Sample records for benchmark circuits show

  1. Benchmarking gate-based quantum computers

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  2. A quantum physical design flow using ILP and graph drawing

    NASA Astrophysics Data System (ADS)

    Yazdani, Maryam; Saheb Zamani, Morteza; Sedighi, Mehdi

    2013-10-01

    Implementing large-scale quantum circuits is one of the challenges of quantum computing. One of the central challenges of accurately modeling the architecture of these circuits is to schedule a quantum application and generate the layout while taking into account the cost of communications and classical resources as well as the maximum exploitable parallelism. In this paper, we present and evaluate a design flow for arbitrary quantum circuits in ion trap technology. Our design flow consists of two parts. First, a scheduler takes a description of a circuit and finds the best order for the execution of its quantum gates using integer linear programming regarding the classical resources (qubits) and instruction dependencies. Then a layout generator receives the schedule produced by the scheduler and generates a layout for this circuit using a graph-drawing algorithm. Our experimental results show that the proposed flow decreases the average latency of quantum circuits by about 11 % for a set of attempted benchmarks and by about 9 % for another set of benchmarks compared with the best in literature.

  3. Scalable randomized benchmarking of non-Clifford gates

    NASA Astrophysics Data System (ADS)

    Cross, Andrew; Magesan, Easwar; Bishop, Lev; Smolin, John; Gambetta, Jay

    Randomized benchmarking is a widely used experimental technique to characterize the average error of quantum operations. Benchmarking procedures that scale to enable characterization of n-qubit circuits rely on efficient procedures for manipulating those circuits and, as such, have been limited to subgroups of the Clifford group. However, universal quantum computers require additional, non-Clifford gates to approximate arbitrary unitary transformations. We define a scalable randomized benchmarking procedure over n-qubit unitary matrices that correspond to protected non-Clifford gates for a class of stabilizer codes. We present efficient methods for representing and composing group elements, sampling them uniformly, and synthesizing corresponding poly (n) -sized circuits. The procedure provides experimental access to two independent parameters that together characterize the average gate fidelity of a group element. We acknowledge support from ARO under Contract W911NF-14-1-0124.

  4. Implementing Bayesian networks with embedded stochastic MRAM

    NASA Astrophysics Data System (ADS)

    Faria, Rafatul; Camsari, Kerem Y.; Datta, Supriyo

    2018-04-01

    Magnetic tunnel junctions (MTJ's) with low barrier magnets have been used to implement random number generators (RNG's) and it has recently been shown that such an MTJ connected to the drain of a conventional transistor provides a three-terminal tunable RNG or a p-bit. In this letter we show how this p-bit can be used to build a p-circuit that emulates a Bayesian network (BN), such that the correlations in real world variables can be obtained from electrical measurements on the corresponding circuit nodes. The p-circuit design proceeds in two steps: the BN is first translated into a behavioral model, called Probabilistic Spin Logic (PSL), defined by dimensionless biasing (h) and interconnection (J) coefficients, which are then translated into electronic circuit elements. As a benchmark example, we mimic a family tree of three generations and show that the genetic relatedness calculated from a SPICE-compatible circuit simulator matches well-known results.

  5. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.

    PubMed

    Lebar, Tina; Jerala, Roman

    2016-10-21

    Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.

  6. Time-space modal logic for verification of bit-slice circuits

    NASA Astrophysics Data System (ADS)

    Hiraishi, Hiromi

    1996-03-01

    The major goal of this paper is to propose a new modal logic aiming at formal verification of bit-slice circuits. The new logic is called as time-space modal logic and its major feature is that it can handle two transition relations: one for time transition and the other for space transition. As for a verification algorithm, a symbolic model checking algorithm of the new logic is shown. This could be applicable to verification of bit-slice microprocessor of infinite bit width and 1D systolic array of infinite length. A simple benchmark result shows the effectiveness of the proposed approach.

  7. A differential memristive synapse circuit for on-line learning in neuromorphic computing systems

    NASA Astrophysics Data System (ADS)

    Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo

    2017-12-01

    Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.

  8. Undoing measurement-induced dephasing in circuit QED

    NASA Astrophysics Data System (ADS)

    Frisk Kockum, A.; Tornberg, L.; Johansson, G.

    2012-05-01

    We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves on an earlier one [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.012329 82, 012329 (2010)], showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.

  9. What Randomized Benchmarking Actually Measures

    DOE PAGES

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin; ...

    2017-09-28

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  10. Gatemon Benchmarking and Two-Qubit Operation

    NASA Astrophysics Data System (ADS)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  11. Equivalent Circuit for Magnetoelectric Read and Write Operations

    NASA Astrophysics Data System (ADS)

    Camsari, Kerem Y.; Faria, Rafatul; Hassan, Orchi; Sutton, Brian M.; Datta, Supriyo

    2018-04-01

    We describe an equivalent circuit model applicable to a wide variety of magnetoelectric phenomena and use spice simulations to benchmark this model against experimental data. We use this model to suggest a different mode of operation where the 1 and 0 states are represented not by states with net magnetization (like mx , my, or mz) but by different easy axes, quantitatively described by (mx2-my2), which switches from 0 to 1 through the write voltage. This change is directly detected as a read signal through the inverse effect. The use of (mx2-my2) to represent a bit is a radical departure from the standard convention of using the magnetization (m ) to represent information. We then show how the equivalent circuit can be used to build a device exhibiting tunable randomness and suggest possibilities for extending it to nonvolatile memory with read and write capabilities, without the use of external magnetic fields or magnetic tunnel junctions.

  12. Efficiently characterizing the total error in quantum circuits

    NASA Astrophysics Data System (ADS)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  13. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  14. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  15. Community-based benchmarking improves spike rate inference from two-photon calcium imaging data.

    PubMed

    Berens, Philipp; Freeman, Jeremy; Deneux, Thomas; Chenkov, Nikolay; McColgan, Thomas; Speiser, Artur; Macke, Jakob H; Turaga, Srinivas C; Mineault, Patrick; Rupprecht, Peter; Gerhard, Stephan; Friedrich, Rainer W; Friedrich, Johannes; Paninski, Liam; Pachitariu, Marius; Harris, Kenneth D; Bolte, Ben; Machado, Timothy A; Ringach, Dario; Stone, Jasmine; Rogerson, Luke E; Sofroniew, Nicolas J; Reimer, Jacob; Froudarakis, Emmanouil; Euler, Thomas; Román Rosón, Miroslav; Theis, Lucas; Tolias, Andreas S; Bethge, Matthias

    2018-05-01

    In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

  16. Benchmarks of a III-V TFET technology platform against the 10-nm CMOS FinFET technology node considering basic arithmetic circuits

    NASA Astrophysics Data System (ADS)

    Strangio, S.; Palestri, P.; Lanuzza, M.; Esseni, D.; Crupi, F.; Selmi, L.

    2017-02-01

    In this work, a benchmark for low-power digital applications of a III-V TFET technology platform against a conventional CMOS FinFET technology node is proposed. The analysis focuses on full-adder circuits, which are commonly identified as representative of the digital logic environment. 28T and 24T topologies, implemented in complementary-logic and transmission-gate logic, respectively, are investigated. Transient simulations are performed with a purpose-built test-bench on each single-bit full adder solution. The extracted delays and energy characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the different full-adder implementations (for the same device technology platform) and to the different technology platforms (for the same full-adder topology) are presented and discussed.

  17. Benchmarking Commercial Reliability Practices.

    DTIC Science & Technology

    1995-07-01

    companies (70% of total), and to actually receive completed survey forms from 40 companies ( 60 % of participants, 40% of total identified). Reliability...E -20 -30 - A B C D E F G H I J KL MN OP Q R -40 - A = FMEA , B = FTA, C =Thermal Analysis, D = Sneak Circuit Analysis, E = Worst-Case Circuit Analysis...Failure Modes and Effects Analysis ( FMEA ), will be conducted. c. Commercial companies specify the environmental conditions for their products. In doing

  18. Benchmarking organic mixed conductors for transistors.

    PubMed

    Inal, Sahika; Malliaras, George G; Rivnay, Jonathan

    2017-11-24

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  19. Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements

    NASA Astrophysics Data System (ADS)

    Tornberg, L.; Barzanjeh, Sh.; DiVincenzo, David P.

    2014-03-01

    We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave radiation, and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error correction protocols in a scalable architecture.

  20. A Computer Scientist’s Evaluation of Publically Available Hardware Trojan Benchmarks

    DTIC Science & Technology

    2015-09-01

    in the Verilog file round.v. This module represents the tenth round of the AES encryption process. This round is similar to previous rounds. It...the round keys used during the AES encryption process. Note that the last two round keys are not leaked, but we assume that the attacker either...undermine the effectiveness of a 128-bit AES encryption circuit. These circuits are labelled AES -T100 through AES -T2100. The naming convention

  1. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    PubMed Central

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  2. Stimulated Raman adiabatic passage in a three-level superconducting circuit.

    PubMed

    Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S

    2016-02-23

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.

  3. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).

    PubMed

    Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin

    2015-01-15

    Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  5. Recent trends in hardware security exploiting hybrid CMOS-resistive memory circuits

    NASA Astrophysics Data System (ADS)

    Sahay, Shubham; Suri, Manan

    2017-12-01

    This paper provides a comprehensive review and insight of recent trends in the field of random number generator (RNG) and physically unclonable function (PUF) circuits implemented using different types of emerging resistive non-volatile (NVM) memory devices. We present a detailed review of hybrid RNG/PUF implementations based on the use of (i) Spin-Transfer Torque (STT-MRAM), and (ii) metal-oxide based (OxRAM), NVM devices. Various approaches on Hybrid CMOS-NVM RNG/PUF circuits are considered, followed by a discussion on different nanoscale device phenomena. Certain nanoscale device phenomena (variability/stochasticity etc), which are otherwise undesirable for reliable memory and storage applications, form the basis for low power and highly scalable RNG/PUF circuits. Detailed qualitative comparison and benchmarking of all implementations is performed.

  6. A test data compression scheme based on irrational numbers stored coding.

    PubMed

    Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan

    2014-01-01

    Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

  7. Methods for the design and analysis of power optimized finite-state machines using clock gating

    NASA Astrophysics Data System (ADS)

    Chodorowski, Piotr

    2017-11-01

    The paper discusses two methods of design of power optimized FSMs. Both methods use clock gating techniques. The main objective of the research was to write a program capable of generating automatic hardware description of finite-state machines in VHDL and testbenches to help power analysis. The creation of relevant output files is detailed step by step. The program was tested using the LGSynth91 FSM benchmark package. An analysis of the generated circuits shows that the second method presented in this paper leads to significant reduction of power consumption.

  8. Demonstration of Protection of a Superconducting Qubit from Energy Decay

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.

    2018-04-01

    Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.

  9. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  10. FELERION: a new approach for leakage power reduction

    NASA Astrophysics Data System (ADS)

    R, Anjana; Somkuwar, Ajay

    2014-12-01

    The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.

  11. Finite Element Modeling of the World Federation's Second MFL Benchmark Problem

    NASA Astrophysics Data System (ADS)

    Zeng, Zhiwei; Tian, Yong; Udpa, Satish; Udpa, Lalita

    2004-02-01

    This paper presents results obtained by simulating the second magnetic flux leakage benchmark problem proposed by the World Federation of NDE Centers. The geometry consists of notches machined on the internal and external surfaces of a rotating steel pipe that is placed between two yokes that are part of a magnetic circuit energized by an electromagnet. The model calculates the radial component of the leaked field at specific positions. The nonlinear material property of the ferromagnetic pipe is taken into account in simulating the problem. The velocity effect caused by the rotation of the pipe is, however, ignored for reasons of simplicity.

  12. HTM Spatial Pooler With Memristor Crossbar Circuits for Sparse Biometric Recognition.

    PubMed

    James, Alex Pappachen; Fedorova, Irina; Ibrayev, Timur; Kudithipudi, Dhireesha

    2017-06-01

    Hierarchical Temporal Memory (HTM) is an online machine learning algorithm that emulates the neo-cortex. The development of a scalable on-chip HTM architecture is an open research area. The two core substructures of HTM are spatial pooler and temporal memory. In this work, we propose a new Spatial Pooler circuit design with parallel memristive crossbar arrays for the 2D columns. The proposed design was validated on two different benchmark datasets, face recognition, and speech recognition. The circuits are simulated and analyzed using a practical memristor device model and 0.18 μm IBM CMOS technology model. The databases AR, YALE, ORL, and UFI, are used to test the performance of the design in face recognition. TIMIT dataset is used for the speech recognition.

  13. Nanomagnet Logic: Architectures, design, and benchmarking

    NASA Astrophysics Data System (ADS)

    Kurtz, Steven J.

    Nanomagnet Logic (NML) is an emerging technology being studied as a possible replacement or supplementary device for Complimentary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FET) by the year 2020. NML devices offer numerous potential advantages including: low energy operation, steady state non-volatility, radiation hardness and a clear path to fabrication and integration with CMOS. However, maintaining both low-energy operation and non-volatility while scaling from the device to the architectural level is non-trivial as (i) nearest neighbor interactions within NML circuits complicate the modeling of ensemble nanomagnet behavior and (ii) the energy intensive clock structures required for re-evaluation and NML's relatively high latency challenge its ability to offer system-level performance wins against other emerging nanotechnologies. Thus, further research efforts are required to model more complex circuits while also identifying circuit design techniques that balance low-energy operation with steady state non-volatility. In addition, further work is needed to design and model low-power on-chip clocks while simultaneously identifying application spaces where NML systems (including clock overhead) offer sufficient energy savings to merit their inclusion in future processors. This dissertation presents research advancing the understanding and modeling of NML at all levels including devices, circuits, and line clock structures while also benchmarking NML against both scaled CMOS and tunneling FETs (TFET) devices. This is accomplished through the development of design tools and methodologies for (i) quantifying both energy and stability in NML circuits and (ii) evaluating line-clocked NML system performance. The application of these newly developed tools improves the understanding of ideal design criteria (i.e., magnet size, clock wire geometry, etc.) for NML architectures. Finally, the system-level performance evaluation tool offers the ability to project what advancements are required for NML to realize performance improvements over scaled-CMOS hardware equivalents at the functional unit and/or application-level.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Rudinger, Kenneth; Young, Kevin

    Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not amore » well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.« less

  15. Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness.

    PubMed

    Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A

    2012-01-27

    Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.

  16. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    PubMed

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  17. An Artificially Intelligent Physical Model-Checking Approach to Detect Switching-Related Attacks on Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama

    Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less

  18. Importance of the ITF Junior Girls' Circuit in the development of women professional tennis players.

    PubMed

    Reid, Machar; Crespo, Miguel; Santilli, Luca

    2009-11-01

    In this study, we examined the extent to which ranking in professional women's tennis can be predicted by that in the top 20 International Tennis Federation's Junior Circuit. The names, nationalities, and birth dates of all players who achieved a top-20 girls' year-end ranking from 1995 to 2002 were recorded, with their progress through the professional ranks tracked to March 2008. Ninety-nine percent of top-20 ranked girls achieved a professional women's ranking. Stepwise regression analysis revealed peak junior ranking and the age at which that rank was achieved to be predictors of future professional ranking (r(2) = 0.133, P < 0.05). The following regression equation showed the achievement of a top-20 junior rank as a reasonable benchmark in the development of professional women players: log-transformed predicted professional rank = -0.552 + (0.032 x junior rank + 0.116 x age at junior rank). The predominant court surface on which junior players honed their skills was also implicated in professional ranking success, with clay-court play linked to the development of higher-ranked players (P < or = 0.01).

  19. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  20. A Memory-Based Programmable Logic Device Using Look-Up Table Cascade with Synchronous Static Random Access Memories

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro

    2006-04-01

    A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).

  1. Practical Entanglement Estimation for Spin-System Quantum Simulators.

    PubMed

    Marty, O; Cramer, M; Plenio, M B

    2016-03-11

    We present practical methods to measure entanglement for quantum simulators that can be realized with trapped ions, cold atoms, and superconducting qubits. Focusing on long- and short-range Ising-type Hamiltonians, we introduce schemes that are applicable under realistic experimental conditions including mixedness due to, e.g., noise or temperature. In particular, we identify a single observable whose expectation value serves as a lower bound to entanglement and that may be obtained by a simple quantum circuit. As such circuits are not (yet) available for every platform, we investigate the performance of routinely measured observables as quantitative entanglement witnesses. Possible applications include experimental studies of entanglement scaling in critical systems and the reliable benchmarking of quantum simulators.

  2. Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks

    PubMed Central

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    SUMMARY Studies of locomotion in mice suggest that circuits controlling the alternating between left and right limbs may have a modular organization with distinct locomotor circuits being recruited at different speeds. It is not clear, however, whether such a modular organization reflects specific behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides a benchmark for studies of the neuronal control of locomotion in the full range of speeds. It provides evidence that gait expression depends upon selection of different modules of neuronal ensembles. PMID:25959968

  3. Exact Synthesis of Reversible Circuits Using A* Algorithm

    NASA Astrophysics Data System (ADS)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  4. Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu

    2018-03-01

    A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.

  5. Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.

    2018-03-01

    We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.

  6. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders.

    PubMed

    Viejo, Guillaume; Cortier, Thomas; Peyrache, Adrien

    2018-03-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains.

  7. Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders

    PubMed Central

    Cortier, Thomas; Peyrache, Adrien

    2018-01-01

    Understanding how neurons cooperate to integrate sensory inputs and guide behavior is a fundamental problem in neuroscience. A large body of methods have been developed to study neuronal firing at the single cell and population levels, generally seeking interpretability as well as predictivity. However, these methods are usually confronted with the lack of ground-truth necessary to validate the approach. Here, using neuronal data from the head-direction (HD) system, we present evidence demonstrating how gradient boosted trees, a non-linear and supervised Machine Learning tool, can learn the relationship between behavioral parameters and neuronal responses with high accuracy by optimizing the information rate. Interestingly, and unlike other classes of Machine Learning methods, the intrinsic structure of the trees can be interpreted in relation to behavior (e.g. to recover the tuning curves) or to study how neurons cooperate with their peers in the network. We show how the method, unlike linear analysis, reveals that the coordination in thalamo-cortical circuits is qualitatively the same during wakefulness and sleep, indicating a brain-state independent feed-forward circuit. Machine Learning tools thus open new avenues for benchmarking model-based characterization of spike trains. PMID:29565979

  8. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    NASA Astrophysics Data System (ADS)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  9. Mapping from multiple-control Toffoli circuits to linear nearest neighbor quantum circuits

    NASA Astrophysics Data System (ADS)

    Cheng, Xueyun; Guan, Zhijin; Ding, Weiping

    2018-07-01

    In recent years, quantum computing research has been attracting more and more attention, but few studies on the limited interaction distance between quantum bits (qubit) are deeply carried out. This paper presents a mapping method for transforming multiple-control Toffoli (MCT) circuits into linear nearest neighbor (LNN) quantum circuits instead of traditional decomposition-based methods. In order to reduce the number of inserted SWAP gates, a novel type of gate with the optimal LNN quantum realization was constructed, namely NNTS gate. The MCT gate with multiple control bits could be better cascaded by the NNTS gates, in which the arrangement of the input lines was LNN arrangement of the MCT gate. Then, the communication overhead measurement model on inserted SWAP gate count from the original arrangement to the new arrangement was put forward, and we selected one of the LNN arrangements with the minimum SWAP gate count. Moreover, the LNN arrangement-based mapping algorithm was given, and it dealt with the MCT gates in turn and mapped each MCT gate into its LNN form by inserting the minimum number of SWAP gates. Finally, some simplification rules were used, which can further reduce the final quantum cost of the LNN quantum circuit. Experiments on some benchmark MCT circuits indicate that the direct mapping algorithm results in fewer additional SWAP gates in about 50%, while the average improvement rate in quantum cost is 16.95% compared to the decomposition-based method. In addition, it has been verified that the proposed method has greater superiority for reversible circuits cascaded by MCT gates with more control bits.

  10. Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry

    PubMed Central

    Sadovsky, Alexander J.

    2013-01-01

    Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field (S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable principles of neocortical circuit design. PMID:23986241

  11. A Low Power and High Throughput Self Synchronous FPGA Using 65nm CMOS with Throughput Optimization by Pipeline Alignment

    NASA Astrophysics Data System (ADS)

    Stefan Devlin, Benjamin; Nakura, Toru; Ikeda, Makoto; Asada, Kunihiro

    We detail a self synchronous field programmable gate array (SSFPGA) with dual-pipeline (DP) architecture to conceal pre-charge time for dynamic logic, and its throughput optimization by using pipeline alignment implemented on benchmark circuits. A self synchronous LUT (SSLUT) consists of a three input tree-type structure with 8bits of SRAM for programming. A self synchronous switch box (SSSB) consists of both pass transistors and buffers to route signals, with 12bits of SRAM. One common block with one SSLUT and one SSSB occupies 2.2Mλ2 area with 35bits of SRAM, and the prototype SSFPGA with 34 × 30 (1020) blocks is designed and fabricated using 65nm CMOS. Measured results show at 1.2V 430MHz and 647MHz operation for a 3bit ripple carry adder, without and with throughput optimization, respectively. We find that using the proposed pipeline alignment techniques we can perform at maximum throughput of 647MHz in various benchmarks on the SSFPGA. We demonstrate up to 56.1 times throughput improvement with our pipeline alignment techniques. The pipeline alignment is carried out within the number of logic elements in the array and pipeline buffers in the switching matrix.

  12. Demonstration of Qubit Operations Below a Rigorous Fault Tolerance Threshold With Gate Set Tomography (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-02-15

    Maunz2 Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone...information processors have been demonstrated experimentally using superconducting circuits1–3, electrons in semiconductors4–6, trapped atoms and...qubit quantum information processor has been realized14, and single- qubit gates have demonstrated randomized benchmarking (RB) infidelities as low as 10

  13. Outage management and health physics issue, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    2009-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include the following: Planning and scheduling to minimize refueling outage, by Pat McKenna, AmerenUE; Prioritizing safety, quality and schedule, by Tom Sharkey, Dominion; Benchmarking to high standards, by Margie Jepson, Energy Nuclear; Benchmarking against U.S. standards, by Magnox North, United Kingdom; Enabling suppliers for new build activity, by Marcus Harrington, GE Hitachi Nuclear Energy; Identifying, cultivating and qualifying suppliers, by Thomas E. Silva, AREVA NP; Creating new U.S. jobs, by Francois Martineau, Areva NP. Industry innovation articles include: MSL Acoustic source load reduction, by Amirmore » Shahkarami, Exelon Nuclear; Dual Methodology NDE of CRDM nozzles, by Michael Stark, Dominion Nuclear; and Electronic circuit board testing, by James Amundsen, FirstEnergy Nuclear Operating Company. The plant profile article is titled The future is now, by Julia Milstead, Progress Energy Service Company, LLC.« less

  14. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  15. Imbalance aware lithography hotspot detection: a deep learning approach

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-07-01

    With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in complexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN) that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from a high number of false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply hotspot upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  16. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    DOE PAGES

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; ...

    2016-04-08

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO 2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rearmore » side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO 2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. Here, the short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm 2, compared to a non-reflecting black rear side and up to 0.8 mA/cm 2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm 2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.« less

  17. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.

    PubMed

    Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques

    2016-10-01

    The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.

  18. Benchmarking specialty hospitals, a scoping review on theory and practice.

    PubMed

    Wind, A; van Harten, W H

    2017-04-04

    Although benchmarking may improve hospital processes, research on this subject is limited. The aim of this study was to provide an overview of publications on benchmarking in specialty hospitals and a description of study characteristics. We searched PubMed and EMBASE for articles published in English in the last 10 years. Eligible articles described a project stating benchmarking as its objective and involving a specialty hospital or specific patient category; or those dealing with the methodology or evaluation of benchmarking. Of 1,817 articles identified in total, 24 were included in the study. Articles were categorized into: pathway benchmarking, institutional benchmarking, articles on benchmark methodology or -evaluation and benchmarking using a patient registry. There was a large degree of variability:(1) study designs were mostly descriptive and retrospective; (2) not all studies generated and showed data in sufficient detail; and (3) there was variety in whether a benchmarking model was just described or if quality improvement as a consequence of the benchmark was reported upon. Most of the studies that described a benchmark model described the use of benchmarking partners from the same industry category, sometimes from all over the world. Benchmarking seems to be more developed in eye hospitals, emergency departments and oncology specialty hospitals. Some studies showed promising improvement effects. However, the majority of the articles lacked a structured design, and did not report on benchmark outcomes. In order to evaluate the effectiveness of benchmarking to improve quality in specialty hospitals, robust and structured designs are needed including a follow up to check whether the benchmark study has led to improvements.

  19. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-08-19

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  20. Photonic simulation of entanglement growth and engineering after a spin chain quench.

    PubMed

    Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio

    2017-11-17

    The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.

  1. Novel circuit design for high-impedance and non-local electrical measurements of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio

    2018-02-01

    Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.

  2. A trust region approach with multivariate Padé model for optimal circuit design

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  3. Benchmarks--Standards Comparisons. Math Competencies: EFF Benchmarks Comparison [and] Reading Competencies: EFF Benchmarks Comparison [and] Writing Competencies: EFF Benchmarks Comparison.

    ERIC Educational Resources Information Center

    Kent State Univ., OH. Ohio Literacy Resource Center.

    This document is intended to show the relationship between Ohio's Standards and Competencies, Equipped for the Future's (EFF's) Standards and Components of Performance, and Ohio's Revised Benchmarks. The document is divided into three parts, with Part 1 covering mathematics instruction, Part 2 covering reading instruction, and Part 3 covering…

  4. Benchmarking Using Basic DBMS Operations

    NASA Astrophysics Data System (ADS)

    Crolotte, Alain; Ghazal, Ahmad

    The TPC-H benchmark proved to be successful in the decision support area. Many commercial database vendors and their related hardware vendors used these benchmarks to show the superiority and competitive edge of their products. However, over time, the TPC-H became less representative of industry trends as vendors keep tuning their database to this benchmark-specific workload. In this paper, we present XMarq, a simple benchmark framework that can be used to compare various software/hardware combinations. Our benchmark model is currently composed of 25 queries that measure the performance of basic operations such as scans, aggregations, joins and index access. This benchmark model is based on the TPC-H data model due to its maturity and well-understood data generation capability. We also propose metrics to evaluate single-system performance and compare two systems. Finally we illustrate the effectiveness of this model by showing experimental results comparing two systems under different conditions.

  5. Benchmarking for Higher Education.

    ERIC Educational Resources Information Center

    Jackson, Norman, Ed.; Lund, Helen, Ed.

    The chapters in this collection explore the concept of benchmarking as it is being used and developed in higher education (HE). Case studies and reviews show how universities in the United Kingdom are using benchmarking to aid in self-regulation and self-improvement. The chapters are: (1) "Introduction to Benchmarking" (Norman Jackson…

  6. Energy awareness for supercapacitors using Kalman filter state-of-charge tracking

    NASA Astrophysics Data System (ADS)

    Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga

    2015-11-01

    Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.

  7. A novel productivity-driven logic element for field-programmable devices

    NASA Astrophysics Data System (ADS)

    Marconi, Thomas; Bertels, Koen; Gaydadjiev, Georgi

    2014-06-01

    Although various techniques have been proposed for power reduction in field-programmable devices (FPDs), they are still all based on conventional logic elements (LEs). In the conventional LE, the output of the combinational logic (e.g. the look-up table (LUT) in many field-programmable gate arrays (FPGAs)) is connected to the input of the storage element; while the D flip-flop (DFF) is always clocked even when not necessary. Such unnecessary transitions waste power. To address this problem, we propose a novel productivity-driven LE with reduced number of transitions. The differences between our LE and the conventional LE are in the FFs-type used and the internal LE organisation. In our LEs, DFFs have been replaced by T flip-flops with the T input permanently connected to logic value 1. Instead of connecting the output of the combinational logic to the FF input, we use it as the FF clock. The proposed LE has been validated via Simulation Program with Integrated Circuit Emphasis (SPICE) simulations for a 45-nm Complementary Metal-Oxide-Semiconductor (CMOS) technology as well as via a real Computer-Aided Design (CAD) tools on a real FPGA using the standard Microelectronic Center of North Carolina (MCNC) benchmark circuits. The experimental results show that FPDs using our proposal not only have 48% lower total power but also run 17% faster than conventional FPDs on average.

  8. Benchmarking electrophysiological models of human atrial myocytes

    PubMed Central

    Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar

    2013-01-01

    Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167

  9. Benchmark solution for the Spencer-Lewis equation of electron transport theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.D.

    As integrated circuits become smaller, the shielding of these sensitive components against penetrating electrons becomes extremely critical. Monte Carlo methods have traditionally been the method of choice in shielding evaluations primarily because they can incorporate a wide variety of relevant physical processes. Recently, however, as a result of a more accurate numerical representation of the highly forward peaked scattering process, S/sub n/ methods for one-dimensional problems have been shown to be at least as cost-effective in comparison with Monte Carlo methods. With the development of these deterministic methods for electron transport, a need has arisen to assess the accuracy ofmore » proposed numerical algorithms and to ensure their proper coding. It is the purpose of this presentation to develop a benchmark to the Spencer-Lewis equation describing the transport of energetic electrons in solids. The solution will take advantage of the correspondence between the Spencer-Lewis equation and the transport equation describing one-group time-dependent neutron transport.« less

  10. Measuring How Benchmark Assessments Affect Student Achievement. Issues & Answers. REL 2007-No. 039

    ERIC Educational Resources Information Center

    Henderson, Susan; Petrosino, Anthony; Guckenburg, Sarah; Hamilton, Stephen

    2007-01-01

    This report examines a Massachusetts pilot program for quarterly benchmark exams in middle-school mathematics, finding that program schools do not show greater gains in student achievement after a year. But that finding might reflect limited data rather than ineffective benchmark assessments. Benchmark assessments are used in many districts…

  11. An improved equivalent circuit model of a four rod deflecting cavity

    NASA Astrophysics Data System (ADS)

    Apsimon, R.; Burt, G.

    2017-03-01

    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.

  12. Experimental study of the robust global synchronization of Brockett oscillators

    NASA Astrophysics Data System (ADS)

    Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis

    2017-12-01

    This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

  13. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    NASA Astrophysics Data System (ADS)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  14. Energy efficiency of task allocation for embedded JPEG systems.

    PubMed

    Fan, Yang-Hsin; Wu, Jan-Ou; Wang, San-Fu

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.

  15. Energy Efficiency of Task Allocation for Embedded JPEG Systems

    PubMed Central

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin. PMID:24982983

  16. Using benchmarking techniques and the 2011 maternity practices infant nutrition and care (mPINC) survey to improve performance among peer groups across the United States.

    PubMed

    Edwards, Roger A; Dee, Deborah; Umer, Amna; Perrine, Cria G; Shealy, Katherine R; Grummer-Strawn, Laurence M

    2014-02-01

    A substantial proportion of US maternity care facilities engage in practices that are not evidence-based and that interfere with breastfeeding. The CDC Survey of Maternity Practices in Infant Nutrition and Care (mPINC) showed significant variation in maternity practices among US states. The purpose of this article is to use benchmarking techniques to identify states within relevant peer groups that were top performers on mPINC survey indicators related to breastfeeding support. We used 11 indicators of breastfeeding-related maternity care from the 2011 mPINC survey and benchmarking techniques to organize and compare hospital-based maternity practices across the 50 states and Washington, DC. We created peer categories for benchmarking first by region (grouping states by West, Midwest, South, and Northeast) and then by size (grouping states by the number of maternity facilities and dividing each region into approximately equal halves based on the number of facilities). Thirty-four states had scores high enough to serve as benchmarks, and 32 states had scores low enough to reflect the lowest score gap from the benchmark on at least 1 indicator. No state served as the benchmark on more than 5 indicators and no state was furthest from the benchmark on more than 7 indicators. The small peer group benchmarks in the South, West, and Midwest were better than the large peer group benchmarks on 91%, 82%, and 36% of the indicators, respectively. In the West large, the Midwest large, the Midwest small, and the South large peer groups, 4-6 benchmarks showed that less than 50% of hospitals have ideal practice in all states. The evaluation presents benchmarks for peer group state comparisons that provide potential and feasible targets for improvement.

  17. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Santhanagopalan, S.; Sprague, M. A.

    2016-07-28

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  18. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  19. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

    PubMed Central

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  20. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  1. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  2. Imbalance aware lithography hotspot detection: a deep learning approach

    NASA Astrophysics Data System (ADS)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-03-01

    With the advancement of VLSI technology nodes, light diffraction caused lithographic hotspots have become a serious problem affecting manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with extreme scaling of transistor feature size and more and more complicated layout patterns, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. In this paper, we present a deep convolutional neural network (CNN) targeting representative feature learning in lithography hotspot detection. We carefully analyze impact and effectiveness of different CNN hyper-parameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always minorities in VLSI mask design, the training data set is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from high false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply minority upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves highly comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  3. How to achieve and prove performance improvement - 15 years of experience in German wastewater benchmarking.

    PubMed

    Bertzbach, F; Franz, T; Möller, K

    2012-01-01

    This paper shows the results of performance improvement, which have been achieved in benchmarking projects in the wastewater industry in Germany over the last 15 years. A huge number of changes in operational practice and also in achieved annual savings can be shown, induced in particular by benchmarking at process level. Investigation of this question produces some general findings for the inclusion of performance improvement in a benchmarking project and for the communication of its results. Thus, we elaborate on the concept of benchmarking at both utility and process level, which is still a necessary distinction for the integration of performance improvement into our benchmarking approach. To achieve performance improvement via benchmarking it should be made quite clear that this outcome depends, on one hand, on a well conducted benchmarking programme and, on the other, on the individual situation within each participating utility.

  4. Implementation and validation of a conceptual benchmarking framework for patient blood management.

    PubMed

    Kastner, Peter; Breznik, Nada; Gombotz, Hans; Hofmann, Axel; Schreier, Günter

    2015-01-01

    Public health authorities and healthcare professionals are obliged to ensure high quality health service. Because of the high variability of the utilisation of blood and blood components, benchmarking is indicated in transfusion medicine. Implementation and validation of a benchmarking framework for Patient Blood Management (PBM) based on the report from the second Austrian Benchmark trial. Core modules for automatic report generation have been implemented with KNIME (Konstanz Information Miner) and validated by comparing the output with the results of the second Austrian benchmark trial. Delta analysis shows a deviation <0.1% for 95% (max. 1.4%). The framework provides a reliable tool for PBM benchmarking. The next step is technical integration with hospital information systems.

  5. Using Benchmarking Techniques and the 2011 Maternity Practices Infant Nutrition and Care (mPINC) Survey to Improve Performance among Peer Groups across the United States

    PubMed Central

    Edwards, Roger A.; Dee, Deborah; Umer, Amna; Perrine, Cria G.; Shealy, Katherine R.; Grummer-Strawn, Laurence M.

    2015-01-01

    Background A substantial proportion of US maternity care facilities engage in practices that are not evidence-based and that interfere with breastfeeding. The CDC Survey of Maternity Practices in Infant Nutrition and Care (mPINC) showed significant variation in maternity practices among US states. Objective The purpose of this article is to use benchmarking techniques to identify states within relevant peer groups that were top performers on mPINC survey indicators related to breastfeeding support. Methods We used 11 indicators of breastfeeding-related maternity care from the 2011 mPINC survey and benchmarking techniques to organize and compare hospital-based maternity practices across the 50 states and Washington, DC. We created peer categories for benchmarking first by region (grouping states by West, Midwest, South, and Northeast) and then by size (grouping states by the number of maternity facilities and dividing each region into approximately equal halves based on the number of facilities). Results Thirty-four states had scores high enough to serve as benchmarks, and 32 states had scores low enough to reflect the lowest score gap from the benchmark on at least 1 indicator. No state served as the benchmark on more than 5 indicators and no state was furthest from the benchmark on more than 7 indicators. The small peer group benchmarks in the South, West, and Midwest were better than the large peer group benchmarks on 91%, 82%, and 36% of the indicators, respectively. In the West large, the Midwest large, the Midwest small, and the South large peer groups, 4–6 benchmarks showed that less than 50% of hospitals have ideal practice in all states. Conclusion The evaluation presents benchmarks for peer group state comparisons that provide potential and feasible targets for improvement. PMID:24394963

  6. Toward the 5nm technology: layout optimization and performance benchmark for logic/SRAMs using lateral and vertical GAA FETs

    NASA Astrophysics Data System (ADS)

    Huynh-Bao, Trong; Ryckaert, Julien; Sakhare, Sushil; Mercha, Abdelkarim; Verkest, Diederik; Thean, Aaron; Wambacq, Piet

    2016-03-01

    In this paper, we present a layout and performance analysis of logic and SRAM circuits for vertical and lateral GAA FETs using 5nm (iN5) design rules. Extreme ultra-violet lithography (EUVL) processes are exploited to print the critical features: 32 nm gate pitch and 24 nm metal pitch. Layout architectures and patterning compromises for enabling the 5nm node will be discussed in details. A distinct standard-cell template for vertical FETs is proposed and elaborated for the first time. To assess electrical performances, a BSIM-CMG model has been developed and calibrated with TCAD simulations, which accounts for the quasi-ballistic transport in the nanowire channel. The results show that the inbound power rail layout construct for vertical devices could achieve the highest density while the interleaving diffusion template can maximize the port accessibility. By using a representative critical path circuit of a generic low power SoCs, it is shown that the VFET-based circuit is 40% more energy efficient than LFET designs at iso-performance. Regarding SRAMs, benefits given by vertical channel orientation in VFETs has reduced the SRAM area by 20%~30% compared to lateral SRAMs. A double exposures with EUV canner is needed to reach a minimum tip-to-tip (T2T) of 16 nm for middle-of-line (MOL) layers. To enable HD SRAMs with two metal layers, a fully self-aligned gate contact for LFETs and 2D routing of the top electrode for VFETs are required. The standby leakage of vertical SRAMs is 4~6X lower than LFET-based SRAMs at iso-performance and iso-area. The minimum operating voltage (Vmin) of vertical SRAMs is 170 mV lower than lateral SRAMs. A high-density SRAM bitcell of 0.014 um2 can be obtained for the iN5 technology node, which fully follows the SRAM scaling trend for the 45nm nodes and beyond.

  7. Issues in Benchmark Metric Selection

    NASA Astrophysics Data System (ADS)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  8. Transistor analogs of emergent iono-neuronal dynamics.

    PubMed

    Rachmuth, Guy; Poon, Chi-Sang

    2008-06-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications.

  9. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  10. Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    PubMed Central

    Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant

    2016-01-01

    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876

  11. Teaching Benchmark Strategy for Fifth-Graders in Taiwan

    ERIC Educational Resources Information Center

    Yang, Der-Ching; Lai, M. L.

    2013-01-01

    The key purpose of this study was how we taught the use of benchmark strategy when comparing fraction for fifth-graders in Taiwan. 26 fifth graders from a public elementary in south Taiwan were selected to join this study. Results of this case study showed that students had a much progress on the use of benchmark strategy when comparing fraction…

  12. Developing and Trialling an independent, scalable and repeatable IT-benchmarking procedure for healthcare organisations.

    PubMed

    Liebe, J D; Hübner, U

    2013-01-01

    Continuous improvements of IT-performance in healthcare organisations require actionable performance indicators, regularly conducted, independent measurements and meaningful and scalable reference groups. Existing IT-benchmarking initiatives have focussed on the development of reliable and valid indicators, but less on the questions about how to implement an environment for conducting easily repeatable and scalable IT-benchmarks. This study aims at developing and trialling a procedure that meets the afore-mentioned requirements. We chose a well established, regularly conducted (inter-) national IT-survey of healthcare organisations (IT-Report Healthcare) as the environment and offered the participants of the 2011 survey (CIOs of hospitals) to enter a benchmark. The 61 structural and functional performance indicators covered among others the implementation status and integration of IT-systems and functions, global user satisfaction and the resources of the IT-department. Healthcare organisations were grouped by size and ownership. The benchmark results were made available electronically and feedback on the use of these results was requested after several months. Fifty-ninehospitals participated in the benchmarking. Reference groups consisted of up to 141 members depending on the number of beds (size) and the ownership (public vs. private). A total of 122 charts showing single indicator frequency views were sent to each participant. The evaluation showed that 94.1% of the CIOs who participated in the evaluation considered this benchmarking beneficial and reported that they would enter again. Based on the feedback of the participants we developed two additional views that provide a more consolidated picture. The results demonstrate that establishing an independent, easily repeatable and scalable IT-benchmarking procedure is possible and was deemed desirable. Based on these encouraging results a new benchmarking round which includes process indicators is currently conducted.

  13. [Benchmarking of university trauma centers in Germany. Research and teaching].

    PubMed

    Gebhard, F; Raschke, M; Ruchholtz, S; Meffert, R; Marzi, I; Pohlemann, T; Südkamp, N; Josten, C; Zwipp, H

    2011-07-01

    Benchmarking is a very popular business process and meanwhile is used in research as well. The aim of the present study is to elucidate key numbers of German university trauma departments regarding research and teaching. The data set is based upon the monthly reports given by the administration in each university. As a result the study shows that only well-known parameters such as fund-raising and impact factors can be used to benchmark university-based trauma centers. The German federal system does not allow a nationwide benchmarking.

  14. Benchmarking biology research organizations using a new, dedicated tool.

    PubMed

    van Harten, Willem H; van Bokhorst, Leonard; van Luenen, Henri G A M

    2010-02-01

    International competition forces fundamental research organizations to assess their relative performance. We present a benchmark tool for scientific research organizations where, contrary to existing models, the group leader is placed in a central position within the organization. We used it in a pilot benchmark study involving six research institutions. Our study shows that data collection and data comparison based on this new tool can be achieved. It proved possible to compare relative performance and organizational characteristics and to generate suggestions for improvement for most participants. However, strict definitions of the parameters used for the benchmark and a thorough insight into the organization of each of the benchmark partners is required to produce comparable data and draw firm conclusions.

  15. Targeting the affordability of cigarettes: a new benchmark for taxation policy in low-income and-middle-income countries.

    PubMed

    Blecher, Evan

    2010-08-01

    To investigate the appropriateness of tax incidence (the percentage of the retail price occupied by taxes) benchmarking in low-income and-middle-income countries (LMICs) with rapidly growing economies and to explore the viability of an alternative tax policy rule based on the affordability of cigarettes. The paper outlines criticisms of tax incidence benchmarking, particularly in the context of LMICs. It then considers an affordability-based benchmark using relative income price (RIP) as a measure of affordability. The RIP measures the percentage of annual per capita GDP required to purchase 100 packs of cigarettes. Using South Africa as a case study of an LMIC, future consumption is simulated using both tax incidence benchmarks and affordability benchmarks. I show that a tax incidence benchmark is not an optimal policy tool in South Africa and that an affordability benchmark could be a more effective means of reducing tobacco consumption in the future. Although a tax incidence benchmark was successful in increasing prices and reducing tobacco consumption in South Africa in the past, this approach has drawbacks, particularly in the context of a rapidly growing LMIC economy. An affordability benchmark represents an appropriate alternative that would be more effective in reducing future cigarette consumption.

  16. Validation of tsunami inundation model TUNA-RP using OAR-PMEL-135 benchmark problem set

    NASA Astrophysics Data System (ADS)

    Koh, H. L.; Teh, S. Y.; Tan, W. K.; Kh'ng, X. Y.

    2017-05-01

    A standard set of benchmark problems, known as OAR-PMEL-135, is developed by the US National Tsunami Hazard Mitigation Program for tsunami inundation model validation. Any tsunami inundation model must be tested for its accuracy and capability using this standard set of benchmark problems before it can be gainfully used for inundation simulation. The authors have previously developed an in-house tsunami inundation model known as TUNA-RP. This inundation model solves the two-dimensional nonlinear shallow water equations coupled with a wet-dry moving boundary algorithm. This paper presents the validation of TUNA-RP against the solutions provided in the OAR-PMEL-135 benchmark problem set. This benchmark validation testing shows that TUNA-RP can indeed perform inundation simulation with accuracy consistent with that in the tested benchmark problem set.

  17. GeNN: a code generation framework for accelerated brain simulations

    NASA Astrophysics Data System (ADS)

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  18. GeNN: a code generation framework for accelerated brain simulations.

    PubMed

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-07

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  19. GeNN: a code generation framework for accelerated brain simulations

    PubMed Central

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369

  20. The Physics of Decision Making:. Stochastic Differential Equations as Models for Neural Dynamics and Evidence Accumulation in Cortical Circuits

    NASA Astrophysics Data System (ADS)

    Holmes, Philip; Eckhoff, Philip; Wong-Lin, K. F.; Bogacz, Rafal; Zacksenhouse, Miriam; Cohen, Jonathan D.

    2010-03-01

    We describe how drift-diffusion (DD) processes - systems familiar in physics - can be used to model evidence accumulation and decision-making in two-alternative, forced choice tasks. We sketch the derivation of these stochastic differential equations from biophysically-detailed models of spiking neurons. DD processes are also continuum limits of the sequential probability ratio test and are therefore optimal in the sense that they deliver decisions of specified accuracy in the shortest possible time. This leaves open the critical balance of accuracy and speed. Using the DD model, we derive a speed-accuracy tradeoff that optimizes reward rate for a simple perceptual decision task, compare human performance with this benchmark, and discuss possible reasons for prevalent sub-optimality, focussing on the question of uncertain estimates of key parameters. We present an alternative theory of robust decisions that allows for uncertainty, and show that its predictions provide better fits to experimental data than a more prevalent account that emphasises a commitment to accuracy. The article illustrates how mathematical models can illuminate the neural basis of cognitive processes.

  1. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  2. A microarchitecture for resource-limited superscalar microprocessors

    NASA Astrophysics Data System (ADS)

    Basso, Todd David

    1999-11-01

    Microelectronic components in space and satellite systems must be resistant to total dose radiation, single-even upset, and latchup in order to accomplish their missions. The demand for inexpensive, high-volume, radiation hardened (rad-hard) integrated circuits (ICs) is expected to increase dramatically as the communication market continues to expand. Motorola's Complementary Gallium Arsenide (CGaAsTM) technology offers superior radiation tolerance compared to traditional CMOS processes, while being more economical than dedicated rad-hard CMOS processes. The goals of this dissertation are to optimize a superscalar microarchitecture suitable for CGaAsTM microprocessors, develop circuit techniques for such applications, and evaluate the potential of CGaAsTM for the development of digital VLSI circuits. Motorola's 0.5 mum CGaAsTM process is summarized and circuit techniques applicable to digital CGaAsTM are developed. Direct coupled FET, complementary, and domino logic circuits are compared based on speed, power, area, and noise margins. These circuit techniques are employed in the design of a 600 MHz PowerPCTM arithmetic logic unit. The dissertation emphasizes CGaASTM-specific design considerations, specifically, low integration level. A baseline superscalar microarchitecture is defined and SPEC95 integer benchmark simulations are used to evaluate the applicability of advanced architectural features to microprocessors having low integration levels. The performance simulations center around the optimization of a simple superscalar core, small-scale branch prediction, instruction prefetching, and an off-chip primary data cache. The simulation results are used to develop a superscalar microarchitecture capable of outperforming a comparable sequential pipeline, while using only 500,000 transistors. The architecture, running at 200 MHz, is capable of achieving an estimated 153 MIPS, translating to a 27% performance increase over a comparable traditional pipelined microprocessor. The proposed microarchitecture is process independent and can be applied to low-cost, or transistor-limited applications. The proposed microarchitecture is implemented in the design of a 0.35 mum CMOS microprocessor, and the design of a 0.5 mum CGaAsTM micro-processor. The two technologies and designs are compared to ascertain the state of CGaAsTM for digital VLSI applications.

  3. Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells

    PubMed Central

    Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-01-01

    Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266

  4. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    PubMed

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  5. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

  6. OWL2 benchmarking for the evaluation of knowledge based systems.

    PubMed

    Khan, Sher Afgun; Qadir, Muhammad Abdul; Abbas, Muhammad Azeem; Afzal, Muhammad Tanvir

    2017-01-01

    OWL2 semantics are becoming increasingly popular for the real domain applications like Gene engineering and health MIS. The present work identifies the research gap that negligible attention has been paid to the performance evaluation of Knowledge Base Systems (KBS) using OWL2 semantics. To fulfil this identified research gap, an OWL2 benchmark for the evaluation of KBS is proposed. The proposed benchmark addresses the foundational blocks of an ontology benchmark i.e. data schema, workload and performance metrics. The proposed benchmark is tested on memory based, file based, relational database and graph based KBS for performance and scalability measures. The results show that the proposed benchmark is able to evaluate the behaviour of different state of the art KBS on OWL2 semantics. On the basis of the results, the end users (i.e. domain expert) would be able to select a suitable KBS appropriate for his domain.

  7. A new numerical benchmark of a freshwater lens

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Walther, M.; Graf, T.

    2016-04-01

    A numerical benchmark for 2-D variable-density flow and solute transport in a freshwater lens is presented. The benchmark is based on results of laboratory experiments conducted by Stoeckl and Houben (2012) using a sand tank on the meter scale. This benchmark describes the formation and degradation of a freshwater lens over time as it can be found under real-world islands. An error analysis gave the appropriate spatial and temporal discretization of 1 mm and 8.64 s, respectively. The calibrated parameter set was obtained using the parameter estimation tool PEST. Comparing density-coupled and density-uncoupled results showed that the freshwater-saltwater interface position is strongly dependent on density differences. A benchmark that adequately represents saltwater intrusion and that includes realistic features of coastal aquifers or freshwater lenses was lacking. This new benchmark was thus developed and is demonstrated to be suitable to test variable-density groundwater models applied to saltwater intrusion investigations.

  8. Groundwater-quality data in the North San Francisco Bay Shallow Aquifer study unit, 2012: results from the California GAMA Program

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Results for constituents with non-regulatory benchmarks set for aesthetic concerns from the grid wells showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in 13 grid wells. Chloride was detected at a concentration greater than the SMCL-CA recommended benchmark of 250 mg/L in two grid wells. Sulfate concentrations greater than the SMCL-CA recommended benchmark of 250 mg/L were measured in two grid wells, and the concentration in one of these wells was also greater than the SMCL-CA upper benchmark of 500 mg/L. TDS concentrations greater than the SMCL-CA recommended benchmark of 500 mg/L were measured in 15 grid wells, and concentrations in 4 of these wells were also greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  9. High-Accuracy Finite Element Method: Benchmark Calculations

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel

    2018-02-01

    We describe a new high-accuracy finite element scheme with simplex elements for solving the elliptic boundary-value problems and show its efficiency on benchmark solutions of the Helmholtz equation for the triangle membrane and hypercube.

  10. Benchmarking, benchmarks, or best practices? Applying quality improvement principles to decrease surgical turnaround time.

    PubMed

    Mitchell, L

    1996-01-01

    The processes of benchmarking, benchmark data comparative analysis, and study of best practices are distinctly different. The study of best practices is explained with an example based on the Arthur Andersen & Co. 1992 "Study of Best Practices in Ambulatory Surgery". The results of a national best practices study in ambulatory surgery were used to provide our quality improvement team with the goal of improving the turnaround time between surgical cases. The team used a seven-step quality improvement problem-solving process to improve the surgical turnaround time. The national benchmark for turnaround times between surgical cases in 1992 was 13.5 minutes. The initial turnaround time at St. Joseph's Medical Center was 19.9 minutes. After the team implemented solutions, the time was reduced to an average of 16.3 minutes, an 18% improvement. Cost-benefit analysis showed a potential enhanced revenue of approximately $300,000, or a potential savings of $10,119. Applying quality improvement principles to benchmarking, benchmarks, or best practices can improve process performance. Understanding which form of benchmarking the institution wishes to embark on will help focus a team and use appropriate resources. Communicating with professional organizations that have experience in benchmarking will save time and money and help achieve the desired results.

  11. Quantum mechanical settings inspired by RLC circuits

    NASA Astrophysics Data System (ADS)

    Alicata, G.; Bagarello, F.; Gargano, F.; Spagnolo, S.

    2018-04-01

    In some recent papers, several authors used electronic circuits to construct loss and gain systems. This is particularly interesting in the context of PT-quantum mechanics, where this kind of effects appears quite naturally. The electronic circuits used so far are simple, but not so much. Surprisingly enough, a rather trivial RLC circuit can be analyzed with the same perspective and it produces a variety of unexpected results, both from a mathematical and on a physical side. In this paper, we show that this circuit produces two biorthogonal bases associated with the Liouville matrix L used in the treatment of its dynamics, with a biorthogonality which is linked to the value of the parameters of the circuit. We also show that the related loss RLC circuit is naturally associated with a gain RLC circuit and that the relation between the two is rather naturally encoded in L . We propose a pseudo-fermionic analysis of the circuit, and we introduce the notion of m-equivalence between electronic circuits.

  12. Modeling and simulation of biological systems using SPICE language

    PubMed Central

    Lallement, Christophe; Haiech, Jacques

    2017-01-01

    The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems), an extension of the famous Simulation Program with Integrated Circuit Emphasis (SPICE). BB-SPICE environment is composed of three modules: a new textual and compact description formalism for biological systems, a converter that handles this description and generates the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source SPICE simulator. In addition, the environment provides back and forth interfaces with SBML (System Biology Markup Language), a very common description language used in systems biology. BB-SPICE has been developed in order to bridge the gap between the simulation of biological systems on the one hand and electronics circuits on the other hand. Thus, it is suitable for applications at the interface between both domains, such as development of design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software used for the simulation of biochemical systems) have been compared on a benchmark of models commonly used in systems biology. Results are in accordance from a quantitative viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the computation time. Moreover, as our software is based on NGSPICE, it could take profit of incoming updates such as the GPU implementation, of the coupling with powerful analysis and verification tools or of the integration in design automation tools (synthetic biology). PMID:28787027

  13. Clomp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gylenhaal, J.; Bronevetsky, G.

    2007-05-25

    CLOMP is the C version of the Livermore OpenMP benchmark deeloped to measure OpenMP overheads and other performance impacts due to threading (like NUMA memory layouts, memory contention, cache effects, etc.) in order to influence future system design. Current best-in-class implementations of OpenMP have overheads at least ten times larger than is required by many of our applications for effective use of OpenMP. This benchmark shows the significant negative performance impact of these relatively large overheads and of other thread effects. The CLOMP benchmark highly configurable to allow a variety of problem sizes and threading effects to be studied andmore » it carefully checks its results to catch many common threading errors. This benchmark is expected to be included as part of the Sequoia Benchmark suite for the Sequoia procurement.« less

  14. MoMaS reactive transport benchmark using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  15. Test One to Test Many: A Unified Approach to Quantum Benchmarks

    NASA Astrophysics Data System (ADS)

    Bai, Ge; Chiribella, Giulio

    2018-04-01

    Quantum benchmarks are routinely used to validate the experimental demonstration of quantum information protocols. Many relevant protocols, however, involve an infinite set of input states, of which only a finite subset can be used to test the quality of the implementation. This is a problem, because the benchmark for the finitely many states used in the test can be higher than the original benchmark calculated for infinitely many states. This situation arises in the teleportation and storage of coherent states, for which the benchmark of 50% fidelity is commonly used in experiments, although finite sets of coherent states normally lead to higher benchmarks. Here, we show that the average fidelity over all coherent states can be indirectly probed with a single setup, requiring only two-mode squeezing, a 50-50 beam splitter, and homodyne detection. Our setup enables a rigorous experimental validation of quantum teleportation, storage, amplification, attenuation, and purification of noisy coherent states. More generally, we prove that every quantum benchmark can be tested by preparing a single entangled state and measuring a single observable.

  16. Orthogonality and Burdens of Heterologous AND Gate Gene Circuits in E. coli

    PubMed Central

    2017-01-01

    Synthetic biology approaches commonly introduce heterologous gene networks into a host to predictably program cells, with the expectation of the synthetic network being orthogonal to the host background. However, introduced circuits may interfere with the host’s physiology, either indirectly by posing a metabolic burden and/or through unintended direct interactions between parts of the circuit with those of the host, affecting functionality. Here we used RNA-Seq transcriptome analysis to quantify the interactions between a representative heterologous AND gate circuit and the host Escherichia coli under various conditions including circuit designs and plasmid copy numbers. We show that the circuit plasmid copy number outweighs circuit composition for their effect on host gene expression with medium-copy number plasmid showing more prominent interference than its low-copy number counterpart. In contrast, the circuits have a stronger influence on the host growth with a metabolic load increasing with the copy number of the circuits. Notably, we show that variation of copy number, an increase from low to medium copy, caused different types of change observed in the behavior of components in the AND gate circuit leading to the unbalance of the two gate-inputs and thus counterintuitive output attenuation. The study demonstrates the circuit plasmid copy number is a key factor that can dramatically affect the orthogonality, burden and functionality of the heterologous circuits in the host chassis. The results provide important guidance for future efforts to design orthogonal and robust gene circuits with minimal unwanted interaction and burden to their host. PMID:29240998

  17. Hospital benchmarking: are U.S. eye hospitals ready?

    PubMed

    de Korne, Dirk F; van Wijngaarden, Jeroen D H; Sol, Kees J C A; Betz, Robert; Thomas, Richard C; Schein, Oliver D; Klazinga, Niek S

    2012-01-01

    Benchmarking is increasingly considered a useful management instrument to improve quality in health care, but little is known about its applicability in hospital settings. The aims of this study were to assess the applicability of a benchmarking project in U.S. eye hospitals and compare the results with an international initiative. We evaluated multiple cases by applying an evaluation frame abstracted from the literature to five U.S. eye hospitals that used a set of 10 indicators for efficiency benchmarking. Qualitative analysis entailed 46 semistructured face-to-face interviews with stakeholders, document analyses, and questionnaires. The case studies only partially met the conditions of the evaluation frame. Although learning and quality improvement were stated as overall purposes, the benchmarking initiative was at first focused on efficiency only. No ophthalmic outcomes were included, and clinicians were skeptical about their reporting relevance and disclosure. However, in contrast with earlier findings in international eye hospitals, all U.S. hospitals worked with internal indicators that were integrated in their performance management systems and supported benchmarking. Benchmarking can support performance management in individual hospitals. Having a certain number of comparable institutes provide similar services in a noncompetitive milieu seems to lay fertile ground for benchmarking. International benchmarking is useful only when these conditions are not met nationally. Although the literature focuses on static conditions for effective benchmarking, our case studies show that it is a highly iterative and learning process. The journey of benchmarking seems to be more important than the destination. Improving patient value (health outcomes per unit of cost) requires, however, an integrative perspective where clinicians and administrators closely cooperate on both quality and efficiency issues. If these worlds do not share such a relationship, the added "public" value of benchmarking in health care is questionable.

  18. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  19. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  20. Data Race Benchmark Collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Chunhua; Lin, Pei-Hung; Asplund, Joshua

    2017-03-21

    This project is a benchmark suite of Open-MP parallel codes that have been checked for data races. The programs are marked to show which do and do not have races. This allows them to be leveraged while testing and developing race detection tools.

  1. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  2. Characterizing quantum supremacy in near-term devices

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut

    2018-06-01

    A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.

  3. A Seafloor Benchmark for 3-dimensional Geodesy

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone. Using a ROV to place and remove sensors on the benchmarks will significantly reduce the number of sensors required by the community to monitor offshore strain in subduction zones.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J; Dossa, D; Gokhale, M

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe:more » (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows: SuperMicro X7DBE Xeon Dual Socket Blackford Server Motherboard; 2 Intel Xeon Dual-Core 2.66 GHz processors; 1 GB DDR2 PC2-5300 RAM (2 x 512); 80GB Hard Drive (Seagate SATA II Barracuda). The Fusion board is presently capable of 4X in a PCIe slot. The image resampling benchmark was run on a dual Xeon workstation with NVIDIA graphics card (see Chapter 5 for full specification). An XtremeData Opteron+FPGA was used for the language classification application. We observed that these benchmarks are not uniformly I/O intensive. The only benchmark that showed greater that 50% of the time in I/O was the graph algorithm when it accessed data files over NFS. When local disk was used, the graph benchmark spent at most 40% of its time in I/O. The other benchmarks were CPU dominated. The image resampling benchmark and language classification showed order of magnitude speedup over software by using co-processor technology to offload the CPU-intensive kernels. Our experiments to date suggest that emerging hardware technologies offer significant benefit to boosting the performance of data-intensive algorithms. Using GPU and FPGA co-processors, we were able to improve performance by more than an order of magnitude on the benchmark algorithms, eliminating the processor bottleneck of CPU-bound tasks. Experiments with a prototype solid state nonvolative memory available today show 10X better throughput on random reads than disk, with a 2X speedup on a graph processing benchmark when compared to the use of local SATA disk.« less

  5. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics of sediment, and uncertainty in TEB values. Additional evaluations of benchmarks in relation to sediment chemistry and toxicity are ongoing.

  6. Access to a simulator is not enough: the benefits of virtual reality training based on peer-group-derived benchmarks--a randomized controlled trial.

    PubMed

    von Websky, Martin W; Raptis, Dimitri A; Vitz, Martina; Rosenthal, Rachel; Clavien, P A; Hahnloser, Dieter

    2013-11-01

    Virtual reality (VR) simulators are widely used to familiarize surgical novices with laparoscopy, but VR training methods differ in efficacy. In the present trial, self-controlled basic VR training (SC-training) was tested against training based on peer-group-derived benchmarks (PGD-training). First, novice laparoscopic residents were randomized into a SC group (n = 34), and a group using PGD-benchmarks (n = 34) for basic laparoscopic training. After completing basic training, both groups performed 60 VR laparoscopic cholecystectomies for performance analysis. Primary endpoints were simulator metrics; secondary endpoints were program adherence, trainee motivation, and training efficacy. Altogether, 66 residents completed basic training, and 3,837 of 3,960 (96.8 %) cholecystectomies were available for analysis. Course adherence was good, with only two dropouts, both in the SC-group. The PGD-group spent more time and repetitions in basic training until the benchmarks were reached and subsequently showed better performance in the readout cholecystectomies: Median time (gallbladder extraction) showed significant differences of 520 s (IQR 354-738 s) in SC-training versus 390 s (IQR 278-536 s) in the PGD-group (p < 0.001) and 215 s (IQR 175-276 s) in experts, respectively. Path length of the right instrument also showed significant differences, again with the PGD-training group being more efficient. Basic VR laparoscopic training based on PGD benchmarks with external assessment is superior to SC training, resulting in higher trainee motivation and better performance in simulated laparoscopic cholecystectomies. We recommend such a basic course based on PGD benchmarks before advancing to more elaborate VR training.

  7. A review on the benchmarking concept in Malaysian construction safety performance

    NASA Astrophysics Data System (ADS)

    Ishak, Nurfadzillah; Azizan, Muhammad Azizi

    2018-02-01

    Construction industry is one of the major industries that propels Malaysia's economy in highly contributes to our nation's GDP growth, yet the high fatality rates on construction sites have caused concern among safety practitioners and the stakeholders. Hence, there is a need of benchmarking in performance of Malaysia's construction industry especially in terms of safety. This concept can create a fertile ground for ideas, but only in a receptive environment, organization that share good practices and compare their safety performance against other benefit most to establish improvement in safety culture. This research was conducted to study the awareness important, evaluate current practice and improvement, and also identify the constraint in implement of benchmarking on safety performance in our industry. Additionally, interviews with construction professionals were come out with different views on this concept. Comparison has been done to show the different understanding of benchmarking approach and how safety performance can be benchmarked. But, it's viewed as one mission, which to evaluate objectives identified through benchmarking that will improve the organization's safety performance. Finally, the expected result from this research is to help Malaysia's construction industry implement best practice in safety performance management through the concept of benchmarking.

  8. Stress Testing of Organic Light- Emitting Diode Panels and Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Rountree, Kelley; Mills, Karmann

    This report builds on previous DOE efforts with OLED technology by updating information on a previously benchmarked OLED product (the Chalina luminaire from Acuity Brands) and provides new benchmarks on the performance of Brite 2 and Brite Amber OLED panels from OLEDWorks. During the tests described here, samples of these devices were subjected to continuous operation in stress tests at elevated ambient temperature environments of 35°C or 45°C. In addition, samples were also operated continuously at room temperature in a room temperature operational life test (RTOL). One goal of this study was to investigate whether these test conditions can acceleratemore » failure of OLED panels, either through panel shorting or an open circuit in the panel. These stress tests are shown to provide meaningful acceleration of OLED failure modes, and an acceleration factor of 2.6 was calculated at 45°C for some test conditions. In addition, changes in the photometric properties of the emitted light (e.g., luminous flux and chromaticity maintenance) was also evaluated for insights into the long-term stability of these products compared to earlier generations. Because OLEDs are a lighting system, electrical testing was also performed on the panel-driver pairs to provide insights into the impact of the driver on long-term panel performance.« less

  9. Separating OR, SUM, and XOR Circuits☆

    PubMed Central

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.

    2017-01-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n3/2/log2n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis. PMID:28529379

  10. Phase Difference between Model Cortical Areas Determines Level of Information Transfer

    PubMed Central

    ter Wal, Marije; Tiesinga, Paul H.

    2017-01-01

    Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits. PMID:28232796

  11. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  12. Universal programmable quantum circuit schemes to emulate an operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantummore » complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.« less

  13. Quality management benchmarking: FDA compliance in pharmaceutical industry.

    PubMed

    Jochem, Roland; Landgraf, Katja

    2010-01-01

    By analyzing and comparing industry and business best practice, processes can be optimized and become more successful mainly because efficiency and competitiveness increase. This paper aims to focus on some examples. Case studies are used to show knowledge exchange in the pharmaceutical industry. Best practice solutions were identified in two companies using a benchmarking method and five-stage model. Despite large administrations, there is much potential regarding business process organization. This project makes it possible for participants to fully understand their business processes. The benchmarking method gives an opportunity to critically analyze value chains (a string of companies or players working together to satisfy market demands for a special product). Knowledge exchange is interesting for companies that like to be global players. Benchmarking supports information exchange and improves competitive ability between different enterprises. Findings suggest that the five-stage model improves efficiency and effectiveness. Furthermore, the model increases the chances for reaching targets. The method gives security to partners that did not have benchmarking experience. The study identifies new quality management procedures. Process management and especially benchmarking is shown to support pharmaceutical industry improvements.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Marck, S. C.

    Three nuclear data libraries have been tested extensively using criticality safety benchmark calculations. The three libraries are the new release of the US library ENDF/B-VII.1 (2011), the new release of the Japanese library JENDL-4.0 (2011), and the OECD/NEA library JEFF-3.1 (2006). All calculations were performed with the continuous-energy Monte Carlo code MCNP (version 4C3, as well as version 6-beta1). Around 2000 benchmark cases from the International Handbook of Criticality Safety Benchmark Experiments (ICSBEP) were used. The results were analyzed per ICSBEP category, and per element. Overall, the three libraries show similar performance on most criticality safety benchmarks. The largest differencesmore » are probably caused by elements such as Be, C, Fe, Zr, W. (authors)« less

  15. Alzheimer's disease Braak Stage progressions: reexamined and redefined as Borrelia infection transmission through neural circuits.

    PubMed

    MacDonald, Alan B

    2007-01-01

    Brain structure in health is a dynamic energized equation incorporating chemistry, neuronal structure, and circuitry components. The chemistry "piece" is represented by multiple neurotransmitters such as Acetylcholine, Serotonin, and Dopamine. The neuronal structure "piece" incorporates synapses and their connections. And finally circuits of neurons establish "architectural blueprints" of anatomic wiring diagrams of the higher order of brain neuron organizations. In Alzheimer's disease, there are progressive losses in all of these components. Brain structure crumbles. The deterioration in Alzheimer's is ordered, reproducible, and stepwise. Drs. Braak and Braak have described stages in the Alzheimer disease continuum. "Progressions" through Braak Stages benchmark "Regressions" in Cognitive function. Under the microscope, the Stages of Braak commence in brain regions near to the hippocampus, and over time, like a tsunami wave of destruction, overturn healthy brain regions, with neurofibrillary tangle damaged neurons "marching" through the temporal lobe, neocortex and occipital cortex. In effect the destruction ascends from the limbic regions to progressively destroy the higher brain centers. Rabies infection also "begins low and finishes high" in its wave of destruction of brain tissue. Herpes Zoster infections offer the paradigm of clinical latency of infection inside of nerves before the "marching commences". Varicella Zoster virus enters neurons in the pediatric years. Dormant virus remains inside the neurons for 50-80 years, tissue damage late in life (shingles) demonstrates the "march of the infection" down neural pathways (dermatomes) as linear areas of painful blisters loaded with virus from a childhood infection. Amalgamation of Zoster with Rabies models produces a hybrid model to explain all of the Braak Stages of Alzheimer's disease under a new paradigm, namely "Alzheimer's neuroborreliosis" in which latent Borrelia infections ascend neural circuits through the hippocampus to the higher brain centers, creating a trail of neurofibrillary tangle injured neurons in neural circuits of cholinergic neurons by transsynaptic transmission of infection from nerve to nerve.

  16. Patterning and templating for nanoelectronics.

    PubMed

    Galatsis, Kosmas; Wang, Kang L; Ozkan, Mihri; Ozkan, Cengiz S; Huang, Yu; Chang, Jane P; Monbouquette, Harold G; Chen, Yong; Nealey, Paul; Botros, Youssry

    2010-02-09

    The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.

  17. Architecture-Dependent Robustness and Bistability in a Class of Genetic Circuits

    PubMed Central

    Zhang, Jiajun; Yuan, Zhanjiang; Li, Han-Xiong; Zhou, Tianshou

    2010-01-01

    Understanding the relationship between genotype and phenotype is a challenge in systems biology. An interesting yet related issue is why a particular circuit topology is present in a cell when the same function can supposedly be obtained from an alternative architecture. Here we analyzed two topologically equivalent genetic circuits of coupled positive and negative feedback loops, named NAT and ALT circuits, respectively. The computational search for the oscillation volume of the entire biologically reasonable parameter region through large-scale random samplings shows that the NAT circuit exhibits a distinctly larger fraction of the oscillatory region than the ALT circuit. Such a global robustness difference between two circuits is supplemented by analyzing local robustness, including robustness to parameter perturbations and to molecular noise. In addition, detailed dynamical analysis shows that the molecular noise of both circuits can induce transient switching of the different mechanism between a stable steady state and a stable limit cycle. Our investigation on robustness and dynamics through examples provides insights into the relationship between network architecture and its function. PMID:20712986

  18. Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors.

    PubMed

    Perez-Carrasco, Ruben; Barnes, Chris P; Schaerli, Yolanda; Isalan, Mark; Briscoe, James; Page, Karen M

    2018-04-25

    Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Benchmarking Multilayer-HySEA model for landslide generated tsunami. HTHMP validation process.

    NASA Astrophysics Data System (ADS)

    Macias, J.; Escalante, C.; Castro, M. J.

    2017-12-01

    Landslide tsunami hazard may be dominant along significant parts of the coastline around the world, in particular in the USA, as compared to hazards from other tsunamigenic sources. This fact motivated NTHMP about the need of benchmarking models for landslide generated tsunamis, following the same methodology already used for standard tsunami models when the source is seismic. To perform the above-mentioned validation process, a set of candidate benchmarks were proposed. These benchmarks are based on a subset of available laboratory data sets for solid slide experiments and deformable slide experiments, and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) close the list of proposed benchmarks. A total of 7 benchmarks. The Multilayer-HySEA model including non-hydrostatic effects has been used to perform all the benchmarking problems dealing with laboratory experiments proposed in the workshop that was organized at Texas A&M University - Galveston, on January 9-11, 2017 by NTHMP. The aim of this presentation is to show some of the latest numerical results obtained with the Multilayer-HySEA (non-hydrostatic) model in the framework of this validation effort.Acknowledgements. This research has been partially supported by the Spanish Government Research project SIMURISK (MTM2015-70490-C02-01-R) and University of Malaga, Campus de Excelencia Internacional Andalucía Tech. The GPU computations were performed at the Unit of Numerical Methods (University of Malaga).

  20. Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer

    DOE PAGES

    Arenas, D. J.; Shim, Dongha; Koukis, D. I.; ...

    2011-10-24

    Optical methods for measuring of the emission spectra of oscillator circuits operating in the 400-600 GHz range are described. The emitted power from patch antennas included in the circuits is measured by placing the circuit in the source chamber of a Fourier-transform interferometric spectrometer. The results show that this optical technique is useful for measuring circuits pushing the frontier in operating frequency. The technique also allows the characterization of the circuit by measuring the power radiated in the fundamental and in the harmonics. This capability is useful for oscillator architectures designed to cancel the fundamental and use higher harmonics. Themore » radiated power was measured using two techniques: direct measurement of the power by placing the device in front of a bolometer of known responsivity, and by comparison to the estimated power from blackbody sources. The latter technique showed that these circuits have higher emission than blackbody sources at the operating frequencies, and, therefore, offer potential spectroscopy applications.« less

  1. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-07-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  2. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-03-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  3. NASCOM network: Ground communications reliability report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A reliability performance analysis of the NASCOM Network circuits is reported. Network performance narrative summary is presented to include significant changes in circuit configurations, current figures, and trends in each trouble category with notable circuit totals specified. Lost time and interruption tables listing circuits which were affected by outages showing their totals category are submitted. A special analysis of circuits with low reliabilities is developed with tables depicting the performance and graphs for individual reliabilities.

  4. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    NASA Astrophysics Data System (ADS)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  5. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.

    PubMed

    Rees, Christopher L; Wheeler, Diek W; Hamilton, David J; White, Charise M; Komendantov, Alexander O; Ascoli, Giorgio A

    2016-01-01

    We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.

  6. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  7. Overload-protector/fault-indicator circuit

    NASA Technical Reports Server (NTRS)

    Paluka, J. R.; Moore, S. F.

    1977-01-01

    Circuit incorporates three-terminal current limiter (78M24) to increase overall reliability and to eliminate transistor burnouts resulting from shorted interconnection lines and other overloads. Fact-acting light emitting diodes across the limiters show status of transistor output circuits.

  8. Circuit compliance compensation in lung protective ventilation.

    PubMed

    Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo

    2006-01-01

    Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.

  9. The impact of a scheduling change on ninth grade high school performance on biology benchmark exams and the California Standards Test

    NASA Astrophysics Data System (ADS)

    Leonardi, Marcelo

    The primary purpose of this study was to examine the impact of a scheduling change from a trimester 4x4 block schedule to a modified hybrid schedule on student achievement in ninth grade biology courses. This study examined the impact of the scheduling change on student achievement through teacher created benchmark assessments in Genetics, DNA, and Evolution and on the California Standardized Test in Biology. The secondary purpose of this study examined the ninth grade biology teacher perceptions of ninth grade biology student achievement. Using a mixed methods research approach, data was collected both quantitatively and qualitatively as aligned to research questions. Quantitative methods included gathering data from departmental benchmark exams and California Standardized Test in Biology and conducting multiple analysis of covariance and analysis of covariance to determine significance differences. Qualitative methods include journal entries questions and focus group interviews. The results revealed a statistically significant increase in scores on both the DNA and Evolution benchmark exams. DNA and Evolution benchmark exams showed significant improvements from a change in scheduling format. The scheduling change was responsible for 1.5% of the increase in DNA benchmark scores and 2% of the increase in Evolution benchmark scores. The results revealed a statistically significant decrease in scores on the Genetics Benchmark exam as a result of the scheduling change. The scheduling change was responsible for 1% of the decrease in Genetics benchmark scores. The results also revealed a statistically significant increase in scores on the CST Biology exam. The scheduling change was responsible for .7% of the increase in CST Biology scores. Results of the focus group discussions indicated that all teachers preferred the modified hybrid schedule over the trimester schedule and that it improved student achievement.

  10. Signal replication in a DNA nanostructure

    NASA Astrophysics Data System (ADS)

    Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan

    2017-01-01

    Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.

  11. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  12. Arithmetic Circuit Verification Based on Symbolic Computer Algebra

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo

    This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.

  13. Potential Deep Seated Landslide Mapping from Various Temporal Data - Benchmark, Aerial Photo, and SAR

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; Lin, Jun-Tin; Lee, Yi-Hsuan; Lin, Meei-Ling; Chen, Chao-Wei; Liao, Ray-Tang; Chi, Chung-Chi; Lin, Hsi-Hung

    2016-04-01

    Landslide is always not hazard until mankind development in highly potential area. The study tries to map deep seated landslide before the initiation of landslide. Study area in central Taiwan is selected and the geological condition is quite unique, which is slate. Major direction of bedding in this area is northeast and the dip ranges from 30-75 degree to southeast. Several deep seated landslides were discovered in the same side of bedding from rainfall events. The benchmarks from 2002 ~ 2009 are in this study. However, the benchmarks were measured along Highway No. 14B and the road was constructed along the peak of mountains. Taiwan located between sea plates and continental plate. The elevation of mountains is rising according to most GPS and benchmarks in the island. The same trend is discovered from benchmarks in this area. But some benchmarks are located in landslide area thus the elevation is below average and event negative. The aerial photos from 1979 to 2007 are used for orthophoto generation. The changes of land use are obvious during 30 years and enlargement of river channel is also observed in this area. Both benchmarks and aerial photos have discovered landslide potential did exist this area but how big of landslide in not easy to define currently. Thus SAR data utilization is adopted in this case. DInSAR and SBAS sar analysis are used in this research and ALOS/PALSAR from 2006 to 2010 is adopted. DInSAR analysis shows that landslide is possible mapped but the error is not easy to reduce. The error is possibly form several conditions such as vegetation, clouds, vapor, etc. To conquer the problem, time series analysis, SBAS, is adopted in this research. The result of SBAS in this area shows that large deep seated landslides are easy mapped and the accuracy of vertical displacement is reasonable.

  14. Length of stay benchmarking in the Australian private hospital sector.

    PubMed

    Hanning, Brian W T

    2007-02-01

    Length of stay (LOS) benchmarking is a means of comparing hospital efficiency. Analysis of private cases in private facilities using Australian Institute of Health and Welfare (AIHW) data shows interstate variation in same-day (SD) cases and overnight average LOS (ONALOS) on an Australian Refined Diagnosis Related Groups version 4 (ARDRGv4) standardised basis. ARDRGv4 standardised analysis from 1998-99 to 2003-04 shows a steady increase in private sector SD cases (approximately 1.4% per annum) and a decrease in ONALOS (approximately 4.3% per annum). Overall, the data show significant variation in LOS parameters between private hospitals.

  15. The design of high performance, low power triple-track magnetic sensor chip.

    PubMed

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-07-09

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.

  16. The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip

    PubMed Central

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-01-01

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target. PMID:23839231

  17. How Are You Doing? Key Performance Indicators and Benchmarking

    ERIC Educational Resources Information Center

    Fahey, John P.

    2011-01-01

    School business officials need to "know and show" that their operations are well managed. To do so, they ask themselves questions, such as "How are they doing? How do they compare with others? Are they making progress fast enough? Are they using the best practices?" Using key performance indicators (KPIs) and benchmarking as regular parts of their…

  18. A Second Follow-Up Year for "Measuring How Benchmark Assessments Affect Student Achievement." REL Technical Brief. REL 2008-No. 002

    ERIC Educational Resources Information Center

    Henderson, Susan; Petrosino, Anthony; Guckenburg, Sarah; Hamilton, Stephen

    2008-01-01

    This technical brief examines whether, after two years of implementation, schools in Massachusetts using quarterly benchmark exams aligned with state standards in middle school mathematics showed greater gains in student achievement than those not doing so. A quasi-experimental design, using covariate matching and comparative interrupted…

  19. A Qualitative Study of Prospective Elementary Teachers' Grasp of Agricultural and Science Educational Benchmarks for Agricultural Technology.

    ERIC Educational Resources Information Center

    Trexler, Cary J.; Meischen, Deanna

    2002-01-01

    Interviews with eight preservice elementary teachers regarding benchmarks related to agricultural technology for food and fiber showed that those from rural areas had more complex understanding of the trade-offs in technology use; urban residents were more concerned with ethical dilemmas. Pesticide pollution was most understood, genetic…

  20. Revenues and Expenditures: Peer and Benchmark Comparisons, University of Hawai'i, Fiscal Year 1994-95.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu.

    The University of Hawaii's (UH) three university and seven community college campuses are compared with benchmark and peer group institutions with regard to selected financial measures. The primary data sources for this report were the Integrated Postsecondary Education Data System (IPEDS) Finance Survey, Fiscal Year 1994-95. Tables show data on…

  1. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.

    PubMed

    Yamane, Luciana Harue; de Moraes, Viviane Tavares; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-12-01

    This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Researchers Find Essential Brain Circuit in Visual Development

    MedlinePlus

    ... Release Monday, August 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could ... shows the connections from the eyes to the brain in a mouse. The right image shows the ...

  3. Benchmark Dataset for Whole Genome Sequence Compression.

    PubMed

    C L, Biji; S Nair, Achuthsankar

    2017-01-01

    The research in DNA data compression lacks a standard dataset to test out compression tools specific to DNA. This paper argues that the current state of achievement in DNA compression is unable to be benchmarked in the absence of such scientifically compiled whole genome sequence dataset and proposes a benchmark dataset using multistage sampling procedure. Considering the genome sequence of organisms available in the National Centre for Biotechnology and Information (NCBI) as the universe, the proposed dataset selects 1,105 prokaryotes, 200 plasmids, 164 viruses, and 65 eukaryotes. This paper reports the results of using three established tools on the newly compiled dataset and show that their strength and weakness are evident only with a comparison based on the scientifically compiled benchmark dataset. The sample dataset and the respective links are available @ https://sourceforge.net/projects/benchmarkdnacompressiondataset/.

  4. Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits

    PubMed Central

    Hiratani, Naoki; Fukai, Tomoki

    2015-01-01

    The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory. PMID:25910189

  5. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry

    PubMed Central

    Song, Hanbing; Hayes, John A.; Vann, Nikolas C.; Wang, Xueying; LaMar, M. Drew

    2016-01-01

    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a “small-world” network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called “small-world” network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals. PMID:27383596

  6. Fractal Electronic Circuits Assembled From Nanoclusters

    NASA Astrophysics Data System (ADS)

    Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.

    2009-07-01

    Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.

  7. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  8. Direction-selective circuits shape noise to ensure a precise population code

    PubMed Central

    Zylberberg, Joel; Cafaro, Jon; Turner, Maxwell H

    2016-01-01

    Summary Neural responses are noisy, and circuit structure can correlate this noise across neurons. Theoretical studies show that noise correlations can have diverse effects on population coding, but these studies rarely explore stimulus dependence of noise correlations. Here, we show that noise correlations in responses of ON-OFF direction-selective retinal ganglion cells are strongly stimulus dependent and we uncover the circuit mechanisms producing this stimulus dependence. A population model based on these mechanistic studies shows that stimulus-dependent noise correlations improve the encoding of motion direction two-fold compared to independent noise. This work demonstrates a mechanism by which a neural circuit effectively shapes its signal and noise in concert, minimizing corruption of signal by noise. Finally, we generalize our findings beyond direction coding in the retina and show that stimulus-dependent correlations will generally enhance information coding in populations of diversely tuned neurons. PMID:26796691

  9. Demonstrations with an "LCR" Circuit

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2011-01-01

    The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)

  10. Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection

    NASA Astrophysics Data System (ADS)

    Smrity, Manu; Dhariwal, S. R.

    2018-05-01

    The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.

  11. Research of vibration control based on current mode piezoelectric shunt damping circuit

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Mao, Qibo

    2017-12-01

    The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.

  12. Assessing I-Grid(TM) web-based monitoring for power quality and reliability benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divan, Deepak; Brumsickle, William; Eto, Joseph

    2003-04-30

    This paper presents preliminary findings from DOEs pilot program. The results show how a web-based monitoring system can form the basis for aggregation of data and correlation and benchmarking across broad geographical lines. A longer report describes additional findings from the pilot, including impacts of power quality and reliability on customers operations [Divan, Brumsickle, Eto 2003].

  13. The delivery of chlorofluorocarbon-propelled versus hydrofluoroalkane-propelled beclomethasone dipropionate aerosol to the mechanically ventilated patient: a laboratory study.

    PubMed

    Mitchell, Jolyon P; Nagel, Mark W; Wiersema, Kimberly J; Doyle, Cathy C; Migounov, Vladimir A

    2003-11-01

    We describe a laboratory investigation comparing the delivery of chlorofluorocarbon (CFC)- and hydrofluoroalkane (HFA)-formulated beclomethasone dipropionate (BDP) by metered-dose inhaler and holding chamber (AeroChamber HC MV) in a simulation of a mechanically ventilated adult patient. We equipped each HC MV (n = 5) with an 8.0 mm diameter endotracheal tube (ETT), locating the HC MV in the inspiratory limb of a breathing circuit linked to a mechanical ventilator set to simulate tidal breathing at tidal volume = 830 mL, respiratory rate = 15 breaths/min, inspiratory-expiratory ratio of 1:2.1, peak inspiratory pressure = 20 cm H(2)O. Temperature and humidity settings were 35+/-1 degrees C and 100% relative humidity (close to body conditions). We compared delivery of 5-actuations of CFC- and HFA-BDP (both 50 microg/actuation), measuring total emitted mass captured by a filter at the distal end of the ETT. In a separate study, we inserted the distal end of the ETT within the entry cone of a cascade impactor so that the aerosol particle size distribution could be determined with the circuit at similar environmental conditions as described previously. We made benchmark measurements with circuit temperature and humidity at room ambient conditions (21+/-1 degrees C and 54+/-5% RH respectively). Total emitted mass (5 measurements/device) was significantly greater for HFA-BDP (14.1+/-1.1 microg/actuation) compared with CFC-BDP (2.4+/-0.8 microg/actuation) (paired t test, p < 0.001). More HFA-BDP (2.7 +/- 0.2 microg/actuation) was lost from the delivery system during exhalation (0.9 +/- 0.4 microg/actuation for CFC-BDP) (p < 0.001). The mass median aerodynamic diameter (MMAD) increased from 1.2 microm (room ambient) to 2.8 microm (higher temperature and humidity conditions) for HFA-BDP. In contrast, MMAD for CFC-BDP remained close to 4.6 microm under either condition, but particles finer than about 4.0 microm increased in size when the circuit was saturated. Total emitted mass for HFA-BDP was increased by a factor of 5.8 compared with CFC-BDP, due largely to the finer particle size distribution of the HFA-based solution formulation. Additional water vapor required to operate the breathing circuit at close to body conditions resulted in fine particle growth with both formulations.

  14. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3] S. Srinivasan, A. Sarkar, B. Behin-Aein and S. Datta, ``Unidirectional Information transfer with cascaded All Spin Logic devices: A Ring Oscillator,'' IEEE Device Research Conference (2011).[0pt] [4] A. Sarkar, S. Srinivasan, B. Behin-Aein and S. Datta, ``Multimagnet networks interacting via spin currents'' IEEE International Electron Devices Meeting 2011. (to appear).

  15. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br; Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com; Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br

    Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineralmore » processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.« less

  16. Implementing a benchmarking and feedback concept decreases postoperative pain after total knee arthroplasty: A prospective study including 256 patients.

    PubMed

    Benditz, A; Drescher, J; Greimel, F; Zeman, F; Grifka, J; Meißner, W; Völlner, F

    2016-12-05

    Perioperative pain reduction, particularly during the first two days, is highly important for patients after total knee arthroplasty (TKA). Problems are not only caused by medical issues but by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent benchmarking. All patients included into the study had undergone total knee arthroplasty. Outcome parameters were analyzed by means of a questionnaire on the first postoperative day. A multidisciplinary team implemented a regular procedure of data analyzes and external benchmarking by participating in a nationwide quality improvement project. At the beginning of the study, our hospital ranked 16 th in terms of activity-related pain and 9 th in patient satisfaction among 47 anonymized hospitals participating in the benchmarking project. At the end of the study, we had improved to 1 st activity-related pain and to 2 nd in patient satisfaction. Although benchmarking started and finished with the same standardized pain management concept, results were initially pure. Beside pharmacological treatment, interdisciplinary teamwork and benchmarking with direct feedback mechanisms are also very important for decreasing postoperative pain and for increasing patient satisfaction after TKA.

  17. Implementing a benchmarking and feedback concept decreases postoperative pain after total knee arthroplasty: A prospective study including 256 patients

    PubMed Central

    Benditz, A.; Drescher, J.; Greimel, F.; Zeman, F.; Grifka, J.; Meißner, W.; Völlner, F.

    2016-01-01

    Perioperative pain reduction, particularly during the first two days, is highly important for patients after total knee arthroplasty (TKA). Problems are not only caused by medical issues but by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent benchmarking. All patients included into the study had undergone total knee arthroplasty. Outcome parameters were analyzed by means of a questionnaire on the first postoperative day. A multidisciplinary team implemented a regular procedure of data analyzes and external benchmarking by participating in a nationwide quality improvement project. At the beginning of the study, our hospital ranked 16th in terms of activity-related pain and 9th in patient satisfaction among 47 anonymized hospitals participating in the benchmarking project. At the end of the study, we had improved to 1st activity-related pain and to 2nd in patient satisfaction. Although benchmarking started and finished with the same standardized pain management concept, results were initially pure. Beside pharmacological treatment, interdisciplinary teamwork and benchmarking with direct feedback mechanisms are also very important for decreasing postoperative pain and for increasing patient satisfaction after TKA. PMID:27917911

  18. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  19. A Privacy-Preserving Platform for User-Centric Quantitative Benchmarking

    NASA Astrophysics Data System (ADS)

    Herrmann, Dominik; Scheuer, Florian; Feustel, Philipp; Nowey, Thomas; Federrath, Hannes

    We propose a centralised platform for quantitative benchmarking of key performance indicators (KPI) among mutually distrustful organisations. Our platform offers users the opportunity to request an ad-hoc benchmarking for a specific KPI within a peer group of their choice. Architecture and protocol are designed to provide anonymity to its users and to hide the sensitive KPI values from other clients and the central server. To this end, we integrate user-centric peer group formation, exchangeable secure multi-party computation protocols, short-lived ephemeral key pairs as pseudonyms, and attribute certificates. We show by empirical evaluation of a prototype that the performance is acceptable for reasonably sized peer groups.

  20. Child-Resistant Packaging for E-Liquid: A Review of US State Legislation.

    PubMed

    Frey, Leslie T; Tilburg, William C

    2016-02-01

    A growing number of states have introduced or enacted legislation requiring child-resistant packaging for e-liquid containers; however, these laws involve varying terms, packaging standards, and enforcement provisions, raising concerns about their effectiveness. We evaluated bills against 4 benchmarks: broad product definitions that contemplate future developments in the market, citations to a specific packaging standard, stated penalties for violations, and express grants of authority to a state entity to enforce the packaging requirements. Our findings showed that 3 states meet all 4 benchmarks in their enacted legislation. We encourage states to consider these benchmarks when revising statutes or drafting future legislation.

  1. Child-Resistant Packaging for E-Liquid: A Review of US State Legislation

    PubMed Central

    Tilburg, William C.

    2016-01-01

    A growing number of states have introduced or enacted legislation requiring child-resistant packaging for e-liquid containers; however, these laws involve varying terms, packaging standards, and enforcement provisions, raising concerns about their effectiveness. We evaluated bills against 4 benchmarks: broad product definitions that contemplate future developments in the market, citations to a specific packaging standard, stated penalties for violations, and express grants of authority to a state entity to enforce the packaging requirements. Our findings showed that 3 states meet all 4 benchmarks in their enacted legislation. We encourage states to consider these benchmarks when revising statutes or drafting future legislation. PMID:26691114

  2. Double buffer circuit for the characterization of piezoelectric nanogenerators based on ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Nadaud, Kevin; Morini, François; Dahiya, Abhishek S.; Justeau, Camille; Boubenia, Sarah; Rajeev, Kiron P.; Alquier, Daniel; Poulin-Vittrant, Guylaine

    2018-02-01

    The accurate and precise measurements of voltage and current output generated by a nanogenerator (NG) are crucial to design the rectifying/harvesting circuit and to evaluate correctly the amount of energy provided by a NG. High internal impedance of the NGs (several MΩ) is the main limiting factor for designing circuits to measure the open circuit voltage. In this paper, we present the influence of the characterization circuit used to measure the generated voltage of piezoelectric NGs. The proposed circuit consists of a differential amplifier which permits us to measure the voltage provided by the NG without applying any parasitic bias to it. The proposed circuit is compared to a commercial electrometer and a homemade buffer circuit based on a voltage follower circuit to show its interest. For the proposed double buffer circuit, no asymmetric behavior has been noticed contrary to the measurements made using a simple buffer circuit and a Keithley electrometer. The proposed double buffer circuit is thus suitable to measure the NG voltage in a transparent way, as an ideal voltage probe should do.

  3. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  4. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities

    NASA Astrophysics Data System (ADS)

    Reid, M. D.

    2013-12-01

    The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data conditioned on detection at Bob's location. I show that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB>1/3 for the teleportation process. The benchmark is obtained if it is shown that Bob can “steer” Alice's record of the qubit as stored by Charlie. EPR steering inequalities involving m measurement settings can also be used to confirm quantum teleportation, for efficiencies ηB>1/m, if one assumes trusted detectors for Charlie and Alice. Using proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the qubit state.

  5. Performance of Landslide-HySEA tsunami model for NTHMP benchmarking validation process

    NASA Astrophysics Data System (ADS)

    Macias, Jorge

    2017-04-01

    In its FY2009 Strategic Plan, the NTHMP required that all numerical tsunami inundation models be verified as accurate and consistent through a model benchmarking process. This was completed in 2011, but only for seismic tsunami sources and in a limited manner for idealized solid underwater landslides. Recent work by various NTHMP states, however, has shown that landslide tsunami hazard may be dominant along significant parts of the US coastline, as compared to hazards from other tsunamigenic sources. To perform the above-mentioned validation process, a set of candidate benchmarks were proposed. These benchmarks are based on a subset of available laboratory date sets for solid slide experiments and deformable slide experiments, and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) close the list of proposed benchmarks. The Landslide-HySEA model has participated in the workshop that was organized at Texas A&M University - Galveston, on January 9-11, 2017. The aim of this presentation is to show some of the numerical results obtained for Landslide-HySEA in the framework of this benchmarking validation/verification effort. Acknowledgements. This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069), the Spanish Government Research project SIMURISK (MTM2015-70490-C02-01-R) and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. The GPU computations were performed at the Unit of Numerical Methods (University of Malaga).

  6. Present Status and Extensions of the Monte Carlo Performance Benchmark

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Petrovic, Bojan; Martin, William R.

    2014-06-01

    The NEA Monte Carlo Performance benchmark started in 2011 aiming to monitor over the years the abilities to perform a full-size Monte Carlo reactor core calculation with a detailed power production for each fuel pin with axial distribution. This paper gives an overview of the contributed results thus far. It shows that reaching a statistical accuracy of 1 % for most of the small fuel zones requires about 100 billion neutron histories. The efficiency of parallel execution of Monte Carlo codes on a large number of processor cores shows clear limitations for computer clusters with common type computer nodes. However, using true supercomputers the speedup of parallel calculations is increasing up to large numbers of processor cores. More experience is needed from calculations on true supercomputers using large numbers of processors in order to predict if the requested calculations can be done in a short time. As the specifications of the reactor geometry for this benchmark test are well suited for further investigations of full-core Monte Carlo calculations and a need is felt for testing other issues than its computational performance, proposals are presented for extending the benchmark to a suite of benchmark problems for evaluating fission source convergence for a system with a high dominance ratio, for coupling with thermal-hydraulics calculations to evaluate the use of different temperatures and coolant densities and to study the correctness and effectiveness of burnup calculations. Moreover, other contemporary proposals for a full-core calculation with realistic geometry and material composition will be discussed.

  7. Active quench and reset integrated circuit with novel hold-off time control logic for Geiger-mode avalanche photodiodes.

    PubMed

    Deng, Shijie; Morrison, Alan P

    2012-09-15

    This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.

  8. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE PAGES

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less

  9. Design of high precision temperature control system for TO packaged LD

    NASA Astrophysics Data System (ADS)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  10. Foldable graphene electronic circuits based on paper substrates.

    PubMed

    Hyun, Woo Jin; Park, O Ok; Chin, Byung Doo

    2013-09-14

    Graphene electronic circuits are prepared on paper substrates by using graphene nanoplates and applied to foldable paper-based electronics. The graphene circuits show a small change in conductance under various folding angles and maintain an electronic path on paper substrates after repetition of folding and unfolding. Foldable paper-based applications with graphene circuits exhibit excellent folding stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    PubMed Central

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  12. Drive and protection circuit for converter module of cascaded H-bridge STATCOM

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Yuan, Hongliang; Wang, Xiaoxing; Wang, Shuai; Fu, Yongsheng

    2018-04-01

    Drive and protection circuit is an important part of power electronics, which is related to safe and stable operation issues in the power electronics. The drive and protection circuit is designed for the cascaded H-bridge STATCOM. This circuit can realize flexible dead-time setting, operation status self-detection, fault priority protection and detailed fault status uploading. It can help to improve the reliability of STATCOM's operation. Finally, the proposed circuit is tested and analyzed by power electronic simulation software PSPICE (Simulation Program with IC Emphasis) and a series of experiments. Further studies showed that the proposed circuit can realize drive and control of H-bridge circuit, meanwhile it also can realize fast processing faults and have advantage of high reliability.

  13. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    NASA Astrophysics Data System (ADS)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  14. A benchmark study of the sea-level equation in GIA modelling

    NASA Astrophysics Data System (ADS)

    Martinec, Zdenek; Klemann, Volker; van der Wal, Wouter; Riva, Riccardo; Spada, Giorgio; Simon, Karen; Blank, Bas; Sun, Yu; Melini, Daniele; James, Tom; Bradley, Sarah

    2017-04-01

    The sea-level load in glacial isostatic adjustment (GIA) is described by the so called sea-level equation (SLE), which represents the mass redistribution between ice sheets and oceans on a deforming earth. Various levels of complexity of SLE have been proposed in the past, ranging from a simple mean global sea level (the so-called eustatic sea level) to the load with a deforming ocean bottom, migrating coastlines and a changing shape of the geoid. Several approaches to solve the SLE have been derived, from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, there has been no systematic intercomparison amongst the solvers through which the methods may be validated. The goal of this paper is to present a series of benchmark experiments designed for testing and comparing numerical implementations of the SLE. Our approach starts with simple load cases even though the benchmark will not result in GIA predictions for a realistic loading scenario. In the longer term we aim for a benchmark with a realistic loading scenario, and also for benchmark solutions with rotational feedback. The current benchmark uses an earth model for which Love numbers have been computed and benchmarked in Spada et al (2011). In spite of the significant differences in the numerical methods employed, the test computations performed so far show a satisfactory agreement between the results provided by the participants. The differences found can often be attributed to the different approximations inherent to the various algorithms. Literature G. Spada, V. R. Barletta, V. Klemann, R. E. M. Riva, Z. Martinec, P. Gasperini, B. Lund, D. Wolf, L. L. A. Vermeersen, and M. A. King, 2011. A benchmark study for glacial isostatic adjustment codes. Geophys. J. Int. 185: 106-132 doi:10.1111/j.1365-

  15. Design and characterization of a 20 Gbit/s clock recovery circuit

    NASA Astrophysics Data System (ADS)

    Monteiro, Paulo M.; Matos, J. N.; Gameiro, Atilio M. S.; da Rocha, Jose F.

    1995-02-01

    In this communication we report the design of a clock recovery circuit produced for the 20 Gbit/s demonstrator of the RACE 2011 project `TRAVEL' of the European Community. The clock recovery circuit is based on an open loop structure using a dielectric resonator narrow bandpass filter with a high quality factor. A detailed electrical characterization of the circuit and also its sensitivity to temperature and detuning variations are presented. The experimental results show that the circuit is a very attractive solution for the forthcoming STM-128 optical links.

  16. Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept.

    PubMed

    Pandya, Killol V; Kosta, ShivPrasad

    2016-09-01

    Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood -synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.

  17. A distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory

    NASA Astrophysics Data System (ADS)

    Chen, Chung-De

    2018-04-01

    In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.

  18. Psychophysics of reading. XVII. Low-vision performance with four types of electronically magnified text.

    PubMed

    Harland, S; Legge, G E; Luebker, A

    1998-03-01

    Most people with low vision need magnification to read. Page navigation is the process of moving a magnifier during reading. Modern electronic technology can provide many alternatives for navigating through text. This study compared reading speeds for four methods of displaying text. The four methods varied in their page-navigation demands. The closed-circuit television (CCTV) and MOUSE methods involved manual navigation. The DRIFT method (horizontally drifting text) involved no manual navigation, but did involve both smooth-pursuit and saccadic eye movements. The rapid serial visual presentation (RSVP) method involved no manual navigation, and relatively few eye movements. There were 7 normal subjects and 12 low-vision subjects (7 with central-field loss, CFL group, and 5 with central fields intact, CFI group). The subjects read 70-word passages at speeds that yielded good comprehension. Taking the CCTV reading speed as a benchmark, neither the normal nor low-vision subjects had significantly different speeds with the MOUSE method. As expected from the reduced navigational demands, normal subjects read faster with the DRIFT method (85% faster) and the RSVP method (169%). The CFI group read significantly faster with DRIFT (43%) and RSVP (38%). The CFL group showed no significant differences in reading speed for the four methods.

  19. An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.

    PubMed

    Kazemi, Mohammad

    2017-11-10

    The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.

  20. Developing 300°C Ceramic Circuit Boards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy A

    2015-02-15

    This paper covers the development of a geothermal ceramic circuit board technology using 3D traces in a machinable ceramic. Test results showing the circuit board to be operational to at least 550°C. Discussion on producing this type of board is outlined along with areas needing improvement.

  1. A Novel Approach to Chemical Communications

    DTIC Science & Technology

    2010-06-17

    of droplets in the microfludic circuit. Figure 4. Generation of droplets in the microfludic circuit. Figure 5. Space-time plots showing anti-phase... microfludic circuit. Final Report W911NF-07-1-0639 Page 11 Table 2. A sampling of microfluidics experiments Fluid1 for drop genera- tion Fluid2

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marck, Steven C. van der, E-mail: vandermarck@nrg.eu

    Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), tomore » mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for {sup 6}Li, {sup 7}Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such instances can often be related to nuclear data for specific non-fissile elements, such as C, Fe, or Gd. Indications are that the intermediate and mixed spectrum cases are less well described. The results for the shielding benchmarks are generally good, with very similar results for the three libraries in the majority of cases. Nevertheless there are, in certain cases, strong deviations between calculated and benchmark values, such as for Co and Mg. Also, the results show discrepancies at certain energies or angles for e.g. C, N, O, Mo, and W. The functionality of MCNP6 to calculate the effective delayed neutron fraction yields very good results for all three libraries.« less

  3. 37. SAR2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SAR-2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD COIL CONTROL RHEOSTATS (BELOW). SCE negative no. 10331, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  4. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability. Copyright © 2017 the authors 0270-6474/17/372137-12$15.00/0.

  5. Design of rapid prototype of UAV line-of-sight stabilized control system

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  6. Bias Stress and Temperature Impact on InGaZnO TFTs and Circuits

    PubMed Central

    Martins, Jorge; Bahubalindruni, Pydi; Rovisco, Ana; Kiazadeh, Asal; Martins, Rodrigo; Fortunato, Elvira; Barquinha, Pedro

    2017-01-01

    This paper focuses on the analysis of InGaZnO thin-film transistors (TFTs) and circuits under the influence of different temperatures and bias stress, shedding light into their robustness when used in real-world applications. For temperature-dependent measurements, a temperature range of 15 to 85 °C was considered. In case of bias stress, both gate and drain bias were applied for 60 min. Though isolated transistors show a variation of drain current as high as 56% and 172% during bias voltage and temperature stress, the employed circuits were able to counteract it. Inverters and two-TFT current mirrors following simple circuit topologies showed a gain variation below 8%, while the improved robustness of a cascode current mirror design is proven by showing a gain variation less than 5%. The demonstration that the proper selection of TFT materials and circuit topologies results in robust operation of oxide electronics under different stress conditions and over a reasonable range of temperatures proves that the technology is suitable for applications such as smart food packaging and wearables. PMID:28773037

  7. Bias Stress and Temperature Impact on InGaZnO TFTs and Circuits.

    PubMed

    Martins, Jorge; Bahubalindruni, Pydi; Rovisco, Ana; Kiazadeh, Asal; Martins, Rodrigo; Fortunato, Elvira; Barquinha, Pedro

    2017-06-21

    This paper focuses on the analysis of InGaZnO thin-film transistors (TFTs) and circuits under the influence of different temperatures and bias stress, shedding light into their robustness when used in real-world applications. For temperature-dependent measurements, a temperature range of 15 to 85 °C was considered. In case of bias stress, both gate and drain bias were applied for 60 min. Though isolated transistors show a variation of drain current as high as 56% and 172% during bias voltage and temperature stress, the employed circuits were able to counteract it. Inverters and two-TFT current mirrors following simple circuit topologies showed a gain variation below 8%, while the improved robustness of a cascode current mirror design is proven by showing a gain variation less than 5%. The demonstration that the proper selection of TFT materials and circuit topologies results in robust operation of oxide electronics under different stress conditions and over a reasonable range of temperatures proves that the technology is suitable for applications such as smart food packaging and wearables.

  8. Design and analysis of APD photoelectric detecting circuit

    NASA Astrophysics Data System (ADS)

    Fang, R.; Wang, C.

    2015-11-01

    In LADAR system, photoelectric detecting circuit is the key part in photoelectric conversion, which determines speed of respond, sensitivity and fidelity of the system. This paper presents the design of a matched APD Photoelectric detecting circuit. The circuit accomplishes low-noise readout and high-gain amplification of the weak photoelectric signal. The main performances, especially noise and transient response of the circuit are analyzed. In order to obtain large bandwidth, decompensated operational amplifiers are applied. Circuit simulations allow the architecture validation and the global performances to be predicted. The simulation results show that the gain of the detecting circuit is 630kΩ while the bandwidth is 100MHz, and 28dB dynamic range is achieved. Furthermore, the variation of the output pulse width is less than 0.9ns.

  9. High correlation of estimated local conduction velocity with natural logarithm of bipolar electrogram amplitude in the reentry circuit of atrial flutter.

    PubMed

    Itoh, Taihei; Kimura, Masaomi; Sasaki, Shingo; Owada, Shingen; Horiuchi, Daisuke; Sasaki, Kenichi; Ishida, Yuji; Takahiko, Kinjo; Okumura, Ken

    2014-04-01

    Low conduction velocity (CV) in the area showing low electrogram amplitude (EA) is characteristic of reentry circuit of atypical atrial flutter (AFL). The quantitative relationship between CV and EA remains unclear. We characterized AFL reentry circuit in the right atrium (RA), focusing on the relationship between local CV and bipolar EA on the circuit. We investigated 26 RA AFL (10 with typical AFL; 10 atypical incisional AFL; 6 atypical nonincisional AFL) using CARTO system. By referring to isochronal and propagation maps delineated during AFL, points activated faster on the circuit were selected (median, 7 per circuit). At the 196 selected points obtained from all patients, local CV measured between the adjacent points and bipolar EA were analyzed. There was a highly significant correlation between local CV and natural logarithm of EA (lnEA) (R(2) = 0.809, P < 0.001). Among 26 AFL, linear regression analysis of mean CV, calculated by dividing circuit length (152.3 ± 41.7 mm) by tachycardia cycle length (TCL) (median 246 msec), and mean lnEA, calculated by dividing area under curve of lnEA during one tachycardia cycle by TCL, showed y = 0.695 + 0.191x (where: y = mean CV, x = lnEA; R(2) = 0.993, P < 0.001). Local CV estimated from EA with the use of this formula showed a highly significant linear correlation with that measured by the map (R(2) = 0.809, P < 0.001). The lnEA and estimated local CV show a highly positive linear correlation. CV is possibly estimated by EA measured by CARTO mapping. © 2013 Wiley Periodicals, Inc.

  10. Organic Optoelectronic Devices Employing Small Molecules

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt-16. Furthermore, the development of a series of tetradentate Pt complexes yielded highly efficient and stable single doped white devices due to their halogen free tetradentate design. In addition to these benchmark achievements, the systematic molecular modification of both emissive and absorbing materials provides valuable structure-property relationship information that should help guide further developments in the field.

  11. Graphene radio frequency receiver integrated circuit.

    PubMed

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  12. Simulation Approach for Timing Analysis of Genetic Logic Circuits.

    PubMed

    Baig, Hasan; Madsen, Jan

    2017-07-21

    Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in synthetic biology.

  13. Graphene radio frequency receiver integrated circuit

    NASA Astrophysics Data System (ADS)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A.; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm2 area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  14. Groundwater-quality data in the Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers study unit, 2011-2012: results from the California GAMA program

    USGS Publications Warehouse

    Davis, Tracy A.; Shelton, Jennifer L.

    2014-01-01

    Results for constituents with nonregulatory benchmarks set for aesthetic concerns showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in samples from 19 grid wells. Manganese concentrations greater than the SMCL-CA of 50 μg/L were detected in 27 grid wells. Chloride was detected at a concentration greater than the SMCL-CA upper benchmark of 500 mg/L in one grid well. TDS concentrations in three grid wells were greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  15. A High Performance 50% Clock Duty Cycle Regulator

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Deng, Hong-Hui; Yin, Yong-Sheng

    A low-jitter clock duty cycle corrector circuit applied in high performance ADC is presented in the paper, such circuits can change low accuracy input signals with different frequencies into 50% pulse width clock. The result have show that the circuit could lock duty cycle rapidly with an accuracy of 50% ± 1% in 200ns. This circuit have 10%-90% of duty cycle input, and clock jitter could be suppressed to less than 5ps. The method used in the circuit, which provides little relationship with the noise and process mismatch, is widely used Implemented in 0.18μm CMOS process.

  16. Design and Analysis of Hydrostatic Transmission System

    NASA Astrophysics Data System (ADS)

    Mistry, Kayzad A.; Patel, Bhaumikkumar A.; Patel, Dhruvin J.; Parsana, Parth M.; Patel, Jitendra P.

    2018-02-01

    This study develops a hydraulic circuit to drive a conveying system dealing with heavy and delicate loads. Various safety circuits have been added in order to ensure stable working at high pressure and precise controlling. Here we have shown the calculation procedure based on an arbitrarily selected load. Also the circuit design and calculations of various components used is depicted along with the system simulation. The results show that the system is stable and efficient enough to transmit heavy loads by functioning of the circuit. By this information, one can be able to design their own hydrostatic circuits for various heavy loading conditions.

  17. Research on burnout fault of moulded case circuit breaker based on finite element simulation

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei

    2017-09-01

    In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.

  18. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  19. A prospective randomized trial comparing the clinical effectiveness and biocompatibility of heparin-coated circuits and PMEA-coated circuits in pediatric cardiopulmonary bypass.

    PubMed

    Itoh, Hideshi; Ichiba, Shingo; Ujike, Yoshihito; Douguchi, Takuma; Kasahara, Shingo; Arai, Sadahiko; Sano, Shunji

    2016-04-01

    We compared the clinical effectiveness and biocompatibility of poly-2-methoxyethyl acrylate (PMEA)-coated and heparin-coated cardiopulmonary bypass (CPB) circuits in a prospective pediatric trial. Infants randomly received heparin-coated (n=7) or PMEA-coated (n=7) circuits in elective pediatric cardiac surgery with CPB for ventricular septum defects. Clinical and hematologic variables, respiratory indices and hemodynamic changes were analyzed perioperatively. Demographic and clinical variables were similar in both groups. Leukocyte counts were significantly lower 5 minutes after CPB in the PMEA group than the heparin group. Hemodynamic data showed that PMEA caused hypotension within 5 minutes of CPB. The respiratory index was significantly higher immediately after CPB and 1 hour after transfer to the intensive care unit (ICU) in the PMEA group, as were levels of C-reactive protein 24 hours after transfer to the ICU. Our study shows that PMEA-coated circuits, unlike heparin-coated circuits, cause transient leukopenia during pediatric CPB and, perhaps, systemic inflammatory respiratory syndrome after pediatric CPB. © The Author(s) 2015.

  20. Utilizing the Digital Fingerprint Methodology for Secure Key Generation

    DTIC Science & Technology

    2010-03-01

    circuits. 2.2.2. Arbiter PUF 2.2.1 Arbiter PUF Description Figure 3 represents the arbiter PUF circuitry designed by Suh and Devadas [4]. The D latch...Reliability The results of Suh and Devadas ‟s experiments on the arbiter PUF circuit showed that when the arbiter circuit output was measured for the...and Devada pointed out that this low percentage was the result of not laying out their circuit symmetrically as it appears in the idealized

  1. Benchmark levels for the consumptive water footprint of crop production for different environmental conditions: a case study for winter wheat in China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2016-11-01

    Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961-2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961-2008, (ii) the WF benchmarks for irrigated winter wheat are 8-10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1-3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7-8 % smaller than for cold years, (v) WF benchmarks differ by about 10-12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26-31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t-1 for arid areas and 841 m3 t-1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.

  2. Implementation of BT, SP, LU, and FT of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Schultz, Matthew; Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of Java features make it an attractive but a debatable choice for High Performance Computing. We have implemented benchmarks working on single structured grid BT,SP,LU and FT in Java. The performance and scalability of the Java code shows that a significant improvement in Java compiler technology and in Java thread implementation are necessary for Java to compete with Fortran in HPC applications.

  3. Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system

    NASA Astrophysics Data System (ADS)

    Kurt, Mehmet; Moore, Keegan J.; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-05-01

    We consider the application of a new nonlinear model updating strategy to a computational benchmark system. The approach relies on analyzing system response time series in the frequency-energy domain by constructing both Hamiltonian and forced and damped frequency-energy plots (FEPs). The system parameters are then characterized and updated by matching the backbone branches of the FEPs with the frequency-energy wavelet transforms of experimental and/or computational time series. The main advantage of this method is that no nonlinearity model is assumed a priori, and the system model is updated solely based on simulation and/or experimental measured time series. By matching the frequency-energy plots of the benchmark system and its reduced-order model, we show that we are able to retrieve the global strongly nonlinear dynamics in the frequency and energy ranges of interest, identify bifurcations, characterize local nonlinearities, and accurately reconstruct time series. We apply the proposed methodology to a benchmark problem, which was posed to the system identification community prior to the IMAC XXXII (2014) and XXXIII (2015) Conferences as a "Round Robin Exercise on Nonlinear System Identification". We show that we are able to identify the parameters of the non-linear element in the problem with a priori knowledge about its position.

  4. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  5. Encoding color information for visual tracking: Algorithms and benchmark.

    PubMed

    Liang, Pengpeng; Blasch, Erik; Ling, Haibin

    2015-12-01

    While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

  6. Synthesis of a fully-integrated digital signal source for communications from chaotic dynamics-based oscillations

    NASA Astrophysics Data System (ADS)

    Glenn, Chance Michael, Sr.

    This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.

  7. Impact of Temporal Masking of Flip-Flop Upsets on Soft Error Rates of Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Mahatme, N. N.; Diggins, Z. J.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    Reductions in single-event (SE) upset (SEU) rates for sequential circuits due to temporal masking effects are evaluated. The impacts of supply voltage, combinational-logic delay, flip-flop (FF) SEU performance, and particle linear energy transfer (LET) values are analyzed for SE cross sections of sequential circuits. Alpha particles and heavy ions with different LET values are used to characterize the circuits fabricated at the 40-nm bulk CMOS technology node. Experimental results show that increasing the delay of the logic circuit present between FFs and decreasing the supply voltage are two effective ways of reducing SE error rates for sequential circuits for particles with low LET values due to temporal masking. SEU-hardened FFs benefit less from temporal masking than conventional FFs. Circuit hardening implications for SEU-hardened and unhardened FFs are discussed.

  8. Access-in-turn test architecture for low-power test application

    NASA Astrophysics Data System (ADS)

    Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun

    2017-03-01

    This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.

  9. A comparison of the domestic satellite communications forecast to the year 2000

    NASA Technical Reports Server (NTRS)

    Poley, W. A.; Lekan, J. F.; Salzman, J. A.; Stevenson, S. M.

    1983-01-01

    The methodologies and results of three NASA-sponsored market demand assessment studies are presented and compared. Forecasts of future satellite addressable traffic (both trunking and customer premises services) were developed for the three main service categories of voice, data and video and subcategories thereof for the benchmark years of 1980, 1990 and 2000. The contractor results are presented on a service by service basis in two formats: equivalent 36 MHz transponders and basic transmission units (voice: half-voice circuits, data: megabits per second and video: video channels). It is shown that while considerable differences exist at the service category level, the overall forecasts by the two contractors are quite similar. ITT estimates the total potential satellite market to be 3594 transponders in the year 2000 with data service comprising 54 percent of this total. The WU outlook for the same time period is 2779 transponders with voice services accounting for 66 percent of the total.

  10. A GaAs vector processor based on parallel RISC microprocessors

    NASA Astrophysics Data System (ADS)

    Misko, Tim A.; Rasset, Terry L.

    A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.

  11. A Reusable, Compliant, Small Volume Blood Reservoir for In Vitro Hemolysis Testing.

    PubMed

    Olia, Salim E; Herbertson, Luke H; Malinauskas, Richard A; Kameneva, Marina V

    2017-02-01

    Bench-top in vitro hemolysis testing is a fundamental tool during the design and regulatory safety evaluation of blood-contacting medical devices. While multiple published experimental protocols exist, descriptions of the test loop reservoir remain ambiguous. A critical fixture within the circuit, there is no readily available blood reservoir that ensures thorough mixing and complete air evacuation: two major factors which can affect results. As part of the Food and Drug Administration (FDA) Critical Path Initiative, we developed a three-piece reservoir consisting of a 3D-printed base, a plastic clamp set, and a medical-grade blood bag. This simple, reusable, and cost-effective design was used successfully in the hemolysis assessment of FDA benchmark nozzles and prototype rotary blood pumps, and may be useful as an integral component to any in vitro blood circulation loop. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. A Test Apparatus for the MAJORANA DEMONSTRATOR Front-end Electronics

    NASA Astrophysics Data System (ADS)

    Singh, Harjit; Loach, James; Poon, Alan

    2012-10-01

    One of the most important experimental programs in neutrino physics is the search for neutrinoless double-beta decay. The MAJORANA collaboration is searching for this rare nuclear process in the Ge-76 isotope using HPGe detectors. Each detector is instrumented with high-performance electronics to read out and amplify the signals. The part of the electronics close to the detectors, consisting of a novel front-end circuit, cables and connectors, is made of radio-pure materials and is exceedingly delicate. In this work a dedicated test apparatus was created to benchmark the performance of the electronics before installation in the experiment. The apparatus was designed for cleanroom use, with fixtures to hold the components without contaminating them, and included the electronics necessary for power and readout. In addition to testing, the station will find longer term use in development of future versions of the electronics.

  13. Neuromorphic photonic networks using silicon photonic weight banks.

    PubMed

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  14. Circuits of Spectacle: The Miller Brothers' 101 Ranch Real Wild West

    ERIC Educational Resources Information Center

    Fields, Alison

    2012-01-01

    The Miller Brothers' 101 Ranch Real Wild West show ran from 1906 to 1931, outlasting the famous Buffalo Bill's Wild West show by more than a decade. From its beginnings in Oklahoma Territory, the Real Wild West show traveled national and international circuits and built a broad roster of performers, including more than 150 American Indians. During…

  15. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit

    NASA Astrophysics Data System (ADS)

    Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying

    2018-03-01

    With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.

  16. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder.

    PubMed

    Gong, Liang; Yin, Yingying; He, Cancan; Ye, Qing; Bai, Feng; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun

    2017-01-01

    Neuroimaging studies have demonstrated that major depressive disorder (MDD) patients show blunted activity responses to reward-related tasks. However, whether abnormal reward circuits affect cognition and depression in MDD patients remains unclear. Seventy-five drug-naive MDD patients and 42 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. The bilateral nucleus accumbens (NAc) were selected as seeds to construct reward circuits across all subjects. A multivariate linear regression analysis was employed to investigate the neural substrates of cognitive function and depression severity on the reward circuits in MDD patients. The common pathway underlying cognitive deficits and depression was identified with conjunction analysis. Compared with CN subjects, MDD patients showed decreased reward network connectivity that was primarily located in the prefrontal-striatal regions. Importantly, distinct and common neural pathways underlying cognition and depression were identified, implying the independent and synergistic effects of cognitive deficits and depression severity on reward circuits. This study demonstrated that disrupted topological organization within reward circuits was significantly associated with cognitive deficits and depression severity in MDD patients. These findings suggest that in addition to antidepressant treatment, normalized reward circuits should be a focus and a target for improving depression and cognitive deficits in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Back-Arc Opening in the Western End of the Okinawa Trough Revealed From GNSS/Acoustic Measurements

    NASA Astrophysics Data System (ADS)

    Chen, Horng-Yue; Ikuta, Ryoya; Lin, Cheng-Horng; Hsu, Ya-Ju; Kohmi, Takeru; Wang, Chau-Chang; Yu, Shui-Beih; Tu, Yoko; Tsujii, Toshiaki; Ando, Masataka

    2018-01-01

    We measured seafloor movement using a Global Navigation Satellite Systems (GNSS)/Acoustic technique at the south of the rifting valley in the western end of the Okinawa Trough back-arc basin, 60 km east of northeastern corner of Taiwan. The horizontal position of the seafloor benchmark, measured eight times between July 2012 and May 2016, showed a southeastward movement suggesting a back-arc opening of the Okinawa Trough. The average velocity of the seafloor benchmark shows a block motion together with Yonaguni Island. The westernmost part of the Ryukyu Arc rotates clockwise and is pulled apart from the Taiwan Island, which should cause the expansion of the Yilan Plain, Taiwan. Comparing the motion of the seafloor benchmark with adjacent seismicity, we suggest a gentle episodic opening of the rifting valley accompanying a moderate seismic activation, which differs from the case in the segment north off-Yonaguni Island where a rapid dyke intrusion occurs with a significant seismic activity.

  18. Benchmark matrix and guide: Part II.

    PubMed

    1991-01-01

    In the last issue of the Journal of Quality Assurance (September/October 1991, Volume 13, Number 5, pp. 14-19), the benchmark matrix developed by Headquarters Air Force Logistics Command was published. Five horizontal levels on the matrix delineate progress in TQM: business as usual, initiation, implementation, expansion, and integration. The six vertical categories that are critical to the success of TQM are leadership, structure, training, recognition, process improvement, and customer focus. In this issue, "Benchmark Matrix and Guide: Part II" will show specifically how to apply the categories of leadership, structure, and training to the benchmark matrix progress levels. At the intersection of each category and level, specific behavior objectives are listed with supporting behaviors and guidelines. Some categories will have objectives that are relatively easy to accomplish, allowing quick progress from one level to the next. Other categories will take considerable time and effort to complete. In the next issue, Part III of this series will focus on recognition, process improvement, and customer focus.

  19. Medico-economic evaluation of healthcare products. Methodology for defining a significant impact on French health insurance costs and selection of benchmarks for interpreting results.

    PubMed

    Dervaux, Benoît; Baseilhac, Eric; Fagon, Jean-Yves; Biot, Claire; Blachier, Corinne; Braun, Eric; Debroucker, Frédérique; Detournay, Bruno; Ferretti, Carine; Granger, Muriel; Jouan-Flahault, Chrystel; Lussier, Marie-Dominique; Meyer, Arlette; Muller, Sophie; Pigeon, Martine; De Sahb, Rima; Sannié, Thomas; Sapède, Claudine; Vray, Muriel

    2014-01-01

    Decree No. 2012-1116 of 2 October 2012 on medico-economic assignments of the French National Authority for Health (Haute autorité de santé, HAS) significantly alters the conditions for accessing the health products market in France. This paper presents a theoretical framework for interpreting the results of the economic evaluation of health technologies and summarises the facts available in France for developing benchmarks that will be used to interpret incremental cost-effectiveness ratios. This literature review shows that it is difficult to determine a threshold value but it is also difficult to interpret then incremental cost effectiveness ratio (ICER) results without a threshold value. In this context, round table participants favour a pragmatic approach based on "benchmarks" as opposed to a threshold value, based on an interpretative and normative perspective, i.e. benchmarks that can change over time based on feedback. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  20. Precise Ages for the Benchmark Brown Dwarfs HD 19467 B and HD 4747 B

    NASA Astrophysics Data System (ADS)

    Wood, Charlotte; Boyajian, Tabetha; Crepp, Justin; von Braun, Kaspar; Brewer, John; Schaefer, Gail; Adams, Arthur; White, Tim

    2018-01-01

    Large uncertainty in the age of brown dwarfs, stemming from a mass-age degeneracy, makes it difficult to constrain substellar evolutionary models. To break the degeneracy, we need ''benchmark" brown dwarfs (found in binary systems) whose ages can be determined independent of their masses. HD~19467~B and HD~4747~B are two benchmark brown dwarfs detected through the TRENDS (TaRgeting bENchmark objects with Doppler Spectroscopy) high-contrast imaging program for which we have dynamical mass measurements. To constrain their ages independently through isochronal analysis, we measured the radii of the host stars with interferometry using the Center for High Angular Resolution Astronomy (CHARA) Array. Assuming the brown dwarfs have the same ages as their host stars, we use these results to distinguish between several substellar evolutionary models. In this poster, we present new age estimates for HD~19467 and HD~4747 that are more accurate and precise and show our preliminary comparisons to cooling models.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.

    New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructivemore » Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.« less

  2. A Novel Offset Cancellation Based on Parasitic-Insensitive Switched-Capacitor Sensing Circuit for the Out-of-Plane Single-Gimbaled Decoupled CMOS-MEMS Gyroscope

    PubMed Central

    Chang, Ming-Hui; Huang, Han-Pang

    2013-01-01

    This paper presents a novel parasitic-insensitive switched-capacitor (PISC) sensing circuit design in order to obtain high sensitivity and ultra linearity and reduce the parasitic effect for the out-of-plane single-gimbaled decoupled CMOS-MEMS gyroscope (SGDG). According to the simulation results, the proposed PISC circuit has better sensitivity and high linearity in a wide dynamic range. Experimental results also show a better performance. In addition, the PISC circuit can use signal processing to cancel the offset and noise. Thus, this circuit is very suitable for gyroscope measurement. PMID:23493122

  3. Classical verification of quantum circuits containing few basis changes

    NASA Astrophysics Data System (ADS)

    Demarie, Tommaso F.; Ouyang, Yingkai; Fitzsimons, Joseph F.

    2018-04-01

    We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.

  4. Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT)

    PubMed Central

    Bae, Sungwoo; Kim, Myungchin

    2016-01-01

    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020

  5. A New Performance Improvement Model: Adding Benchmarking to the Analysis of Performance Indicator Data.

    PubMed

    Al-Kuwaiti, Ahmed; Homa, Karen; Maruthamuthu, Thennarasu

    2016-01-01

    A performance improvement model was developed that focuses on the analysis and interpretation of performance indicator (PI) data using statistical process control and benchmarking. PIs are suitable for comparison with benchmarks only if the data fall within the statistically accepted limit-that is, show only random variation. Specifically, if there is no significant special-cause variation over a period of time, then the data are ready to be benchmarked. The proposed Define, Measure, Control, Internal Threshold, and Benchmark model is adapted from the Define, Measure, Analyze, Improve, Control (DMAIC) model. The model consists of the following five steps: Step 1. Define the process; Step 2. Monitor and measure the variation over the period of time; Step 3. Check the variation of the process; if stable (no significant variation), go to Step 4; otherwise, control variation with the help of an action plan; Step 4. Develop an internal threshold and compare the process with it; Step 5.1. Compare the process with an internal benchmark; and Step 5.2. Compare the process with an external benchmark. The steps are illustrated through the use of health care-associated infection (HAI) data collected for 2013 and 2014 from the Infection Control Unit, King Fahd Hospital, University of Dammam, Saudi Arabia. Monitoring variation is an important strategy in understanding and learning about a process. In the example, HAI was monitored for variation in 2013, and the need to have a more predictable process prompted the need to control variation by an action plan. The action plan was successful, as noted by the shift in the 2014 data, compared to the historical average, and, in addition, the variation was reduced. The model is subject to limitations: For example, it cannot be used without benchmarks, which need to be calculated the same way with similar patient populations, and it focuses only on the "Analyze" part of the DMAIC model.

  6. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  7. Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.

    PubMed

    Hernandez, Wilmar

    2008-01-09

    In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.

  8. Two integrator loop quadrature oscillators: A review.

    PubMed

    Soliman, Ahmed M

    2013-01-01

    A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.

  9. NASCOM network ground communications availability report

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A performance analysis of NASCOM Network circuits is presented. An objective of 99.80 percent availability has been established for all network circuits and an acceptable level of 99.50. A network narrative summary for the current month includes changes in network configurations, current month's totals for modes of service and trouble category losses, a discussion of trends, and significant losses that affected the performance indexes of individual or groups of circuits. A table and narrative summary of those circuits that failed to meet the objective of 99.80% availability for all network circuits and an acceptable level of 99.50. Lost time and interruption tables showing all circuits affected by outages, by trouble category, with their total time and events, scheduled operating hours, and individual availability indexes also are included. Selected circuits whose availabilities have or continue to affect the overall network availability are also analyzed.

  10. Deconstruction of a neural circuit for hunger.

    PubMed

    Atasoy, Deniz; Betley, J Nicholas; Su, Helen H; Sternson, Scott M

    2012-08-09

    Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. Here we mapped synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders.

  11. Deconstruction of a neural circuit for hunger

    PubMed Central

    Atasoy, Deniz; Betley, J. Nicholas; Su, Helen H.; Sternson, Scott M.

    2012-01-01

    Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. We mapped synaptic interactions of AGRP neurons with multiple cell populations and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly-defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders. PMID:22801496

  12. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  13. A spatially localized architecture for fast and modular DNA computing

    NASA Astrophysics Data System (ADS)

    Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg

    2017-09-01

    Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.

  14. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    PubMed

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  15. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  16. Automatic Design of Digital Synthetic Gene Circuits

    PubMed Central

    Marchisio, Mario A.; Stelling, Jörg

    2011-01-01

    De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions. PMID:21399700

  17. A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database.

    PubMed

    Huang, Zhiwu; Shan, Shiguang; Wang, Ruiping; Zhang, Haihong; Lao, Shihong; Kuerban, Alifu; Chen, Xilin

    2015-12-01

    Face recognition with still face images has been widely studied, while the research on video-based face recognition is inadequate relatively, especially in terms of benchmark datasets and comparisons. Real-world video-based face recognition applications require techniques for three distinct scenarios: 1) Videoto-Still (V2S); 2) Still-to-Video (S2V); and 3) Video-to-Video (V2V), respectively, taking video or still image as query or target. To the best of our knowledge, few datasets and evaluation protocols have benchmarked for all the three scenarios. In order to facilitate the study of this specific topic, this paper contributes a benchmarking and comparative study based on a newly collected still/video face database, named COX(1) Face DB. Specifically, we make three contributions. First, we collect and release a largescale still/video face database to simulate video surveillance with three different video-based face recognition scenarios (i.e., V2S, S2V, and V2V). Second, for benchmarking the three scenarios designed on our database, we review and experimentally compare a number of existing set-based methods. Third, we further propose a novel Point-to-Set Correlation Learning (PSCL) method, and experimentally show that it can be used as a promising baseline method for V2S/S2V face recognition on COX Face DB. Extensive experimental results clearly demonstrate that video-based face recognition needs more efforts, and our COX Face DB is a good benchmark database for evaluation.

  18. Benchmarking reference services: step by step.

    PubMed

    Buchanan, H S; Marshall, J G

    1996-01-01

    This article is a companion to an introductory article on benchmarking published in an earlier issue of Medical Reference Services Quarterly. Librarians interested in benchmarking often ask the following questions: How do I determine what to benchmark; how do I form a benchmarking team; how do I identify benchmarking partners; what's the best way to collect and analyze benchmarking information; and what will I do with the data? Careful planning is a critical success factor of any benchmarking project, and these questions must be answered before embarking on a benchmarking study. This article summarizes the steps necessary to conduct benchmarking research. Relevant examples of each benchmarking step are provided.

  19. Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen

    This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.

  20. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  1. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters

    PubMed Central

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-01-01

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies. PMID:26552584

  2. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    PubMed

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  3. Benchmarking of trauma care worldwide: the potential value of an International Trauma Data Bank (ITDB).

    PubMed

    Haider, Adil H; Hashmi, Zain G; Gupta, Sonia; Zafar, Syed Nabeel; David, Jean-Stephane; Efron, David T; Stevens, Kent A; Zafar, Hasnain; Schneider, Eric B; Voiglio, Eric; Coimbra, Raul; Haut, Elliott R

    2014-08-01

    National trauma registries have helped improve patient outcomes across the world. Recently, the idea of an International Trauma Data Bank (ITDB) has been suggested to establish global comparative assessments of trauma outcomes. The objective of this study was to determine whether global trauma data could be combined to perform international outcomes benchmarking. We used observed/expected (O/E) mortality ratios to compare two trauma centers [European high-income country (HIC) and Asian lower-middle income country (LMIC)] with centers in the North American National Trauma Data Bank (NTDB). Patients (≥16 years) with blunt/penetrating injuries were included. Multivariable logistic regression, adjusting for known predictors of trauma mortality, was performed. Estimates were used to predict the expected deaths at each center and to calculate O/E mortality ratios for benchmarking. A total of 375,433 patients from 301 centers were included from the NTDB (2002-2010). The LMIC trauma center had 806 patients (2002-2010), whereas the HIC reported 1,003 patients (2002-2004). The most important known predictors of trauma mortality were adequately recorded in all datasets. Mortality benchmarking revealed that the HIC center performed similarly to the NTDB centers [O/E = 1.11 (95% confidence interval (CI) 0.92-1.35)], whereas the LMIC center showed significantly worse survival [O/E = 1.52 (1.23-1.88)]. Subset analyses of patients with blunt or penetrating injury showed similar results. Using only a few key covariates, aggregated global trauma data can be used to adequately perform international trauma center benchmarking. The creation of the ITDB is feasible and recommended as it may be a pivotal step towards improving global trauma outcomes.

  4. Energy pumping in electrical circuits under avalanche noise.

    PubMed

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  5. Fast 4-2 Compressor of Booth Multiplier Circuits for High-Speed RISC Processor

    NASA Astrophysics Data System (ADS)

    Yuan, S. C.

    2008-11-01

    We use different XOR circuits to optimize the XOR structure 4-2 compressor, and design the transmission gates(TG) 4-2 compressor use single to dual rail circuit configurations. The maximum propagation delay, the power consumption and the layout area of the designed 4-2 compressors are simulated with 0.35μm and 0.25μm CMOS process parameters and compared with results of the synthesized 4-2 circuits, and show that the designed 4-2 compressors are faster and area smaller than the synthesized one.

  6. TRIPOLI-4® - MCNP5 ITER A-lite neutronic model benchmarking

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Cayla, P.-Y.; Fausser, C.; Lee, Y.-K.; Trama, J.-C.; Li-Puma, A.

    2014-06-01

    The aim of this paper is to present the capability of TRIPOLI-4®, the CEA Monte Carlo code, to model a large-scale fusion reactor with complex neutron source and geometry. In the past, numerous benchmarks were conducted for TRIPOLI-4® assessment on fusion applications. Experiments (KANT, OKTAVIAN, FNG) analysis and numerical benchmarks (between TRIPOLI-4® and MCNP5) on the HCLL DEMO2007 and ITER models were carried out successively. In this previous ITER benchmark, nevertheless, only the neutron wall loading was analyzed, its main purpose was to present MCAM (the FDS Team CAD import tool) extension for TRIPOLI-4®. Starting from this work a more extended benchmark has been performed about the estimation of neutron flux, nuclear heating in the shielding blankets and tritium production rate in the European TBMs (HCLL and HCPB) and it is presented in this paper. The methodology to build the TRIPOLI-4® A-lite model is based on MCAM and the MCNP A-lite model (version 4.1). Simplified TBMs (from KIT) have been integrated in the equatorial-port. Comparisons of neutron wall loading, flux, nuclear heating and tritium production rate show a good agreement between the two codes. Discrepancies are mainly included in the Monte Carlo codes statistical error.

  7. Fingerprinting sea-level variations in response to continental ice loss: a benchmark exercise

    NASA Astrophysics Data System (ADS)

    Barletta, Valentina R.; Spada, Giorgio; Riva, Riccardo E. M.; James, Thomas S.; Simon, Karen M.; van der Wal, Wouter; Martinec, Zdenek; Klemann, Volker; Olsson, Per-Anders; Hagedoorn, Jan; Stocchi, Paolo; Vermeersen, Bert

    2013-04-01

    Understanding the response of the Earth to the waxing and waning ice sheets is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements to the projections of future sea level trends in response to climate change. All the processes accompanying Glacial Isostatic Adjustment (GIA) can be described solving the so-called Sea Level Equation (SLE), an integral equation that accounts for the interactions between the ice sheets, the solid Earth, and the oceans. Modern approaches to the SLE are based on various techniques that range from purely analytical formulations to fully numerical methods. Here we present the results of a benchmark exercise of independently developed codes designed to solve the SLE. The study involves predictions of current sea level changes due to present-day ice mass loss. In spite of the differences in the methods employed, the comparison shows that a significant number of GIA modellers can reproduce their sea-level computations within 2% for well defined, large-scale present-day ice mass changes. Smaller and more detailed loads need further and dedicated benchmarking and high resolution computation. This study shows how the details of the implementation and the inputs specifications are an important, and often underappreciated, aspect. Hence this represents a step toward the assessment of reliability of sea level projections obtained with benchmarked SLE codes.

  8. Electrical Circuits in the Mathematics/Computer Science Classroom.

    ERIC Educational Resources Information Center

    McMillan, Robert D.

    1988-01-01

    Shows how, with little or no electrical background, students can apply Boolean algebra concepts to design and build integrated electrical circuits in the classroom that will reinforce important ideas in mathematics. (PK)

  9. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  10. Irreversibility and entanglement spectrum statistics in quantum circuits

    NASA Astrophysics Data System (ADS)

    Shaffer, Daniel; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.

    2014-12-01

    We show that in a quantum system evolving unitarily under a stochastic quantum circuit the notions of irreversibility, universality of computation, and entanglement are closely related. As the state evolves from an initial product state, it gets asymptotically maximally entangled. We define irreversibility as the failure of searching for a disentangling circuit using a Metropolis-like algorithm. We show that irreversibility corresponds to Wigner-Dyson statistics in the level spacing of the entanglement eigenvalues, and that this is obtained from a quantum circuit made from a set of universal gates for quantum computation. If, on the other hand, the system is evolved with a non-universal set of gates, the statistics of the entanglement level spacing deviates from Wigner-Dyson and the disentangling algorithm succeeds. These results open a new way to characterize irreversibility in quantum systems.

  11. Analysis and Design of Power Factor Pre-Regulator Based on a Symmetrical Charge Pump Circuit Applied to Electronic Ballast

    NASA Astrophysics Data System (ADS)

    Lazcano Olea, Miguel; Ramos Astudillo, Reynaldo; Sanhueza Robles, René; Rodriguez Rubke, Leopoldo; Ruiz-Caballero, Domingo Antonio

    This paper presents the analysis and design of a power factor pre-regulator based on a symmetrical charge pump circuit applied to electronic ballast. The operation stages of the circuit are analyzed and its main design equations are obtained. Simulation and experimental results are presented in order to show the design methodology feasibility.

  12. In Vitro Evaluation of an Alternative Neonatal Extracorporeal Life Support Circuit on Hemodynamic Performance and Bubble Trap.

    PubMed

    Spencer, Shannon B; Wang, Shigang; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate an alternative neonatal extracorporeal life support (ECLS) circuit with a RotaFlow centrifugal pump and Better-Bladder (BB) for hemodynamic performance and gaseous microemboli (GME) capture in a simulated neonatal ECLS system. The circuit consisted of a Maquet RotaFlow centrifugal pump, a Quadrox-iD Pediatric diffusion membrane oxygenator, 8 Fr arterial cannula, and 10 Fr venous cannula. A "Y" connector was inserted into the venous line to allow for comparison between BB and no BB. The circuit and pseudopatient were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 35%). All hemodynamic trials were conducted at flow rates ranging from 100 to 600 mL/min at 36°C. Real-time pressure and flow data were recorded using a data acquisition system. For GME testing, 0.5 cc of air was injected via syringe into the venous line. GME were detected and characterized with or without the BB using the Emboli Detection and Classification Quantifier (EDAC) System. Trials were conducted at flow rates ranging from 200 to 500 mL/min. The hemodynamic energy data showed that up to 75.2% of the total hemodynamic energy was lost from the circuit. The greatest pressure drops occurred across the arterial cannula and increased with increasing flow rate from 10.1 mm Hg at 100 mL/min to 114.3 mm Hg at 600 mL/min. The EDAC results showed that the BB trapped a significant amount of the GME in the circuit. When the bladder was removed, GME passed through the pump head and the oxygenator to the arterial line. This study showed that a RotaFlow centrifugal pump combined with a BB can help to significantly decrease the number of GME in a neonatal ECLS circuit. Even with this optimized alternative circuit, a large percentage of the total hemodynamic energy was lost. The arterial cannula was the main source of resistance in the circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Subsidence Rates in Southeast Texas as Determined by RTK GNSS Measurements of Preexisting Survey Markers

    NASA Astrophysics Data System (ADS)

    Kruger, J. M.

    2013-12-01

    This study determines the rates of subsidence or uplift in coastal areas of SE Texas by comparing recent GNSS measurements to the original orthometric heights of previously installed National Geodetic Survey (NGS) benchmarks. Understanding subsidence rates in coastal areas of SE Texas is critical when determining its vulnerability to local sea level rise and flooding, as well as for accurate survey control. The counties covered are Chambers, Galveston, Hardin, Jefferson, Liberty, Orange, and parts of Jasper and Newton counties. These counties lie between an earlier subsidence study conducted in Louisiana and an ongoing subsidence study of several counties around the Houston metropolitan area. The resurveying methods used in this RTK GNSS study allow a large area to be covered relatively quickly with enough detail to determine subsidence rates that are averaged over several decades. This information can be used to place more targeted GNSS observation stations in areas that appear to be rapidly subsiding. By continuously, or periodically, measuring the elevations at these targeted stations, current subsidence rates can be determined more accurately and at lower cost than by scattering a large number of GNSS stations over a wide area. This study was conducted using a Trimble R8 GNSS system on all NGS benchmarks that were found in the study area. Differential corrections were applied in real time using a VRS network of base stations. This system yields a nominal vertical accuracy of 1.5 to 2.0 cm for each 2 to 5 minute reading. Usually three of these readings were measured on each benchmark and averaged for the final result. A total of 367 benchmarks were resurveyed, most of which were suitable for vertical change rate calculations. Original NGS elevations were subtracted from the new elevations and divided by the time between the two elevation measurements to determine the average subsidence or uplift rate of the benchmark. Benchmarks used for determining the vertical change rates were monumented between1931 and 2006, thus yielding rates averaged for 5 to 80 years. Besides the errors inherent in RTK GNSS measurements, other sources of error for vertical change rates include inaccuracies in the original elevations published by the NGS and uncertainties about the year in which those original elevations were measured. Initial results show as much as -0.86 m of subsidence over a 58 year period on one benchmark in Jefferson County 30 km north of the coast, and up to +0.23 m of uplift over a 60 year period on one benchmark in Jasper County approximately 130 km north of the coast. Overall, preliminary results of the study show near zero vertical change rates to a maximum of -15.3 mm/yr subsidence in Chambers, Galveston, Liberty, and Jefferson counties, with the highest rates of subsidence in Jefferson and Chambers counties. Parts of Galveston, Orange, and Jasper counties show subsidence rates up to -9.1 mm/yr, but also show uplift rates up to +4.8 mm/yr. Potential causes of vertical change in the study area include expansion or contraction of near-surface clays due to changes in water content, compaction of near-surface to deeper sediments, growth faulting, groundwater, oil, or natural gas extraction or injection, and to a much smaller extent, tectonic effects.

  14. Analysis of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Pedretti, Kevin T.; Kutler, Paul (Technical Monitor)

    1997-01-01

    We evaluate the performance of a Fast Ethernet network configured with a single large switch, a single hub, and a 4x4 2D torus topology in a testbed cluster of "commodity" Pentium Pro PCs. We also evaluated a mixed network composed of ethernet hubs and switches. An MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2) show that the torus network performs best for all sizes that we were able to test (up to 16 nodes). For larger networks the ethernet switch outperforms the hub, though its performance is far less than peak. The hub/switch combination tests indicate that the NAS parallel benchmarks are relatively insensitive to hub densities of less than 7 nodes per hub.

  15. Basic guidelines to introduce electric circuit simulation software in a general physics course

    NASA Astrophysics Data System (ADS)

    Moya, A. A.

    2018-05-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.

  16. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  17. Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps

    NASA Astrophysics Data System (ADS)

    Nuryanto Budisusila, Eka; Arifin, Bustanul

    2017-04-01

    The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.

  18. Limitations of Community College Benchmarking and Benchmarks

    ERIC Educational Resources Information Center

    Bers, Trudy H.

    2006-01-01

    This chapter distinguishes between benchmarks and benchmarking, describes a number of data and cultural limitations to benchmarking projects, and suggests that external demands for accountability are the dominant reason for growing interest in benchmarking among community colleges.

  19. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  20. Closing of water circuits - a global benchmark on sustainable water management

    NASA Astrophysics Data System (ADS)

    Fröhlich, Siegmund

    2017-11-01

    Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: "The wars of the 21st century will be fought not over oil, they will be fought over water." [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  1. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  2. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  3. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523

  4. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  5. Robust design of biological circuits: evolutionary systems biology approach.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  6. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  7. Stability of the Baseline Holder in Readout Circuits For Radiation Detectors

    PubMed Central

    Chen, Y.; Cui, Y.; O’Connor, P.; Seo, Y.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.

    2016-01-01

    Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit’s stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. PMID:27182081

  8. Optimization of Monocrystalline MgxCd1-xTe/MgyCd1-yTe Double-Heterostructure Solar Cells

    NASA Astrophysics Data System (ADS)

    Becker, Jacob J.

    Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials--ZnTe, CuZnS, and a-Si:H--and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.

  9. Benchmarking Deep Learning Models on Large Healthcare Datasets.

    PubMed

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan

    2018-06-04

    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  11. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates

    PubMed Central

    Gander, Miles W.; Vrana, Justin D.; Voje, William E.; Carothers, James M.; Klavins, Eric

    2017-01-01

    Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be ‘wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems. PMID:28541304

  12. Polymer solar cells with enhanced open-circuit voltage and efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  13. Benchmarking of energy consumption in municipal wastewater treatment plants - a survey of over 200 plants in Italy.

    PubMed

    Vaccari, M; Foladori, P; Nembrini, S; Vitali, F

    2018-05-01

    One of the largest surveys in Europe about energy consumption in Italian wastewater treatment plants (WWTPs) is presented, based on 241 WWTPs and a total population equivalent (PE) of more than 9,000,000 PE. The study contributes towards standardised resilient data and benchmarking and to identify potentials for energy savings. In the energy benchmark, three indicators were used: specific energy consumption expressed per population equivalents (kWh PE -1 year -1 ), per cubic meter (kWh/m 3 ), and per unit of chemical oxygen demand (COD) removed (kWh/kgCOD). The indicator kWh/m 3 , even though widely applied, resulted in a biased benchmark, because highly influenced by stormwater and infiltrations. Plants with combined networks (often used in Europe) showed an apparent better energy performance. Conversely, the indicator kWh PE -1 year -1 resulted in a more meaningful definition of a benchmark. High energy efficiency was associated with: (i) large capacity of the plant, (ii) higher COD concentration in wastewater, (iii) separate sewer systems, (iv) capacity utilisation over 80%, and (v) high organic loads, but without overloading. The 25th percentile was proposed as a benchmark for four size classes: 23 kWh PE -1 y -1 for large plants > 100,000 PE; 42 kWh PE -1 y -1 for capacity 10,000 < PE < 100,000, 48 kWh PE -1 y -1 for capacity 2,000 < PE < 10,000 and 76 kWh PE -1 y -1 for small plants < 2,000 PE.

  14. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    NASA Astrophysics Data System (ADS)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  15. Modular minimally invasive extracorporeal circulation systems; can they become the standard practice for performing cardiac surgery?

    PubMed

    Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P

    2015-04-01

    Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. © The Author(s) 2015.

  16. Cryogen-free dilution refrigerators

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  17. Benchmarking and audit of breast units improves quality of care

    PubMed Central

    van Dam, P.A.; Verkinderen, L.; Hauspy, J.; Vermeulen, P.; Dirix, L.; Huizing, M.; Altintas, S.; Papadimitriou, K.; Peeters, M.; Tjalma, W.

    2013-01-01

    Quality Indicators (QIs) are measures of health care quality that make use of readily available hospital inpatient administrative data. Assessment quality of care can be performed on different levels: national, regional, on a hospital basis or on an individual basis. It can be a mandatory or voluntary system. In all cases development of an adequate database for data extraction, and feedback of the findings is of paramount importance. In the present paper we performed a Medline search on “QIs and breast cancer” and “benchmarking and breast cancer care”, and we have added some data from personal experience. The current data clearly show that the use of QIs for breast cancer care, regular internal and external audit of performance of breast units, and benchmarking are effective to improve quality of care. Adherence to guidelines improves markedly (particularly regarding adjuvant treatment) and there are data emerging showing that this results in a better outcome. As quality assurance benefits patients, it will be a challenge for the medical and hospital community to develop affordable quality control systems, which are not leading to excessive workload. PMID:24753926

  18. The Star Schema Benchmark and Augmented Fact Table Indexing

    NASA Astrophysics Data System (ADS)

    O'Neil, Patrick; O'Neil, Elizabeth; Chen, Xuedong; Revilak, Stephen

    We provide a benchmark measuring star schema queries retrieving data from a fact table with Where clause column restrictions on dimension tables. Clustering is crucial to performance with modern disk technology, since retrievals with filter factors down to 0.0005 are now performed most efficiently by sequential table search rather than by indexed access. DB2’s Multi-Dimensional Clustering (MDC) provides methods to "dice" the fact table along a number of orthogonal "dimensions", but only when these dimensions are columns in the fact table. The diced cells cluster fact rows on several of these "dimensions" at once so queries restricting several such columns can access crucially localized data, with much faster query response. Unfortunately, columns of dimension tables of a star schema are not usually represented in the fact table. In this paper, we show a simple way to adjoin physical copies of dimension columns to the fact table, dicing data to effectively cluster query retrieval, and explain how such dicing can be achieved on database products other than DB2. We provide benchmark measurements to show successful use of this methodology on three commercial database products.

  19. On the predictability of land surface fluxes from meteorological variables

    NASA Astrophysics Data System (ADS)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  20. Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica.

    PubMed

    Volkov, Alexander G; Baker, Kara; Foster, Justin C; Clemmons, Jacqueline; Jovanov, Emil; Markin, Vladislav S

    2011-04-01

    The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. This paper presents, for the first time, the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. Here we show circadian variation of the plant responses to electrical stimulation. The biologically closed electrochemical circuits in the leaves of Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. The electrostimulation was provided with different timing and different voltages. Resistance between Ag/AgCl electrodes in the leaf of Aloe vera was higher during the day than at night. Discharge of the capacitor in Aloe vera at night was faster than during the day. Discharge of the capacitor in a pulvinus of Mimosa pudica was faster during the day. The biologically closed electrical circuits with voltage gated ion channels in Mimosa pudica are also activated the next day, even in the darkness. These results show that the circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. We present the equivalent electrical circuits in both plants and their circadian variation to explain the experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Pulse Detecting Genetic Circuit – A New Design Approach

    PubMed Central

    Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045

  2. Atypical transistor-based chaotic oscillators: Design, realization, and diversity

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; Frasca, Mattia; OświÈ©cimka, Paweł; Faes, Luca; DroŻdŻ, Stanisław

    2017-07-01

    In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good.

  3. Atypical transistor-based chaotic oscillators: Design, realization, and diversity.

    PubMed

    Minati, Ludovico; Frasca, Mattia; Oświȩcimka, Paweł; Faes, Luca; Drożdż, Stanisław

    2017-07-01

    In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good.

  4. Pulse Detecting Genetic Circuit - A New Design Approach.

    PubMed

    Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.

  5. Readout circuit with novel background suppression for long wavelength infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xie, L.; Xia, X. J.; Zhou, Y. F.; Wen, Y.; Sun, W. F.; Shi, L. X.

    2011-02-01

    In this article, a novel pixel readout circuit using a switched-capacitor integrator mode background suppression technique is presented for long wavelength infrared focal plane arrays. This circuit can improve dynamic range and signal-to-noise ratio by suppressing the large background current during integration. Compared with other background suppression techniques, the new background suppression technique is less sensitive to the process mismatch and has no additional shot noise. The proposed circuit is theoretically analysed and simulated while taking into account the non-ideal characteristics. The result shows that the background suppression non-uniformity is ultra-low even for a large process mismatch. The background suppression non-uniformity of the proposed circuit can also remain very small with technology scaling.

  6. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

    PubMed Central

    Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.

    2016-01-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682

  7. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    NASA Astrophysics Data System (ADS)

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  8. Impact of the Minimum Pricing Policy and introduction of brand (generic) substitution into the Pharmaceutical Benefits Scheme in Australia.

    PubMed

    McManus, P; Birkett, D J; Dudley, J; Stevens, A

    2001-01-01

    To describe the effects of introducing the Minimum Pricing Policy (MPP) and generic (brand) substitution in 1990 and 1994 respectively on the dispensing of Pharmaceutical Benefits Scheme (PBS) prescriptions both at the aggregate and individual patient level. The relative proportion of prescriptions with a brand premium and those at benchmark was examined 4 years after introduction of the MPP and again 5 years later after generic substitution by pharmacists was permitted. To determine the impact of a price signal at the individual level, case studies involving a patient tracking methodology were conducted on two drugs (fluoxetine and ranitidine) that received a brand premium. From a zero base when the MPP was introduced in 1990, there were 5.4 million prescriptions (17%) dispensed for benchmark products 4 years later in 1994. At this stage generic (brand) substitution by pharmacists was then permitted and the market share of benchmark brands increased to 45% (25.2 million) by 1999. In the patient tracking studies, a significantly lower proportion of patients was still taking the premium brand of fluoxetine 3 months after the introduction of a price signal compared with patients taking paroxetine which did not have a generic competitor. This was also the case for the premium brand of ranitidine when compared to famotidine. The size of the price signal also had a marked effect on dispensing behaviour with the drug with the larger premium (fluoxetine) showing a significantly greater switch away from the premium brand to the benchmark product. The introduction in 1990 of the Minimum Pricing Policy without allowing generic substitution had a relatively small impact on the selection of medicines within the Pharmaceutical Benefits Scheme. However the effect of generic substitution at the pharmacist level, which was introduced in December 1994, resulted in a marked increase in the percentage of eligible PBS items dispensed at benchmark. Case studies showed a larger premium resulted in a greater shift of patients from drugs with a brand premium to the benchmark alternative.

  9. Equivalent circuit consideration of frequency-shift-type acceleration sensor

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshifumi; Sugawara, Sumio; Kudo, Subaru

    2018-07-01

    In this paper, an electrical equivalent circuit for the piezoelectrically driven frequency-shift-type acceleration sensor model is represented, and the equivalent circuit constants including the effect of the axial force are clarified for the first time. The results calculated by the finite element method are compared with the experimentally measured ones of the one-axis sensor of trial production. The result shows that the analyzed values almost agree with the measured ones, and that the equivalent circuit representation of the sensor is useful for electrical engineers in order to easily analyze the characteristics of the sensors.

  10. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    NASA Astrophysics Data System (ADS)

    Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.

    2007-12-01

    We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  11. Event-driven visual attention for the humanoid robot iCub

    PubMed Central

    Rea, Francesco; Metta, Giorgio; Bartolozzi, Chiara

    2013-01-01

    Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and reliable interaction with the environment. Here we present a biologically inspired attention system developed for the humanoid robot iCub. It is based on input from unconventional event-driven vision sensors and an efficient computational method. The resulting system shows low-latency and fast determination of the location of the focus of attention. The performance is benchmarked against an instance of the state of the art in robotics artificial attention system used in robotics. Results show that the proposed system is two orders of magnitude faster that the benchmark in selecting a new stimulus to attend. PMID:24379753

  12. All inclusive benchmarking.

    PubMed

    Ellis, Judith

    2006-07-01

    The aim of this article is to review published descriptions of benchmarking activity and synthesize benchmarking principles to encourage the acceptance and use of Essence of Care as a new benchmarking approach to continuous quality improvement, and to promote its acceptance as an integral and effective part of benchmarking activity in health services. The Essence of Care, was launched by the Department of Health in England in 2001 to provide a benchmarking tool kit to support continuous improvement in the quality of fundamental aspects of health care, for example, privacy and dignity, nutrition and hygiene. The tool kit is now being effectively used by some frontline staff. However, use is inconsistent, with the value of the tool kit, or the support clinical practice benchmarking requires to be effective, not always recognized or provided by National Health Service managers, who are absorbed with the use of quantitative benchmarking approaches and measurability of comparative performance data. This review of published benchmarking literature, was obtained through an ever-narrowing search strategy commencing from benchmarking within quality improvement literature through to benchmarking activity in health services and including access to not only published examples of benchmarking approaches and models used but the actual consideration of web-based benchmarking data. This supported identification of how benchmarking approaches have developed and been used, remaining true to the basic benchmarking principles of continuous improvement through comparison and sharing (Camp 1989). Descriptions of models and exemplars of quantitative and specifically performance benchmarking activity in industry abound (Camp 1998), with far fewer examples of more qualitative and process benchmarking approaches in use in the public services and then applied to the health service (Bullivant 1998). The literature is also in the main descriptive in its support of the effectiveness of benchmarking activity and although this does not seem to have restricted its popularity in quantitative activity, reticence about the value of the more qualitative approaches, for example Essence of Care, needs to be overcome in order to improve the quality of patient care and experiences. The perceived immeasurability and subjectivity of Essence of Care and clinical practice benchmarks means that these benchmarking approaches are not always accepted or supported by health service organizations as valid benchmarking activity. In conclusion, Essence of Care benchmarking is a sophisticated clinical practice benchmarking approach which needs to be accepted as an integral part of health service benchmarking activity to support improvement in the quality of patient care and experiences.

  13. Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Niu, Xiamu

    2016-01-01

    This paper is concerned with the feasibility of the classical nearest-neighbor interpolation based on flexible representation of quantum images (FRQI) and novel enhanced quantum representation (NEQR). Firstly, the feasibility of the classical image nearest-neighbor interpolation for quantum images of FRQI and NEQR is proven. Then, by defining the halving operation and by making use of quantum rotation gates, the concrete quantum circuit of the nearest-neighbor interpolation for FRQI is designed for the first time. Furthermore, quantum circuit of the nearest-neighbor interpolation for NEQR is given. The merit of the proposed NEQR circuit lies in their low complexity, which is achieved by utilizing the halving operation and the quantum oracle operator. Finally, in order to further improve the performance of the former circuits, new interpolation circuits for FRQI and NEQR are presented by using Control-NOT gates instead of a halving operation. Simulation results show the effectiveness of the proposed circuits.

  14. A Current-Mode Common-Mode Feedback Circuit (CMFB) with Rail-to-Rail Operation

    NASA Astrophysics Data System (ADS)

    Suadet, Apirak; Kasemsuwan, Varakorn

    2011-03-01

    This paper presents a current-mode common-mode feedback (CMFB) circuit with rail-to-rail operation. The CMFB is a stand-alone circuit, which can be connected to any low voltage transconductor without changing or upsetting the existing circuit. The proposed CMFB employs current mirrors, operating as common-mode detector and current amplifier to enhance the loop gain of the CMFB. The circuit employs positive feedback to enhance the output impedance and gain. The circuit has been designed using a 0.18 μm CMOS technology under 1V supply and analyzed using HSPICE with BSIM3V3 device models. A pseudo-differential amplifier using two common sources and the proposed CMFB shows rail to rail output swing (± 0.7 V) with low common-mode gain (-36 dB) and power dissipation of 390 μW.

  15. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata.

    PubMed

    Bahar, Ali Newaz; Waheed, Sajjad

    2016-01-01

    The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.

  16. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    PubMed

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  17. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors

    PubMed Central

    Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.

    2014-01-01

    SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  18. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain

    PubMed Central

    Tennant, Kelly A.; Taylor, Stephanie L.; White, Emily R.; Brown, Craig E.

    2017-01-01

    To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain. PMID:28643802

  19. Circuit filling factor (CFF) for multiply tuned probes, revisited

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Zens, Albert P.

    2018-07-01

    The concept of circuit filling factor (CFF) is re-examined for multi-tuned, multi-inductor probe circuits. The CFF is the fraction of magnetic stored energy residing in the NMR coil. The CFF theorem states that the CFF sums to unity across all the resonant normal modes. It dictates that improved performance from a large CFF in one mode comes at the expense of CFF (and performance) at the other mode(s). Simple analytical calculations of two-mode circuits are used to demonstrate and confirm the CFF theorem. A triple-resonance circuit is calculated to show the large trade-offs involved there. The theorem can provide guidance for choosing the best circuit and relative inductances in multi-nuclear probes. The CFF is directly accessible from ball frequency-shift measurements. We give experimental measures of the CFF from ball shifts and compare to calculated values of the CFF, with good agreement.

  20. Demonstration of a neural circuit critical for imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Atoji, Yasuro; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2010-03-24

    Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.

  1. Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing

    PubMed Central

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-01-01

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290

  2. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.

    PubMed

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-10-16

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  3. Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder.

    PubMed

    Xie, Chunming; Ma, Lisha; Jiang, Nan; Huang, Ruyan; Li, Li; Gong, Liang; He, Cancan; Xiao, Chaoyong; Liu, Wen; Xu, Shu; Zhang, Zhijun

    2017-08-01

    Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.

  4. Acute physiological responses to different circuit training protocols.

    PubMed

    Monteiro, A G; Alveno, D A; Prado, M; Monteiro, G A; Ugrinowitsch, C; Aoki, M S; Piçarro, I C

    2008-12-01

    The purpose of present study was to compare the acute physiological responses to a circuit weight training with the responses to a combined circuit training (weight training and treadmill run). The sample consisted of 25 individuals at an average state of training, 10 men and 15 female, between 18 and 35 year old. There were selected 60 second sets of resistance exercises to the circuit weight training (CWT). Whereas in the combined circuit training (CCT), the subjects spent 30 seconds on the same resistance exercises and 30 seconds running on the treadmill. The rest intervals between the sets lasted 15 seconds. The analysis of variance (ANOVA) with 5% significance level was utilized to the statistical analysis of the results. Comparing circuit training protocols, it was noted that CCT elicits a higher relative and absolute VO2 and energy expenditure values than CWT for both genders (P<0.05). Regarding inter-gender comparison, males showed higher absolute and relative VO2 and absolute energy expenditure values for both CWT and CCT than females (P<0.05). Females showed a significant greater %VO2max value for both CWT and CCT. Due to the experimental conditions used to state both circuit training bouts (CWT and CCT), the VO2 rate found was higher than the values reported by previous studies which used heavier weight lift. CCT seems adequate to produce cardiovascular improvements and greater energy expenditure for both men and women, while CWT group classes are sufficient only for unfit women.

  5. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595

  6. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.

  7. GEN-IV Benchmarking of Triso Fuel Performance Models under accident conditions modeling input data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise Paul

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. •more » The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary. 09/2016: Tables 6 and 8 updated. AGR-2 input data added« less

  8. Generation IV benchmarking of TRISO fuel performance models under accident conditions: Modeling input data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparisonmore » of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary.« less

  9. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods.

    PubMed

    Schaffter, Thomas; Marbach, Daniel; Floreano, Dario

    2011-08-15

    Over the last decade, numerous methods have been developed for inference of regulatory networks from gene expression data. However, accurate and systematic evaluation of these methods is hampered by the difficulty of constructing adequate benchmarks and the lack of tools for a differentiated analysis of network predictions on such benchmarks. Here, we describe a novel and comprehensive method for in silico benchmark generation and performance profiling of network inference methods available to the community as an open-source software called GeneNetWeaver (GNW). In addition to the generation of detailed dynamical models of gene regulatory networks to be used as benchmarks, GNW provides a network motif analysis that reveals systematic prediction errors, thereby indicating potential ways of improving inference methods. The accuracy of network inference methods is evaluated using standard metrics such as precision-recall and receiver operating characteristic curves. We show how GNW can be used to assess the performance and identify the strengths and weaknesses of six inference methods. Furthermore, we used GNW to provide the international Dialogue for Reverse Engineering Assessments and Methods (DREAM) competition with three network inference challenges (DREAM3, DREAM4 and DREAM5). GNW is available at http://gnw.sourceforge.net along with its Java source code, user manual and supporting data. Supplementary data are available at Bioinformatics online. dario.floreano@epfl.ch.

  10. Re-using biological devices: a model-aided analysis of interconnected transcriptional cascades designed from the bottom-up.

    PubMed

    Pasotti, Lorenzo; Bellato, Massimo; Casanova, Michela; Zucca, Susanna; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2017-01-01

    The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden. Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli . We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively. Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour. Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.

  11. Results Oriented Benchmarking: The Evolution of Benchmarking at NASA from Competitive Comparisons to World Class Space Partnerships

    NASA Technical Reports Server (NTRS)

    Bell, Michael A.

    1999-01-01

    Informal benchmarking using personal or professional networks has taken place for many years at the Kennedy Space Center (KSC). The National Aeronautics and Space Administration (NASA) recognized early on, the need to formalize the benchmarking process for better utilization of resources and improved benchmarking performance. The need to compete in a faster, better, cheaper environment has been the catalyst for formalizing these efforts. A pioneering benchmarking consortium was chartered at KSC in January 1994. The consortium known as the Kennedy Benchmarking Clearinghouse (KBC), is a collaborative effort of NASA and all major KSC contractors. The charter of this consortium is to facilitate effective benchmarking, and leverage the resulting quality improvements across KSC. The KBC acts as a resource with experienced facilitators and a proven process. One of the initial actions of the KBC was to develop a holistic methodology for Center-wide benchmarking. This approach to Benchmarking integrates the best features of proven benchmarking models (i.e., Camp, Spendolini, Watson, and Balm). This cost-effective alternative to conventional Benchmarking approaches has provided a foundation for consistent benchmarking at KSC through the development of common terminology, tools, and techniques. Through these efforts a foundation and infrastructure has been built which allows short duration benchmarking studies yielding results gleaned from world class partners that can be readily implemented. The KBC has been recognized with the Silver Medal Award (in the applied research category) from the International Benchmarking Clearinghouse.

  12. The effect of reinforcement on the tear properties of flexible circuits

    NASA Astrophysics Data System (ADS)

    Acton, A. E.

    The tear properties of Kapton flexible circuitry are very poor. To better understand the properties of flex circuits and how to reinforce them, four different reinforcing materials were applied to a typical flex circuit and the tear properties were measured. Teflon film, nylon fabric, glass fabric and Kevlar fabric were all laminated to a flex circuit with Pyralux (a Dupont tradename) adhesive. The fabrics were laminated in both a 0/90 and a + or - 45 configuration. Five tests wereperformed, Graves, crescent, trousers, tensile and single edge notch (SEN). Of the four materials used for reinforcement, Kevlar clearly showed the greatest overall improvement in tear properties. However, Kevlar also provided the greatest processing difficulties. All of the reinforced circuits had an increase in thickness which resulted in an unacceptable loss of flexibility.

  13. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  14. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  15. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  16. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, G.W. II; Tsao, C.L.

    1996-06-01

    This report presents potential screening benchmarks for protection of aquatic life form contaminants in water. Because there is no guidance for screening for benchmarks, a set of alternative benchmarks is presented herein. This report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility. Also included is the updates of benchmark values where appropriate, new benchmark values, secondary sources are replaced by primary sources, and a more completemore » documentation of the sources and derivation of all values are presented.« less

  17. Benchmarking in emergency health systems.

    PubMed

    Kennedy, Marcus P; Allen, Jacqueline; Allen, Greg

    2002-12-01

    This paper discusses the role of benchmarking as a component of quality management. It describes the historical background of benchmarking, its competitive origin and the requirement in today's health environment for a more collaborative approach. The classical 'functional and generic' types of benchmarking are discussed with a suggestion to adopt a different terminology that describes the purpose and practicalities of benchmarking. Benchmarking is not without risks. The consequence of inappropriate focus and the need for a balanced overview of process is explored. The competition that is intrinsic to benchmarking is questioned and the negative impact it may have on improvement strategies in poorly performing organizations is recognized. The difficulty in achieving cross-organizational validity in benchmarking is emphasized, as is the need to scrutinize benchmarking measures. The cost effectiveness of benchmarking projects is questioned and the concept of 'best value, best practice' in an environment of fixed resources is examined.

  18. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit.

    PubMed

    Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B

    2014-01-13

    We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.

  19. Transport properties of nanocomposite and its simulation with L-R-C circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Arnab, E-mail: agangulyphysics@gmail.com; Sarkar, Aditi, E-mail: agangulyphysics@gmail.com; Sarkar, A., E-mail: agangulyphysics@gmail.com

    2014-04-24

    The nano particles are represented in this communication by L-R-C equivalent circuit. The dc current voltage characteristics (CVC) of the proposed circuit have simulated using Circuit-Maker ® 2000. Experimental investigation on ZnO nano-composite with capping material gum acacia shows similar CVC. NPs are represented by C-R combinations to manifest the Coulomb blockade effect of a quantum dot. The capping material is represented by an inductor along with a resistance in series. Nine NPs with capping matrix are simulated. The dc current voltage characteristics (CVC) and gross feature of polarization nature obtained by experiment and simulation study are consistent.

  20. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    NASA Astrophysics Data System (ADS)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  1. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  2. Benchmarking the quality of breast cancer care in a nationwide voluntary system: the first five-year results (2003–2007) from Germany as a proof of concept

    PubMed Central

    Brucker, Sara Y; Schumacher, Claudia; Sohn, Christoph; Rezai, Mahdi; Bamberg, Michael; Wallwiener, Diethelm

    2008-01-01

    Background The main study objectives were: to establish a nationwide voluntary collaborative network of breast centres with independent data analysis; to define suitable quality indicators (QIs) for benchmarking the quality of breast cancer (BC) care; to demonstrate existing differences in BC care quality; and to show that BC care quality improved with benchmarking from 2003 to 2007. Methods BC centres participated voluntarily in a scientific benchmarking procedure. A generic XML-based data set was developed and used for data collection. Nine guideline-based quality targets serving as rate-based QIs were initially defined, reviewed annually and modified or expanded accordingly. QI changes over time were analysed descriptively. Results During 2003–2007, respective increases in participating breast centres and postoperatively confirmed BCs were from 59 to 220 and from 5,994 to 31,656 (> 60% of new BCs/year in Germany). Starting from 9 process QIs, 12 QIs were developed by 2007 as surrogates for long-term outcome. Results for most QIs increased. From 2003 to 2007, the most notable increases seen were for preoperative histological confirmation of diagnosis (58% (in 2003) to 88% (in 2007)), appropriate endocrine therapy in hormone receptor-positive patients (27 to 93%), appropriate radiotherapy after breast-conserving therapy (20 to 79%) and appropriate radiotherapy after mastectomy (8 to 65%). Conclusion Nationwide external benchmarking of BC care is feasible and successful. The benchmarking system described allows both comparisons among participating institutions as well as the tracking of changes in average quality of care over time for the network as a whole. Marked QI increases indicate improved quality of BC care. PMID:19055735

  3. Benchmarking the quality of breast cancer care in a nationwide voluntary system: the first five-year results (2003-2007) from Germany as a proof of concept.

    PubMed

    Brucker, Sara Y; Schumacher, Claudia; Sohn, Christoph; Rezai, Mahdi; Bamberg, Michael; Wallwiener, Diethelm

    2008-12-02

    The main study objectives were: to establish a nationwide voluntary collaborative network of breast centres with independent data analysis; to define suitable quality indicators (QIs) for benchmarking the quality of breast cancer (BC) care; to demonstrate existing differences in BC care quality; and to show that BC care quality improved with benchmarking from 2003 to 2007. BC centres participated voluntarily in a scientific benchmarking procedure. A generic XML-based data set was developed and used for data collection. Nine guideline-based quality targets serving as rate-based QIs were initially defined, reviewed annually and modified or expanded accordingly. QI changes over time were analysed descriptively. During 2003-2007, respective increases in participating breast centres and postoperatively confirmed BCs were from 59 to 220 and from 5,994 to 31,656 (> 60% of new BCs/year in Germany). Starting from 9 process QIs, 12 QIs were developed by 2007 as surrogates for long-term outcome. Results for most QIs increased. From 2003 to 2007, the most notable increases seen were for preoperative histological confirmation of diagnosis (58% (in 2003) to 88% (in 2007)), appropriate endocrine therapy in hormone receptor-positive patients (27 to 93%), appropriate radiotherapy after breast-conserving therapy (20 to 79%) and appropriate radiotherapy after mastectomy (8 to 65%). Nationwide external benchmarking of BC care is feasible and successful. The benchmarking system described allows both comparisons among participating institutions as well as the tracking of changes in average quality of care over time for the network as a whole. Marked QI increases indicate improved quality of BC care.

  4. The demographic impact and development benefits of meeting demand for family planning with modern contraceptive methods.

    PubMed

    Goodkind, Daniel; Lollock, Lisa; Choi, Yoonjoung; McDevitt, Thomas; West, Loraine

    2018-01-01

    Meeting demand for family planning can facilitate progress towards all major themes of the United Nations Sustainable Development Goals (SDGs): people, planet, prosperity, peace, and partnership. Many policymakers have embraced a benchmark goal that at least 75% of the demand for family planning in all countries be satisfied with modern contraceptive methods by the year 2030. This study examines the demographic impact (and development implications) of achieving the 75% benchmark in 13 developing countries that are expected to be the furthest from achieving that benchmark. Estimation of the demographic impact of achieving the 75% benchmark requires three steps in each country: 1) translate contraceptive prevalence assumptions (with and without intervention) into future fertility levels based on biometric models, 2) incorporate each pair of fertility assumptions into separate population projections, and 3) compare the demographic differences between the two population projections. Data are drawn from the United Nations, the US Census Bureau, and Demographic and Health Surveys. The demographic impact of meeting the 75% benchmark is examined via projected differences in fertility rates (average expected births per woman's reproductive lifetime), total population, growth rates, age structure, and youth dependency. On average, meeting the benchmark would imply a 16 percentage point increase in modern contraceptive prevalence by 2030 and a 20% decline in youth dependency, which portends a potential demographic dividend to spur economic growth. Improvements in meeting the demand for family planning with modern contraceptive methods can bring substantial benefits to developing countries. To our knowledge, this is the first study to show formally how such improvements can alter population size and age structure. Declines in youth dependency portend a demographic dividend, an added bonus to the already well-known benefits of meeting existing demands for family planning.

  5. Is the Sky the Limit to Education Improvement?

    ERIC Educational Resources Information Center

    Schleicher, Andreas

    2011-01-01

    International educational benchmarks make disappointing reading for Americans, but they also indicate a way forward. PISA results show strong performance is possible. Whether in Japan, Korea, Finland or Canada, many countries display strong overall performance and show socioeconomic background doesn't determine results. Some countries show that…

  6. Benchmarking and Performance Measurement.

    ERIC Educational Resources Information Center

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  7. HPC Analytics Support. Requirements for Uncertainty Quantification Benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Patrick R.; Purohit, Sumit; Rodriguez, Luke R.

    2015-05-01

    This report outlines techniques for extending benchmark generation products so they support uncertainty quantification by benchmarked systems. We describe how uncertainty quantification requirements can be presented to candidate analytical tools supporting SPARQL. We describe benchmark data sets for evaluating uncertainty quantification, as well as an approach for using our benchmark generator to produce data sets for generating benchmark data sets.

  8. A novel high performance ESD power clamp circuit with a small area

    NASA Astrophysics Data System (ADS)

    Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo

    2012-09-01

    A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.

  9. A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle.

    PubMed

    Bozkurt, Ayhan

    2008-09-01

    The radiation impedance of a piston transducer mounted in a rigid baffle has been widely addressed in the literature. The real and imaginary parts of the impedance are described by the first order Bessel and Struve functions, respectively. Although there are power series expansions for both functions, the analytic formulation of a lumped circuit is not trivial. In this paper, we present an empirical approach to the derivation of a lumped-circuit model for the radiation impedance expression, based on observations on the near-field behavior of stored kinetic and elastic energy. The field analysis is carried out using a finite element method model of the piston and surrounding fluid medium. We show that fluctuations in the real and imaginary components of the impedance can be modeled by series and shunt tank circuits, each of which shape a certain section of the impedance curve. Because the model is composed of lumped-circuit elements, it can be used in circuit simulators. Consequently, the proposed model is useful for the analysis of transducer front-end circuits.

  10. Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation

    NASA Astrophysics Data System (ADS)

    Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng

    2017-08-01

    This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.

  11. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  12. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  13. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki

    1994-12-31

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.

  14. Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the T-Coffee package and its benchmarking on the Amazon Elastic-Cloud.

    PubMed

    Di Tommaso, Paolo; Orobitg, Miquel; Guirado, Fernando; Cores, Fernado; Espinosa, Toni; Notredame, Cedric

    2010-08-01

    We present the first parallel implementation of the T-Coffee consistency-based multiple aligner. We benchmark it on the Amazon Elastic Cloud (EC2) and show that the parallelization procedure is reasonably effective. We also conclude that for a web server with moderate usage (10K hits/month) the cloud provides a cost-effective alternative to in-house deployment. T-Coffee is a freeware open source package available from http://www.tcoffee.org/homepage.html

  15. Toxicological Benchmarks for Screening of Potential Contaminants of Concern for Effects on Aquatic Biota on the Oak Ridge Reservation, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, G.W., II

    1993-01-01

    One of the initial stages in ecological risk assessment of hazardous waste sites is the screening of contaminants to determine which, if any, of them are worthy of further consideration; this process is termed contaminant screening. Screening is performed by comparing concentrations in ambient media to benchmark concentrations that are either indicative of a high likelihood of significant effects (upper screening benchmarks) or of a very low likelihood of significant effects (lower screening benchmarks). Exceedance of an upper screening benchmark indicates that the chemical in question is clearly of concern and remedial actions are likely to be needed. Exceedance ofmore » a lower screening benchmark indicates that a contaminant is of concern unless other information indicates that the data are unreliable or the comparison is inappropriate. Chemicals with concentrations below the lower benchmark are not of concern if the ambient data are judged to be adequate. This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented herein. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. For the upper screening benchmark, there are the acute National Ambient Water Quality Criteria (NAWQC) and the Secondary Acute Values (SAV). The SAV concentrations are values estimated with 80% confidence not to exceed the unknown acute NAWQC for those chemicals with no NAWQC. The alternative chronic benchmarks are the chronic NAWQC, the Secondary Chronic Value (SCV), the lowest chronic values for fish and daphnids, the lowest EC20 for fish and daphnids from chronic toxicity tests, the estimated EC20 for a sensitive species, and the concentration estimated to cause a 20% reduction in the recruit abundance of largemouth bass. It is recommended that ambient chemical concentrations be compared to all of these benchmarks. If NAWQC are exceeded, the chemicals must be contaminants of concern because the NAWQC are applicable or relevant and appropriate requirements (ARARs). If NAWQC are not exceeded, but other benchmarks are, contaminants should be selected on the basis of the number of benchmarks exceeded and the conservatism of the particular benchmark values, as discussed in the text. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility. This report supersedes a prior aquatic benchmarks report (Suter and Mabrey 1994). It adds two new types of benchmarks. It also updates the benchmark values where appropriate, adds some new benchmark values, replaces secondary sources with primary sources, and provides more complete documentation of the sources and derivation of all values.« less

  16. Area efficient layout design of CMOS circuit for high-density ICs

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal Kumar; Chauhan, R. K.

    2018-01-01

    Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.

  17. Two- and three-input TALE-based AND logic computation in embryonic stem cells.

    PubMed

    Lienert, Florian; Torella, Joseph P; Chen, Jan-Hung; Norsworthy, Michael; Richardson, Ryan R; Silver, Pamela A

    2013-11-01

    Biological computing circuits can enhance our ability to control cellular functions and have potential applications in tissue engineering and medical treatments. Transcriptional activator-like effectors (TALEs) represent attractive components of synthetic gene regulatory circuits, as they can be designed de novo to target a given DNA sequence. We here demonstrate that TALEs can perform Boolean logic computation in mammalian cells. Using a split-intein protein-splicing strategy, we show that a functional TALE can be reconstituted from two inactive parts, thus generating two-input AND logic computation. We further demonstrate three-piece intein splicing in mammalian cells and use it to perform three-input AND computation. Using methods for random as well as targeted insertion of these relatively large genetic circuits, we show that TALE-based logic circuits are functional when integrated into the genome of mouse embryonic stem cells. Comparing construct variants in the same genomic context, we modulated the strength of the TALE-responsive promoter to improve the output of these circuits. Our work establishes split TALEs as a tool for building logic computation with the potential of controlling expression of endogenous genes or transgenes in response to a combination of cellular signals.

  18. Neural activation in the "reward circuit" shows a nonlinear response to facial attractiveness.

    PubMed

    Liang, Xiaoyun; Zebrowitz, Leslie A; Zhang, Yi

    2010-01-01

    Positive behavioral responses to attractive faces have led neuroscientists to investigate underlying neural mechanisms in a "reward circuit" that includes brain regions innervated by dopamine pathways. Using male faces ranging from attractive to extremely unattractive, disfigured ones, this study is the first to demonstrate heightened responses to both rewarding and aversive faces in numerous areas of this putative reward circuit. Parametric analyses employing orthogonal linear and nonlinear regressors revealed positive nonlinear effects in anterior cingulate cortex, lateral orbital frontal cortex (LOFC), striatum (nucleus accumbens, caudate, putamen), and ventral tegmental area, in addition to replicating previously documented linear effects in medial orbital frontal cortex (MOFC) and LOFC and nonlinear effects in amygdala and MOFC. The widespread nonlinear responses are consistent with single cell recordings in animals showing responses to both rewarding and aversive stimuli, and with some human fMRI investigations of non-face stimuli. They indicate that the reward circuit does not process face valence with any simple dissociation of function across structures. Perceiver gender modulated some responses to our male faces: Women showed stronger linear effects, and men showed stronger nonlinear effects, which may have functional implications. Our discovery of nonlinear responses to attractiveness throughout the reward circuit echoes the history of amygdala research: Early work indicated a linear response to threatening stimuli, including faces; later work also revealed a nonlinear response with heightened activation to affectively salient stimuli regardless of valence. The challenge remains to determine how such dual coding influences feelings, such as pleasure and pain, and guides goal-related behavioral responses, such as approach and avoidance.

  19. The KMAT: Benchmarking Knowledge Management.

    ERIC Educational Resources Information Center

    de Jager, Martha

    Provides an overview of knowledge management and benchmarking, including the benefits and methods of benchmarking (e.g., competitive, cooperative, collaborative, and internal benchmarking). Arthur Andersen's KMAT (Knowledge Management Assessment Tool) is described. The KMAT is a collaborative benchmarking tool, designed to help organizations make…

  20. Benchmarking of pluck lesions at slaughter as a health monitoring tool for pigs slaughtered at 170kg (heavy pigs).

    PubMed

    Scollo, Annalisa; Gottardo, Flaviana; Contiero, Barbara; Mazzoni, Claudio; Leneveu, Philippe; Edwards, Sandra A

    2017-09-01

    Abattoir post-mortem inspections offer a useful tool for the development and monitoring of animal health plans and a source of data for epidemiological investigation. The aim of the present work was to develop an abattoir benchmarking system which provides feedback on the prevalence and severity of lesions of the pluck (lung, pleura and liver) in batches of pigs to inform individual producers and their veterinarians of the occurrence of pathological conditions affecting their herds. The weekly collection of data throughout a year (from September 2014 to September 2015) supported the further aim of providing benchmark values for the prevalence of lesions and their seasonality in Italian heavy pig production. Finally, correlations and redundancies among different lesions were evaluated. In total, 727 batches of heavy pigs (around 165kg live weight and 9 months of age) derived from 272 intensive commercial farms located in Northern Italy were monitored. Within each batch, an average number of 100 plucks was individually scored, assigning a value for lesions of lungs (0-24), pleura (0-4) and liver (1-3). Presence of lung scars, abscesses, consolidations, lobular/chessboard pattern lesions and pleural sequestra was also recorded. Statistical analysis showed a strong farm effect (36-68% of variation depending of the lesion) and a seasonal effect on all lesions. Winter showed the lowest percentage of severe lung and pleural lesions (P<0.001 and P=0.005), whereas lung scars from older lesions (P=0.003), as well as severe hepatic lesions (P<0.001), were reduced in autumn. In order to allow effective benchmarking of each farm in a determined health class, scores for each quartile of the population are reported. Whilst such a benchmarking scheme provides useful data for herd health management, challenges of repeatability of scoring and cost of implementation need to be overcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 75 FR 60863 - Safety Advisory 2010-02

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... equipped, railroads should ensure that the circuit plan shows the actual interconnection and the designed... detection device (or equivalent) is programmed or equipped to provide the appropriate designed pre-emption... circuit and as designed. By conducting comprehensive periodic joint inspections, the railroad and State...

  2. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    NASA Technical Reports Server (NTRS)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.

  3. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  4. On the impact of approximate computation in an analog DeSTIN architecture.

    PubMed

    Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar

    2014-05-01

    Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.

  5. Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality

    NASA Astrophysics Data System (ADS)

    Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.

    2018-03-01

    This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.

  6. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.

  7. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics

    PubMed Central

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850

  8. Dynamic Testing and Automatic Repair of Reconfigurable Wiring Harnesses

    DTIC Science & Technology

    2006-11-27

    Switch An M ×N grid of switches configured to provide a M -input, N -output routing network. Permutation Network A permutation network performs an...wiring reduces the effective advantage of their reduced switch count, particularly when considering that regular grids (crossbar switches being a...are connected to. The outline circuit shown in Fig. 20 shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a UART

  9. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

    PubMed

    Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R

    2016-08-16

    Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.

  10. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  11. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.; Barszcz, E.; Barton, J. T.; Carter, R. L.; Lasinski, T. A.; Browning, D. S.; Dagum, L.; Fatoohi, R. A.; Frederickson, P. O.; Schreiber, R. S.

    1991-01-01

    A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers in the framework of the NASA Ames Numerical Aerodynamic Simulation (NAS) Program. These consist of five 'parallel kernel' benchmarks and three 'simulated application' benchmarks. Together they mimic the computation and data movement characteristics of large-scale computational fluid dynamics applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification-all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  12. Adding Fault Tolerance to NPB Benchmarks Using ULFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parchman, Zachary W; Vallee, Geoffroy R; Naughton III, Thomas J

    2016-01-01

    In the world of high-performance computing, fault tolerance and application resilience are becoming some of the primary concerns because of increasing hardware failures and memory corruptions. While the research community has been investigating various options, from system-level solutions to application-level solutions, standards such as the Message Passing Interface (MPI) are also starting to include such capabilities. The current proposal for MPI fault tolerant is centered around the User-Level Failure Mitigation (ULFM) concept, which provides means for fault detection and recovery of the MPI layer. This approach does not address application-level recovery, which is currently left to application developers. In thismore » work, we present a mod- ification of some of the benchmarks of the NAS parallel benchmark (NPB) to include support of the ULFM capabilities as well as application-level strategies and mechanisms for application-level failure recovery. As such, we present: (i) an application-level library to checkpoint and restore data, (ii) extensions of NPB benchmarks for fault tolerance based on different strategies, (iii) a fault injection tool, and (iv) some preliminary results that show the impact of such fault tolerant strategies on the application execution.« less

  13. Optimally Stopped Optimization

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  14. Successful implementation of diabetes audits in Australia: the Australian National Diabetes Information Audit and Benchmarking (ANDIAB) initiative.

    PubMed

    Lee, A S; Colagiuri, S; Flack, J R

    2018-04-06

    We developed and implemented a national audit and benchmarking programme to describe the clinical status of people with diabetes attending specialist diabetes services in Australia. The Australian National Diabetes Information Audit and Benchmarking (ANDIAB) initiative was established as a quality audit activity. De-identified data on demographic, clinical, biochemical and outcome items were collected from specialist diabetes services across Australia to provide cross-sectional data on people with diabetes attending specialist centres at least biennially during the years 1998 to 2011. In total, 38 155 sets of data were collected over the eight ANDIAB audits. Each ANDIAB audit achieved its primary objective to collect, collate, analyse, audit and report clinical diabetes data in Australia. Each audit resulted in the production of a pooled data report, as well as individual site reports allowing comparison and benchmarking against other participating sites. The ANDIAB initiative resulted in the largest cross-sectional national de-identified dataset describing the clinical status of people with diabetes attending specialist diabetes services in Australia. ANDIAB showed that people treated by specialist services had a high burden of diabetes complications. This quality audit activity provided a framework to guide planning of healthcare services. © 2018 Diabetes UK.

  15. Electrical short circuit and current overload tests on aircraft wiring

    NASA Technical Reports Server (NTRS)

    Cahill, Patricia

    1995-01-01

    The findings of electrical short circuit and current overload tests performed on commercial aircraft wiring are presented. A series of bench-scale tests were conducted to evaluate circuit breaker response to overcurrent and to determine if the wire showed any visible signs of thermal degradation due to overcurrent. Three types of wire used in commercial aircraft were evaluated: MIL-W-22759/34 (150 C rated), MIL-W-81381/12 (200 C rated), and BMS 1360 (260 C rated). A second series of tests evaluated circuit breaker response to short circuits and ticking faults. These tests were also meant to determine if the three test wires behaved differently under these conditions and if a short circuit or ticking fault could start a fire. It is concluded that circuit breakers provided reliable overcurrent protection. Circuit breakers may not protect wire from ticking faults but can protect wire from direct shorts. These tests indicated that the appearance of a wire subjected to a current that totally degrades the insulation looks identical to a wire subjected to a fire; however the 'fire exposed' conductor was more brittle than the conductor degraded by overcurrent. Preliminary testing indicates that direct short circuits are not likely to start a fire. Preliminary testing indicated that direct short circuits do not erode insulation and conductor to the extent that ticking faults did. Circuit breakers may not safeguard against the ignition of flammable materials by ticking faults. The flammability of materials near ticking faults is far more important than the rating of the wire insulation material.

  16. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains.

    PubMed

    Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark

    2017-01-01

    Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.

  17. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains

    PubMed Central

    2017-01-01

    Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873

  18. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE PAGES

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma; ...

    2018-04-24

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  19. Optimally stopped variational quantum algorithms

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  20. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  1. A note on bound constraints handling for the IEEE CEC'05 benchmark function suite.

    PubMed

    Liao, Tianjun; Molina, Daniel; de Oca, Marco A Montes; Stützle, Thomas

    2014-01-01

    The benchmark functions and some of the algorithms proposed for the special session on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computation (CEC'05) have played and still play an important role in the assessment of the state of the art in continuous optimization. In this article, we show that if bound constraints are not enforced for the final reported solutions, state-of-the-art algorithms produce infeasible best candidate solutions for the majority of functions of the IEEE CEC'05 benchmark function suite. This occurs even though the optima of the CEC'05 functions are within the specified bounds. This phenomenon has important implications on algorithm comparisons, and therefore on algorithm designs. This article's goal is to draw the attention of the community to the fact that some authors might have drawn wrong conclusions from experiments using the CEC'05 problems.

  2. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  3. A Bayesian approach to traffic light detection and mapping

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, Siavash; Yilmaz, Alper

    2017-03-01

    Automatic traffic light detection and mapping is an open research problem. The traffic lights vary in color, shape, geolocation, activation pattern, and installation which complicate their automated detection. In addition, the image of the traffic lights may be noisy, overexposed, underexposed, or occluded. In order to address this problem, we propose a Bayesian inference framework to detect and map traffic lights. In addition to the spatio-temporal consistency constraint, traffic light characteristics such as color, shape and height is shown to further improve the accuracy of the proposed approach. The proposed approach has been evaluated on two benchmark datasets and has been shown to outperform earlier studies. The results show that the precision and recall rates for the KITTI benchmark are 95.78 % and 92.95 % respectively and the precision and recall rates for the LARA benchmark are 98.66 % and 94.65 % .

  4. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry

    PubMed Central

    Pomeranz, Lisa E.; Ekstrand, Mats I.; Latcha, Kaamashri N.; Smith, Gregory A.; Enquist, Lynn W.

    2017-01-01

    The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits. SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits. PMID:28283558

  5. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...

  6. 42 CFR 440.335 - Benchmark-equivalent health benefits coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...

  7. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition

    PubMed Central

    Collins, Kevin M; Bode, Addys; Fernandez, Robert W; Tanis, Jessica E; Brewer, Jacob C; Creamer, Matthew S; Koelle, Michael R

    2016-01-01

    Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI: http://dx.doi.org/10.7554/eLife.21126.001 PMID:27849154

  8. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  9. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-06

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective.

  10. A nickel-cadmium battery reconditioning circuit

    NASA Technical Reports Server (NTRS)

    Lanier, R.

    1977-01-01

    The circuit presented is simple and small enough to be included in a typical battery charge/power control assembly, yet provides the advantage of a complete ground-type battery reconditioning discharge. Test results on the circuit when used to recondition two 24 cell, 20 A-h nickel-cadmium batteries are given. These results show that a battery reconditioned with this circuit returns to greater than 90 percent of its original capacity (greater than nameplate capacity) and follows a typical new battery degradation curve even after over 20,000 simulated orbital cycles for a 4 year period. Applications of the circuit are considered along with recommendations relative to its use. Its application in low voltage (22 to 36 Vdc) power systems and in high voltage (100 to 150 Vdc) power systems is discussed. The implications are that the high voltage systems have a greater need for battery reconditioning than their low voltage counterparts, and that using these circuit techniques, the expected life of a battery in low Earth orbit can be up to 5 years.

  11. Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.

    PubMed

    Urrios, Arturo; Gonzalez-Flo, Eva; Canadell, David; de Nadal, Eulàlia; Macia, Javier; Posas, Francesc

    2018-04-20

    Synthetic biology studies aim to develop cellular devices for biomedical applications. These devices, based on living instead of electronic or electromechanic technology, might provide alternative treatments for a wide range of diseases. However, the feasibility of these devices depends, in many cases, on complex genetic circuits that must fulfill physiological requirements. In this work, we explored the potential of multicellular architectures to act as an alternative to complex circuits for implementation of new devices. As a proof of concept, we developed specific circuits for insulin or glucagon production in response to different glucose levels. Here, we show that fundamental features, such as circuit's affinity or sensitivity, are dependent on the specific configuration of the multicellular consortia, providing a method for tuning these properties without genetic engineering. As an example, we have designed and built circuits with an incoherent feed-forward loop architecture (FFL) that can be easily adjusted to generate single pulse responses. Our results might serve as a blueprint for future development of cellular devices for glycemia regulation in diabetic patients.

  12. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.

    PubMed

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J; Keleman, Krystyna

    2018-01-11

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MB γ >M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. © 2018, Zhao et al.

  13. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  14. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    PubMed

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  15. Effective algorithm for routing integral structures with twolayer switching

    NASA Astrophysics Data System (ADS)

    Nazarov, A. V.; Shakhnov, V. A.; Vlasov, A. I.; Novikov, A. N.

    2018-05-01

    The paper presents an algorithm for routing switching objects such as large-scale integrated circuits (LSICs) with two layers of metallization, embossed printed circuit boards, microboards with pairs of wiring layers on each side, and other similar constructs. The algorithm allows eliminating the effect of mutual blocking of routes in the classical wave algorithm by implementing a special circuit of digital wave motion in two layers of metallization, allowing direct intersections of all circuit conductors in a combined layer. However, information about the belonging of the topology elements to the circuits is sufficient for layering and minimizing the number of contact holes. In addition, the paper presents a specific example which shows that, in contrast to the known routing algorithms using a wave model, just one byte of memory per discrete of the work field is sufficient to implement the proposed algorithm.

  16. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    PubMed Central

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J

    2018-01-01

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. PMID:29322941

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Melissa; Bolovan-Fritts, Cynthia; Dar, Roy D.

    Signal transduction circuits have long been known to differentiate between signals by amplifying inputs to different levels. Here, we describe a novel transcriptional circuitry that dynamically converts greater input levels into faster rates, without increasing the final equilibrium level (i.e. a rate amplifier). We utilize time-lapse microscopy to study human herpesvirus (cytomegalovirus) infection of live cells in real time. Strikingly, our results show that transcriptional activators accelerate viral gene expression in single cells without amplifying the steady-state levels of gene products in these cells. Experiment and modeling show that rate amplification operates by dynamically manipulating the traditional gain-bandwidth feedback relationshipmore » from electrical circuit theory to convert greater input levels into faster rates, and is driven by highly self-cooperative transcriptional feedback encoded by the virus s essential transactivator, IE2. This transcriptional rate-amplifier provides a significant fitness advantage for the virus and for minimal synthetic circuits. In general, rate-amplifiers may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.« less

  18. On a study of optically coupled memristive Chua circuits-rhythmogenesis and amplitude death

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arindam; Ray, Anirban; Basak, Sankar; Roy Chowdhury, A.

    2015-07-01

    Properties of memristive inductorless Chua circuits are studied when they are coupled optically to characterize the oscillation quenching phenomenon of amplitude death (AD) and oscillation generation procedure of rhythmogenesis. The behaviors of these systems, when studied under coupled condition, show some new features which are not seen previously. This phenomenon is really a novel one as it is the generation of oscillation due to the interaction of two such systems each at their respective steady states. The other event is amplitude death (AD) observed by increase in the coupling strength. The numerical simulation is supported with the data obtained via analogue circuit implementation of the system. Two circuits coupled through a LED (light emitting diode) and LDR (photo resistor) pair show transition to chaotic state under parameter variation. The experimental data was collected with the help of digital to analog converter system. Our data indicates that there exist two different routes to chaos-either through period doubling or without it.

  19. Rules and mechanisms for efficient two-stage learning in neural circuits.

    PubMed

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-04-04

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.

  20. Light sensing in a photoresponsive, organic-based complementary inverter.

    PubMed

    Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon

    2011-05-01

    A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

  1. A Global Circuit Diagram to Contrast the Behavior of the DC and AC Global Circuits

    NASA Astrophysics Data System (ADS)

    Williams, E.; Boldi, R. A.; Markson, R. J.

    2017-12-01

    The Earth-ionosphere cavity is home to both the classical DC and the AC (Schumann resonances) global circuits. The predominant source for the AC global circuit is lightning, but the sources for the DC global circuit source remains controversial. Separate measurements over many years have shown that the amplitude variation of global lightning and the AC global circuit is about twice that of the DC global circuit on both the diurnal and annual time scales. A global diagram is used to shed further light on this result and to explore the co-variation of the two global circuits. Actual measurements of the ionospheric potential (Vi) are plotted against the simultaneous global lightning flash rate F. The latter estimates are drawn from a global climatology of LIS/OTD satellite observations (Cecil et al., 2014) giving flash rate as a function of both Day of Year and UT time, and are used as best guesses for F at the time of the Vi observations. A least-squares linear fit through the data points on this diagram show a zero-flash-rate intercept for Vi that is more than half of the mean Vi ( 250 kV). This result suggests that electrified shower clouds (without lightning), possibly supplemented by convective transport of positive space charge in the marine boundary layer, are playing a greater role in driving the DC global circuit than previously suspected.

  2. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array

    PubMed Central

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-01-01

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements’ bypass currents, which were injected into array’s non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT’s measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately. PMID:27929410

  3. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    PubMed

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  4. What is this chocolate milk in my circuit? A cause of acute clotting of a continuous renal replacement circuit: Questions.

    PubMed

    Kakajiwala, Aadil; Chiotos, Kathleen; Brothers, Julie; Lederman, April; Amaral, Sandra

    2016-12-01

    One of the greatest problems associated with continuous renal replacement therapy (CRRT) is the early clotting of filters. A literature search revealed three case reports of lipemic blood causing recurrent clotting and reduced CRRT circuit survival time in adult patients, but no reports of cases in children. A 23-month-old male infant with Martinez-Frias syndrome and multivisceral transplant was admitted to the hospital with severe sepsis and hemolytic anemia. He developed acute kidney injury, fluid overload and electrolyte imbalances requiring CRRT and was also administered total parenteral nutrition (TPN) and fat emulsion. The first circuit lasted 60 h before routine change was required. The second circuit showed acute clotting after only 18 h, and brownish-milky fluid was found in the circuit tubing layered between the clotted blood. The patient's serum triglyceride levels were elevated at 988 mg/dL. The lipid infusion was stopped and CRRT restarted. Serum triglyceride levels improved to 363 mg/dL. The new circuit lasted 63 h before routine change was required. Clotting of CRRT circuits due to elevated triglyceride levels is rare and has not been reported in the pediatric population. Physicians should be mindful of this risk in patients receiving TPN who have unexpected clotting of CRRT circuits.

  5. High-frequency trigger generators for CuBr-laser high voltage pumping source

    NASA Astrophysics Data System (ADS)

    Torgaev, S.; Kozhemyak, O.; Yaroslavtsev, E.; Trigub, M.; Musorov, I.; Chertikhina, D.

    2016-04-01

    In this paper the circuits of high frequency trigger generators of pulses of the nanosecond duration are presented. A detailed study of a generator based on the avalanche transistor with the use of a coaxial cable instead of a capacitor is described. This circuit showed advanced characteristics of the output pulses. A circuit of a generator built on high-speed digital components is also considered. The basic advantages and disadvantages of both generators are presented in this paper.

  6. 42 CFR 440.330 - Benchmark health benefits coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Benchmark health benefits coverage. 440.330 Section 440.330 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Benchmark-Equivalent Coverage § 440.330 Benchmark health benefits coverage. Benchmark coverage is health...

  7. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  8. Operating Room Efficiency before and after Entrance in a Benchmarking Program for Surgical Process Data.

    PubMed

    Pedron, Sara; Winter, Vera; Oppel, Eva-Maria; Bialas, Enno

    2017-08-23

    Operating room (OR) efficiency continues to be a high priority for hospitals. In this context the concept of benchmarking has gained increasing importance as a means to improve OR performance. The aim of this study was to investigate whether and how participation in a benchmarking and reporting program for surgical process data was associated with a change in OR efficiency, measured through raw utilization, turnover times, and first-case tardiness. The main analysis is based on panel data from 202 surgical departments in German hospitals, which were derived from the largest database for surgical process data in Germany. Panel regression modelling was applied. Results revealed no clear and univocal trend of participation in a benchmarking and reporting program for surgical process data. The largest trend was observed for first-case tardiness. In contrast to expectations, turnover times showed a generally increasing trend during participation. For raw utilization no clear and statistically significant trend could be evidenced. Subgroup analyses revealed differences in effects across different hospital types and department specialties. Participation in a benchmarking and reporting program and thus the availability of reliable, timely and detailed analysis tools to support the OR management seemed to be correlated especially with an increase in the timeliness of staff members regarding first-case starts. The increasing trend in turnover time revealed the absence of effective strategies to improve this aspect of OR efficiency in German hospitals and could have meaningful consequences for the medium- and long-run capacity planning in the OR.

  9. Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers.

    PubMed

    Li, Wenjun; Antuono, Piero G; Xie, Chunming; Chen, Gang; Jones, Jennifer L; Ward, B Douglas; Singh, Suraj P; Franczak, Malgorzata B; Goveas, Joseph S; Li, Shi-Jiang

    2014-08-01

    The main objective of this study is to detect the early changes in resting-state Papez circuit functional connectivity using the hippocampus as the seed, and to determine the associations between altered functional connectivity (FC) and the episodic memory performance in cognitively intact middle-aged apolipoprotein E4 (APOE4) carriers who are at risk of Alzheimer's disease (AD). Forty-six cognitively intact, middle-aged participants, including 20 APOE4 carriers and 26 age-, sex-, and education-matched noncarriers were studied. The resting-state FC of the hippocampus (HFC) was compared between APOE4 carriers and noncarriers. APOE4 carriers showed significantly decreased FC in brain areas that involve learning and memory functions, including the frontal, cingulate, thalamus and basal ganglia regions. Multiple linear regression analysis showed significant correlations between HFC and the episodic memory performance. Conjunction analysis between neural correlates of memory and altered HFC showed the overlapping regions, especially the subcortical regions such as thalamus, caudate nucleus, and cingulate cortices involved in the Papez circuit. Thus, changes in connectivity in the Papez circuit may be used as an early risk detection for AD. Copyright © 2014. Published by Elsevier Ltd.

  10. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    PubMed Central

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  11. A fast-locking PLL with all-digital locked-aid circuit

    NASA Astrophysics Data System (ADS)

    Kao, Shao-Ku; Hsieh, Fu-Jen

    2013-02-01

    In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.

  12. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    NASA Astrophysics Data System (ADS)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  13. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  14. Equivalent circuit for VO{sub 2} phase change material film in reconfigurable frequency selective surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.

    We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.

  15. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet.

    PubMed

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J; Ares, Natalia; Thompson, Amber L; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J; Lancaster, Tom; Ardavan, Arzhang; Briggs, G Andrew D; Leek, Peter J; Laird, Edward A

    2017-10-06

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  16. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    NASA Astrophysics Data System (ADS)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  17. Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits

    PubMed Central

    Buzi, Gentian; Khammash, Mustafa

    2016-01-01

    Biological systems use a variety of mechanisms to deal with the uncertain nature of their external and internal environments. Two of the most common motifs employed for this purpose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical and experimental studies suggest that these circuits play very different roles in providing robustness to uncertainty in the cellular environment. Here, we use a control theoretic approach to analyze two common FB and IFF architectures that make use of an intermediary species to achieve regulation. We show the equivalence of both circuits topologies in suppressing static cell-to-cell variations. While both circuits can suppress variations due to input noise, they are ineffective in suppressing inherent chemical reaction stochasticity. Indeed, these circuits realize comparable improvements limited to a modest 25% variance reduction in best case scenarios. Such limitations are attributed to the use of intermediary species in regulation, and as such, they persist even for circuit architectures that combine both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with dynamic input variability, the most significant difference between the two topologies lies not in the structural features of the circuits, but in their practical implementation considerations. PMID:27257684

  18. Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits.

    PubMed

    Buzi, Gentian; Khammash, Mustafa

    2016-06-01

    Biological systems use a variety of mechanisms to deal with the uncertain nature of their external and internal environments. Two of the most common motifs employed for this purpose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical and experimental studies suggest that these circuits play very different roles in providing robustness to uncertainty in the cellular environment. Here, we use a control theoretic approach to analyze two common FB and IFF architectures that make use of an intermediary species to achieve regulation. We show the equivalence of both circuits topologies in suppressing static cell-to-cell variations. While both circuits can suppress variations due to input noise, they are ineffective in suppressing inherent chemical reaction stochasticity. Indeed, these circuits realize comparable improvements limited to a modest 25% variance reduction in best case scenarios. Such limitations are attributed to the use of intermediary species in regulation, and as such, they persist even for circuit architectures that combine both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with dynamic input variability, the most significant difference between the two topologies lies not in the structural features of the circuits, but in their practical implementation considerations.

  19. Low power digitally controlled oscillator designs with a novel 3-transistor XNOR gate

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Arya, Sandeep K.; Pandey, Sujata

    2012-03-01

    Digital controlled oscillators (DCOs) are the core of all digital phase locked loop (ADPLL) circuits. Here, DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology. Three, four and five bit controlled DCO with NMOS, PMOS and NMOS & PMOS transistor switching networks are presented. A three-transistor XNOR gate has been used as the inverter which is used as the delay cell. Delay has been controlled digitally with a switch network of NMOS and PMOS transistors. The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591 μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740 μW. A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998 μW. Output frequency and power consumption results for 4 & 6 bit DCO circuits with one PMOS and NMOS & PMOS switching network have also been presented. The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits. Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.

  20. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  1. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1994 Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, G.W. II; Mabrey, J.B.

    1994-07-01

    This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented herein. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. For the upper screening benchmark, there are the acute National Ambient Water Quality Criteria (NAWQC) and the Secondary Acute Values (SAV). The SAV concentrations are values estimated with 80% confidence not to exceed the unknown acute NAWQC for those chemicals with no NAWQC. The alternative chronic benchmarks are the chronic NAWQC, the Secondary Chronicmore » Value (SCV), the lowest chronic values for fish and daphnids from chronic toxicity tests, the estimated EC20 for a sensitive species, and the concentration estimated to cause a 20% reduction in the recruit abundance of largemouth bass. It is recommended that ambient chemical concentrations be compared to all of these benchmarks. If NAWQC are exceeded, the chemicals must be contaminants of concern because the NAWQC are applicable or relevant and appropriate requirements (ARARs). If NAWQC are not exceeded, but other benchmarks are, contaminants should be selected on the basis of the number of benchmarks exceeded and the conservatism of the particular benchmark values, as discussed in the text. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility.« less

  2. PHITS Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niita, K.; Matsuda, N.; Iwamoto, Y.

    The paper presents a brief description of the models incorporated in PHITS and the present status of the code, showing some benchmarking tests of the PHITS code for accelerator facilities and space radiation.

  3. Raising Quality and Achievement. A College Guide to Benchmarking.

    ERIC Educational Resources Information Center

    Owen, Jane

    This booklet introduces the principles and practices of benchmarking as a way of raising quality and achievement at further education colleges in Britain. Section 1 defines the concept of benchmarking. Section 2 explains what benchmarking is not and the steps that should be taken before benchmarking is initiated. The following aspects and…

  4. Benchmarking in Education: Tech Prep, a Case in Point. IEE Brief Number 8.

    ERIC Educational Resources Information Center

    Inger, Morton

    Benchmarking is a process by which organizations compare their practices, processes, and outcomes to standards of excellence in a systematic way. The benchmarking process entails the following essential steps: determining what to benchmark and establishing internal baseline data; identifying the benchmark; determining how that standard has been…

  5. Benchmarks: The Development of a New Approach to Student Evaluation.

    ERIC Educational Resources Information Center

    Larter, Sylvia

    The Toronto Board of Education Benchmarks are libraries of reference materials that demonstrate student achievement at various levels. Each library contains video benchmarks, print benchmarks, a staff handbook, and summary and introductory documents. This book is about the development and the history of the benchmark program. It has taken over 3…

  6. The gravitational potential energy regeneration system with closed-circuit of boom of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Chen, Mingdong; Zhao, Dingxuan

    2017-01-01

    Considering the disadvantage of higher throttling loss for the open-circuit hydrostatic transmission at present, a novel gravitational potential energy regeneration system (GPERS) of the boom of hydraulic excavator, namely the closed-circuit GPERS, is proposed in this paper. The closed-circuit GPERS is based on a closed-circuit hydrostatic transmission and adopts a hydraulic accumulator as main energy storage element fabricated in novel configuration to recover the entire gravitational potential energy of the boom of hydraulic excavator. The matching parameter and control system design are carried out for the proposed system, and the system is modeled based on its physical attributes. Simulation and experiments are performed to validate the employed mathematical models, and then, the velocity and the pressure performance of system are analyzed. It is observed that the closed-circuit GPERS shows better velocity control of the boom and response characteristics. After that, the average working efficiency of the closed-circuit GPERS of boom is estimated under different load conditions. The results indicate that the proposed system is highly effective and that the average working efficiency in different load conditions varied from 60% to 68.2% for the experiment platform.

  7. Response characteristic of high-speed on/off valve with double voltage driving circuit

    NASA Astrophysics Data System (ADS)

    Li, P. X.; Su, M.; Zhang, D. B.

    2017-07-01

    High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.

  8. Controllable Threshold Voltage in Organic Complementary Logic Circuits with an Electron-Trapping Polymer and Photoactive Gate Dielectric Layer.

    PubMed

    Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki

    2016-07-20

    We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter.

  9. Building and validation of a prognostic model for predicting extracorporeal circuit clotting in patients with continuous renal replacement therapy.

    PubMed

    Fu, Xia; Liang, Xinling; Song, Li; Huang, Huigen; Wang, Jing; Chen, Yuanhan; Zhang, Li; Quan, Zilin; Shi, Wei

    2014-04-01

    To develop a predictive model for circuit clotting in patients with continuous renal replacement therapy (CRRT). A total of 425 cases were selected. 302 cases were used to develop a predictive model of extracorporeal circuit life span during CRRT without citrate anticoagulation in 24 h, and 123 cases were used to validate the model. The prediction formula was developed using multivariate Cox proportional-hazards regression analysis, from which a risk score was assigned. The mean survival time of the circuit was 15.0 ± 1.3 h, and the rate of circuit clotting was 66.6 % during 24 h of CRRT. Five significant variables were assigned a predicting score according to the regression coefficient: insufficient blood flow, no anticoagulation, hematocrit ≥0.37, lactic acid of arterial blood gas analysis ≤3 mmol/L and APTT < 44.2 s. The Hosmer-Lemeshow test showed no significant difference between the predicted and actual circuit clotting (R (2) = 0.232; P = 0.301). A risk score that includes the five above-mentioned variables can be used to predict the likelihood of extracorporeal circuit clotting in patients undergoing CRRT.

  10. Relationship between physiological excitatory and inhibitory measures of excitability in the left vs. right human motor cortex and peripheral electrodermal activity.

    PubMed

    Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano

    2017-02-22

    The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.

  11. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  12. Hyperkalemia of the blood-primed ECLS circuit does not result in post-initiation hyperkalemia in infants < 10 kg.

    PubMed

    Fleming, Geoffrey M; Remenapp, Robert T; Bartlett, Robert H; Annich, Gail M

    2006-05-01

    To assess the risk of hyperkalemia with blood-primed extracorporeal life support (ECLS) circuits in infants < 10 kg. Retrospective cohort study of all neonatal and pediatric patients < 10 kg placed on ECLS from May 1998 to April 2001. Data collection including patient weight, patient potassium levels pre- and post-initiation of ECLS, potassium level of the primed ECLS circuit, age of the packed red blood cell (PRBC) unit, type of preservative, and preservative reduction status. Seventy-six circuits were available for the analysis. The age of the PRBC unit and preservative reduction status significantly affected the potassium level of the primed ECLS circuit. Multivariate linear regression analysis showed no significant effect on the post-ECLS initiation patient potassium level with respect to the PRBC age, the preservative reduction status, the patient potassium level prior to ECLS initiation, and the potassium level of the primed ECLS circuit. Initiation of ECLS in infants < 10 kg should not be delayed unnecessarily to perform preservative reduction or to utilize PRBC units of a specific age, as hyperkalemia of the primed ECLS circuit is not associated with systemic hyperkalemia in the patient post-initiation of ECLS.

  13. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    PubMed Central

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro. These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory–motor circuits. PMID:27225763

  14. Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP

    NASA Astrophysics Data System (ADS)

    Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei

    2018-03-01

    In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.

  15. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  16. A Charge-Based Low-Power High-SNR Capacitive Sensing Interface Circuit

    PubMed Central

    Peng, Sheng-Yu; Qureshi, Muhammad S.; Hasler, Paul E.; Basu, Arindam; Degertekin, F. L.

    2008-01-01

    This paper describes a low-power approach to capacitive sensing that achieves a high signal-to-noise ratio. The circuit is composed of a capacitive feedback charge amplifier and a charge adaptation circuit. Without the adaptation circuit, the charge amplifier only consumes 1 μW to achieve the audio band SNR of 69.34dB. An adaptation scheme using Fowler-Nordheim tunneling and channel hot electron injection mechanisms to stabilize the DC output voltage is demonstrated. This scheme provides a very low frequency pole at 0.2Hz. The measured noise spectrums show that this slow-time scale adaptation does not degrade the circuit performance. The DC path can also be provided by a large feedback resistance without causing extra power consumption. A charge amplifier with a MOS-bipolar pseudo-resistor feedback scheme is interfaced with a capacitive micromachined ultrasonic transducer to demonstrate the feasibility of this approach for ultrasound applications. PMID:18787650

  17. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  18. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  19. A SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function

    PubMed Central

    Lotti, Francesco; Imlach, Wendy L.; Saieva, Luciano; Beck, Erin S.; Hao, Le T.; Li, Darrick K.; Jiao, Wei; Mentis, George Z.; Beattie, Christine E.; McCabe, Brian D.; Pellizzoni, Livio

    2012-01-01

    SUMMARY Spinal muscular atrophy (SMA) is a motor neuron disease caused by deficiency of the ubiquitous survival motor neuron (SMN) protein. To define the mechanisms of selective neuronal dysfunction in SMA, we investigated the role of SMN-dependent U12 splicing events in the regulation of motor circuit activity. We show that SMN deficiency perturbs splicing and decreases the expression of a subset of U12 intron-containing genes in mammalian cells and Drosophila larvae. Analysis of these SMN target genes identifies Stasimon as a novel protein required for motor circuit function. Restoration of Stasimon expression in the motor circuit corrects defects in neuromuscular junction transmission and muscle growth in Drosophila SMN mutants and aberrant motor neuron development in SMN-deficient zebrafish. These findings directly link defective splicing of critical neuronal genes induced by SMN deficiency to motor circuit dysfunction, establishing a molecular framework for the selective pathology of SMA. PMID:23063131

  20. The realization of an SVGA OLED-on-silicon microdisplay driving circuit

    NASA Astrophysics Data System (ADS)

    Bohua, Zhao; Ran, Huang; Fei, Ma; Guohua, Xie; Zhensong, Zhang; Huan, Du; Jiajun, Luo; Yi, Zhao

    2012-03-01

    An 800 × 600 pixel organic light-emitting diode-on-silicon (OLEDoS) driving circuit is proposed. The pixel cell circuit utilizes a subthreshold-voltage-scaling structure which can modulate the pixel current between 170 pA and 11.4 nA. In order to keep the voltage of the column bus at a relatively high level, the sample-and-hold circuits adopt a ping-pong operation. The driving circuit is fabricated in a commercially available 0.35 μm two-poly four-metal 3.3 V mixed-signal CMOS process. The pixel cell area is 15 × 15 μm2 and the total chip occupies 15.5 × 12.3 mm2. Experimental results show that the chip can work properly at a frame frequency of 60 Hz and has a 64 grayscale (monochrome) display. The total power consumption of the chip is about 85 mW with a 3.3V supply voltage.

  1. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    PubMed Central

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321

  2. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.

    PubMed

    Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2016-10-20

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.

  3. Locality of interactions for planar memristive circuits

    DOE PAGES

    Caravelli, Francesco

    2017-11-08

    The dynamics of purely memristive circuits has been shown to depend on a projection operator which expresses the Kirchhoff constraints, is naturally non-local in nature, and does represent the interaction between memristors. In the present paper we show that for the case of planar circuits, for which a meaningful Hamming distance can be defined, the elements of such projector can be bounded by exponentially decreasing functions of the distance. We provide a geometrical interpretation of the projector elements in terms of determinants of Dirichlet Laplacian of the dual circuit. For the case of linearized dynamics of the circuit for whichmore » a solution is known, this can be shown to provide a light cone bound for the interaction between memristors. Furthermore, this result establishes a finite speed of propagation of signals across the network, despite the non-local nature of the system.« less

  4. Effect of Ground Layer Patterns with Slits on Conducted Noise Currents from Printed Circuit Board

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu

    Electromagnetic disturbances for vehicle-mounted radios can be caused by conducted noise currents that flows out from electronic equipment for vehicles to wire-harnesses. In this paper, for reducing the conducted noise currents from electronic equipment for vehicles, we made a simulation and experiment on how ground patterns affect the noise currents from three-layer printed circuit boards (PCBs) with slit-types and plane-type ground patterns. As a result, we could confirm that slits on a ground pattern allow conducted noise currents to flow out from PCBs to wire-harnesses. For the PCBs with plane-type ground and one of three slit-type patterns, on the other hand, both the simulation and examination showed that resonance phenomena occur at unexpected low-frequencies. A circuit analysis revealed that the above phenomena can be caused by the imbalance of a bridge circuit consisting of the trace circuits on the PCB.

  5. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  6. Analysis and modeling of a family of two-transistor parallel inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1973-01-01

    A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.

  7. Principles of Genetic Circuit Design

    PubMed Central

    Brophy, Jennifer A.N.; Voigt, Christopher A.

    2014-01-01

    Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials. PMID:24781324

  8. HS06 Benchmark for an ARM Server

    NASA Astrophysics Data System (ADS)

    Kluth, Stefan

    2014-06-01

    We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.

  9. PMLB: a large benchmark suite for machine learning evaluation and comparison.

    PubMed

    Olson, Randal S; La Cava, William; Orzechowski, Patryk; Urbanowicz, Ryan J; Moore, Jason H

    2017-01-01

    The selection, development, or comparison of machine learning methods in data mining can be a difficult task based on the target problem and goals of a particular study. Numerous publicly available real-world and simulated benchmark datasets have emerged from different sources, but their organization and adoption as standards have been inconsistent. As such, selecting and curating specific benchmarks remains an unnecessary burden on machine learning practitioners and data scientists. The present study introduces an accessible, curated, and developing public benchmark resource to facilitate identification of the strengths and weaknesses of different machine learning methodologies. We compare meta-features among the current set of benchmark datasets in this resource to characterize the diversity of available data. Finally, we apply a number of established machine learning methods to the entire benchmark suite and analyze how datasets and algorithms cluster in terms of performance. From this study, we find that existing benchmarks lack the diversity to properly benchmark machine learning algorithms, and there are several gaps in benchmarking problems that still need to be considered. This work represents another important step towards understanding the limitations of popular benchmarking suites and developing a resource that connects existing benchmarking standards to more diverse and efficient standards in the future.

  10. Tunable Low Energy, Compact and High Performance Neuromorphic Circuit for Spike-Based Synaptic Plasticity

    PubMed Central

    Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek

    2014-01-01

    Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities. PMID:24551089

  11. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.

    PubMed

    Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek

    2014-01-01

    Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities.

  12. A 90 GHz Amplifier Assembled Using a Bump-Bonded InP-Based HEMT

    NASA Technical Reports Server (NTRS)

    Pinsukanjana, Paul R.; Samoska, Lorene A.; Gaier, Todd C.; Smith, R. Peter; Ksendzov, Alexander; Fitzsimmons, Michael J.; Martin, Suzanne C.

    1998-01-01

    We report on the performance of a novel W-band amplifier fabricated utilizing very compact bump bonds. We bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) onto a separately fabricated passive circuit having a GaAs substrate. The compact bumps and small chip size were used for efficient coupling and maximum circuit design flexibility. This new quasi-monolithic millimeter-wave integrated circuit (Q-MMIC) amplifier exhibits a peak gain of 5.8 dB at approx. 90 GHz and a 3 dB bandwidth of greater than 25%. To our knowledge, this is the highest frequency amplifier assembled using bump-bonded technology. Our bump-bonding technique is a useful alternative to the high cost of monolithic millimeter-wave integrated circuits (MMIC's). Effects of the bumps on the circuit appear to be minimal. We used the simple matching circuit for demonstrating the technology - future circuits would have all of the elements (resistors, via holes, bias lines, etc.) included 'in conventional MMIC's. Our design in different from other investigators' efforts in that the bumps are only 8 microns thick by 15 microns wide. The bump sizes were sufficiently small that the devices, originally designed for W-band hybrid circuits, could be bonded without alteration. Figure 3 shows the measured and simulated magnitude of S-parameters from 85-120 GHz, of the InP HEMT bump-bonded to the low noise amplifier (LNA) passive. The maximum gain is 5.8 dB at approx. 90 GHz, and gain extends to 117 GHz. Measurement of a single device (without matching networks) shows approx. 1 dB of gain at 90 GHz. The measured gain of the amplifier agrees well with the design in the center of the measurement band, and the agreement falls off at the band edges. Since no accommodation for the bump-bonding parasitics was made in the design, the result implies that the parasitic elements associated with the bonding itself do not dominate the performance of the LNA circuit. It should be noted that this amplifier was designed for good noise performance, which is why the input and output return losses are poorer than one would expect for an amplifier simply matched for gain. However, noise performance has not been measured at this time. While the agreement between modeled vs. experimental data is not exact, the data prove that bump-bonded technology can be used for amplifiers at frequencies at least as high as 100 GHz. JPL is pursuing this technology as a way to economically and quickly incorporate the best available HEMTs into a circuit with all of the reliability and circuit design flexibility offered by MMIC technology. We are currently using the technology to fabricate 4-stage, wide-band, W-band LNA's. We have also performed pull and shear tests which show that the bump bonds are sufficiently robust for any anticipated application.

  13. Navier-Stokes analysis of a liquid rocket engine disk cavity

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.; Mcconnaughey, Paul K.

    1991-01-01

    This paper presents a Navier-Stokes analysis of hydrodynamic phenomena occurring in the aft disk cavity of a liquid rocket engine turbine. The cavity analyzed in the Space Shuttle Main Engine Alternate Turbopump currently being developed by NASA and Pratt and Whitney. Comparison of results obtained from the Navier-Stokes code for two rotating disk datasets available in the literature are presented as benchmark validations. The benchmark results obtained using the code show good agreement relative to experimental data, and the turbine disk cavity was analyzed with comparable grid resolution, dissipation levels, and turbulence models. Predicted temperatures in the cavity show that little mixing of hot and cold fluid occurs in the cavity and the flow is dominated by swirl and pumping up the rotating disk.

  14. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  15. The General Concept of Benchmarking and Its Application in Higher Education in Europe

    ERIC Educational Resources Information Center

    Nazarko, Joanicjusz; Kuzmicz, Katarzyna Anna; Szubzda-Prutis, Elzbieta; Urban, Joanna

    2009-01-01

    The purposes of this paper are twofold: a presentation of the theoretical basis of benchmarking and a discussion on practical benchmarking applications. Benchmarking is also analyzed as a productivity accelerator. The authors study benchmarking usage in the private and public sectors with due consideration of the specificities of the two areas.…

  16. Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers.

    PubMed

    Walls, F L; Ferre-Pikal, E S; Jefferts, S R

    1997-01-01

    In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.

  17. Adult neurogenesis is necessary to refine and maintain circuit specificity.

    PubMed

    Cummings, Diana M; Snyder, Jason S; Brewer, Michelle; Cameron, Heather A; Belluscio, Leonardo

    2014-10-08

    The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity. Copyright © 2014 the authors 0270-6474/14/3413801-10$15.00/0.

  18. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  19. Oscillatory stimuli differentiate adapting circuit topologies

    PubMed Central

    Rahi, Sahand Jamal; Larsch, Johannes; Pecani, Kresti; Katsov, Alexander Y.; Mansouri, Nahal; Tsaneva-Atanasova, Krasimira; Sontag, Eduardo D.; Cross, Frederick R.

    2017-01-01

    Adapting pathways consist of negative feedback loops (NFLs) or incoherent feedforward loops (IFFLs), which we show can be differentiated using oscillatory stimulation: NFLs but not IFFLs generically show ‘refractory period stabilization’ or ‘period skipping’. Using these signatures and genetic rewiring we identified the circuit dominating cell cycle timing in yeast. In C. elegans AWA neurons we uncovered a Ca2+-NFL, diffcult to find by other means, especially in wild-type, intact animals. (70 words) PMID:28846089

  20. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits

    PubMed Central

    Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy

    2016-01-01

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as “readouts” of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. PMID:27030771

  1. Benchmarking reference services: an introduction.

    PubMed

    Marshall, J G; Buchanan, H S

    1995-01-01

    Benchmarking is based on the common sense idea that someone else, either inside or outside of libraries, has found a better way of doing certain things and that your own library's performance can be improved by finding out how others do things and adopting the best practices you find. Benchmarking is one of the tools used for achieving continuous improvement in Total Quality Management (TQM) programs. Although benchmarking can be done on an informal basis, TQM puts considerable emphasis on formal data collection and performance measurement. Used to its full potential, benchmarking can provide a common measuring stick to evaluate process performance. This article introduces the general concept of benchmarking, linking it whenever possible to reference services in health sciences libraries. Data collection instruments that have potential application in benchmarking studies are discussed and the need to develop common measurement tools to facilitate benchmarking is emphasized.

  2. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    NASA Astrophysics Data System (ADS)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  3. Taking the Battle Upstream: Towards a Benchmarking Role for NATO

    DTIC Science & Technology

    2012-09-01

    Benchmark.........................................................................................14 Figure 8. World Bank Benchmarking Work on Quality...Search of a Benchmarking Theory for the Public Sector.” 16     Figure 8. World Bank Benchmarking Work on Quality of Governance One of the most...the Ministries of Defense in the countries in which it works ). Another interesting innovation is that for comparison purposes, McKinsey categorized

  4. A low cost, customizable turbidostat for use in synthetic circuit characterization.

    PubMed

    Takahashi, Chris N; Miller, Aaron W; Ekness, Felix; Dunham, Maitreya J; Klavins, Eric

    2015-01-16

    Engineered biological circuits are often disturbed by a variety of environmental factors. In batch culture, where the majority of synthetic circuit characterization occurs, environmental conditions vary as the culture matures. Turbidostats are powerful characterization tools that provide static culture environments; however, they are often expensive, especially when purchased in custom configurations, and are difficult to design and construct in a lab. Here, we present a low cost, open source multiplexed turbidostat that can be manufactured and used with minimal experience in electrical or software engineering. We demonstrate the utility of this system to profile synthetic circuit behavior in S. cerevisiae. We also demonstrate the flexibility of the design by showing that a fluorometer can be easily integrated.

  5. New highly linear tunable transconductor circuits with low number of MOS transistors

    NASA Astrophysics Data System (ADS)

    Yucel, Firat; Yuce, Erkan

    2016-08-01

    In this article, two new highly linear tunable transconductor circuits are proposed. The transconductors employ only six MOS transistors operated in saturation region. The second transconductor is derived from the first one with a slight modification. Transconductance of both transconductors can be tuned by a control voltage. Both of the transconductors do not need any additional bias voltages and currents. Another important feature of the transconductors is their high input and output impedances for cascadability with other circuits. Besides, total harmonic distortions are less than 1.5% for both transconductors. A positive lossless grounded inductor simulator with a grounded capacitor is given as an application example of the transconductors. Simulation and experimental test results are included to show effectiveness of the proposed circuits.

  6. Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    1998-01-01

    Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.

  7. High-resolution inkjet printing of all-polymer transistor circuits.

    PubMed

    Sirringhaus, H; Kawase, T; Friend, R H; Shimoda, T; Inbasekaran, M; Wu, W; Woo, E P

    2000-12-15

    Direct printing of functional electronic materials may provide a new route to low-cost fabrication of integrated circuits. However, to be useful it must allow continuous manufacturing of all circuit components by successive solution deposition and printing steps in the same environment. We demonstrate direct inkjet printing of complete transistor circuits, including via-hole interconnections based on solution-processed polymer conductors, insulators, and self-organizing semiconductors. We show that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers. High mobilities of 0.02 square centimeters per volt second and on-off current switching ratios of 10(5) were achieved.

  8. Amorphous In-Ga-Zn-O Thin Film Transistor Current-Scaling Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays

    NASA Astrophysics Data System (ADS)

    Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy

    2009-03-01

    In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.

  9. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  10. Equivalent circuit model of Ge/Si separate absorption charge multiplication avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Chen, Ting; Yan, Linshu; Bao, Xiaoyuan; Xu, Yuanyuan; Wang, Guang; Wang, Guanyu; Yuan, Jun; Li, Junfeng

    2018-03-01

    The equivalent circuit model of Ge/Si Separate Absorption Charge Multiplication Avalanche Photodiode (SACM-APD) is proposed. Starting from the carrier rate equations in different regions of device and considering the influences of non-uniform electric field, noise, parasitic effect and some other factors, the equivalent circuit model of SACM-APD device is established, in which the steady-state and transient current voltage characteristics can be described exactly. In addition, the proposed Ge/Si SACM APD equivalent circuit model is embedded in PSpice simulator. The important characteristics of Ge/Si SACM APD such as dark current, frequency response, shot noise are simulated, the simulation results show that the simulation with the proposed model are in good agreement with the experimental results.

  11. On the photonic implementation of universal quantum gates, bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF.

    PubMed

    Djordjevic, Ivan B

    2010-04-12

    The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.

  12. How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Ramos, M. H.; Cloke, H. L.; Wetterhall, F.; Alfieri, L.; Bogner, K.; Mueller, A.; Salamon, P.

    2015-03-01

    The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are 'toughest to beat' and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.

  13. Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.

    1998-06-01

    Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC.

  14. Synaptic Regulation of a Thalamocortical Circuit Controls Depression-Related Behavior.

    PubMed

    Miller, Oliver H; Bruns, Andreas; Ben Ammar, Imen; Mueggler, Thomas; Hall, Benjamin J

    2017-08-22

    The NMDA receptor (NMDAR) antagonist ketamine elicits a long-lasting antidepressant response in patients with treatment-resistant depression. Understanding how antagonism of NMDARs alters synapse and circuit function is pivotal to developing circuit-based therapies for depression. Using virally induced gene deletion, ex vivo optogenetic-assisted circuit analysis, and in vivo chemogenetics and fMRI, we assessed the role of NMDARs in the medial prefrontal cortex (mPFC) in controlling depression-related behavior in mice. We demonstrate that post-developmental genetic deletion of the NMDAR subunit GluN2B from pyramidal neurons in the mPFC enhances connectivity between the mPFC and limbic thalamus, but not the ventral hippocampus, and reduces depression-like behavior. Using intersectional chemogenetics, we show that activation of this thalamocortical circuit is sufficient to elicit a decrease in despair-like behavior. Our findings reveal that GluN2B exerts input-specific control of pyramidal neuron innervation and identify a medial dorsal thalamus (MDT)→mPFC circuit that controls depression-like behavior. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. SEMICONDUCTOR INTEGRATED CIRCUITS: A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth

    NASA Astrophysics Data System (ADS)

    Tao, Tong; Baoyong, Chi; Ziqiang, Wang; Ying, Zhang; Hanjun, Jiang; Zhihua, Wang

    2010-05-01

    A reconfigurable analog baseband circuit for WLAN, WCDMA, and Bluetooth in 0.35 μm CMOS is presented. The circuit consists of two variable gain amplifiers (VGA) in cascade and a Gm-C elliptic low-pass filter (LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption, the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application. Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN, 8.9 mW for WCDMA and only 6.5 mW for Bluetooth, all with a 3 V power supply. The analog baseband circuit could provide -10 to +40 dB variable gain, third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth, fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN, respectively.

  16. Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo

    2009-03-01

    A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.

  17. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  18. A benchmarking method to measure dietary absorption efficiency of chemicals by fish.

    PubMed

    Xiao, Ruiyang; Adolfsson-Erici, Margaretha; Åkerman, Gun; McLachlan, Michael S; MacLeod, Matthew

    2013-12-01

    Understanding the dietary absorption efficiency of chemicals in the gastrointestinal tract of fish is important from both a scientific and a regulatory point of view. However, reported fish absorption efficiencies for well-studied chemicals are highly variable. In the present study, the authors developed and exploited an internal chemical benchmarking method that has the potential to reduce uncertainty and variability and, thus, to improve the precision of measurements of fish absorption efficiency. The authors applied the benchmarking method to measure the gross absorption efficiency for 15 chemicals with a wide range of physicochemical properties and structures. They selected 2,2',5,6'-tetrachlorobiphenyl (PCB53) and decabromodiphenyl ethane as absorbable and nonabsorbable benchmarks, respectively. Quantities of chemicals determined in fish were benchmarked to the fraction of PCB53 recovered in fish, and quantities of chemicals determined in feces were benchmarked to the fraction of decabromodiphenyl ethane recovered in feces. The performance of the benchmarking procedure was evaluated based on the recovery of the test chemicals and precision of absorption efficiency from repeated tests. Benchmarking did not improve the precision of the measurements; after benchmarking, however, the median recovery for 15 chemicals was 106%, and variability of recoveries was reduced compared with before benchmarking, suggesting that benchmarking could account for incomplete extraction of chemical in fish and incomplete collection of feces from different tests. © 2013 SETAC.

  19. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE PAGES

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  20. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R

    2014-11-01

    E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.

  1. PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets.

    PubMed

    Yu, Jinchao; Guerois, Raphaël

    2016-12-15

    Protein-protein docking methods are of great importance for understanding interactomes at the structural level. It has become increasingly appealing to use not only experimental structures but also homology models of unbound subunits as input for docking simulations. So far we are missing a large scale assessment of the success of rigid-body free docking methods on homology models. We explored how we could benefit from comparative modelling of unbound subunits to expand docking benchmark datasets. Starting from a collection of 3157 non-redundant, high X-ray resolution heterodimers, we developed the PPI4DOCK benchmark containing 1417 docking targets based on unbound homology models. Rigid-body docking by Zdock showed that for 1208 cases (85.2%), at least one correct decoy was generated, emphasizing the efficiency of rigid-body docking in generating correct assemblies. Overall, the PPI4DOCK benchmark contains a large set of realistic cases and provides new ground for assessing docking and scoring methodologies. Benchmark sets can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/ CONTACT: guerois@cea.frSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. RETRANO3 benchmarks for Beaver Valley plant transients and FSAR analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, E.T.; Feltus, M.A.

    1993-01-01

    Any best-estimate code (e.g., RETRANO3) results must be validated against plant data and final safety analysis report (FSAR) predictions. The need for two independent means of benchmarking is necessary to ensure that the results were not biased toward a particular data set and to have a certain degree of accuracy. The code results need to be compared with previous results and show improvements over previous code results. Ideally, the two best means of benchmarking a thermal hydraulics code are comparing results from previous versions of the same code along with actual plant data. This paper describes RETRAN03 benchmarks against RETRAN02more » results, actual plant data, and FSAR predictions. RETRAN03, the Electric Power Research Institute's latest version of the RETRAN thermal-hydraulic analysis codes, offers several upgrades over its predecessor, RETRAN02 Mod5. RETRAN03 can use either implicit or semi-implicit numerics, whereas RETRAN02 Mod5 uses only semi-implicit numerics. Another major upgrade deals with slip model options. RETRAN03 added several new models, including a five-equation model for more accurate modeling of two-phase flow. RETPAN02 Mod5 should give similar but slightly more conservative results than RETRAN03 when executed with RETRAN02 Mod5 options.« less

  3. Benchmarking protein-protein interface predictions: why you should care about protein size.

    PubMed

    Martin, Juliette

    2014-07-01

    A number of predictive methods have been developed to predict protein-protein binding sites. Each new method is traditionally benchmarked using sets of protein structures of various sizes, and global statistics are used to assess the quality of the prediction. Little attention has been paid to the potential bias due to protein size on these statistics. Indeed, small proteins involve proportionally more residues at interfaces than large ones. If a predictive method is biased toward small proteins, this can lead to an over-estimation of its performance. Here, we investigate the bias due to the size effect when benchmarking protein-protein interface prediction on the widely used docking benchmark 4.0. First, we simulate random scores that favor small proteins over large ones. Instead of the 0.5 AUC (Area Under the Curve) value expected by chance, these biased scores result in an AUC equal to 0.6 using hypergeometric distributions, and up to 0.65 using constant scores. We then use real prediction results to illustrate how to detect the size bias by shuffling, and subsequently correct it using a simple conversion of the scores into normalized ranks. In addition, we investigate the scores produced by eight published methods and show that they are all affected by the size effect, which can change their relative ranking. The size effect also has an impact on linear combination scores by modifying the relative contributions of each method. In the future, systematic corrections should be applied when benchmarking predictive methods using data sets with mixed protein sizes. © 2014 Wiley Periodicals, Inc.

  4. Benchmarking clinical photography services in the NHS.

    PubMed

    Arbon, Giles

    2015-01-01

    Benchmarking is used in services across the National Health Service (NHS) using various benchmarking programs. Clinical photography services do not have a program in place and services have to rely on ad hoc surveys of other services. A trial benchmarking exercise was undertaken with 13 services in NHS Trusts. This highlights valuable data and comparisons that can be used to benchmark and improve services throughout the profession.

  5. The effects of a virtual reality treatment program for online gaming addiction.

    PubMed

    Park, Sung Yong; Kim, Sun Mi; Roh, Sungwon; Soh, Min-Ah; Lee, Sang Hoon; Kim, Hyungjin; Lee, Young Sik; Han, Doug Hyun

    2016-06-01

    Neuroimaging studies have demonstrated dysfunction in the brain reward circuit in individuals with online gaming addiction (OGA). We hypothesized that virtual reality therapy (VRT) for OGA would improve the functional connectivity (FC) of the cortico-striatal-limbic circuit by stimulating the limbic system. Twenty-four adults with OGA were randomly assigned to a cognitive behavior therapy (CBT) group or VRT group. Before and after the four-week treatment period, the severity of OGA was evaluated with Young's Internet Addiction Scale (YIAS). Using functional magnetic resonance imaging, the amplitude of low-frequency fluctuation (ALFF) and FC from the posterior cingulate cortex (PCC) seed to other brain areas were evaluated. Twelve casual game users were also recruited and underwent only baseline assessment. After treatment, both CBT and VRT groups showed reductions in YIAS scores. At baseline, the OGA group showed a smaller ALFF within the right middle frontal gyrus and reduced FC in the cortico-striatal-limbic circuit. In the VRT group, connectivity from the PCC seed to the left middle frontal and bilateral temporal lobe increased after VRT. VRT seemed to reduce the severity of OGA, showing effects similar to CBT, and enhanced the balance of the cortico-striatal-limbic circuit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Extinction Partially Reverts Structural Changes Associated with Remote Fear Memory

    ERIC Educational Resources Information Center

    Vetere, Gisella; Restivo, Leonardo; Novembre, Giovanni; Aceti, Massimiliano; Lumaca, Massimo; Ammassari-Teule, Martine

    2011-01-01

    Structural synaptic changes occur in medial prefrontal cortex circuits during remote memory formation. Whether extinction reverts or further reshapes these circuits is, however, unknown. Here we show that the number and the size of spines were enhanced in anterior cingulate (aCC) and infralimbic (ILC) cortices 36 d following contextual fear…

  7. Chaos in the fractional order logistic delay system: Circuit realization and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskonus, Haci Mehmet; Hammouch, Zakia; Mekkaoui, Toufik

    2016-06-08

    In this paper, we present a numerical study and a circuit design to prove existence of chaos in the fractional order Logistic delay system. In addition, we investigate an active control synchronization scheme in this system. Numerical and cicruit simulations show the effectiveness and feasibility of this method.

  8. Neural mechanism of optimal limb coordination in crustacean swimming

    PubMed Central

    Zhang, Calvin; Guy, Robert D.; Mulloney, Brian; Zhang, Qinghai; Lewis, Timothy J.

    2014-01-01

    A fundamental challenge in neuroscience is to understand how biologically salient motor behaviors emerge from properties of the underlying neural circuits. Crayfish, krill, prawns, lobsters, and other long-tailed crustaceans swim by rhythmically moving limbs called swimmerets. Over the entire biological range of animal size and paddling frequency, movements of adjacent swimmerets maintain an approximate quarter-period phase difference with the more posterior limbs leading the cycle. We use a computational fluid dynamics model to show that this frequency-invariant stroke pattern is the most effective and mechanically efficient paddling rhythm across the full range of biologically relevant Reynolds numbers in crustacean swimming. We then show that the organization of the neural circuit underlying swimmeret coordination provides a robust mechanism for generating this stroke pattern. Specifically, the wave-like limb coordination emerges robustly from a combination of the half-center structure of the local central pattern generating circuits (CPGs) that drive the movements of each limb, the asymmetric network topology of the connections between local CPGs, and the phase response properties of the local CPGs, which we measure experimentally. Thus, the crustacean swimmeret system serves as a concrete example in which the architecture of a neural circuit leads to optimal behavior in a robust manner. Furthermore, we consider all possible connection topologies between local CPGs and show that the natural connectivity pattern generates the biomechanically optimal stroke pattern most robustly. Given the high metabolic cost of crustacean swimming, our results suggest that natural selection has pushed the swimmeret neural circuit toward a connection topology that produces optimal behavior. PMID:25201976

  9. Biological 2-Input Decoder Circuit in Human Cells

    PubMed Central

    2015-01-01

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115

  10. Biological 2-input decoder circuit in human cells.

    PubMed

    Guinn, Michael; Bleris, Leonidas

    2014-08-15

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.

  11. Rules and mechanisms for efficient two-stage learning in neural circuits

    PubMed Central

    Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay

    2017-01-01

    Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning. DOI: http://dx.doi.org/10.7554/eLife.20944.001 PMID:28374674

  12. The Model Averaging for Dichotomous Response Benchmark Dose (MADr-BMD) Tool

    EPA Pesticide Factsheets

    Providing quantal response models, which are also used in the U.S. EPA benchmark dose software suite, and generates a model-averaged dose response model to generate benchmark dose and benchmark dose lower bound estimates.

  13. Benchmarking--Measuring and Comparing for Continuous Improvement.

    ERIC Educational Resources Information Center

    Henczel, Sue

    2002-01-01

    Discussion of benchmarking focuses on the use of internal and external benchmarking by special librarians. Highlights include defining types of benchmarking; historical development; benefits, including efficiency, improved performance, increased competitiveness, and better decision making; problems, including inappropriate adaptation; developing a…

  14. Benchmarking short sequence mapping tools

    PubMed Central

    2013-01-01

    Background The development of next-generation sequencing instruments has led to the generation of millions of short sequences in a single run. The process of aligning these reads to a reference genome is time consuming and demands the development of fast and accurate alignment tools. However, the current proposed tools make different compromises between the accuracy and the speed of mapping. Moreover, many important aspects are overlooked while comparing the performance of a newly developed tool to the state of the art. Therefore, there is a need for an objective evaluation method that covers all the aspects. In this work, we introduce a benchmarking suite to extensively analyze sequencing tools with respect to various aspects and provide an objective comparison. Results We applied our benchmarking tests on 9 well known mapping tools, namely, Bowtie, Bowtie2, BWA, SOAP2, MAQ, RMAP, GSNAP, Novoalign, and mrsFAST (mrFAST) using synthetic data and real RNA-Seq data. MAQ and RMAP are based on building hash tables for the reads, whereas the remaining tools are based on indexing the reference genome. The benchmarking tests reveal the strengths and weaknesses of each tool. The results show that no single tool outperforms all others in all metrics. However, Bowtie maintained the best throughput for most of the tests while BWA performed better for longer read lengths. The benchmarking tests are not restricted to the mentioned tools and can be further applied to others. Conclusion The mapping process is still a hard problem that is affected by many factors. In this work, we provided a benchmarking suite that reveals and evaluates the different factors affecting the mapping process. Still, there is no tool that outperforms all of the others in all the tests. Therefore, the end user should clearly specify his needs in order to choose the tool that provides the best results. PMID:23758764

  15. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darcy, Eric; Keyser, Matthew

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  16. Optimizing the quality of breast cancer care at certified german breast centers: a benchmarking analysis for 2003-2009 with a particular focus on the interdisciplinary specialty of radiation oncology.

    PubMed

    Brucker, Sara Y; Wallwiener, Markus; Kreienberg, Rolf; Jonat, Walter; Beckmann, Matthias W; Bamberg, Michael; Wallwiener, Diethelm; Souchon, Rainer

    2011-02-01

    A voluntary, external, science-based benchmarking program was established in Germany in 2003 to analyze and improve the quality of breast cancer (BC) care. Based on recent data from 2009, we aim to show that such analyses can also be performed for individual interdisciplinary specialties, such as radiation oncology (RO). Breast centers were invited to participate in the benchmarking program. Nine guideline-based quality indicators (QIs) were initially defined, reviewed annually, and modified, expanded, or abandoned accordingly. QI changes over time were analyzed descriptively, with particular emphasis on relevance to radiation oncology. During the 2003-2009 study period, there were marked increases in breast center participation and postoperatively confirmed primary BCs. Starting from 9 process QIs, 15 QIs were developed by 2009 as surrogate indicators of long-term outcome. During 2003-2009, 2/7 RO-relevant QIs (radiotherapy after breast-conserving surgery or after mastectomy) showed considerable increases (from 20 to 85% and 8 to 70%, respectively). Another three, initially high QIs practically reached the required levels. The current data confirm proof-of-concept for the established benchmarking program, which allows participating institutions to be compared and changes in quality of BC care to be tracked over time. Overall, marked QI increases suggest that BC care in Germany improved from 2003-2009. Moreover, it has become possible for the first time to demonstrate improvements in the quality of BC care longitudinally for individual breast centers. In addition, subgroups of relevant QIs can be used to demonstrate the progress achieved, but also the need for further improvement, in specific interdisciplinary specialties.

  17. Sensitivity of super-efficient data envelopment analysis results to individual decision-making units: an example of surgical workload by specialty.

    PubMed

    Dexter, Franklin; O'Neill, Liam; Xin, Lei; Ledolter, Johannes

    2008-12-01

    We use resampling of data to explore the basic statistical properties of super-efficient data envelopment analysis (DEA) when used as a benchmarking tool by the manager of a single decision-making unit. Our focus is the gaps in the outputs (i.e., slacks adjusted for upward bias), as they reveal which outputs can be increased. The numerical experiments show that the estimates of the gaps fail to exhibit asymptotic consistency, a property expected for standard statistical inference. Specifically, increased sample sizes were not always associated with more accurate forecasts of the output gaps. The baseline DEA's gaps equaled the mode of the jackknife and the mode of resampling with/without replacement from any subset of the population; usually, the baseline DEA's gaps also equaled the median. The quartile deviations of gaps were close to zero when few decision-making units were excluded from the sample and the study unit happened to have few other units contributing to its benchmark. The results for the quartile deviations can be explained in terms of the effective combinations of decision-making units that contribute to the DEA solution. The jackknife can provide all the combinations contributing to the quartile deviation and only needs to be performed for those units that are part of the benchmark set. These results show that there is a strong rationale for examining DEA results with a sensitivity analysis that excludes one benchmark hospital at a time. This analysis enhances the quality of decision support using DEA estimates for the potential ofa decision-making unit to grow one or more of its outputs.

  18. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies

    NASA Astrophysics Data System (ADS)

    Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P. O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang

    2017-08-01

    Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr-1 (1981-2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.

  19. A European benchmarking system to evaluate in-hospital mortality rates in acute coronary syndrome: the EURHOBOP project.

    PubMed

    Dégano, Irene R; Subirana, Isaac; Torre, Marina; Grau, María; Vila, Joan; Fusco, Danilo; Kirchberger, Inge; Ferrières, Jean; Malmivaara, Antti; Azevedo, Ana; Meisinger, Christa; Bongard, Vanina; Farmakis, Dimitros; Davoli, Marina; Häkkinen, Unto; Araújo, Carla; Lekakis, John; Elosua, Roberto; Marrugat, Jaume

    2015-03-01

    Hospital performance models in acute myocardial infarction (AMI) are useful to assess patient management. While models are available for individual countries, mainly US, cross-European performance models are lacking. Thus, we aimed to develop a system to benchmark European hospitals in AMI and percutaneous coronary intervention (PCI), based on predicted in-hospital mortality. We used the EURopean HOspital Benchmarking by Outcomes in ACS Processes (EURHOBOP) cohort to develop the models, which included 11,631 AMI patients and 8276 acute coronary syndrome (ACS) patients who underwent PCI. Models were validated with a cohort of 55,955 European ACS patients. Multilevel logistic regression was used to predict in-hospital mortality in European hospitals for AMI and PCI. Administrative and clinical models were constructed with patient- and hospital-level covariates, as well as hospital- and country-based random effects. Internal cross-validation and external validation showed good discrimination at the patient level and good calibration at the hospital level, based on the C-index (0.736-0.819) and the concordance correlation coefficient (55.4%-80.3%). Mortality ratios (MRs) showed excellent concordance between administrative and clinical models (97.5% for AMI and 91.6% for PCI). Exclusion of transfers and hospital stays ≤1day did not affect in-hospital mortality prediction in sensitivity analyses, as shown by MR concordance (80.9%-85.4%). Models were used to develop a benchmarking system to compare in-hospital mortality rates of European hospitals with similar characteristics. The developed system, based on the EURHOBOP models, is a simple and reliable tool to compare in-hospital mortality rates between European hospitals in AMI and PCI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Developing Benchmarks for Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Domm, P.; Love, J. J.; Pierson, J.

    2016-12-01

    Solar radio bursts can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan has asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The solar radio benchmark team was also asked to define the wavelength/frequency bands of interest. The benchmark team developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks and the basis used to derive them. We will also present the work that needs to be done in order to complete the final, or phase 2 benchmarks.

Top