this CaSDB MOF may be more suitable for use as a long-term storage solution. Further testing is recommended to determine if CaSDB MOF is suitable for this purpose.« less

  15. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    PubMed

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  17. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  18. Simulant Development for LAWPS Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Schonewill, Philip P.; Burns, Carolyn A.

    2017-05-23

    This report describes simulant development work that was conducted to support the technology maturation of the LAWPS facility. Desired simulant physical properties (density, viscosity, solids concentration, solid particle size), sodium concentrations, and general anion identifications were provided by WRPS. The simulant recipes, particularly a “nominal” 5.6M Na simulant, are intended to be tested at several scales, ranging from bench-scale (500 mL) to full-scale. Each simulant formulation was selected to be chemically representative of the waste streams anticipated to be fed to the LAWPS system, and used the current version of the LAWPS waste specification as a formulation basis. After simulantmore » development iterations, four simulants of varying sodium concentration (5.6M, 6.0M, 4.0M, and 8.0M) were prepared and characterized. The formulation basis, development testing, and final simulant recipes and characterization data for these four simulants are presented in this report.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less

  20. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... scientific or engineering literature, data from trial tests (e.g., bench scale or pilot scale tests), waste...

  1. Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces

    EPA Science Inventory

    This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...

  2. EFFECTS OF STORAGE ON STABILITY AND PATHOGEN REDUCTION IN BIOSOLIDS

    EPA Science Inventory

    Storage can be an effective means of stabilizing small quantities of wastewater sludge. This paper summarizes the performance of two laboratory-scale sludge storage units and that of four full-scale tanks sampled at four treatment facilities in eastern Nebraska. The bench-scale u...

  3. Metal Hydrides for High-Temperature Power Generation

    DOE PAGES

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m 3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  4. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.

    PubMed

    Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M

    2009-10-01

    This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.

  5. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  6. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces.

    PubMed

    Dutta, Abhijit; Dowe, Nancy; Ibsen, Kelly N; Schell, Daniel J; Aden, Andy

    2010-01-01

    Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench-scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms.

  7. Dealing With Perchlorate in the Santa Clarita Valley, CA

    NASA Astrophysics Data System (ADS)

    Boulos, L.; Min, J.; Juby, G.; McLean, S.; Prasifka, D.; Brown, J.

    2004-05-01

    Castaic Lake Water Agency was faced with a dilemma: how to support the increasing water needs of a growing population in the Santa Clarita Valley with three to five wells in the area shut-down due to the presence of perchlorate. Carollo Engineers was hired to design a treatment program for the removal of perchlorate from Saugus Aquifer. Several unknowns challenged the project including an uncertainty in a regulatory MCL for perchlorate, lack of brine line in the area, and low chloride limits in LACSD sewer lines. The preliminary phase of the project was to identify and recommend perchlorate treatment processes for further bench and/or pilot-scale testing. Two alternatives were selected: 1) Three NSF certified perchlorate-selective ion exchange resins and 2) Two types of biological treatment systems. Selection criteria included: cost, minimal formation of wastes and full-scale demonstration of the processes. This paper will focus on the basis, design, and findings from three perchlorate-selective ion-exchange resins. Bench-scale testing of the ion-exchange resins was conducted over a period of 3 months. NDMA formation following chlorination and chloramination was investigated. The spent resins were further characterized for metals and uranium. Results: Adsorption cycles of two of the resins lasted more than 70,000 bed volumes before perchlorate was detected in the effluent of the columns (approximately 200,000- 550,000 gal/cu-ft resin). No NDMA was formed as a result of post-chlorination with free and combined chlorine, or as a result of prechlorination with free chlorine. The metals measured in the spent results were well below the TTLC and STLC limits, despite the long run times. Ion-exchange is therefore a feasible technology for treatment perchlorate in the Santa Clarita Valley.

  8. Endotoxin Studies And Biosolids Stabilization Research

    EPA Science Inventory

    This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...

  9. TREATMENT OF INORGANIC CONTAMINANTS USING PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Permeable reactive barriers are an emerging alternative to traditional pump and treat systems for groundwater remediation. This technique has progressed rapidly over the past decade from laboratory bench-scale studies to full-scale implementation. Laboratory studies indicate the ...

  10. Linking the runoff response at micro-plot and catchment scale following wildfire and terracing, north-central Portugal

    NASA Astrophysics Data System (ADS)

    Martins, Martinho A. S.; Rial-Rivas, María E.; Machado, Ana I.; Serpa, Dalila; Prats, Sergio A.; Faria, Sílvia R.; Varela, María E. T.; González-Pelayo, Óscar; Keizer, J. Jacob

    2015-04-01

    Wildfires are known as one of the principal natural hazards affecting the Mediterranean region. This includes Portugal, where wildfires have affected some 100.000 ha of rural lands each year. The effects of wildfires on runoff generation and/or the associated soil (fertility) losses have been studied in Portugal for more than two decades. Some of these studies have reported strong and sometimes extreme hydrological responses in recently burnt areas. Forestry operations in such areas have increasingly come to include bench terracing in preparation of new eucalypt plantations. The hydrological impacts of bench terracing, however, have received little research attention so far and the few existing publications are limited to small spatial scales. The construction of terraces is commonly considered an effective practice for soil conservation on steep slopes, having been applied by mankind since early history. Nonetheless, the present authors have measured high rates of splash as well as inter-rill erosion on recently constructed terraces, and have regularly observed rill formation, including on forest tracks which typically constitute an extensive network in such bench terraced plantations. The present study was carried out in a 29-ha forest catchment in north-central Portugal that was burnt by a wildfire during the summer of 2010, logged during early winter 2010/11, and then bench terraced with bulldozers during late winter 2011, some 6 months after the wildfire. The catchment outlet was instrumented immediately after the fire with an automatic hydrometric station comprising two subsequent flumes with maximum discharge capacities of 120 and 1700 l sec-1. Within the catchment, rainfall was measured using several automatic and storage gauges and overland flow was monitored on two contrasting slopes using 3 micro-plots of approximately 0.25m2 on each slope.Overland flow was measured at 1- to 2-weekly intervals during the hydrological years of 2010/11 and 2011/12, i.e. during the first six months after the wildfire but before the bench terracing and during the subsequent 18 months. While data analysis is still ongoing, preliminary results suggested that bench terracing had a greater impact on runoff generation than the wildfire itself, especially at the micro-plot scale

  11. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  12. Crash Testing of Helicopter Airframe Fittings

    NASA Technical Reports Server (NTRS)

    Clarke, Charles W.; Townsend, William; Boitnott, Richard

    2004-01-01

    As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.

  13. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  14. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    PubMed

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  15. Fused silica windows for solar receiver applications

    NASA Astrophysics Data System (ADS)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  16. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kevin W.; Vandergaast, Gerald

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less

  18. Fluence-field modulated x-ray CT using multiple aperture devices

    NASA Astrophysics Data System (ADS)

    Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven

    2016-03-01

    We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.

  19. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less

  20. On the Role of Multi-Scale Processes in CO2 Storage Security and Integrity

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Kneafsey, T. J.

    2008-12-01

    Consideration of multiple scales in subsurface processes is usually referred to the spatial domain, where we may attempt to relate process descriptions and parameters from pore and bench (Darcy) scale to much larger field and regional scales. However, multiple scales occur also in the time domain, and processes extending over a broad range of time scales may be very relevant to CO2 storage and containment. In some cases, such as in the convective instability induced by CO2 dissolution in saline waters, space and time scales are coupled in the sense that perturbations induced by CO2 injection will grow concurrently over many orders of magnitude in both space and time. In other cases, CO2 injection may induce processes that occur on short time scales, yet may affect large regions. Possible examples include seismicity that may be triggered by CO2 injection, or hypothetical release events such as "pneumatic eruptions" that may discharge substantial amounts of CO2 over a short time period. This paper will present recent advances in our experimental and modeling studies of multi-scale processes. Specific examples that will be discussed include (1) the process of CO2 dissolution-diffusion-convection (DDC), that can greatly accelerate the rate at which free-phase CO2 is stored as aqueous solute; (2) self- enhancing and self-limiting processes during CO2 leakage through faults, fractures, or improperly abandoned wells; and (3) porosity and permeability reduction from salt precipitation near CO2 injection wells, and mitigation of corresponding injectivity loss. This work was supported by the Office of Basic Energy Sciences and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.

  1. Producing fired bricks using coal slag from a gasification plant in indiana

    USGS Publications Warehouse

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  2. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure

    PubMed Central

    Al Mamun, Md Abdullaha; Bhattacharjee, Subir; Pernitsky, David; Sadrzadeh, Mohtada

    2017-01-01

    Fouling of nanofiltration (NF) membranes is the most significant obstacle to the development of a sustainable and energy-efficient NF process. Colloidal fouling and performance decline in NF processes is complex due to the combination of cake formation and salt concentration polarization effects, which are influenced by the properties of the colloids and the membrane, the operating conditions of the test, and the solution chemistry. Although numerous studies have been conducted to investigate the influence of these parameters on the performance of the NF process, the importance of membrane preconditioning (e.g., compaction and equilibrating with salt water), as well as the determination of key parameters (e.g., critical flux and trans-membrane osmotic pressure) before the fouling experiment have not been reported in detail. The aim of this paper is to present a standard experimental and data analysis protocol for NF colloidal fouling experiments. The developed methodology covers preparation and characterization of water samples and colloidal particles, pre-test membrane compaction and critical flux determination, measurement of experimental data during the fouling test, and the analysis of that data to determine the relative importance of various fouling mechanisms. The standard protocol is illustrated with data from a series of flat sheet, bench-scale experiments. PMID:28106775

  3. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtainedmore » from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.« less

  4. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  5. A comparison of muscle activation between a Smith machine and free weight bench press.

    PubMed

    Schick, Evan E; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A; Khamoui, Andy V; Tran, Tai T; Uribe, Brandon P

    2010-03-01

    The bench press exercise exists in multiple forms including the machine and free weight bench press. It is not clear though how each mode differs in its effect on muscle activation. The purpose of this study was to compare muscle activation of the anterior deltoid, medial deltoid, and pectoralis major during a Smith machine and free weight bench press at lower (70% 1 repetition maximum [1RM]) and higher (90% 1RM) intensities. Normalized electromyography amplitude values were used during the concentric phase of the bench press to compare muscle activity between a free weight and Smith machine bench press. Participants were classified as either experienced or inexperienced bench pressers. Two testing sessions were used, each of which entailed either all free weight or all Smith machine testing. In each testing session, each participant's 1RM was established followed by 2 repetitions at 70% of 1RM and 2 repetitions at 90% of 1RM. Results indicated greater activation of the medial deltoid on the free weight bench press than on the Smith machine bench press. Also, there was greater muscle activation at the 90% 1RM load than at the 70% 1RM load. The results of this study suggest that strength coaches should consider choosing the free weight bench press over the Smith machine bench press because of its potential for greater upper-body muscular development.

  6. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  7. CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...

  8. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  9. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  10. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  11. Bench-scale research in biomass liquefaction in support of the Albany, Oregon experimental facility

    NASA Astrophysics Data System (ADS)

    Elliott, D. C.

    1981-03-01

    The liquefaction of solid materials (wood, newsprint, animal manure) by beating to produce useful liquid fuels was investigated. Highlights of work performed include: (1) catalyst mechanism studies; (2) analytical reports on TR8 and TR9 product oils; (3) liquid chromatography/mass spectroscopy analysis of wood oil; (4) batch conversion tests on bottom material; (5) vapor pressure studies; and (6) product evaluation. It was confirmed that the key process parameters and the effects of varying operating conditions are in support of biomass liquefaction.

  12. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  13. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  14. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  15. Continuous bench-scale slurry catalyst testing direct coal liquefaction of rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  16. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

    PubMed

    Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie

    2016-06-01

    Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn; Wang, Dian; Yan, Jiao

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solidmore » (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.« less

  18. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  19. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  20. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    PubMed

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  1. Changes in the Structure and Function of Microbial Communities in Drinking Water Treatment Bioreactors upon Addition of Phosphorus▿ †

    PubMed Central

    Li, Xu; Upadhyaya, Giridhar; Yuen, Wangki; Brown, Jess; Morgenroth, Eberhard; Raskin, Lutgarde

    2010-01-01

    Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors. PMID:20889793

  2. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  3. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less

  4. WASHING STUDIES FOR PCP AND CREOSOTE-CONTAMINATED SOIL

    EPA Science Inventory

    The Environmental Protection Agency has conducted a series of bench-scale and pilot-scale studies to evaluate the feasibility of washing pentachlorophenol (PCP) and creosote from the soil at an abandoned wood-treatment Superfund site in Pensacola, FL. The high sand content and lo...

  5. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  6. Rain Garden Research at EPA’s Urban Watershed Research Facility

    EPA Science Inventory

    Summary of the ongoing rain garden research at UWMB. The context for the study was described as well as the experimental design for the full-scale study, instrumentation, and stormwater collection system. Supporting bench scale research on hydraulic properties of media and soil...

  7. Dynamics of the Genetic Diversity of Subsurface Microbial Communities and Their Applications to Contaminated Site Cleanups

    EPA Science Inventory

    When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...

  8. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.

    PubMed

    Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon

    2008-02-01

    This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.

  9. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less

  10. Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA

    NASA Astrophysics Data System (ADS)

    Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.

    2013-01-01

    We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.

  11. Performance Testing of a Trace Contaminant Control Subassembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Curtis, R. E.; Alexandre, K. L.; Ruggiero, L. L.; Shtessel, N.

    1998-01-01

    As part of the International Space Station (ISS) Trace Contaminant Control Subassembly (TCCS) development, a performance test has been conducted to provide reference data for flight verification analyses. This test, which used the U.S. Habitation Module (U.S. Hab) TCCS as the test article, was designed to add to the existing database on TCCS performance. Included in this database are results obtained during ISS development testing; testing of functionally similar TCCS prototype units; and bench scale testing of activated charcoal, oxidation catalyst, and granular lithium hydroxide (LiOH). The present database has served as the basis for the development and validation of a computerized TCCS process simulation model. This model serves as the primary means for verifying the ISS TCCS performance. In order to mitigate risk associated with this verification approach, the U.S. Hab TCCS performance test provides an additional set of data which serve to anchor both the process model and previously-obtained development test data to flight hardware performance. The following discussion provides relevant background followed by a summary of the test hardware, objectives, requirements, and facilities. Facility and test article performance during the test is summarized, test results are presented, and the TCCS's performance relative to past test experience is discussed. Performance predictions made with the TCCS process model are compared with the U.S. Hab TCCS test results to demonstrate its validation.

  12. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S.

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flamemore » stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.« less

  13. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  14. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOPmore » and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.« less

  15. Detox{sup SM} wet oxidation system studies for engineering scale up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.

    1995-12-31

    Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less

  16. Flue gas conditioning for improved particle collection in electrostatic precipitators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    1992-04-27

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less

  17. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colborn, Robert

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, amore » low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.« less

  18. Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward

    NASA Astrophysics Data System (ADS)

    Geesey, G.

    2005-12-01

    The subsurface is an obscure but essential resource to life on Earth. It is an important region for carbon production and sequestration, a source and reservoir for energy, minerals and metals and potable water. There is a growing need to better understand subsurface possesses that control the exploitation and security of these resources. Our best models often fail to predict these processes at the field scale because of limited understanding of 1) the processes and the controlling parameters, 2) how processes are coupled at the field scale 3) geological heterogeneities that control hydrological, geochemical and microbiological processes at the field scale and 4) lack of data sets to calibrate and validate numerical models. There is a need for experimental data obtained at scales larger than those obtained at the laboratory bench that take into account the influence of hydrodynamics, geochemical reactions including complexation and chelation/adsorption/precipitation/ion exchange/oxidation-reduction/colloid formation and dissolution, and reactions of microbial origin. Furthermore, the coupling of each of these processes and reactions needs to be evaluated experimentally at a scale that produces data that can be used to calibrate numerical models so that they accurately describe field scale system behavior. Establishing the relevant experimental scale for collection of data from coupled processes remains a challenge and will likely be process-dependent and involve iterations of experimentation and data collection at different intermediate scales until the models calibrated with the appropriate date sets achieve an acceptable level of performance. Assuming that the geophysicists will soon develop technologies to define geological heterogeneities over a wide range of scales in the subsurface, geochemists need to continue to develop techniques to remotely measure abiotic reactions, while geomicrobiologists need to continue their development of complementary technologies to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.

  19. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  20. 4 channels x 10-Gbps optoelectronic transceiver based on silicon optical bench technology

    NASA Astrophysics Data System (ADS)

    Chen, Chin T.; Hsiao, Hsu L.; Chang, Chia. C.; Shen, Po K.; Lu, Guan F.; Lee, Yun C.; Chang, Shou F.; Lin, Yo S.; Wu, Mount L.

    2012-01-01

    In this paper, a bi-directional 4-channel x 10-Gbps optoelectronic transceiver based on this silicon optical bench (SiOB) technology is developed. A bi-directional optical sub-assembly (BOSA), fiber ribbon assembly, PCB with high frequency trace design, transmitter driver, and receiver TIA IC are included in this transceiver. The BOSA and PCB also have some specific design for conventional chip-on-board (COB) process. In eye diagram measurement, the transmitter can pass 10-G Ethernet eye mask with 25% margin at room temperature; Bit-error-rate (BER) performance from the transmitter to receiver via 10-meter fiber can achieve 10-12 order, which confirm the transceiver's ability of 10-Gbps data transmission per a channel.

  1. Multi-functional sorbents for the simultaneous removal of sulfur and lead compounds from hot flue gases.

    PubMed

    Zhao, Yi; Lin, Wen-Chiang

    2003-10-01

    A multi-functional sorbent is developed for the simultaneous removal of PbCl(2) vapor and sulfur dioxide from the combustion gases. The sorbent is tested in a bench-scale reactor at the temperature of 700 degrees C, using simulated flue gas (SFG) containing controlled amounts of PbCl(2) and SO(2) compounds. The removal characteristics of PbCl(2) and SO(2), individually and in combination, are investigated. The results show that the mechanism of capture by the sorbent is not a simple physical adsorption process but seems to involve a chemical reaction between the Ca-based sorbent and the contaminants from the simulated flue gas. The porous product layer in the case of individual SO(2) sorption is in a molten state at the reaction temperature. In contrast, the combined sorption of lead and sulfur compounds generates a flower-shaped polycrystalline product layer.

  2. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  3. Evaluation of alternatives for best available technology treatment and retreatment of uranium-contaminated solutions at the Paducah Gaseous Diffusion Plant C-400 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Cul, G.D.

    1991-02-01

    The Paducah Gaseous Diffusion Plant C-400 Decontamination Facility generators aqueous solutions that originate in drum washing, machine parts and equipment cleaning, and other decontamination processes. In general, the waste contains uranyl, fluoride, carbonate, and nitrate ions, in addition to soaps, detergents, secondary contaminants, and particulate matter. The main contaminants are fluoride, technetium, uranium, and other heavy metals. In accordance with Department of Energy (DOE) Order 5400.5, the releases of radioactive materials must be as low as reasonably achievable and be below the derived concentration guide limits. To comply with the DOE order, an action plan was formulated. The action planmore » included a literature search to support best available technology evaluation of treatment alternatives, a quality assurance/quality control plan, suggestion of alternative treatment options, bench-scale test studies of the proposed treatment alternatives, and establishment of the final recommendation. Five major technologies were considered: precipitation/coprecipitation, reverse osmosis, ultrafiltration, supported liquid membranes, and ion exchange. Biosorption was also briefly considered. Based on C-400's requirements and facilities, the precipitation/coprecipitation process appears to be the best suited for use at the plant. Four different treatment options using the precipitation/coprecipitation technology were proposed. Bench-scale studies of all four options were suggested. Options 1 and 2 represent a combination of lime-softening and iron coprecipitation. Laboratory test evaluations were initiated and the results involving Options 1 and 2 reported here. 29 refs., 1 fig., 2 tabs.« less

  4. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch/ZSM-5 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Sawy, A.; Gray, D.; Neuworth, M.

    1984-11-01

    A techno-economic assessment of the Mobil Two-Stage Slurry Fischer-Tropsch reactor system was carried out. Mobil bench-scale data were evaluated and scaled to a commercial plant design that produced specification high-octane gasoline and high-cetane diesel fuel. Comparisons were made with three reference plants - a SASOL (US) plant using dry ash Lurgi gasifiers and Synthol synthesis units, a modified SASOL plant with a British Gas Corporation slagging Lurgi gasifier (BGC/Synthol) and a BGC/slurry-phase process based on scaled data from the Koelbel Rheinpreussen-Koppers plant. A conceptual commercial version of the Mobil two-stage process shows a higher process efficiency than a SASOL (US)more » and a BGC/Synthol plant. The Mobil plant gave lower gasoline costs than obtained from the SASOL (US) and BGC/Synthol versions. Comparison with published data from a slurry-phase Fischer-Tropsch (Koelbel) unit indicated that product costs from the Mobil process were within 6% of the Koelbel values. A high-wax version of the Mobil process combined with wax hydrocracking could produce gasoline and diesel fuel at comparable cost to the lowest values achieved from prior published slurry-phase results. 27 references, 18 figures, 49 tables.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Chiarenzelli, J.R.

    An electrochemical peroxidation (ECP) process has been developed and used to degrade polychlorinated biphenyls (PCB) and volatile organic compounds (VOC)-contaminated water, sludge, and sediments at a New York State Federal and State Superfund Site. The process involves passing an oscillating low-amperage (<10 amps) current through steel electrodes immersed in an acidified water or sediment slurry into which hydrogen peroxide (<1,000 ppm) is added. The generated free radicals attack organic compounds, including organo-metallic complexes and refractory compounds including PCBs. PCB degradation ranged from about 30% to 80% in experiments involving Federal Superfund Site sediments; total PCBs were reduced by {approximately}97% tomore » 68%, respectively, in water and slurry collected from a State Superfund subsurface storage tank. VOC bench-scale experiments involved chloroethane, 1,1-dichloroethane, dichloromethane, 1,1,1-trichloroethane, and acetone and after a 3-min ECP treatment, degradation ranged from >94% to about 99.9%. Results indicate the ECP is a viable process to degrade organic contaminants in water and sediment suspensions. Because the treated water suspensions are acidified, select trace metal sorbed to the particulates is solubilized and therefore can be segregated from the particulates, offering a process that simultaneously degrades organic contaminants and separates trace metals. 19 refs., 1 fig., 4 tabs.« less

  7. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  8. Relationship of pectoralis major muscle size with bench press and bench throw performances.

    PubMed

    Akagi, Ryota; Tohdoh, Yukihiro; Hirayama, Kuniaki; Kobayashi, Yuji

    2014-06-01

    This study examined the relationship of muscle size indices of the pectoralis major muscle with bench press and bench throw performances in 18 male collegiate athletes. The maximal cross-sectional area (MCSAMAx) and volume (MV) of the pectoralis major muscle were determined by magnetic resonance imaging. First, subjects were tested for their one repetition maximum bench press strength (1RMBP) using a Smith machine. At a later date, subjects performed bench throws using the Smith machine with several different loads ranging from 30.0 kg to 90% of 1RMBP. Barbell positions were measured by a linear position transducer, and bench throw power was calculated using a dynamic equation. Three trials were performed for each load. In all the trials, the maximal peak power was adopted as bench throw peak power (PPBT). The 1RMBP was significantly correlated with MCSAMAx. Similarly, the correlation coefficient between MV and PPBT was significant. In contrast to the y-intercept of the MV-PPBT regression line, that of the MCSAMAx-1RMBP regression line was not significantly different from 0. These results suggested that, although the dependence on pectoralis major muscle size is slightly different between bench press strength and bench throw power, the pectoralis major muscle size has a significant impact on bench press and throw performances. Greater muscle size leads to heavier body weight, which can be a negative factor in some sports. We therefore recommend that athletes and their coaches develop training programs for improving sports performance by balancing the advantage of increased muscle size and the potential disadvantage of increased body weight.

  9. Israeli co-retorting of coal and oil shale would break even at 22/barrel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less

  10. Impact of scaling on the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D.

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic thanmore » glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.« less

  11. The Biot coefficient for a low permeability heterogeneous limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.

    2018-04-01

    This paper presents the experimental and theoretical developments used to estimate the Biot coefficient for the heterogeneous Cobourg Limestone, which is characterized by its very low permeability. The coefficient forms an important component of the Biot poroelastic model that is used to examine coupled hydro-mechanical and thermo-hydro-mechanical processes in the fluid-saturated Cobourg Limestone. The constraints imposed by both the heterogeneous fabric and its extremely low intact permeability [K \\in (10^{-23},10^{-20}) m2 ] require the development of alternative approaches to estimate the Biot coefficient. Large specimen bench-scale triaxial tests (150 mm diameter and 300 mm long) that account for the scale of the heterogeneous fabric are complemented by results for the volume fraction-based mineralogical composition derived from XRD measurements. The compressibility of the solid phase is based on theoretical developments proposed in the mechanics of multi-phasic elastic materials. An appeal to the theory of multi-phasic elastic solids is the only feasible approach for examining the compressibility of the solid phase. The presence of a number of mineral species necessitates the use of the theories of Voigt, Reuss and Hill along with the theories proposed by Hashin and Shtrikman for developing bounds for the compressibility of the multi-phasic geologic material composing the skeletal fabric. The analytical estimates for the Biot coefficient for the Cobourg Limestone are compared with results for similar low permeability rocks reported in the literature.

  12. Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.

    PubMed

    Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R

    2010-05-01

    Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri

    2013-02-01

    Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.

  14. Development of a Pyramid Wave-front Sensor

    NASA Astrophysics Data System (ADS)

    El Hadi, Kacem; Vignaux, Mael; Fusco, Thierry

    2013-12-01

    Within the framework of the E-ELT studies, several laboratories are involved on some instruments: HARMONY with its ATLAS adaptive optics [AO] system, EAGLE or EPICS. Most of the AO systems will probably integrate one or several pyramidal wavefront sensors, PWFS (R. Ragazzoni [1]). The coupling in an AO loop and the control in laboratory (then on sky) of this type of sensor is fundamental for the continuation of the projects related to OA systems on the E-ELT. LAM (Laboratory of Astrophysics of Marseille) is involved in particular in the VLT-SPHERE, ATLAS, EPICS projects. For the last few years, our laboratory has been carrying out different R&D activities in AO instrumentation for ELTs. An experimental AO bench is designed and being developed to allow the validation of new wave-front sensing and control concepts [2]. One the objectives of this bench, is the experimental validation of a pyramid WFS. Theoretical investigations on its behavior have been already made. The world's fastest and most sensitive camera system (OCAM2) has been recently developed at LAM (J.L Gach [3], First Light Imaging). Conjugating this advantage with the pyramid concept, we plan to demonstrate a home made Pyramid sensor for Adaptive Optics whose the speed and the precision are the key points. As a joint collaboration with ONERA and Shaktiware, our work aims at the optimization (measurement process, calibration and operation) in laboratory then on the sky of a pyramid sensor dedicated to the first generation instruments for ELTs. The sensor will be implemented on the ONERA ODISSEE AO bench combining thus a pyramid and a Shack-Hartmann wavefront sensors. What would give the possibility to compare strictly these two WFS types and make this bench unique in France and even in Europe. Experimental work on laboratory demonstration is undergoing. The status of our development will presented at the conference.

  15. Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)

    EPA Science Inventory

    Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...

  16. EXPERIMENTAL INVESTIGATION OF MERCURY TRANSFORMATIONS IN PILOT-SCALE COMBUSTION SYSTEMS AND A BENCH-SCALE ENTRAINED FLOW REACTOR. (R827649)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Assessment Of The Functionality Of A Pilot-Scale Reactor And Its Potential For Electrochemical Degradation Of Calmagite, A Sulfonated Azo-Dye

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in situ remediation of diversely contaminated environmental matrices by application of a low level electric potential gradient. This investigation, prompted by successful bench-scale ECD of trichloroethylene,...

  18. Impact of virus surface characteristics on removal mechanisms within membrane bioreactors.

    PubMed

    Chaudhry, Rabia M; Holloway, Ryan W; Cath, Tzahi Y; Nelson, Kara L

    2015-11-01

    In this study we investigated the removal of viruses with similar size and shape but with different external surface capsid proteins by a bench-scale membrane bioreactor (MBR). The goal was to determine which virus removal mechanisms (retention by clean backwashed membrane, retention by cake layer, attachment to biomass, and inactivation) were most impacted by differences in the virus surface properties. Seven bench-scale MBR experiments were performed using mixed liquor wastewater sludge that was seeded with three lab-cultured bacteriophages with icosahedral capsids of ∼30 nm diameter (MS2, phiX174, and fr). The operating conditions were designed to simulate those at a reference, full-scale MBR facility. The virus removal mechanism most affected by virus type was attachment to biomass (removals of 0.2 log for MS2, 1.2 log for phiX174, and 3 log for fr). These differences in removal could not be explained by electrostatic interactions, as the three viruses had similar net negative charge when suspended in MBR permeate. Removals by the clean backwashed membrane (less than 1 log) and cake layer (∼0.6 log) were similar for the three viruses. A comparison between the clean membrane removals seen at the bench-scale using a virgin membrane (∼1 log), and the full-scale using 10-year old membranes (∼2-3 logs) suggests that irreversible fouling, accumulated on the membrane over years of operation that cannot be removed by cleaning, also contributes towards virus removal. This study enhances the current mechanistic understanding of virus removal in MBRs and will contribute to more reliable treatment for water reuse applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rapid Design and Testing of Novel Gas/liquid Contacting Devices for Post-Combustion CO 2 Capture via 3D Printing - Phase II Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panaccione, Charles; Staab, Greg; Meuleman, Erik

    ION has developed a mathematically driven model for a contacting device incorporating mass transfer, heat transfer, and computational fluid dynamics. This model is based upon a parametric structure for purposes of future commercialization. The most promising design from modeling was 3D printed and tested in a bench scale CO 2 capture unit and compared to commercially available structured packing tested in the same unit.

  20. Water vapor diffusion membrane development

    NASA Technical Reports Server (NTRS)

    Tan, M. K.

    1976-01-01

    A total of 18 different membranes were procured, characterized, and tested in a modified bench-scale vapor diffusion water reclamation unit. Four membranes were selected for further studies involving membrane fouling. Emphasis was placed on the problem of flux decline due to membrane fouling. This is discussed in greater details under "Summary and Discussion on Membrane Fouling Studies" presented in pages 47-51. The system was also investigated for low temperature application on wash-water where the permeated water is not recovered but vented into space vacuum.

  1. A New Test Method for Material Flammability Assessment in Microgravity and Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.

    2004-01-01

    The objective of this research is to modify the well-instrumented standard cone configuration to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. We will then develop a standard test method with pass-fail criteria for future use in spacecraft materials flammability screening. (For example, dripping of molten material will be an automatic fail.)

  2. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.

    PubMed

    Ghorishi, S Behrooz; Singer, Carl F; Jozewicz, Wojciech S; Sedman, Charles B; Srivastava, Ravi K

    2002-03-01

    Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.

  3. Michelle L. Reed | NREL

    Science.gov Websites

    liquid chromatography analysis Bench-scale methods Education B.S., Chemistry (Mathematics Minor), Adams ;Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass

  4. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification processmore » utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.« less

  5. Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments

    NASA Astrophysics Data System (ADS)

    Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.

    1996-07-01

    Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.

  6. Usage of DNA Fingerprinting Technology for Quality Control in Molecular Lab Bench Work.

    PubMed

    McIntosh, Linda Y; Lal, Janella E; Qin, Dahui

    2018-01-01

    One of the major quality assurance (QA) goals in many molecular laboratories is to avoid sample pipetting errors on the lab bench; especially when pipetting into multiwell plates. A pipetting error can cause a switch in patient samples, which can lead to recording the wrong results for the patient samples involved. Such pipetting errors are difficult to identify when it happens in lab bench work. DNA fingerprinting is a powerful tool in determining sample identities. Our laboratory has explored the usage of this technology in our QA process and successfully established that DNA fingerprinting can be used to monitor possible sample switch in gene rearrangement lab bench work. We use florescent light to quench the florescence in the gene rearrangement polymerase chain reaction products. After that, DNA fingerprinting technology is used to identify the sample DNA in the gene rearrangement polymerase chain reaction plate. The result is compared with the corresponding patient's blood sample DNA to determine whether there is a sample switch during the lab bench work.

  7. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture.

    PubMed

    Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda; Schwan, Rosane Freitas

    2012-08-01

    Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.

  8. Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains To Develop a Defined Starter Culture

    PubMed Central

    Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda

    2012-01-01

    Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes. PMID:22636007

  9. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  10. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less

  12. Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less

  13. Combining SBR systems for chemical and biological treatment: the destruction of the nerve agent VX.

    PubMed

    Irvine, R L; Haraburda, S S; Galbis-Reig, C

    2004-01-01

    The US Army is pilot testing the neutralization of VX nerve agent stockpiled at Newport, Indiana using caustic hydrolysis in a Sequencing Batch Reactor (SBR). The resulting hydrolysate was tested at the bench-scale for treatment with activated sludge biodegradation in two distinct studies, one in the SBR and another, in the PACT process. The feed to both biological systems was pretreated to enhance the biodegradability of the hydrolysis products. Both biodegradation studies demonstrated that the hydrolysate could easily meet the Chemical Weapons Convention treaty and US environmental regulations following pretreatment.

  14. Identification of functional enolase genes of the silkworm Bombyx mori from public databases with a combination of dry and wet bench processes.

    PubMed

    Kikuchi, Akira; Nakazato, Takeru; Ito, Katsuhiko; Nojima, Yosui; Yokoyama, Takeshi; Iwabuchi, Kikuo; Bono, Hidemasa; Toyoda, Atsushi; Fujiyama, Asao; Sato, Ryoichi; Tabunoki, Hiroko

    2017-01-13

    Various insect species have been added to genomic databases over the years. Thus, researchers can easily obtain online genomic information on invertebrates and insects. However, many incorrectly annotated genes are included in these databases, which can prevent the correct interpretation of subsequent functional analyses. To address this problem, we used a combination of dry and wet bench processes to select functional genes from public databases. Enolase is an important glycolytic enzyme in all organisms. We used a combination of dry and wet bench processes to identify functional enolases in the silkworm Bombyx mori (BmEno). First, we detected five annotated enolases from public databases using a Hidden Markov Model (HMM) search, and then through cDNA cloning, Northern blotting, and RNA-seq analysis, we revealed three functional enolases in B. mori: BmEno1, BmEno2, and BmEnoC. BmEno1 contained a conserved key amino acid residue for metal binding and substrate binding in other species. However, BmEno2 and BmEnoC showed a change in this key amino acid. Phylogenetic analysis showed that BmEno2 and BmEnoC were distinct from BmEno1 and other enolases, and were distributed only in lepidopteran clusters. BmEno1 was expressed in all of the tissues used in our study. In contrast, BmEno2 was mainly expressed in the testis with some expression in the ovary and suboesophageal ganglion. BmEnoC was weakly expressed in the testis. Quantitative RT-PCR showed that the mRNA expression of BmEno2 and BmEnoC correlated with testis development; thus, BmEno2 and BmEnoC may be related to lepidopteran-specific spermiogenesis. We identified and characterized three functional enolases from public databases with a combination of dry and wet bench processes in the silkworm B. mori. In addition, we determined that BmEno2 and BmEnoC had species-specific functions. Our strategy could be helpful for the detection of minor genes and functional genes in non-model organisms from public databases.

  15. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  16. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processesmore » using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).« less

  17. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John; Smutzer, Chad; Sinha, Jayanti

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less

  18. Design and construction of a telescope simulator for LISA optical bench testing

    NASA Astrophysics Data System (ADS)

    Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2017-11-01

    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.

  19. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less

  20. Contextualising impacts of logging on tropical rainforest catchment sediment dynamics using the stratigraphic record of in-channel bench deposits

    NASA Astrophysics Data System (ADS)

    Blake, Will; Walsh, Rory; Bidin, Kawi; Annammala, Kogila

    2015-04-01

    It is widely recognised that commercial logging and conversion of tropical rainforest to oil palm plantation leads to enhanced fluvial sediment flux to the coastal zone but the dynamics of delivery and mechanisms that act to retain sediment and nutrients within rainforest ecosystems, e.g. riparian zone and floodplain storage, are poorly understood and underexploited as a management tool. While accretion of lateral in-channel bench deposits in response to forest clearance has been demonstrated in temperate landscapes, their development and value as sedimentary archives of catchment response to human disturbance remains largely unexplored in tropical rainforest river systems. Working within the Segama River basin, Sabah, Malaysian Borneo, this study aimed to test the hypothesis that (1) lateral bench development in tropical rainforest rivers systems is enhanced by upstream catchment disturbance and that (2) the sedimentary record of these deposits can be used to infer changes in sediment provenance and intensification of sediment flux associated with logging activities. Sediment cores were taken from in-channel bench deposits with upstream catchment contributing areas of 721 km2 and 2800 km2 respectively. Accretion rates were determined using fallout 210Pb and 137Cs and the timing of peak accumulation was shown to correspond exactly with the known temporal pattern of logging and associated fluvial sediment response over the period 1980 to present following low pre-logging rates. Major and minor element geochemistry of deposits was used to assess the degree of weathering that deposited sediment had experienced. This was linked to surface (heavily weathered) and subsurface (less weathered) sediment sources relating to initial disturbance by logging and post-logging landsliding responses respectively. A shift in the dominant source of deposited material from surface (i.e. topsoil) to subsurface (i.e. relatively unweathered subsoil close to bedrock) origin was observed to coincide with the increase in accretion rates following logging of steep headwater slopes. Coherence of sedimentary, monitoring and observational evidence demonstrates that in-channel bench deposits offer a previously unexplored sedimentary archive of catchment response to logging in tropical rainforest systems and a tool for evaluating the erosional responses of ungauged basins. In-channel bench development due to catchment disturbance may augment ecosystem services provided by the riparian corridors of larger rivers and process knowledge gained from sedimentary archives can be used to underpin future riparian and catchment forest management strategies.

  1. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste.

    PubMed

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2014-01-01

    Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.

  2. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  3. ECONOMIC ANALYSIS OF TREATMENT TECHNOLOGIES TO ACHIEVE VOC (VOLATILE ORGANIC CHEMICALS) REMOVAL TO SAFE LEVELS

    EPA Science Inventory

    In the VOC regulations both Granular Activated Carbon (GAC) and Packed Tower Aeration (PTA) have been designated as Best Available Treatment. DWRD has performed a great deal of research both at the bench, pilot and field scale on the use of GAC and pilot and field scale research ...

  4. SITE EMERGING TECHNOLOGY SUMMARY: INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    In a recently completed test program, bench-scale laboratory studies at Arizona State University (ASU) in Tempe, AZ, and pilot-scale studies in a simulated field test situation at Zentox Corp in Ocala, FL, were performed to evaluate the integration of gas-solid ultraviolet (UV) p...

  5. OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94

    EPA Science Inventory

    Fiscal year 1994 (FY94, October 1, 1993 through September 30,1994) saw the continuation of incineration research testing efforts at the IRF. uring the year, two major pilot-scale programs were completed and a third carried to near-completion, and two bench-scale test programs of ...

  6. Comparison between Synthesized Lead Particles and Lead Solids Formed on Surfaces in Real Drinking Water Distribution Systems

    EPA Science Inventory

    The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...

  7. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    EPA Science Inventory

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  8. Control of air emissions from POTWs using biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, T.S.; Devinny, J.S.; Torres, E.M.

    1995-12-31

    The University of Southern California (USC), in collaboration with the County Sanitation Districts of Orange County (CSDOC), the South Coast Air Quality Management District (SCAQMD), Southern California Edison (SCE), the Water Environment Research Foundation (WERF), and Huntingdon Environmental Engineering, Inc. (HEEI), is conducting a research project to evaluate the application of biofiltration to remove volatile organic compounds (VOCs), odor-causing air pollutants, and toxics from a publicly owned treatment works (POTW) waste airstream. As part of this project, bench-scale and pilot-scale experiments are being conducted to test the effectiveness of biofiltration and determine the optimum parameters for applying biofiltration to POTWs.more » Results from the bench-scale experiments demonstrate that biofiltration is effective in reducing the concentration of hydrogen sulfide (H{sub 2}S) and total VOCs present in waste airstreams by over 99% and up to 90%, respectively. Average reduction of specific aromatic and carbonyl compounds ranged from 55% to 91%. Removal efficiencies for chlorinated hydrocarbons were variable, ranging from 6% to 88%. Overall, biofiltration appears to be a promising technology for full-scale implementation at POTWs for VOC and odor emission compliance.« less

  9. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less

  10. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  11. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    NASA Astrophysics Data System (ADS)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  12. Assessment of Canyon Wall Failure Process and Disturbance Gradients from Multibeam Bathymetry and Remotely Operated Vehicle (ROV) Observations, Puerto Rico and the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Demopoulos, A. W.; Ten Brink, U. S.; Quattrini, A.

    2016-02-01

    Over the last several years, canyons around Puerto Rico and along the U.S. Atlantic continental margin between Georges Bank and Cape Hatteras have been investigated using high-resolution multibeam bathymetry and Remotely Operated Vehicle (ROV) dives utilizing the exploration vessels E/V Nautilus and NOAA Ship Okeanos Explorer. The imaging capabilities of these ROVs have provided the opportunity to begin to investigate the size of canyon wall failures, the processes responsible for their occurrence and to develop a conceptual framework for determining their relative age. Bed and formation scale lithologies exposed in the canyons and localized structural features (bedding planes, fracture planes, etc.) appear to be the primary control on the style of failures observed. Near vertical walls, sedimented benches, talus slopes, and canyon floor debris aprons were present in most canyons visited. Evidence of brittle failure over different spatial and temporal scales, physical abrasion by downslope moving flows, and bio-erosion in the form of burrows and surficial scrape marks provide insight into the modification processes active in these canyons. The level of colonization by sessile species (e.g., corals, sponges) on the canyon walls and displaced material, especially on substrates affected by failure and sediment bioturbation, provide a critical, but as yet, poorly understood chronological record of geologic processes within these systems. Therefore, comparison of the processes among these geologically, oceanographically, and ecologically different regions provides the opportunity to critically assess the wide range of drivers that control recolonization of sessile fauna influenced by continuous or episodic disturbances.

  13. Development of the Write Process for Pipeline-Ready Heavy Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Brecher; Charles Mones; Frank Guffey

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establishmore » a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.« less

  14. Hydrogen Production via a High-Efficiency Low-Temperature Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul KT Liu; Theo T. Tsotsis

    2006-05-31

    Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposedmore » to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.« less

  15. Biodesign process and culture to enable pediatric medical technology innovation.

    PubMed

    Wall, James; Wynne, Elizabeth; Krummel, Thomas

    2015-06-01

    Innovation is the process through which new scientific discoveries are developed and promoted from bench to bedside. In an effort to encourage young entrepreneurs in this area, Stanford Biodesign developed a medical device innovation training program focused on need-based innovation. The program focuses on teaching systematic evaluation of healthcare needs, invention, and concept development. This process can be applied to any field of medicine, including Pediatric Surgery. Similar training programs have gained traction throughout the United States and beyond. Equally important to process in the success of these programs is an institutional culture that supports transformative thinking. Key components of this culture include risk tolerance, patience, encouragement of creativity, management of conflict, and networking effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Scale-down/scale-up studies leading to improved commercial beer fermentation.

    PubMed

    Nienow, Alvin W; Nordkvist, Mikkel; Boulton, Christopher A

    2011-08-01

    Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CAPSULE REPORT: AQUEOUS MERCURY TREATMENT

    EPA Science Inventory

    This report describes established technologies and identifies evolving methods for treating aqueous mercury. The information provided encompasses full-, pilot- and bench-scale treatment results as presented in the technical literature. The report describes alternative technologi...

  18. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.

  19. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    PubMed

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Simplified behaviors from increased heterogeneity: II. 3-D uranium transport at the decimeter scale and intertank comparisons.

    PubMed

    Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D

    2013-05-01

    Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard, S.; Lu, Yingzhong

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less

  2. Evaluation of alternatives for best available technology treatment and retreatment of uranium-contaminated wastewater at the Paducah Gaseous Diffusion Plant C-400 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Cul, G.D.; Osborne, P.E.; Beck, D.E.

    1991-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) C-400 Decontamination Facility generates aqueous solutions that originate in drum washing, machine parts and equipment cleaning, and other decontamination processes. The chemical composition of the waste depends on the particular operation involved. In general, the waste contains uranyl, fluoride, carbonate, and nitrate ions, plus soaps, detergents, secondary contaminants, and particulate matter. The uranium content is rather variable ranging between 0.5 and 30 g/l. The main contaminants are fluoride, technetium, uranium, and other heavy metals. The plan included (1) a literature search to support best available technology (BAT) evaluation of treatment alternatives, (2) a qualitymore » assurance/quality control plan, (3) suggestion of alternative treatment options, (4) bench-scale tests studies of the proposed treatment alternatives, and (5) establishment of the final recommendation. The following report records the evaluation of items (1) to (3) of the action plan for the BAT evaluation of alternatives for the treatment and retreatment of uranium-contaminated wastewater at the PGDP C-400 treatment facility. After a thorough literature search, five major technologies were considered: (1) precipitation/coprecipitation, (2) reverse osmosis, (3) ultrafiltration, (4) supported liquid membranes, and (5) ion exchange. Biosorption was also considered, but as it is a fairly new technology with few demonstrations of its capabilities, it is mentioned only briefly in the report. Based on C-400's requirements and facilities, the precipitation/coprecipitation process appears to be the best suited for use at the plant. Four different treatment options using the precipitation/coprecipitation technology are proposed. Bench-scale studies of the four options are suggested. 37 refs.« less

  3. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.

    PubMed

    Berry, Brandon N; Dobrowsky, Terrence M; Timson, Rebecca C; Kshirsagar, Rashmi; Ryll, Thomas; Wiltberger, Kelly

    2016-01-01

    Mitigating risks to biotherapeutic protein production processes and products has driven the development of targeted process analytical technology (PAT); however implementing PAT during development without significantly increasing program timelines can be difficult. The development of a monoclonal antibody expressed in a Chinese hamster ovary (CHO) cell line via fed-batch processing presented an opportunity to demonstrate capabilities of altering percent glycated protein product. Glycation is caused by pseudo-first order, non-enzymatic reaction of a reducing sugar with an amino group. Glucose is the highest concentration reducing sugar in the chemically defined media (CDM), thus a strategy controlling glucose in the production bioreactor was developed utilizing Raman spectroscopy for feedback control. Raman regions for glucose were determined by spiking studies in water and CDM. Calibration spectra were collected during 8 bench scale batches designed to capture a wide glucose concentration space. Finally, a PLS model capable of translating Raman spectra to glucose concentration was built using the calibration spectra and spiking study regions. Bolus feeding in mammalian cell culture results in wide glucose concentration ranges. Here we describe the development of process automation enabling glucose setpoint control. Glucose-free nutrient feed was fed daily, however glucose stock solution was fed as needed according to online Raman measurements. Two feedback control conditions were executed where glucose was controlled at constant low concentration or decreased stepwise throughout. Glycation was reduced from ∼9% to 4% using a low target concentration but was not reduced in the stepwise condition as compared to the historical bolus glucose feeding regimen. © 2015 American Institute of Chemical Engineers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, R.P.

    As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, R.P.

    As part of the DOE-sponsored contract ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas`` experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbonmore » mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst, developed in Air Products` laboratories, has the highest performance in terms of rate and selectivity for C{sub 2+}-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.« less

  7. The GA sulfur-iodine water-splitting process - A status report

    NASA Astrophysics Data System (ADS)

    Besenbruch, G. E.; Chiger, H. D.; McCorkle, K. H.; Norman, J. H.; Rode, J. S.; Schuster, J. R.; Trester, P. W.

    The development of a sulfur-iodine thermal water splitting cycle is described. The process features a 50% thermal efficiency, plus all liquid and gas handling. Basic chemical investigations comprised the development of multitemperature and multistage sulfuric acid boost reactors, defining the phase behavior of the HI/I2/H2O/H3PO4 mixtures, and development of a decomposition process for hydrogen iodide in the liquid phase. Initial process engineering studies have led to a 47% efficiency, improvements of 2% projected, followed by coupling high-temperature solar concentrators to the splitting processes to reduce power requirements. Conceptual flowsheets developed from bench models are provided; materials investigations have concentrated on candidates which can withstand corrosive mixtures at temperatures up to 400 deg K, with Hastelloy C-276 exhibiting the best properties for containment and heat exchange to I2.

  8. The GA sulfur-iodine water-splitting process - A status report

    NASA Technical Reports Server (NTRS)

    Besenbruch, G. E.; Chiger, H. D.; Mccorkle, K. H.; Norman, J. H.; Rode, J. S.; Schuster, J. R.; Trester, P. W.

    1981-01-01

    The development of a sulfur-iodine thermal water splitting cycle is described. The process features a 50% thermal efficiency, plus all liquid and gas handling. Basic chemical investigations comprised the development of multitemperature and multistage sulfuric acid boost reactors, defining the phase behavior of the HI/I2/H2O/H3PO4 mixtures, and development of a decomposition process for hydrogen iodide in the liquid phase. Initial process engineering studies have led to a 47% efficiency, improvements of 2% projected, followed by coupling high-temperature solar concentrators to the splitting processes to reduce power requirements. Conceptual flowsheets developed from bench models are provided; materials investigations have concentrated on candidates which can withstand corrosive mixtures at temperatures up to 400 deg K, with Hastelloy C-276 exhibiting the best properties for containment and heat exchange to I2.

  9. Preliminary investigation of air bubbling and dietary sulfur reduction to mitigate hydrogen sulfide and odor from swine waste.

    PubMed

    Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R

    2005-01-01

    When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.

  10. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  11. Chemical additive to enhance antimicrobial efficacy of chlorine and control cross-contamination during immersion chill of broiler carcasses.

    PubMed

    Schambach, B T; Berrang, M E; Harrison, M A; Meinersmann, R J

    2014-09-01

    Immersion chilling of broiler carcasses can be a site for cross-contamination between the occasional highly contaminated carcass and those that are co-chilled. Chlorine is often used as an antimicrobial but can be overcome by organic material. A proprietary chlorine stabilizer (T-128) based on phosphoric acid-propylene glycol was tested as a chill tank additive in experiments simulating commercial broiler chilling. In bench-scale experiments, 0.5% T-128 was compared with plain water (control), 50 ppm of chlorine, and the combination of 0.5% T-128 with 50 ppm of chlorine to control transfer of Salmonella and Campylobacter from inoculated wing drummettes to co-chilled uninoculated drummettes. Both chlorine and T-128 lessened cross-contamination with Salmonella (P < 0.05); T-128 and T-128 with chlorine were significantly more effective (P < 0.05) than the control or plain chlorine for control of Campylobacter. T-128 treatments were noted to have a pH of less than 4.0; an additional experiment demonstrated that the antimicrobial effect of T-128 was not due merely to a lower pH. In commercial broiler chilling, a pH close to 6.0 is preferred to maximize chlorine effectiveness, while maintaining water-holding capacity of the meat. In a set of pilot-scale experiments with T-128, a near-ideal pH of 6.3 was achieved by using tap water instead of the distilled water used in bench-scale experiments. Pilot-scale chill tanks were used to compare the combination of 0.5% T-128 and 50 ppm of chlorine with 50 ppm of plain chlorine for control of cross-contamination between whole carcasses inoculated with Salmonella and Campylobacter and co-chilled uninoculated carcasses. The T-128 treatment resulted in significantly less crosscontamination by either direct contact or water transfer with both organisms compared with plain chlorine treatment. T-128 may have use in commercial broiler processing to enhance the effectiveness of chlorine in processing water.

  12. Combined Pressure, Temperature Contrast and Surface-Enhanced Separation of Carbon Dioxide for Post-Combustion Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen; Wong, Michael; Gupta, Mayank

    The Rice University research team developed a hybrid carbon dioxide (CO 2) absorption process combining absorber and stripper columns using a high surface area ceramic foam gas-liquid contactor for enhanced mass transfer and utilizing waste heat for regeneration. This integrated absorber/desorber arrangement will reduce space requirements, an important factor for retrofitting existing coal-fired power plants with CO 2 capture technology. Described in this report, we performed an initial analysis to estimate the technical and economic feasibility of the process. A one-dimensional (1D) CO 2 absorption column was fabricated to measure the hydrodynamic and mass transfer characteristics of the ceramic foam.more » A bench-scale prototype was constructed to implement the complete CO 2 separation process and tested to study various aspects of fluid flow in the process. A model was developed to simulate the two-dimensional (2D) fluid flow and optimize the CO 2 capture process. Test results were used to develop a final technoeconomic analysis and identify the most appropriate absorbent as well as optimum operating conditions to minimize capital and operating costs. Finally, a technoeconomic study was performed to assess the feasibility of integrating the process into a 600 megawatt electric (MWe) coal-fired power plant. With process optimization, $82/MWh of COE can be achieved using our integrated absorber/desorber CO 2 capture technology, which is very close to DOE's target that no more than a 35% increase in COE with CCS. An environmental, health, and safety (EH&S) assessment of the capture process indicated no significant concern in terms of EH&S effects or legislative compliance.« less

  13. Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes

    EPA Science Inventory

    The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...

  14. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2010-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  15. Ignition and flame travel on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2007-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...

  16. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a systemmore » is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.« less

  17. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    PubMed

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  18. Interchip link system using an optical wiring method.

    PubMed

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  19. Application of electrokinetic soil flushing to four herbicides: A comparison.

    PubMed

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water.

    PubMed

    Wang, Ding; Bolton, James R; Hofmann, Ron

    2012-10-01

    The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ecologically and economically conscious design of the injected pultrusion process via multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Srinivasagupta, Deepak; Kardos, John L.

    2004-05-01

    Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.

  2. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Paul

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of themore » capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered 90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promising process scheme has been developed for power generation and/or hydrogen coproduction with CCS based upon our proposed "one-box" process. Our preliminary economic analysis indicates about 10% reduction in the required electricity selling price and ~40% cost reduction in CCS on per ton CO{sub 2} can be achieved in comparison with the base case involving conventional WGS with a two-stage Selexsol® for CCS. Long term field tests (e.g., >1,000 hrs) with the incorporation of the catalyst for the WGS membrane reactor and more in-depth analysis of the process scheme are recommended for the future study.« less

  3. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which themore » IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.« less

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less

  5. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  7. Removal of Multiple Contaminants: Biological Treatment

    EPA Science Inventory

    This presentation contains (1) background material on nitrate, perchlorate and ammonia contamination in the continental US; (2) scientific background on biological drinking water treatment; (3) results of bench-scale anaerobic and aerobic treatment studies; (4) results of pilot-s...

  8. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics.

    PubMed

    Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia

    2016-01-01

    Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.

    PubMed

    Hong, Eunyoung; Seagren, Eric A; Davis, Allen P

    2006-02-01

    One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.

  10. Optimization of culture conditions and bench-scale production of L-asparaginase by submerged fermentation of Aspergillus terreus MTCC 1782.

    PubMed

    Gurunathan, Baskar; Sahadevan, Renganathan

    2012-07-01

    Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

  11. Performance and durability testing of parabolic trough receivers

    NASA Astrophysics Data System (ADS)

    Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan

    2017-06-01

    The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Towle; Richard Donais; Todd Hellewell

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, withmore » typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to behave in-between the subbituminous coal and the Midwest bituminous coal. CFD modeling was used to gain insight into the mechanisms governing nozzle tip performance with respect to NOx emissions. The CFD simulations were run as steady state, turbulent, non-reacting flow with heat transfer and focused on predicting the near field mixing and particle dispersion rates. CFD results were used to refine the proposed tip concepts before they were built, as well as to help identify and evaluate possible improvements to the tips for subsequent test weeks.« less

  13. A stepwise-cluster microbial biomass inference model in food waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huangg@iseis.or; Chinese Research Academy of Environmental Science, North China Electric Power University, Beijing 100012-102206

    2009-12-15

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levelsmore » of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH{sub 4}{sup +}-N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH{sub 4}{sup +}-N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.« less

  14. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.

    PubMed

    Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli

    2018-01-01

    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  15. Pyrolysis of automotive shredder residue in a bench scale rotary kiln.

    PubMed

    Notarnicola, Michele; Cornacchia, Giacinto; De Gisi, Sabino; Di Canio, Francesco; Freda, Cesare; Garzone, Pietro; Martino, Maria; Valerio, Vito; Villone, Antonio

    2017-07-01

    Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm 3 dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, Robert E.

    1994-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements, and crew rotation via spread sheets provides adequate bench marks to assess cargo vehicle design and performance characteristics.

  17. Characterizing effects of wind erosion on soil microtopography in a semiarid grassland using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Washington-Allen, R. A.; Okin, G. S.

    2010-12-01

    Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.

  18. DETOX{sup SM} -- An innovative mixed waste treatment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dhooge, P.M.

    1994-12-31

    Delphi Research, Inc. has developed and tested a catalyzed wet oxidation process, DETOX{sup SM}, which is capable of oxidizing a broad range of organic compounds and concentrating heavy metals and radionuclides. The process utilizes iron (Fe{sup 3+}) as a primary catalyst, and ruthenium (Ru{sup 3+}) and platinum (Pt{sup 4+}) as the cocatalysts in an acid medium. Extensive laboratory testing and bench-scale testing has been performed to establish the destruction efficiency and cation solubilities in the DETOX{sup SM} solution. Organic constituents tested have included polychlorinated biphenyls (PCBs), trichloroethylene, Hydrocount{trademark}, Ready Value{trademark}, paper, polyethylene, wood, n-butyl acetate, picric acid, pentachloropyridine, tetrachlorothiophene, andmore » poly(vinyl) chloride. Solubility studies on the selected cations have been performed and include chromium, lead, mercury, barium, beryllium, cadmium, nickel, vanadium, and arsenic. Cerium and neodymium were used as surrogates to represent the chemical and physical properties of uranium and plutonium respectively. A summary of results obtained in these studies are presented and observations noted regarding the limitations and/or unusual solubility characteristics of potential metal contaminants. An overview of on-going development and engineering work being performed for the US Department of Energy (DOE-METC), Los Alamos National Laboratory (LANL), and EG and G Rocky Flats Plant (RFP) is presented.« less

  19. Accelerating vaccine development and deployment: report of a Royal Society satellite meeting

    PubMed Central

    Bregu, Migena; Draper, Simon J.; Hill, Adrian V. S.; Greenwood, Brian M.

    2011-01-01

    The Royal Society convened a meeting on the 17th and 18th November 2010 to review the current ways in which vaccines are developed and deployed, and to make recommendations as to how each of these processes might be accelerated. The meeting brought together academics, industry representatives, research sponsors, regulators, government advisors and representatives of international public health agencies from a broad geographical background. Discussions were held under Chatham House rules. High-throughput screening of new vaccine antigens and candidates was seen as a driving force for vaccine discovery. Multi-stakeholder, small-scale manufacturing facilities capable of rapid production of clinical grade vaccines are currently too few and need to be expanded. In both the human and veterinary areas, there is a need for tiered regulatory standards, differentially tailored for experimental and commercial vaccines, to allow accelerated vaccine efficacy testing. Improved cross-fertilization of knowledge between industry and academia, and between human and veterinary vaccine developers, could lead to more rapid application of promising approaches and technologies to new product development. Identification of best-practices and development of checklists for product development plans and implementation programmes were seen as low-cost opportunities to shorten the timeline for vaccine progression from the laboratory bench to the people who need it. PMID:21893549

  20. The Effect of Hydraulic Gradient and Pattern of Conduit Systems on Tracing Tests: Bench-Scale Modeling.

    PubMed

    Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm

    2018-03-13

    Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.

  1. A tale of three Brownfields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, F.R.; Worthington, M.A.; Belli, E.

    Contaminated site remediation and reuse, or Brownfield redevelopment, has become an increasingly important approach to site development in the northeast corridor, yet the scale of this activity is but a fraction of its full potential. The problem lies in the multi-jurisdictional quagmire that confronts a Brownfield project. Permitting such projects is an overly taxing dynamic process that has become a staple diet for adept multidisciplinary consulting firms. Limited government sanctions such as clean sites initiatives and economic revitalization zones are at best, when successful, interesting bench studies. The central hypothesis that, if regulations are streamlined then site reuse will occur,more » is sound. Yet streamlining brings concerns that the protection of public health and the environment will be compromised and that the result will be a lower standard of public protection for urban populations. The authors postulate that the permitting of Brownfield projects can be streamlined without creating a double standard of risk tolerance. The authors present evidence of this by comparing publicly and privately funded projects.« less

  2. A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass.

    PubMed

    Sharma, Priyanka R; Joshi, Ritika; Sharma, Sunil K; Hsiao, Benjamin S

    2017-08-14

    A simple approach was developed to prepare carboxycellulose nanofibers directly from untreated biomass using nitric acid or nitric acid-sodium nitrite mixtures. Experiments indicated that this approach greatly reduced the need for multichemicals, and offered significant benefits in lowering the consumption of water and electric energy, when compared with conventional multiple-step processes at bench scale (e.g., TEMPO oxidation). Additionally, the effluent produced by this approach could be efficaciously neutralized using base to produce nitrogen-rich salts as fertilizers. TEM measurements of resulting nanofibers from different biomasses, possessed dimensions in the range of 190-370 and 4-5 nm, having PDI = 0.29-0.38. These nanofibers exhibited lower crystallinity than untreated jute fibers as determined by TEM diffraction, WAXD and 13 C CPMAS NMR (e.g., WAXD crystallinity index was ∼35% for nanofibers vs 62% for jute). Nanofibers with low crystallinity were found to be effective for removal of heavy metal ions for drinking water purification.

  3. Experimental investigation on light propagation through apple tissue structures

    NASA Astrophysics Data System (ADS)

    Askoura, Mohamed Lamine; Piron, Vianney; Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Madieta, Emmanuel; Mehinagic, Emira

    2015-07-01

    The interaction of light with biological materials, such as fruits and vegetables, is a complex process which involves both absorption, and scattering events at different scales. Measuring the optical properties of a fruit allows understanding the physical and chemical characteristics. In this paper, an optical bench based on the use of a continuous laser source and a CCD camera was developed to study the light diffusion inside apple tissue structures. The method refers to the well-known steady-state spatially resolved method. First, the optoelectronics system was tested with a tissue phantom in order to show the optimal sensing range required to obtain the best estimated optical properties. Second, experimental results were obtained using peeled and unpeeled apples as interrogated tissues. The data were confronted with a diffusion model in order to extract the optical properties at two wavelengths of 633, and 852 nm. To better understand the effect of the apple tissue structures, investigations into the propagation of light through a half cut apple were also performed.

  4. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  5. An Innovative Design of a Clay-Zeolite Medium for the Adsorption of Total Phosphorus from Wastewater.

    PubMed

    Ciosek, Amanda Lidia; Luk, Grace K; Warner, Michèle; Warner, R Anthony

    2016-02-01

    Phosphorus significantly influences the eutrophication process, modifying the quality of waterways and habitat, especially in stagnant waterbodies exposed to septic tank effluent at high nutrient levels. This research explores the development of a cost-effective, efficient, and affordable on-site wastewater treatment system targeted as total phosphorus (TP) removal technology. The research objective is to demonstrate the TP removal efficiency of an optimized clay-zeolite medium by chemical adsorption. The study observes the effects of pellet medium design and modifications, influent concentrations, and contact time. Following various stages of optimization, the preliminary testing achieves a 45 ± 1.8% removal after 45 minutes of contact time. The optimized pellets are contained within a five-layer bench-scale model, achieving equilibrium TP removal of 72 ± 2.9% after 3 hours. Theoretical extrapolation to 12 contact hours indicates an achievement of 88% removal is possible. The results show a positive correlation with the linearized Langmuir and Freundlich adsorption isotherms.

  6. Study of dielectric properties of adulterated milk concentration and freshness

    NASA Astrophysics Data System (ADS)

    Jitendra Murthy, V.; Sai Kiranmai, N.; Kumar, Sanjeev

    2017-08-01

    The knowledge of dielectric properties may hold a potential to develop a new technique for quality evaluation of milk. The dielectric properties of water diluted cow’s milk with milk concentration from 70 percent to 100 percent stored during 36hour storage at 22°C and 144 hour at 5°C were measured at room temperature for frequencies ranging from 10 to 4500 MHz and at low, high & at microwave frequencies using X band bench and open-ended coaxial-line probe technology, along with electrical conductivity. The raw milk had the lowest dielectric constant (ɛ‧) when the frequency was higher than about 20M.Hz, and had the highest loss (ɛ″) or decepation factor tan (δ) at each frequency. The penetration depth (dp) increased with decreasing frequency, water content and storage time, which was large enough to detect dielectric properties changes in milk samples and provide large scale RF pasteurization processes. The loss factor can be an indicator in predicting milk concentration and freshness.

  7. Prediction of fire growth on furniture using CFD

    NASA Astrophysics Data System (ADS)

    Pehrson, Richard David

    A fire growth calculation method has been developed that couples a computational fluid dynamics (CFD) model with bench scale cone calorimeter test data for predicting the rate of flame spread on compartment contents such as furniture. The commercial CFD code TASCflow has been applied to solve time averaged conservation equations using an algebraic multigrid solver with mass weighted skewed upstream differencing for advection. Closure models include k-e for turbulence, eddy breakup for combustion following a single step irreversible reaction with Arrhenius rate constant, finite difference radiation transfer, and conjugate heat transfer. Radiation properties are determined from concentrations of soot, CO2 and H2O using the narrow band model of Grosshandler and exponential wide band curve fit model of Modak. The growth in pyrolyzing area is predicted by treating flame spread as a series of piloted ignitions based on coupled gas-fluid boundary conditions. The mass loss rate from a given surface element follows the bench scale test data for input to the combustion prediction. The fire growth model has been tested against foam-fabric mattresses and chairs burned in the furniture calorimeter. In general, agreement between model and experiment for peak heat release rate (HRR), time to peak HRR, and total energy lost is within +/-20%. Used as a proxy for the flame spread velocity, the slope of the HRR curve predicted by model agreed with experiment within +/-20% for all but one case.

  8. Shape memory polymer sensors for tracking cumulative environmental exposure

    NASA Astrophysics Data System (ADS)

    Snyder, Ryan; Rauscher, Michael; Vining, Ben; Havens, Ernie; Havens, Teresa; McFerran, Jace

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed environmental exposure tracking (EET) sensors using shape memory polymers (SMP) to monitor the degradation of perishable items, such as munitions, foods and beverages, or medicines, by measuring the cumulative exposure to temperature and moisture. SMPs are polymers whose qualities have been altered to give them dynamic shape "memory" properties. Under thermal or moisture stimuli, the SMP exhibits a radical change from a rigid thermoset to a highly flexible, elastomeric state. The dynamic response of the SMP can be tailored to match the degradation profile of the perishable item. SMP-based EET sensors require no digital memory or internal power supply and provide the capability of inexpensive, long-term life cycle monitoring of thermal and moisture exposure over time. This technology was developed through Phase I and Phase II SBIR efforts with the Navy. The emphasis of current research centers on transitioning SMP materials from the lab bench to a production environment. Here, CRG presents the commercialization progress of thermally-activated EET sensors, focusing on fabrication scale-up, process refinements, and quality control. In addition, progress on the development of vapor pressure-responsive SMP (VPR-SMP) will be discussed.

  9. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Stephen

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale andmore » scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol Materials is evaluating other products with greater commercial value. Potassium Silicotitanates, zeolites and other sorbents were evaluated as potential reagents for the extraction of potassium from geothermal brines and production of potassium chloride (potash). It was found that zeolites were effective at removing potassium but the capacity of the zeolites and the form that the potassium is in does not have economic potential. Iron-silica by-product The conversion of iron-silica by-product produced during silica management operations into more valuable materials was studied at the laboratory scale. Results indicate that it is technically feasible to convert the iron-silica by-product into ferric chloride and ferric sulfate solutions which are precursors to a ferric phosphate product. However, additional work to purify the solutions is required to determine the commercial viability of this process. Conclusion Simbol Materials is in the process of designing its first commercial plant based on the technology developed to the pilot scale during this project. The investment in the commercial plant is hundreds of millions of dollars, and construction of the commercial plant will generate hundreds of jobs. Plant construction will be completed in 2016 and the first lithium products will be shipped in 2017. The plant will have a lithium carbonate equivalent production capacity of 15,000 tonnes per year. The gross revenues from the project are expected to be approximately $ 80 to 100 million annually. During this development program Simbol grew from a company of about 10 people to over 60 people today. Simbol is expected to employ more than 100 people once the plant is constructed. Simbol Materials’ business is scalable in the Imperial Valley region because there are eleven geothermal power plants already in operation, which allows Simbol to expand its business from one plant to multiple plants. Additionally, the scope of the resource is vast in terms of potential products such as lithium, manganese and zinc and potentially potassium.« less

  10. TREATMENT STUDIES OF CCL CONTAMINANTS

    EPA Science Inventory

    Bench-scale screening-level treatment data are presented for compounds listed in the Contaminant Candidate List (CCL). All of the CCl compounds are predicted to be economically removed by either activated carbon or air stripping technologies. To complete the screening-level treat...

  11. CRYPTOSPORIDIUM INACTIVATION AND REMOVAL RESEARCH

    EPA Science Inventory

    Bench- and pilot-scale tests were performed to assess the ability of conventional treatment, ozonation and chlorine dioxide to remove and inactivate Cryptosporidium oocysts. The impacts of coagulant type, coagulant dose, raw water quality, filter loading rates and filter media w...

  12. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer.

    PubMed

    Hosseini, Seiyed Mossa; Tosco, Tiziana

    2015-08-01

    The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated groundwater. This NPRW system can be considered a promising and viable technology in deep aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibodeaux, J.; Hensley, J.

    2013-01-01

    The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way ofmore » two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.« less

  14. A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications

    NASA Technical Reports Server (NTRS)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the new process specific device models. The system has been used in the design of time to digital converters for laser ranging and time-of-flight mass spectrometry to optimize analog, mixed signal and digital circuits such as charge sensitive amplifiers, comparators, delay elements, radiation tolerant dual interlocked (DICE) flip-flops and two of three voter gates.

  15. An innovative integrated oxidation ditch with vertical circle (IODVC) for wastewater treatment.

    PubMed

    Xia, Shi-bin; Liu, Jun-xin

    2004-01-01

    The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle (IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single-channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.

  16. Test bench HEATREC for heat loss measurement on solar receiver tubes

    NASA Astrophysics Data System (ADS)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  17. Relations between coal petrology and gas content in the Upper Newlands Seam, Central Queensland, Australia

    USGS Publications Warehouse

    Walker, R.; Glikson, M.; Mastalerz, Maria

    2001-01-01

    The Upper Newlands Seam in the northern Bowen Basin, Queensland Australia consists of six benches (A-F) that have different petrographic assemblages. Benches C and E contain relatively abundant inertodetrinite and mineral matter, as well as anomalously high reflectance values; these characteristics support a largely allochthonous, detrital origin for the C and E benches. Fractures and cleats in the seam show a consistent orientation of northeast-southwest for face cleats, and a wide range of orientations for fractures. Cleat systems are well developed in bright bands, with poor continuity in the dull coal. Both maceral content and cleat character are suggested to influence gas drainage in the upper Newlands Seam. A pronounced positive correlation between vitrinite abundance and gas desorption data suggests more efficient drainage from benches with abundant vitrinite. Conversely, inertinite-rich benches are suggested to have less efficient drainage, and possibly retain gas within pore spaces, which could increase the outburst potential of the coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  18. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    PubMed

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  19. Gas Fermentation—A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks

    PubMed Central

    Liew, FungMin; Martin, Michael E.; Tappel, Ryan C.; Heijstra, Björn D.; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields. PMID:27242719

  20. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine.

    PubMed

    Chien, Shih-Hsiang; Chowdhury, Indranil; Hsieh, Ming-Kai; Li, Heng; Dzombak, David A; Vidic, Radisav D

    2012-12-01

    Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A white super-stable source for the metrology of astronomical photometers

    NASA Astrophysics Data System (ADS)

    Wildi, F. P.; Deline, A.; Chazelas, B.

    2015-09-01

    The testing of photometers and in particular the testing of high precision photometers for the detection of planetary transits requires a light source which photometric stability is to par or better than the goal stability of the photometer to be tested. In the frame of the CHEOPS mission, a comprehensive calibration bench has been developed. Aside from measuring the sensibility of the CHEOPS payload to the different environmental conditions, this bench will also be used to test the relative accuracy of the payload. A key element of this bench is an extremely stable light source that is used to create an artificial star which is then projected into the payload's telescope. We present here the development of this payload and the performance achieved.

  2. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  3. Methods for Evaluating the Performance and Human Stress-Factors of Percussive Riveting

    NASA Astrophysics Data System (ADS)

    Ahn, Jonathan Y.

    The aerospace industry automates portions of their manufacturing and assembly processes. However, mechanics still remain vital to production, especially in areas where automated machines cannot fit, or have yet to match the quality of human craftsmanship. One such task is percussive riveting. Because percussive riveting is associated with a high risk of injury, these tool must be certified prior to release. The major contribution of this thesis is to develop a test bench capable of percussive riveting for ergonomic evaluation purposes. The major issues investigated are: (i) automate the tool evaluation method to be repeatable; (ii) demonstrate use of displacement and force sensors; and (iii) correlate performance and risk exposure of percussive tools. A test bench equipped with servomotors and pneumatic cylinders to control xyz-position of a rivet gun and bucking bar simultaneously, is used to explore this evaluation approach.

  4. Utilization of institutional delivery service and associated factors in Bench Maji zone, Southwest Ethiopia: community based, cross sectional study.

    PubMed

    Tadele, Niguse; Lamaro, Tafesse

    2017-02-01

    At the end of Millennium development goals, Ethiopia was included among 10 countries which constitutes about 59% of maternal deaths due to complications of pregnancy and/or childbirth every year globally. Institutional delivery, which is believed to contribute in reduction of maternal mortality is still low. Hence this study was conducted in order to assess utilization of institutional delivery and related factors in Bench Maji zone, Southwest Ethiopia. Cross sectional study was employed from September 1st - 30th, 2015 in Bench Maji Zone, Southwest Ethiopia where 765 mothers who deliver 2 years preceding the study provided data for this research. Data were collected by enumerators who were trained. In addition to descriptive statistics, binary and multivariate logistic regression analyses were performed. Statistical significance was considered at a p-value < 0.05. Strength of association was also assessed using odds ratios with a 95% confidence intervals. About 800 mothers were approached but 765 of them who gave birth 2 years preceding the survey participated and gave consent to the data included in the analysis. About 78.30% delivered their last child in health institution while rest gave birth at home. Factors such as maternal age, religion, occupation, availability of information source as TV/Radio, income quartile, residence, knowledge of problems during labor and antenatal follow up had association with institutional delivery which was significant. In Bench Maji Zone institutional delivery was shown to be comparatively good compared to other studies in the region and in Ethiopia in general even though it is below the health sector transformation plan of Ethiopia which aimed to increase deliveries attended by skilled health personnel to 95%. Empowering women, increasing awareness about institutional delivery and proper scaling up of antenatal care services which is an entry point for institutional delivery are recommended.

  5. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less

  6. Evaluation of mechanical and corrosion properties of MMFX reinforcing steel for concrete

    DOT National Transportation Integrated Search

    2004-01-01

    The corrosion performance of MMFX and conventional reinforcing steels is compared based on macrocell and bench-scale tests. The conventional steel includes epoxy-coated and uncoated bars. Macrocell tests are conducted on bare bars and bars symmetrica...

  7. BENCH-SCALE PERFORMANCE OF PARTITIONING ELECTRON DONORS FOR TCE DNAPL BIOREMEDIATION

    EPA Science Inventory

    The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethen...

  8. ELECTROCHEMICAL ARSENIC REMEDIATION IN RURAL BANGLADESH

    EPA Science Inventory

    In Year 1, we built a bench-scale continuous flow prototype (dubbed “Sushi” for its sushi-like electrode roll) and completed preliminary field trials in Bangladesh. We were also able to leverage additional funding to complete preliminary field trials in arsenic-...

  9. An audit questionnaire that examines specifically the management of technical activities clauses in ISO 15189.

    PubMed

    Hartley, T F

    2010-01-01

    The aim of this study was to design an audit questionnaire that focuses on the management of the technical activities in a Diagnostic Pathology Laboratory. The ISO 15189 Standard is written in such a way that it continually moves back and forth from topics where the auditor needs to question bench level staff, to topics where the auditor needs to question Technical Management Staff. This makes for a disjointed audit process - both Bench Staff and Technical Managers are repeatedly interrupted. The solution was to do a clause by clause analysis of the Standard and assign the major responsibility for the compliance to each clause to either Technical Managers or Bench Staff. The Clauses were then grouped under four topic headings regardless of whether they were a Section 4 or Section 5 Clause. Two questionnaires have emerged - the one described in this work and one directed primarily towards the activities of bench staff. There are 95 questions and it takes approximately two hours to complete.

  10. Hollow Fibers Structured Packings in Olefin/Paraffin Distillation: Apparatus Scale-Up and Long-Term Stability

    DOE PAGES

    Yang, Dali; Le, Loan; Martinez, Ronald; ...

    2013-06-21

    Following the conceptual demonstration of high separation efficiency and column capacity obtained in olefin/paraffin distillation using hollow fiber structured packings (HFSPs) in a bench scale (J. Membr. Sci.2006, 2007, and 2010), we scaled-up this process with a 10-fold increase in the internal flow rate and a 3-fold increase in the module length. We confirmed that the HFSPs technology gives high separation efficiency and column capacity in iso-/n-butane distillation for 18 months. We systematically investigated the effects of packing density, concentration of light component, reflux ratio, and module age on the separation efficiency and operating stability. The comprehensive characterizations using scanningmore » electron microscopy (SEM), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were carried out to probe the changes in the morphological, thermal, and mechanical properties of polypropylene (PP) hollow fibers over the aging process. Our results suggest that after a long-term exposure to light hydrocarbon environments at ≤70 °C the morphological and mechanical properties of the PP polymer do not degrade significantly in a propane/propylene and iso-/n-butane environment.« less

  11. Catalytic Hydrotreatment for the Development of Renewable Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Funkenbusch, LiLu Tian

    Biologically-derived feedstocks are a highly desirable source of renewable transportation fuel. They can be grown renewably and can produce fuels similar in composition to conventional fossil fuels. They are also versatile and wide-ranging. Plant oils can produce renewable diesel and wood-based pyrolysis oils can be made into renewable gasoline. Catalytic hydrotreatment can be used to reduce the oxygen content of the oils and increase their viability as a "drop-in" transportation fuel, since they can then easily be blended with existing petroleum-based fuels. However, product distribution depends strongly on feedstock composition and processing parameters, especially temperature and type of catalyst. Current literature contains relatively little relevant information for predicting process-level data in a way that can be used for proper life cycle or techno-economic assessment. For pyrolysis oil, the associated reaction pathways have been explored via experimental studies on model compounds in a bench scale hydrotreatment reactor. The reaction kinetics of each compound were studied as a function of temperature and catalyst. This experimental data is used to determine rate constants for a hybrid, lumped-parameter kinetic model of paradigm compounds and pyrolysis oil, which can be used to scale-up this process to simulate larger, pilot-scale reactors. For plant oils, some appropriate data was found in the literature and adapted for a preliminary model, while some experimental data was also collected using the same reactor constructed for the pyrolysis oil studies. With a systematic collection of kinetic data, hydrotreatment models can be developed that can predict important life cycle assessment inputs, such as hydrogen consumption, energy consumption and greenhouse gas production, which are necessary for regulatory and assessment purposes. As a demonstration of how this model can be incorporated into assessment tools, a technoeconomic analysis was performed on the hydrothermal liquefaction of lignin from a pulp mill, with some of the products sent to a refinery to create biofuel and some of the products used to create BTEX. The process-level model developed earlier was used to model hydrotreatment reactors used to generate commodity chemical co-products from phenolic compounds. Overall, this process showed promise and, with improving separations technology, could be a valuable source of revenue for pulp mills and refiners. However, in order to be truly profitable, the minimum selling price of the biofuel would need to be between 3.52 and 3.96 per gallon.

  12. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag Kulkarni; Jie Guan; Raul Subia

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less

  13. Behavior and structure of metal vapor arc plasma between molten electrodes

    NASA Astrophysics Data System (ADS)

    Zanner, F. J.; Williamson, R. L.; Hareland, W. A.; Bertram, L. A.

    A metal vapor arc is utilized in the industrially important vacuum arc remelting (VAR) process to produce materials by melting and resolidification which have improved structure and chemical homogeneity. Homogeneity is dependent on achieving quasi-steady conditions in the plasma because of its thermal and MHD coupling with the molten pool atop the ingot. Optimal operating conditions of low pressure (approx. = 0.01 torr) and short electrode gap (less than 15 mm) produce a diffuse arc and cathode spot behavior similar to that observed for the vacuum breaker arc. Under these conditions the arc provides a quasi-steady heat source that is considered to be the bench mark arc of the VAR process. Previous work has shown that deviation from the bench mark arc behavior can occur under production conditions, and is caused by electrode irregularities and liberation of gases such as CO from the molten pool. This study is an effort to characterize these behavioral deviations and discover operational conditions which stabilize the bench mark arc.

  14. Static and moving solid/gas interface modeling in a hybrid rocket engine

    NASA Astrophysics Data System (ADS)

    Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe

    2018-07-01

    A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.

  15. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    NASA Astrophysics Data System (ADS)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  16. STS-26 crewmembers participate in bench review at offsite Boeing Bldg

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers participate in bench review at the offsite Boeing Building. Commander Frederick H. Hauck reviews a checklist of necessary supplies with Flight Equipment Processing engineer Laura E. Duvall. Pilot Richard O. Covey makes notations on checklist in background. Hygiene supplies (razors, deodorants, brushes, combs, etc.) are displayed on table behind Hauck. Photograph was taken by Keith Meyers of the NEW YORK TIMES.

  17. ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis.

    PubMed

    Trümbach, Dietrich; Pfeiffer, Susanne; Poppe, Manuel; Scherb, Hagen; Doll, Sebastian; Wurst, Wolfgang; Schick, Joel A

    2017-11-25

    As CRISPR/Cas9 mediated screens with pooled guide libraries in somatic cells become increasingly established, an unmet need for rapid and accurate companion informatics tools has emerged. We have developed a lightweight and efficient software to easily manipulate large raw next generation sequencing datasets derived from such screens into informative relational context with graphical support. The advantages of the software entitled ENCoRE (Easy NGS-to-Gene CRISPR REsults) include a simple graphical workflow, platform independence, local and fast multithreaded processing, data pre-processing and gene mapping with custom library import. We demonstrate the capabilities of ENCoRE to interrogate results from a pooled CRISPR cellular viability screen following Tumor Necrosis Factor-alpha challenge. The results not only identified stereotypical players in extrinsic apoptotic signaling but two as yet uncharacterized members of the extrinsic apoptotic cascade, Smg7 and Ces2a. We further validated and characterized cell lines containing mutations in these genes against a panel of cell death stimuli and involvement in p53 signaling. In summary, this software enables bench scientists with sensitive data or without access to informatic cores to rapidly interpret results from large scale experiments resulting from pooled CRISPR/Cas9 library screens.

  18. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  19. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.; hide

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  20. Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi

    In this paper, we report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloridemore » from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ~91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. Finally, the present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.« less

Top