Measuring Growth and Decline in Visual-Motor Processes with the Bender-Gestalt Second Edition
ERIC Educational Resources Information Center
Decker, Scott L.
2008-01-01
The purpose of this study is to develop a change-sensitive scale for evaluating developmental change in visual-motor ability across the life span. A partial-credit item-response model is used to estimate theta values for each age group between 4 and 90 using the Bender-Gestalt II standardization sample (N = 4,000). Results from this study suggest…
The validity of two clinical tests of visual-motor perception.
Wallbrown, J D; Wallbrown, F H; Engin, A W
1977-04-01
The study investigated the relative efficiency of the Bender and MPD as assessors of achievement-related errors in visual-motor perception. Clinical experience with these two tests suggests that beyond first grade the MPD is more sensitive than the Bender for purposes of measuring deficits in visual-motor perception that interfere with effective classroom learning. The sample was composed of 153 third-grade children from two upper-middle-class elementary schools in a surburban school system in central Ohio. For three of the four achievement criteria, the results were clearly congruent with the hypothesis stated above. That is, SpCD errors from the MPD not only showed significantly higher negative rs with the criteria (reading vocabulary, reading comprehension, and mathematics computation) than Koppitz errors from the Bender, but also accounted for a much higher proportion of the variance in these criteria. Thus, the findings suggest that psychologists engaged in the assessment of older children seriously should consider adding the MPD to their assessment battery.
ERIC Educational Resources Information Center
Froman, Robin D.; Owen, Steven V.
The long term predictive validity of the Wechsler Intelligence Scale for Children (WISC) and the Bender Visual Motor Gestalt Test for Children, when used for the educational placement of exceptional students, was investigated. In 1971, 225 learning disabled elementary school students were tested on the WISC and the Bender. The students were…
Results on the Slosson Drawing Coordination Test with Appalachian Sheltered Workshop Clients.
ERIC Educational Resources Information Center
Rogers, George W., Jr.; Richmond, Bert O.
Fifty-four clients (13- to 52-years-old) in an Appalachian sheltered workshop were administered the Slosson Drawing Coordination Test (SDCT) and the Bender Visual Motor Gestalt Test. Twenty-nine Ss were labeled possibly brain damaged by the SDCT, and 17 Ss by the M. Hutt scoring system for the Bender-Gestalt. Two psychologists using all available…
ERIC Educational Resources Information Center
DeMers, Stephen T.; And Others
1981-01-01
This study compared the performance of school-aged children referred for learning or adjustment difficulties on Beery's Developmental Test of Visual-Motor Integration and Koppitz's version of the Bender-Gestalt test. Results indicated that the tests are related but not equivalent when administered to referred populations. (Author/AL)
VMI-VI and BG-II KOPPITZ-2 for Youth with HFASDs and Typical Youth
ERIC Educational Resources Information Center
McDonald, Christin A.; Volker, Martin A.; Lopata, Christopher; Toomey, Jennifer A.; Thomeer, Marcus L.; Lee, Gloria K.; Lipinski, Alanna M.; Dua, Elissa H.; Schiavo, Audrey M.; Bain, Fabienne; Nelson, Andrew T.
2014-01-01
The visual-motor skills of 90 youth with high-functioning autism spectrum disorders (HFASDs) and 51 typically developing (TD) youth were assessed using the Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition (VMI-VI) and Koppitz Developmental Scoring System for the Bender-Gestalt Test-Second Edition (KOPPITZ-2).…
[Visual and motor functions in schizophrenic patients].
Del Vecchio, S; Gargiulo, P A
1992-12-01
In the present work, visual and motor functions have been explored in 26 chronic schizophrenic patients, and 7 acute schizophrenic patients, compared with 26 normal controls, by means of the Bender-Gestalt Test. Parameters under consideration were: Form distortion, rotation, integration, perseveration, use of space, subtle motricity, score (global parameter), and time employed. As regards distortion and rotation there have been highly significant differences between chronic patients and control group. Among acute patients, it was observed that perseveration was also highly significant. Conversely, integration and use of space did not differ significantly among the three groups involved. The global score, resulting from all the above mentioned parameters showed important differences between both patient groups on the one hand, and control group on the other hand. Taking into account that patients were being administered neuroleptic drugs, it can safely be said, however, that the Bender-Gestalt Test allows to recognize alteration in perceptual closure consistent with a loss of the objective structure of perceived phenomena, in both chronic and acute patients.
A Longitudinal Study of the Predictive Validity of a Kindergarten Screening Battery.
ERIC Educational Resources Information Center
Kilgallon, Mary K.; Mueller, Richard J.
Test validity was studied in nine subtests of a kindergarten screening battery used to predict reading comprehension for children up to five years after entering kindergarten. The independent variables were kindergarteners' scores on the: (1) Otis-Lennon Mental Ability Test; (2) Bender Visual Motor Gestalt Test; (3) Detroit Tests of Learning…
ERIC Educational Resources Information Center
Killian, L. R.
A twenty-six-month follow-up study was made of 75 Anglo- and Spanish-American primary school children who were examined on the Wechsler Intelligence Scale for Children, the Illinois Test of Psycholinguistic Abilities, and the Bender Visual-Motor Gestalt Test in order to determine the specific cognitive deficits which might account for the poor…
Relationships between visual-motor and cognitive abilities in intellectual disabilities.
Di Blasi, Francesco D; Elia, Flaviana; Buono, Serafino; Ramakers, Ger J A; Di Nuovo, Santo F
2007-06-01
The neurobiological hypothesis supports the relevance of studying visual-perceptual and visual-motor skills in relation to cognitive abilities in intellectual disabilities because the defective intellectual functioning in intellectual disabilities is not restricted to higher cognitive functions but also to more basic functions. The sample was 102 children 6 to 16 years old and with different severities of intellectual disabilities. Children were administered the Wechsler Intelligence Scale for Children, the Bender Visual Motor Gestalt Test, and the Developmental Test of Visual Perception, and data were also analysed according to the presence or absence of organic anomalies, which are etiologically relevant for mental disabilities. Children with intellectual disabilities had deficits in perceptual organisation which correlated with the severity of intellectual disabilities. Higher correlations between the spatial subtests of the Developmental Test of Visual Perception and the Performance subtests of the Wechsler Intelligence Scale for Children suggested that the spatial skills and cognitive performance may have a similar basis in information processing. Need to differentiate protocols for rehabilitation and intervention for recovery of perceptual abilities from general programs of cognitive stimulations is suggested.
Mesrahi, Tahereh; Sedighi, Mohammadreza
2013-08-01
Learning disability is one of the most noticed subjects for behavioral specialists. Most of thelearning difficulties are caused by senso-motor development and neurological organization. The main purposeof the present research is to examine the role of delayed perceptual-motor development and brain damage inorigination of expressive writing disorder (EWD). The studied sample is 89 pupils divided into two groups, one of which is pupils with expressivewriting disorder (n=43) and the other is pupils without expressive writing disorder (n=46), consisted of secondand third grade elementary school students. First of all, students with EWD are selected through dictation testand intelligence test, and then the two groups, students with and without EWD, would take the Bender Gestalttest. The average score of perceptual visual-motor development and brain damage of two groups is comparedusing T test for independent groups and χ2 test. Results show that there is a significant difference in perceptual visual-motor development betweenstudents with EWD and students without EWD (p<0.01). Based on the results, perceptual-motor development ofstudents with EWD is lower than students without EWD. There is no significant difference in brain damagebetween those with EWD and healthy people, (p> 0.05). Based on our findings it could be concluded that those who are relatively more developed thantheir peers, in terms of visual-motor perception, are more successful in education, especially in expressive writing.
Fuller, G B; Wallbrown, F H
1983-11-01
Administered the Bender-Gestalt (BG) and Minnesota Percepto-Diagnostic Test (MPD) to 69 first-grade children prior to administration of the California Achievement Test (CAT). Order of administration for the BG and MPD was counterbalanced to control for practice effects. Correlations (rs) were computed between the 9 CAT subtests and scores from the BG and MPD. The DD score from the MPD correlated significantly with all 9 CAT subtests. The SpCD score from the MPD correlated significantly with 6 of the 9 CAT subtests. The BG Koppitz score correlated significantly with 6 of the 9 CAT subtests. Both the DD and SpCD scores showed a significantly higher negative r with Reading Vocabulary, Total Reading, and Arithmetic Computation than the BG. Furthermore, both types of MPD scores showed a much higher average r with the 9 CAT subtests than was evident for the BG. These findings suggest that DD and SpCD scores from the MPD provide a more sensitive measure of deficits in visual-motor perception than the Koppitz score from the BG.
Ricardi, F C F; Zaia, L L; Pellegrino-Rosa, I; Rosa, J T; Mantovani de Assis, O Z; Saldanha, P H
2010-08-31
Piagetian scales and the Bender visual motor gestalt test (BT) were applied to 28 subjects with universal 45,X Turner syndrome (TS), and their respective controls, in order to investigate their cognitive performance. Dermatoglyphics were also analyzed to obtain clues concerning embryological changes that may have appeared during development of the nervous system and could be associated with cognitive performance of TS patients. Dermatoglyphic pattern distribution was similar to that reported in previous studies of TS individuals: ulnar loops in the digital patterns and finger ridge, a-b, and A'-d counts were more frequent, while arch and whorl patterns were less frequent compared to controls. However, we did not find higher frequencies of hypothenar pattern, maximum atd angle, and ulnarity index in our TS subjects, unlike other investigations. Furthermore, we found significant differences between TS and control T line index values. The BT scores were also lower in probands, as has been previously reported, revealing a neurocognitive deficit of visual motor perception in TS individuals, which could be due to an absence of, or deficiency in, cerebral hemispheric lateralization. However, TS subjects seemed to improve their performance on BT with age. Cognitive performance of the TS subjects was not significantly different from that of controls, confirming a previous study in which TS performance was found to be similar to that of the normal Brazilian population. There were significant correlations between BT scores and Piagetian scale levels with dermatoglyphic parameters. This association could be explained by changes in the common ectodermal origin of the epidermis and the central nervous system. TS subjects seem to succeed in compensating their spatial impairments in adapting their cognitive and social contacts. We concluded that genetic counseling should consider cognitive and psychosocial difficulties presented by TS subjects, providing appropriate treatment and orientation for them and their families.
Davidson, Philip W; Jean-Sloane-Reeves; Myers, Gary J; Hansen, Ole Nørby; Huang, Li-Shan; Georger, Leslie A; Cox, Christopher; Thurston, Sally W; Shamlaye, Conrad F; Clarkson, Thomas W
2008-05-01
The Seychelles Child Development Study was designed to test the hypothesis that prenatal exposure to MeHg from maternal consumption of a diet high in fish is detrimental to child neurodevelopment. To date, no consistent pattern of adverse associations between prenatal exposure and children's development has appeared. In a comprehensive review of developmental studies involving MeHg, a panel of experts recommended a more consistent use of the same endpoints across studies to facilitate comparisons. Both the SCDS and the Faeroe Islands studies administered the Bender Visual Motor Gestalt Test. However, the method of test administration and scoring used was different. We repeated the test on the SCDS Main Study children (mean age 10.7 years) using the same testing and scoring procedure reported by the Faeroe studies to obtain Copying Task and Reproduction Task scores. We found no association between prenatal MeHg exposure and Copying Task scores which was reported from the Faeroese study. However, our analysis did show a significant adverse association between MeHg and Reproduction Task scores with all the data (p=0.04), but not when the single outlier was removed (p=0.07). In a population whose exposure to MeHg is from fish consumption, we continue to find no consistent adverse association between MeHg and visual motor coordination.
Moyamoya disease: impact on the performance of oral and written language.
Lamônica, Dionísia Aparecida Cusin; Ribeiro, Camila da Costa; Ferraz, Plínio Marcos Duarte Pinto; Tabaquim, Maria de Lourdes Merighi
Moyamoya disease is an unusual form of occlusive, cerebrovascular disorder that affects the arteries of the central nervous system, causing acquired language alterations and learning difficulties. The study aim was to describe the oral/written language and cognitive skills in a seven-year-and-seven-month-old girl diagnosed with Moyamoya disease. The assessment consisted of interviews with her parents and application of the following instruments: Observation of Communicative Behavior, Peabody Picture Vocabulary Test, Academic Performance Test, Profile of Phonological Awareness, Raven's Progressive Matrices Test, Special Scale, Wechsler Intelligence Scale for Children, Bender Visual Motor Gestalt Test, and Wisconsin Card Sorting Test. Two episodes of stroke in the left and right temporal-parietal and left frontal areas occurred until the age of six years and five months. Revascularization surgery and medication treatment were conducted. The audiologic and ophthalmologic assessments indicated normality. At the time of the study, the girl was attending the second grade of elementary school. She presented changes in oral and written language (syllabic-alphabetic), non-naming of all graphemes, low arithmetic and writing means, reading skill below first grade level and psycholinguistic delay, and pre-school level phonological processing skills. The psychological evaluation indicated satisfactory intellectual level; however, it also showed cognitive performance impairment in verbal and execution tasks and limitations on graphic-perceptual-motor skills and sequential logic organization. The stroke episodes influenced the performance of learning processes, affecting the analysis, integration, and interpretation of relevant visual and auditory information.
ERIC Educational Resources Information Center
Clayman, Deborah P. Goldweber
The ability of 100 second-grade boys and girls to self-correct oral reading errors was studied in relationship to visual-form perception, phonic skills, response speed, and reading level. Each child was tested individually with the Bender-Error Test, the Gray Oral Paragraphs, and the Roswell-Chall Diagnostic Reading Test and placed into a group of…
Neuropsychological Assessment of Adult Patients with Shunted Hydrocephalus
Bakar, Emel Erdogan
2010-01-01
Objective This study is planned to determine the neurocognitive difficulties of hydrocephalic adults. Methods The research group contained healthy adults (control group, n : 15), and hydrocephalic adults (n : 15). Hydrocephalic group consisted of patients with idiopathic aquaduct stenosis and post-meningitis hydrocephalus. All patients were followed with shunted hydrocephalus and not gone to shunt revision during last two years. They were chosen from either asymptomatic or had only minor symptoms without motor and sensorineural deficit. A neuropsychological test battery (Raven Standart Progressive Matrices, Bender-Gestalt Test, Cancellation Test, Clock Drawing Test, Facial Recognition Test, Line Orientation Test, Serial Digit Learning Test, Stroop Color Word Interference Test-TBAG Form, Verbal Fluency Test, Verbal Fluency Test, Visual-Aural Digit Span Test-B) was applied to all groups. Results Neuropsychological assessment of hydrocephalic patients demonstrated that they had poor performance on visual, semantic and working memory, visuoconstructive and frontal functions, reading, attention, motor coordination and executive function of parietal lobe which related with complex and perseverative behaviour. Eventually, these patients had significant impairment on the neurocognitive functions of their frontal, parietal and temporal lobes. On the other hand, the statistical analyses performed on demographic data showed that the aetiology of the hydrocephalus, age, sex and localization of the shunt (frontal or posterior parietal) did not affect the test results. Conclusion This prospective study showed that adult patients with hydrocephalus have serious neuropsychological problems which might be directly caused by the hydrocephalus; and these problems may cause serious adaptive difficulties in their social, cultural, behavioral and academic life. PMID:20379471
Nasralla, Heloisa Romeiro; Goffi Gomez, Maria Valéria Schimidt; Magalhaes, Ana Tereza; Bento, Ricardo Ferreira
2014-10-01
Introduction The factors that affect the development of children with and without hearing disabilities are similar, provided their innate communication abilities are taken into account. Parents need to mourn the loss of the expected normally hearing child, and it is important that parents create bonds of affection with their child. Objective To conduct a postevaluation of the development and cognition of 20 candidates for cochlear implants between 1 and 13 years of age and to observe important factors in their development. Methods The following instruments were used in accordance with their individual merits: interviews with parents; the Vineland Social Maturity Scale; the Columbia Maturity Scale; free drawings; Bender and Pre-Bender testing; and pedagogical tests. Results The results are described. Conclusion Parental acceptance of a child's deafness proved to be the starting point for the child's verbal or gestural communication development, as well as for cognitive, motor, and emotional development. If the association between deafness and fine motor skills (with or without multiple disabilities) undermines the development of a child's speech, it does not greatly affect communication when the child interacts with his or her peers and receives maternal stimulation. Overprotection and poor sociability make children less independent, impairs their development, and causes low self-esteem. Further observational studies are warranted to determine how cochlear implants contribute to patient recovery.
Nasralla, Heloisa Romeiro; Goffi Gomez, Maria Valéria Schimidt; Magalhaes, Ana Tereza; Bento, Ricardo Ferreira
2014-01-01
Introduction The factors that affect the development of children with and without hearing disabilities are similar, provided their innate communication abilities are taken into account. Parents need to mourn the loss of the expected normally hearing child, and it is important that parents create bonds of affection with their child. Objective To conduct a postevaluation of the development and cognition of 20 candidates for cochlear implants between 1 and 13 years of age and to observe important factors in their development. Methods The following instruments were used in accordance with their individual merits: interviews with parents; the Vineland Social Maturity Scale; the Columbia Maturity Scale; free drawings; Bender and Pre-Bender testing; and pedagogical tests. Results The results are described. Conclusion Parental acceptance of a child's deafness proved to be the starting point for the child's verbal or gestural communication development, as well as for cognitive, motor, and emotional development. If the association between deafness and fine motor skills (with or without multiple disabilities) undermines the development of a child's speech, it does not greatly affect communication when the child interacts with his or her peers and receives maternal stimulation. Overprotection and poor sociability make children less independent, impairs their development, and causes low self-esteem. Further observational studies are warranted to determine how cochlear implants contribute to patient recovery. PMID:25992122
2011-06-01
effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the
NE-CAT Upgrade of the Bending Magnet Beamline 8BM at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Ogata, Craig; Yang Xiaochun
2007-01-19
NE-CAT, North East Collaborative Access Team, bending magnet beamline (8BM) is a beamline for protein crystallography. Recently, the beamline has undergone upgrades of its x-ray optics, control system, and the addition of a robot automounter. The first crystal of the double crystal monochromator was replaced by a new design offered by Oxford Danfysik with a micro-finned, direct water-cooled crystal assembly that would provide better cooling and reduced thermal distortion, pressure induced bulge, and residual strain. Gear reduced motors were added to enhance the torque of the bender and obtain better control. For measuring displacement of the bender directly, two linearmore » variable differential transformers (LVDT) were installed to the second crystal assembly. Early optics characterization and analysis has been carried out. Besides the upgrade of the optical components, the Blu-Ice control system originally developed at SSRL has been implemented. The installation of an automated robotic sample mounting system, from the ALS, was carried out in collaboration with the engineering group at LBNL. Preliminary results are presented.« less
Multiple Sources of Test Bias on the WISC-R and Bender-Gestalt Test.
ERIC Educational Resources Information Center
Oakland, Thomas; Feigenbaum, David
1979-01-01
Assessed test bias on the Wechsler Intelligence Test for Children-Revised (WISC-R) and Bender-Gestalt. On the Bender, evidence of bias was infrequent and irregular. On the WISC-R, group differences were most discernible for age, sex, family structure, and race. Consistent patterns of bias were not apparent among comparison groups. (Author)
Martín, Fermina Sánchez; Estévez, M Angeles Quiroga
2005-03-01
A longitudinal study was designed with two objectives: first, to provide a wide cognitive, personality and social description of new drivers before they started to drive cars. Second, to examine the relationship between cognitive and other characteristics drivers had before obtaining their driving license and the number and type of accidents they were involved in during the first years as drivers. The longitudinal study started in 1997 and ended in 2002. The first assessment was made up of 241 individuals at the time they enrolled on the driving course. The follow-up evaluation in the year 2002 was carried out on 144 components of the initial sample after five years driving. Age, gender and education level were matched to represent the population of Spain. Participants were assessed with the Bender Test for visual-motor ability, the B101 Test for practical intelligence, the B19 Test for visual-motor bi-manual coordination, and the TKK-1108 for speed anticipation. Personality was also evaluated with the Rorschach test and the PSY (Psychological Assessment Questionnaire). Five years later, a new examination of all those variables was made as well as a structured interview with each participant in order to collect data relating to significant life events during that time, driving habits, opinions in relation to certain traffic rules and information on accidents, incidents and/or sanctions. Serious and/or minor accidents are concentrated on a few drivers. Accidentality is not related to gender or age, but educational level is related to serious accidents. The number of accidents (severe or minor ones) cannot be predicted if considered as a continuous variable, but it is possible if considered as a discrete variable. In this case two different cognitive profiles account for the number and type of accidents. The number and type of accidents during their first years of driving are related to the cognitive profiles of drivers assessed before they obtained their driving license.
ERIC Educational Resources Information Center
Koppitz, Elizabeth Munsterberg
Presented is a manual for scoring the Bender Gestalt Test and the Human Figure Drawing Test for screening and diagnostic uses with emotionally disturbed, brain damaged, or perceptually handicapped 5- to 11-year-old children. Given are suggestions for administering and scoring the Bender test which examines distortion of shape, rotation,…
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
effects, and the characterization of performance and durability effects induced by coating inhomogeneities . Porter, G. Bender, "Utilizing a segmented fuel cell to study the effects of electrode coating
NASA Astrophysics Data System (ADS)
Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th
2017-06-01
We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.
Development of Aspherical Active Gratings at NSRRC
NASA Astrophysics Data System (ADS)
Tseng, Tse-Chuan; Wang, Duan Jen; Perng, Shen-Yaw; Chen, Chien-Te; Lin, Chia-Jui; Kuan, Chien-Kuang; Ho, His-Chou; Wang, Jeremy; Fung, H. S.; Chang, Shuo-Hung
2007-01-01
An active grating based on a novel optical concept with bendable polynomial surface profile to reduce the coma and defocus aberrations had been designed and proved by the prototype testing. Due to the low glass transition temperature of the glue and the difference of thermal expansion coefficient between the 17-4 steel bender and silicon, the prototype distorted from flat polished condition when thermally de-blocked the polishing pitch. To improve the thermal deformation of the active grating in the polishing process, a new invar bender and high curing temperature glue were adapted to glue a silicon substrate on the bender. After some tests and manufacturer polishing, it showed acceptable conditions. In this paper we will present the design and preliminary tests of the invar active grating. Meanwhile, the design and analysis of a new 17-4 PH steel bender to be electro-less nickel plating and mechanical ruling for a new beamline will also be discussed.
Bender Gestalt Signs and Anti-Social Acting Out Tendencies in Adolescents
ERIC Educational Resources Information Center
Brannigan, Gary G.; Benowity, Martin L.
1975-01-01
This study explores the relationship between performance on the Bender-Gestalt test and antisocial acting out tendencies in adolescents. Results indicate that uneven figure size and exaggerated curvature are the best indicators of antisocial acting out tendencies. (Author)
A measure of short-term visual memory based on the WISC-R coding subtest.
Collaer, M L; Evans, J R
1982-07-01
Adapted the Coding subtest of the WISC-R to provide a measure of visual memory. Three hundred and five children, aged 8 through 12, were administered the Coding test using standard directions. A few seconds after completion the key was taken away, and each was given a paper with only the digits and asked to write the appropriate matching symbol below each. This was termed "Coding Recall." To provide validity data, a subgroup of 50 Ss also was administered the Attention Span for Letters subtest from the Detroit Tests of Learning Aptitude (as a test of visual memory for sequences of letters) and a Bender Gestalt recall test (as a measure of visual memory for geometric forms). Coding Recall means and standard deviations are reported separately by sex and age level. Implications for clinicans are discussed. Reservations about clinical use of the data are given in view of the possible lack of representativeness of the sample used and the limited reliability and validity of Coding Recall.
Active shape control of composite blades using shape memory actuation
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
2001-10-01
This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).
DOT National Transportation Integrated Search
2014-08-01
The evaluation of the curing process of a fresh concrete is critical to its construction process and monitoring. Traditionally stress : sensor and compressive wave sensor were often used to measure concrete properties. Bender element (BE) test, a non...
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
ERIC Educational Resources Information Center
McManis, Donald L.; And Others
1978-01-01
Twelve reading-disabled and 12 nondisabled boys, of average intellectual ability, in Grades 3 to 6 were compared on the Memory-For-Designs, Bender-Gestalt, Trail Making Test, and the 11 subtests of the Wechsler Intelligence Scale for Children--Revised (WISC-R). (Author)
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.
Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki
2017-01-01
Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Math Mind Benders Warm Up: Deductive Reasoning Mathematics.
ERIC Educational Resources Information Center
Harnadek, Anita
This book contains "math mind benders," puzzles that are worked like crossword puzzles except that each square is filled with a digit rather than a letter. Clues to the puzzles are interrelated with each other and a given story. Clear thinking and deductive reasoning must be used to find potential answers and eliminate those that fail to meet all…
Bender Gestalt Test Performance and the Word Recognition Skills of Disadvantaged Children
ERIC Educational Resources Information Center
Baker, E. H.; Thurber, Steven
1976-01-01
The Bender Gestalt Test and the WRAT reading section were administered to 147 disadvantaged children. The zero-order correlation of -.62 was found to be moderated by the variable of age. For younger subjects, highly significant first- and second-order partial correlations were obtained with age and/or WISC information scores held constant. (Author)
Doyle, Dennis
2010-06-01
This paper examines one US psychiatrist's engagement between 1936 and 1952 with a racialist strain of evolutionary thought. When Lauretta Bender began working with Bellevue Hospital's disproportionately black population, the psychiatric literature still circulated the crude evolutionary proposition that blacks remained stuck at a more primitive stage of development. In the 1930s, drawing insights from holistic, mechanistic and environmentalist thinking on the relationship between mind and body, Bender developed her own more circumspect racialist position. Although she largely abandoned her underdetermined version of racialism in the 1940s for an approach that left out race as an active factor of analysis, this paper contends that she probably never wrote off black primitivity as a theoretical possibility.
Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie
2017-08-01
Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
[Visual perceptual abilities of children with low motor abilities--a pilot study].
Werpup-Stüwe, Lina; Petermann, Franz
2015-01-01
The results of many studies show visual perceptual deficits in children with low motor abilities. This study aims to indicate the correlation between visual-perceptual and motor abilities. The correlation of visual-perceptual and motor abilities of 41 children is measured by using the German versions of the Developmental Test of Visual Perception--Adolescent and Adult (DTVP-A) and the Movement Assessment Battery for Children--Second Edition (M-ABC-2). The visual-perceptual abilities of children with low motor abilities (n=21) are also compared to the visual-perceptual abilities of children with normal motor abilities (the control group, n=20). High correlations between the visual-perceptual and motor abilities are found. The perceptual abilities of the groups differ significantly. Nearly half of the children with low motor abilities show visual-perceptual deficits. Visual perceptual abilities of children suffering coordination disorders should always be assessed. The DTVP-A is useful, because it provides the possibilities to compare motor-reduced visual-perceptual abilities and visualmotor integration abilities and to estimate the deficit's degree.
Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap
NASA Technical Reports Server (NTRS)
Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi
2012-01-01
This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.
Visual adaptation dominates bimodal visual-motor action adaptation
de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.
2016-01-01
A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781
Predictors of visual-motor integration in children with intellectual disability.
Memisevic, Haris; Sinanovic, Osman
2012-12-01
The aim of this study was to assess the influence of sex, age, level and etiology of intellectual disability on visual-motor integration in children with intellectual disability. The sample consisted of 90 children with intellectual disability between 7 and15 years of age. Visual-motor integration was measured using the Acadia test of visual-motor integration. A multiple regression analysis was used for data analysis. The results of this study showed that sex, level of intellectual disability, and age were significant predictors of visual-motor integration. The etiology of intellectual disability did not play a significant role in predicting visual-motor integration. Visual-motor integration skills are very important for a child's overall level of functioning. Individualized programs for the remediation of visual-motor integration skills should be a part of the curriculum for children with intellectual disability.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Designing and commissioning of a prototype double Laue monochromator at CHESS
NASA Astrophysics Data System (ADS)
Ko, J. Y. Peter; Oswald, Benjamin B.; Savino, James J.; Pauling, Alan K.; Lyndaker, Aaron; Revesz, Peter; Miller, Matthew P.; Brock, Joel D.
2014-03-01
High-energy X-rays are efficiently focused sagittally by a set of asymmetric Laue (transmission) crystals. We designed, built and commissioned a prototype double Laue monochromator ((111) reflection in Si(100)) optimized for high-energy X-rays (30-60 keV). Here, we report our design of novel prototype sagittal bender and highlight results from recent characterization experiments. The design of the bender combines the tuneable bending control afforded by previous leaf-spring designs with the stability and small size of a four-bar bender. The prototype monochromator focuses a 25 mm-wide white beam incident on the first monochromator crystal to a monochromatized 0.6 mm beam waist in the experimental station. Compared to the flux in the same focal spot with the Bragg crystal (without focusing), the prototype Laue monochromator delivered 85 times more at 30 keV.
ERIC Educational Resources Information Center
Wessel, Dorothy
A 10-week classroom intervention program was implemented to facilitate the fine-motor development of eight first-grade children assessed as being deficient in motor skills. The program was divided according to five deficits to be remediated: visual motor, visual discrimination, visual sequencing, visual figure-ground, and visual memory. Each area…
ERIC Educational Resources Information Center
Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying
2011-01-01
Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…
ERIC Educational Resources Information Center
Ozer, Serap
2009-01-01
The Bender Gestalt test and Human Drawings are frequently utilized tests in assessing school readiness in children. This study was a pilot attempt to evaluate these two tests in a Turkish sample as they relate to first grade behaviour as measured by teacher ratings. One hundred and five children were evaluated at the end of kindergarten using the…
A Critical Review of the "Motor-Free Visual Perception Test-Fourth Edition" (MVPT-4)
ERIC Educational Resources Information Center
Brown, Ted; Peres, Lisa
2018-01-01
The "Motor-Free Visual Perception Test-fourth edition" (MVPT-4) is a revised version of the "Motor-Free Visual Perception Test-third edition." The MVPT-4 is used to assess the visual-perceptual ability of individuals aged 4.0 through 80+ years via a series of visual-perceptual tasks that do not require a motor response. Test…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colldelram, Carles, E-mail: ccolldelram@cells.es; Nicolas, Josep, E-mail: jnicolas@cells.es; Nikitina, Liudmila, E-mail: lnikitina@cells.es
In this work we report the design and performance of a novel compact in-vacuum actuator, designed to be compatible with all the motions required for the scissor-type ESRF mirror bender. These mirror benders include several linear actuators, which drive the mirror bending torques, as well as the main alignment motions such as pitch and translation along the normal to the mirror surface. The motions are provided by compact linear actuators, which consist of motor, reduction, spindle and nut, encapsulated on a closed air volume to provide vacuum compatibility. The actuator includes a hydroformed bellows to transmit the force to themore » actuator tip, and an electrical feedthrough for the motor cables. The design boundaries for these actuators are quite tight, as they must be integrated in a narrow volume, must be UHV compatible and must provide high resolution, for a relatively high load. As a result, they have limited mechanical performance, and in some cases poor reliability. To overcome these problems, we designed and implemented a different concept. In the proposed concept, the motor rotation is converted onto a linear motion by means of a cam instead of a spindle and a nut. This allows for much shorter and stiffer transmission system, with similar dimensions. The vacuum compatibility is intrinsic for this solution, since the whole mechanism of the actuator is UHV compatible. All motions are preloaded and guided by vacuum compatible (hybrid metal-ceramics) ball bearings. This allows the system reaching a repeatability and backlash well within the micron. The absence of friction allows for a high reliability and releases the maintenance needs of the system. The transmission is intrinsically irreversible, and the system can hold a load of 250 N within a few nanometers without any holding current on the motors. This allows the system to move reliably also in micro-stepping mode, providing a resolution well below the half-step nominal resolution of 100 nm. Performances have been tested on a prototype. We report the results of the tests obtained in air and in vacuum after bake-out. Two units of the new actuator have been installed at the photoemission beamline of ALBA (CIRCE) and are routinely used to align the 3 µm spot on the field of view of the Photoemission Electron Microscope. The absence of any noticeable backlash, or any friction effect and the reliability of the micro-stepping motion has simplified very much the alignment of the photon beam, reducing the alignment process to few minutes. The excellent performances and relatively high load capacity of this new compact actuator make of it a versatile element to be integrated in other systems requiring reliable in-vacuum positioning.« less
Chronic psychological effects of exposure to mercury vapour among chlorine-alkali plant workers.
Pranjić, N; Sinanović, O; Jakubović, R
2003-01-01
Quantitative assessment of nervous system function is essential in characterising the nature and extent of impairment in individuals experiencing symptoms following work-place mercury vapour exposure. The purpose of this study was the application of standardised tests of behavioural, psychomotor and memory function to understand the neuropsychological effects of mercury in occupationally exposed chlorine-alkali plant workers. The study comprised 45 workers at a chlorine-alkali plant with the mean age of 39.36 +/- 5.94 years, who had been exposed to daily inhalation of mercury vapour over long-term employment of 16.06 +/- 4.29 years. The cumulative mercury index was 155.32 +/- 95.02 micrograms/g creatinine, the mean of urinary mercury concentrations on the first day of the study was 119.50 +/- 157.24 micrograms/g creatinine, and the mean of urinary mercury concentrations 120 days after cessation of exposure was 21.70 +/- 26.07 micrograms/g creatinine. The analysis included tests of behavioural, psychomotor and memory function. The behavioural test battery consisted of: Environmental Worry Scale (EWS), Minnesota Modified Personal Inventory (MMPI-2), Purdue standard 25 minute test, and adapted, 10 minutes test, Bender's Visual-Motor Gestalt test (BGT), and Eysenck Personality Inventory (EPQ). The data were compared to a control group of 32 not directly exposed workers. In the mercury vapour exposed workers with relatively high level exposure to inorganic mercury vapour (TWA/TLV = 0.12 mg/m3/0.025 mg/m3) we identified somatic depression-hypochondria symptoms with higher scores for scales: hysteria (P < 0.001), schizoid and psycho-asthenia (MMPI-2). The mercury-exposed workers had introvert behaviour (EPQ, MMPI-2). The cognitive disturbances in mercury-exposed workers were identified as: concentration difficulty, psychomotor, perceptual and motor coordination disturbances, and brain effects. We identified fine tremor of the hands in 34 out of 45 mercury-exposed workers (BGT). The results point to a relationship between the duration of mercury exposure and the long-term, probably irreversible, psychological disturbances.
Cognitive and Developmental Influences in Visual-Motor Integration Skills in Young Children
ERIC Educational Resources Information Center
Decker, Scott L.; Englund, Julia A.; Carboni, Jessica A.; Brooks, Janell H.
2011-01-01
Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration…
Visual Constructive and Visual-Motor Skills in Deaf Native Signers
ERIC Educational Resources Information Center
Hauser, Peter C.; Cohen, Julie; Dye, Matthew W. G.; Bavelier, Daphne
2007-01-01
Visual constructive and visual-motor skills in the deaf population were investigated by comparing performance of deaf native signers (n = 20) to that of hearing nonsigners (n = 20) on the Beery-Buktenica Developmental Test of Visual-Motor Integration, Rey-Osterrieth Complex Figure Test, Wechsler Memory Scale Visual Reproduction subtest, and…
ERIC Educational Resources Information Center
Aleman, Cheryl; And Others
1990-01-01
Compares auditory/visual practice to visual/motor practice in spelling with seven elementary school learning-disabled students enrolled in a resource room setting. Finds that the auditory/visual practice was superior to the visual/motor practice on the weekly spelling performance for all seven students. (MG)
Visual, Motor, and Visual-Motor Integration Difficulties in Students with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Oliver, Kimberly
2013-01-01
Autism spectrum disorders (ASDs) affect 1 in every 88 U.S. children. ASDs have been described as neurological and developmental disorders impacting visual, motor, and visual-motor integration (VMI) abilities that affect academic achievement (CDC, 2010). Forty-five participants (22 ASD and 23 Typically Developing [TD]) 8 to 14 years old completed…
Handwriting Error Patterns of Children with Mild Motor Difficulties.
ERIC Educational Resources Information Center
Malloy-Miller, Theresa; And Others
1995-01-01
A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…
Visual perceptual abilities of Chinese-speaking and English-speaking children.
Lai, Mun Yee; Leung, Frederick Koon Shing
2012-04-01
This paper reports an investigation of Chinese-speaking and English-speaking children's general visual perceptual abilities. The Developmental Test of Visual Perception was administered to 41 native Chinese-speaking children of mean age 5 yr. 4 mo. in Hong Kong and 35 English-speaking children of mean age 5 yr. 2 mo. in Melbourne. Of interest were the two interrelated components of visual perceptual abilities, namely, motor-reduced visual perceptual and visual-motor integration perceptual abilities, which require either verbal or motoric responses in completing visual tasks. Chinese-speaking children significantly outperformed the English-speaking children on general visual perceptual abilities. When comparing the results of each of the two different components, the Chinese-speaking students' performance on visual-motor integration was far better than that of their counterparts (ES = 2.70), while the two groups of students performed similarly on motor-reduced visual perceptual abilities. Cultural factors such as written language format may be contributing to the enhanced performance of Chinese-speaking children's visual-motor integration abilities, but there may be validity questions in the Chinese version.
ERIC Educational Resources Information Center
Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya
2012-01-01
The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…
Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package
NASA Astrophysics Data System (ADS)
Sulejmanpasic, Tin; Ünsal, Mithat
2018-07-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.
A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners
ERIC Educational Resources Information Center
Africa, Eileen K.; van Deventer, Karel J.
2017-01-01
Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…
Ohl, Alisha M; Graze, Hollie; Weber, Karen; Kenny, Sabrina; Salvatore, Christie; Wagreich, Sarah
2013-01-01
This study examined the efficacy of a 10-wk Tier 1 Response to Intervention (RtI) program developed in collaboration with classroom teachers to improve the fine motor and visual-motor skills of general education kindergarten students. We recruited 113 students in six elementary schools. Two general education kindergarten classrooms at each school participated in the study. Classrooms were randomly assigned to the intervention and control groups. Fine motor skills, pencil grip, and visual-motor integration were measured at the beginning of the school year and after the 10-wk intervention. The intervention group demonstrated a statistically significant increase in fine motor and visual-motor skills, whereas the control group demonstrated a slight decline in both areas. Neither group demonstrated a change in pencil grip. This study provides preliminary evidence that a Tier 1 RtI program can improve fine motor and visual-motor skills in kindergarten students. Copyright © 2013 by the American Occupational Therapy Association, Inc.
ERIC Educational Resources Information Center
Tse, Linda F. L.; Siu, Andrew M. H.; Li-Tsang, Cecilia W. P.
2017-01-01
Visual-motor integration (VMI) is the ability to coordinate visual perception and motor skills. Although Chinese children have superior performance in VMI than U.S. norms, there is limited information regarding the performance of its basic composition of VMI in regard to visual and motor aspects. This study aimed to examine the differences in…
Design and Scheduling of Microgrids using Benders Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarajan, Adarsh; Ayyanar, Raja
2016-11-21
The distribution feeder laterals in a distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling an energy storage system and microturbine for reliable operation of microgrids is proposed. The size and schedule of an energy storage system and microturbine are determined using Benders' decomposition, considering PV generation as a stochastic resource.
Relationship between writing skills and visual-motor control in low-vision students.
Atasavun Uysal, Songül; Aki, Esra
2012-08-01
The purpose of this study was to investigate the relationship between handwriting skills and visual motor control among students with low vision and to compare this with the performance of their normal sighted peers. 42 students with low vision and 26 normal sighted peers participated. The Bruininks-Oseretsky Motor Proficiency Test-Short Form (BOTMP-SF), Jebsen Taylor Hand Function Test's writing subtest, and a legibility assessment were administered. Significant differences were found between groups for students' writing speed, legibility, and visual motor control. Visual motor control was correlated both writing speed and legibility. Students with low vision had poorer handwriting performance, with lower legibility and slower writing speed. Writing performance time was related to visual motor control in students with low vision.
ERIC Educational Resources Information Center
Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.
2012-01-01
22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…
NASA Astrophysics Data System (ADS)
Yahyaei, Mohsen; Bashiri, Mahdi
2017-12-01
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of scenarios grows exponentially with the number of facilities. To alleviate this issue, two approaches are applied simultaneously. The first approach is to apply sample average approximation to approximate the two stochastic problem via sampling. Then, by applying the multiple cuts Benders decomposition approach, computational performance is enhanced. Numerical studies show the effective performance of the SAA in terms of optimality gap for small problem instances with numerous scenarios. Moreover, performance of multi-cut Benders decomposition is assessed through comparison with the classic version and the computational results reveal the superiority of the multi-cut approach regarding the computational time and number of iterations.
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
Amblyopia and Binocular Vision
Birch, Eileen E.
2012-01-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436
Mosotho, Nathaniel Lehlohonolo; Timile, Ino; Joubert, Gina
computed tomography and the Bender Gestalt Test are some of the tests used routinely for the assessment of alleged offenders referred under Sections 77 and 78 of the Criminal Procedure Act 51 of 1977. An exploratory retrospective study was conducted at the Free State Psychiatric Complex. The aim of this study was to identify the extent to which the Bender Gestalt Test results and the computed tomography scans are associated with outcomes in the assessment of competency to stand trial and criminal responsibility in individuals referred to the Free State Psychiatric Complex (FSPC) observation unit. This was a cross-sectional study and the entire population of patients admitted in 2013 was included in the study. The clinical and demographic data were obtained from patient files. The majority of participants were black, males, single and unemployed. The most common diagnosis was schizophrenia. The current study showed no statistically significant association between the Bender Gestalt Test Hain's scores and the outcome of criminal responsibility and competency to stand trial. Similarly, the study also showed no statistically significant association between the presence of a brain lesion and the outcome of criminal responsibility and competency to stand trial. It was also concluded that as CT scans are expensive, patients should be referred for that service only when there is a clear clinical indication to do so. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Psychopathology in children of alcoholic fathers].
Cengel Kültür, Sadriye Ebru; Unal, M Fatih; Ozusta, Seniz
2006-01-01
In this study, we aimed to search cognitive, behavioral and psychopathological differences between children of fathers with alcohol dependency and children of fathers without alcohol dependency. Forty-six children of 34 alcoholic fathers and 36 children of 34 non-alcoholic fathers, between the ages of 6 and 16 years were evaluated. Two groups were matched with each other on the basis of socioeconomic level of family, age and gender of children. All children were screened for psychiatric disorders according to DSM-IV criterias by using the Schedule for Affective Disorders and Schizophrenia for School Aged Children, Present and Lifetime Version (K-SADS-PL). The mothers and teachers completed the Child Behavior Checklist, Teacher Report Form and Conners Parents/Teachers Rating Scales. Furthermore, Wecshler Inteligence Scale for Children-Revised (WISC-R) and Bender Gestalt Visual Motor Coordination test were applied to all children. The mothers completed Symptom Checklist-90-Revised (SCL-90-R). The findings of this research indicated that children of alcoholic fathers had a higher incidence of psychopathology. Teacher Report Form and Conners Teachers Rating Scale scores were higher in research group. It was also found that mothers in research group had higher level of psychiatric symptoms in SCL-90-R. Alcohol dependent patients are an easily available group for clinicians. It can be more realistic to treat alcohol dependency as a family disease because of associated psychiatric problems in children and mothers. In addition to alcohol dependent fathers, including mothers and children in the psychiatric assessment and treatment plans may become a preventive step for the child.
ERIC Educational Resources Information Center
Wolk, D.A.; Coslett, H.B.; Glosser, G.
2005-01-01
The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…
Amblyopia and binocular vision.
Birch, Eileen E
2013-03-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.
No Role for Motor Affordances in Visual Working Memory
ERIC Educational Resources Information Center
Pecher, Diane
2013-01-01
Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…
Brain activation profiles during kinesthetic and visual imagery: An fMRI study.
Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C
2016-09-01
The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action
Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta
2016-01-01
It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254
Pienaar, A E; Barhorst, R; Twisk, J W R
2014-05-01
Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES (socio-economic status) school type plays a role in such a relationship. This cross-sectional study of the baseline measurements of the NW-CHILD longitudinal study included a stratified random sample of first grade learners (n = 812; 418 boys and 394 boys), with a mean age of 6.78 years ± 0.49 living in the North West Province (NW) of South Africa. The Beery-Buktenica Developmental Test of Visual-Motor Integration-4 (VMI) was used to assess visual-motor integration, visual perception and hand control while the Bruininks Oseretsky Test of Motor Proficiency, short form (BOT2-SF) assessed overall motor proficiency. Academic performance in math, reading and writing was assessed with the Mastery of Basic Learning Areas Questionnaire. Linear mixed models analysis was performed with spss to determine possible differences between the different VMI and BOT2-SF standard scores in different math, reading and writing mastery categories ranging from no mastery to outstanding mastery. A multinomial multilevel logistic regression analysis was performed to assess the relationship between a clustered score of academic performance and the different determinants. A strong relationship was established between academic performance and VMI, visual perception, hand control and motor proficiency with a significant relationship between a clustered academic performance score, visual-motor integration and visual perception. A negative association was established between low SES school types on academic performance, with a common perceptual motor foundation shared by all basic learning areas. Visual-motor integration, visual perception, hand control and motor proficiency are closely related to basic academic skills required in the first formal school year, especially among learners in low SES type schools. © 2013 John Wiley & Sons Ltd.
Improvement of Fine Motor Skills in Children with Visual Impairment: An Explorative Study
ERIC Educational Resources Information Center
Reimer, A. M.; Cox, R. F. A.; Nijhuis-Van der Sanden, M. W. G.; Boonstra, F. N.
2011-01-01
In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement…
Motor learning and working memory in children born preterm: a systematic review.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2012-04-01
Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Role of Motor Learning in Spatial Adaptation near a Tool
Brown, Liana E.; Doole, Robert; Malfait, Nicole
2011-01-01
Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944
Effects of Age and Visual-Motor Skills on Preschool Children's Computer-Game Performance.
ERIC Educational Resources Information Center
Strein, William
1987-01-01
The relationship of both age and visual-motor skills to performance on an arcade-like video game was studied with 16 preschool children. While age was positively related to performance, no significant relationship was found for the visual-motor skills variable. (Author/CB)
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
State Recognition and Visualization of Hoisting Motor of Quayside Container Crane Based on SOFM
NASA Astrophysics Data System (ADS)
Yang, Z. Q.; He, P.; Tang, G.; Hu, X.
2017-07-01
The neural network structure and algorithm of self-organizing feature map (SOFM) are researched and analysed. The method is applied to state recognition and visualization of the quayside container crane hoisting motor. By using SOFM, the clustering and visualization of attribute reduction of data are carried out, and three kinds motor states are obtained with Root Mean Square(RMS), Impulse Index and Margin Index, and the simulation visualization interface is realized by MATLAB. Through the processing of the sample data, it can realize the accurate identification of the motor state, thus provide better monitoring of the quayside container crane hoisting motor and a new way for the mechanical state recognition.
The effect of amblyopia on fine motor skills in children.
Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian
2008-02-01
In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P < 0.05). The effects were most evident on timed tasks. The etiology of amblyopia and level of binocular function significantly affected fine motor skill performance on both items; however, when examined in a multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.
Visual Discrimination and Motor Reproduction of Movement by Individuals with Mental Retardation.
ERIC Educational Resources Information Center
Shinkfield, Alison J.; Sparrow, W. A.; Day, R. H.
1997-01-01
Visual discrimination and motor reproduction tasks involving computer-simulated arm movements were administered to 12 adults with mental retardation and a gender-matched control group. The purpose was to examine whether inadequacies in visual perception account for the poorer motor performance of this population. Results indicate both perceptual…
Behind Mathematical Learning Disabilities: What about Visual Perception and Motor Skills?
ERIC Educational Resources Information Center
Pieters, Stefanie; Desoete, Annemie; Roeyers, Herbert; Vanderswalmen, Ruth; Van Waelvelde, Hilde
2012-01-01
In a sample of 39 children with mathematical learning disabilities (MLD) and 106 typically developing controls belonging to three control groups of three different ages, we found that visual perception, motor skills and visual-motor integration explained a substantial proportion of the variance in either number fact retrieval or procedural…
Rafique, Sara A; Northway, Nadia
2015-08-01
Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike
2003-08-29
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.
Predictors of Visual-Motor Integration in Children with Intellectual Disability
ERIC Educational Resources Information Center
Memisevic, Haris; Sinanovic, Osman
2012-01-01
The aim of this study was to assess the influence of sex, age, level and etiology of intellectual disability on visual-motor integration in children with intellectual disability. The sample consisted of 90 children with intellectual disability between 7 and 15 years of age. Visual-motor integration was measured using the Acadia test of…
Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas
2015-12-01
We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-06-01
A soccer player's capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players' motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key pointsDifferent exercise intensity modes did not affect the accuracy of motor response.Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise.Further research should focus on the assessment of VMRT from a player's real - field position view rather than a perspective view.
Mapping the structure of perceptual and visual-motor abilities in healthy young adults.
Wang, Lingling; Krasich, Kristina; Bel-Bahar, Tarik; Hughes, Lauren; Mitroff, Stephen R; Appelbaum, L Gregory
2015-05-01
The ability to quickly detect and respond to visual stimuli in the environment is critical to many human activities. While such perceptual and visual-motor skills are important in a myriad of contexts, considerable variability exists between individuals in these abilities. To better understand the sources of this variability, we assessed perceptual and visual-motor skills in a large sample of 230 healthy individuals via the Nike SPARQ Sensory Station, and compared variability in their behavioral performance to demographic, state, sleep and consumption characteristics. Dimension reduction and regression analyses indicated three underlying factors: Visual-Motor Control, Visual Sensitivity, and Eye Quickness, which accounted for roughly half of the overall population variance in performance on this battery. Inter-individual variability in Visual-Motor Control was correlated with gender and circadian patters such that performance on this factor was better for males and for those who had been awake for a longer period of time before assessment. The current findings indicate that abilities involving coordinated hand movements in response to stimuli are subject to greater individual variability, while visual sensitivity and occulomotor control are largely stable across individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.
ERIC Educational Resources Information Center
Amerson, Marie J.
1999-01-01
Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
ERIC Educational Resources Information Center
Stevens, J.A.
2005-01-01
Four experiments were completed to characterize the utilization of visual imagery and motor imagery during the mental representation of human action. In Experiment 1, movement time functions for a motor imagery human locomotion task conformed to a speed-accuracy trade-off similar to Fitts' Law, whereas those for a visual imagery object motion task…
ERIC Educational Resources Information Center
Erim, Gonca; Caferoglu, Müge
2017-01-01
Visual arts education is a process that helps the reflection of inner worlds, socialization via group works and healthier motor skills development of normally developing or handicapped children like the mentally retarded. This study aims to determine the influence of visual art studies on the motor skills development of primary school first grade…
3D visualization of movements can amplify motor cortex activation during subsequent motor imagery
Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele
2015-01-01
A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642
3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.
Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele
2015-01-01
A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.
Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G
2013-01-01
Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.
Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation
NASA Technical Reports Server (NTRS)
Cunningham, H. A.; Welch, Robert B.
1994-01-01
Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.
Comment on ‘Numerical estimates of the spectrum for anharmonic PT symmetric potentials’
NASA Astrophysics Data System (ADS)
Amore, Paolo; Fernández, Francisco M.
2013-04-01
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the authors missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947).
Visual indices of motor vehicle drivers in relation to road safety in Nigeria.
Emerole, C G; Nneli, R O
2013-06-30
This study assessed the visual profile of motor vehicle drivers in Owerri, Nigeria and to analyse the relationship between the various aspects of visual function in relation to road safety. A cross-sectional descriptive study of 150 commercial vehicles drivers and 130 private vehicles drivers was conducted between November 2005 and February 2006. Data were obtained using structured interviewer administered questionnaires and clinical examination was done. Standards procedures were used to determine visual indices. Data from the better eye (eye with a better visual acuity according to international and national standards) were reported, except in the analysis of near vision of the respondents. Twenty percent of the study group had normal visual acuity of ≥6/6 compared with 46.2% in the control group. The tonometric value in 88.0% and 93.1% of study and control groups respectively was less than 24mmHg. Both groups (96.8%) had normal confrontation visual field while 95.3% of study group and 97.7% of control group had normal colour vision. The most prevailing eye conditions that may reduce visual acuity were pterygium (51.3% in study group and 13.8% in the control group), retinopathy (16.7% of study group and 6.2% of control group) and glaucoma (12.0% and 6.9% of study and control groups respectively). Nineteen percent of the study group had regular eye examination compared with 38.5% in the control group. Alcohol consumption was 64.7% in the study group and 32.3% in the control group. Most of the commercial motor drivers in Owerri, Nigeria did not meet the Federal Road Safety Commission visual acuity standard for commercial motor drivers. Visual impairments and poor visibility are strongly associated with RTA among Nigerian motor vehicle drivers. Visual acuity and visual health care were poor among commercial motor drivers. There is need for renewed efforts to enforce a compulsory periodic visual examination for drivers, and to ensure that visual requirements for driving are met.
The open for business model of the bithorax complex in Drosophila.
Maeda, Robert K; Karch, François
2015-09-01
After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.
Convergent-Discriminant Validity of the Jewish Employment Vocational System (JEVS).
ERIC Educational Resources Information Center
Tryjankowski, Elaine M.
This study investigated the construct validity of five perceptual traits (auditory discrimination, visual discrimination, visual memory, visual-motor coordination, and auditory to visual-motor coordination) with five simulated work samples (union assembly, resistor reading, budgette assembly, lock assembly, and nail and screw sort) from the Jewish…
Development of Experience-based Visible-type Electromagnetic Teaching Materials
NASA Astrophysics Data System (ADS)
Suzuki, Masayoshi; Shima, Kenzou
Electromagnetism is the base of electrical engineering, however, it is one of the most difficult subjects to learn. The small experiments which show the principles of electricity visibly are useful technique to promote these comprehension. For classroom experimental materials to learn basic electromagnetism, we developed rotating magnetic field visualizer, gravity-use generators, simple motors, and electric-field visualizer. We report how we visualized the principles of motors and generators in classroom experiments. In particular, we discuss in detail how to visualize the mechanism of very simple motors. We have been demonstrating the motors in children science classes conducted all over Japan. We developed these experimental materials, and we achieved remarkable results using these materials in the electromagnetism class.
Pazzaglia, Mariella; Galli, Giulia
2015-01-01
The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.
Effects of normal aging on visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2002-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuo-motor plasticity is a form of behavioral neural plasticity, which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into microgravity or an underwater environment. To determine the effects of aging on visuo-motor plasticity, we chose the simple and easily measured paradigm of visual-motor rearrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel modeling techniques for 73 subjects, aged 20 to 80 years. We found no statistically significant difference in measures of visuo-motor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Handwriting generates variable visual output to facilitate symbol learning.
Li, Julia X; James, Karin H
2016-03-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing 2 hypotheses: that handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5-year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: 3 involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and 3 involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the 6 conditions (N = 72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Handwriting generates variable visual input to facilitate symbol learning
Li, Julia X.; James, Karin H.
2015-01-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913
Brain processing of visual information during fast eye movements maintains motor performance.
Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis
2013-01-01
Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.
ERIC Educational Resources Information Center
Nye, Barbara A.
Data from a statewide screening of Tennessee Head Start children on the Developmental Test of Visual-Motor Integration (VMI) are analyzed in this report for two purposes: to determine whether sex, race, and residence have a significant influence on visual motor development as measured by the VMI, and to develop VMI norms for the Tennessee Head…
Kim, Eun Hwi; Suh, Soon Rim
2017-06-01
This study was conducted to verify the effects of a memory and visual-motor integration program for older adults based on self-efficacy theory. A non-equivalent control group pretest-posttest design was implemented in this quasi-experimental study. The participants were 62 older adults from senior centers and older adult welfare facilities in D and G city (Experimental group=30, Control group=32). The experimental group took part in a 12-session memory and visual-motor integration program over 6 weeks. Data regarding memory self-efficacy, memory, visual-motor integration, and depression were collected from July to October of 2014 and analyzed with independent t-test and Mann-Whitney U test using PASW Statistics (SPSS) 18.0 to determine the effects of the interventions. Memory self-efficacy (t=2.20, p=.031), memory (Z=-2.92, p=.004), and visual-motor integration (Z=-2.49, p=.013) increased significantly in the experimental group as compared to the control group. However, depression (Z=-0.90, p=.367) did not decrease significantly. This program is effective for increasing memory, visual-motor integration, and memory self-efficacy in older adults. Therefore, it can be used to improve cognition and prevent dementia in older adults. © 2017 Korean Society of Nursing Science
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-01-01
A soccer player’s capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players’ motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key points Different exercise intensity modes did not affect the accuracy of motor response. Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise. Further research should focus on the assessment of VMRT from a player’s real - field position view rather than a perspective view. PMID:27274671
Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver
2012-01-01
In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395
ERIC Educational Resources Information Center
Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…
Doney, Robyn; Lucas, Barbara R; Watkins, Rochelle E; Tsang, Tracey W; Sauer, Kay; Howat, Peter; Latimer, Jane; Fitzpatrick, James P; Oscar, June; Carter, Maureen; Elliott, Elizabeth J
2016-08-01
Visual-motor integration (VMI) skills are essential for successful academic performance, but to date no studies have assessed these skills in a population-based cohort of Australian Aboriginal children who, like many children in other remote, disadvantaged communities, consistently underperform academically. Furthermore, many children in remote areas of Australia have prenatal alcohol exposure (PAE) and Fetal Alcohol Spectrum Disorder (FASD), which are often associated with VMI deficits. VMI, visual perception, and fine motor coordination were assessed using The Beery-Buktenica Developmental Test of Visual-Motor Integration, including its associated subtests of Visual Perception and Fine Motor Coordination, in a cohort of predominantly Australian Aboriginal children (7.5-9.6 years, n=108) in remote Western Australia to explore whether PAE adversely affected test performance. Cohort results were reported, and comparisons made between children i) without PAE; ii) with PAE (no FASD); and iii) FASD. The prevalence of moderate (≤16th percentile) and severe (≤2nd percentile) impairment was established. Mean VMI scores were 'below average' (M=87.8±9.6), and visual perception scores were 'average' (M=97.6±12.5), with no differences between groups. Few children had severe VMI impairment (1.9%), but moderate impairment rates were high (47.2%). Children with FASD had significantly lower fine motor coordination scores and higher moderate impairment rates (M=87.9±12.5; 66.7%) than children without PAE (M=95.1±10.7; 23.3%) and PAE (no FASD) (M=96.1±10.9; 15.4%). Aboriginal children living in remote Western Australia have poor VMI skills regardless of PAE or FASD. Children with FASD additionally had fine motor coordination problems. VMI and fine motor coordination should be assessed in children with PAE, and included in FASD diagnostic assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motor skills of children with unilateral visual impairment in the Infant Aphakia Treatment Study.
Celano, Marianne; Hartmann, E Eugenie; DuBois, Lindreth G; Drews-Botsch, Carolyn
2016-02-01
To assess motor functioning in children aged 4 years 6 months enrolled in the Infant Aphakia Treatment Study, and to determine contributions of visual acuity and stereopsis to measured motor skills. One hundred and four children (53% female) with unilateral aphakia randomized to intraocular lens or contact lens treatment were evaluated at 4 years 6 months (age range 4y 6mo-4y 11mo) for monocular recognition visual acuity, motor skills, and stereopsis by a traveling examiner masked to treatment condition. Motor skills were assessed with the Movement Assessment Battery for Children--Second Edition (MABC-2). Visual acuity was operationalized as log10 of the minimum angle of resolution (logMAR) value for treated eye, best logMAR value for either eye, and intraocular logMAR difference. Student's t-tests showed no significant differences in MABC-2 scores between the intraocular lens and contact lens groups. The mean total score was low (6.43; 18th centile) compared with the normative reference group. Motor functioning was not related to visual acuity in the treated eye or to intraocular logMAR difference, but was predicted in a regression model by the better visual acuity of either eye (usually the fellow eye), even after accounting for the influence of age at surgery, examiner, orthotropic ocular alignment, and stereopsis. Children with unilateral congenital cataract may have delayed motor functioning at 4 years 6 months, which may adversely affect their social and academic functioning. © 2015 Mac Keith Press.
Time perception of visual motion is tuned by the motor representation of human actions
Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry
2013-01-01
Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903
Gross Motor Skills and Sports Participation of Children with Visual Impairments
ERIC Educational Resources Information Center
Houwen, Suzanne; Visscher, Chris; Hartman, Esther; Lemmink, Koen A. P. M.
2007-01-01
Gross motor skill performance of children with visual impairments and its association with the degree of visual impairment and sports participation was examined. Twenty children with visual impairments (M age = 9.2 years, SD = 1.5) and 100 sighted children (M age = 9.1 years, SD = 1.5) from mainstream schools participated. The results showed that…
Static and dynamic characteristics of a piezoceramic strut
NASA Technical Reports Server (NTRS)
Pokines, Brett J.; Belvin, W. Keith; Inman, Daniel J.
1993-01-01
The experimental study of a piezoceramic active truss is presented. This active strut is unique in that the piezoceramic configurations allow the stroke length of the strut not to be dependent on the piezoceramic material's expansion range but on the deflection range of the piezoceramic bender segment. A finite element model of a piezoceramic strut segment was constructed. Piezoceramic actuation was simulated using thermally induced strains. This model yielded information on the stiffness and force range of a bender element. The static and dynamic properties of the strut were identified experimentally. Feedback control was used to vary the stiffness of the strut. The experimentally verified model was used to explore implementation possibilities of the strut.
2005-10-01
Mike Bender has provided a thoroughly accessible book that imparts information and guidance, and focuses effort. He quickly constructs a sound rationale for supporting therapeutic groupwork in people who experience cognitive loss. This theme runs throughout and is reinforced by positive experiences reported in the text. The author does not over-complicate or attempt to place groupwork in the hands of a skilled few; instead he shows that with planning, solid support from colleagues, attention to detail in preparation and by following some well-grounded 'rules', groupwork is available to most.
NASA Astrophysics Data System (ADS)
Udomsungworagul, A.; Charnsethikul, P.
2018-03-01
This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.
Gene Model Annotations for Drosophila melanogaster: The Rule-Benders
Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.
2015-01-01
In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356
Visual-Motor Integration in Children with Prader-Willi Syndrome
ERIC Educational Resources Information Center
Lo, S. T.; Collin, P. J. L.; Hokken-Koelega, A. C. S.
2015-01-01
Background: Prader-Willi syndrome (PWS) is characterised by hypotonia, hypogonadism, short stature, obesity, behavioural problems, intellectual disability, and delay in language, social and motor development. There is very limited knowledge about visual-motor integration in children with PWS. Method: Seventy-three children with PWS aged 7-17 years…
Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian
2012-11-01
To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (p<.05). fMRI revealed that observing finger movements corresponding to audio-motor trained melodies is associated with stronger activation in the left rolandic operculum than observing untrained sequences. This region was also involved in silent execution of sequences, suggesting that a link to motor representations may play a role in cross-modal transfer from audio-motor training condition to visual recognition. No significant differences in brain activity were found during listening to visuo-motor trained compared to untrained melodies. Cross-modal transfer was stronger from the audio-motor training condition to visual recognition and this is discussed in relation to the fact that non-musicians are familiar with how their finger movements look (motor-to-vision transformation), but not with how they sound on a piano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.
de la Rosa, Stephan; Fademrecht, Laura; Bülthoff, Heinrich H; Giese, Martin A; Curio, Cristóbal
2018-06-01
Motor-based theories of facial expression recognition propose that the visual perception of facial expression is aided by sensorimotor processes that are also used for the production of the same expression. Accordingly, sensorimotor and visual processes should provide congruent emotional information about a facial expression. Here, we report evidence that challenges this view. Specifically, the repeated execution of facial expressions has the opposite effect on the recognition of a subsequent facial expression than the repeated viewing of facial expressions. Moreover, the findings of the motor condition, but not of the visual condition, were correlated with a nonsensory condition in which participants imagined an emotional situation. These results can be well accounted for by the idea that facial expression recognition is not always mediated by motor processes but can also be recognized on visual information alone.
Efficacy of a perceptual and visual-motor skill intervention program for students with dyslexia.
Fusco, Natália; Germano, Giseli Donadon; Capellini, Simone Aparecida
2015-01-01
To verify the efficacy of a perceptual and visual-motor skill intervention program for students with dyslexia. The participants were 20 students from third to fifth grade of a public elementary school in Marília, São Paulo, aged from 8 years to 11 years and 11 months, distributed into the following groups: Group I (GI; 10 students with developmental dyslexia) and Group II (GII; 10 students with good academic performance). A perceptual and visual-motor intervention program was applied, which comprised exercises for visual-motor coordination, visual discrimination, visual memory, visual-spatial relationship, shape constancy, sequential memory, visual figure-ground coordination, and visual closure. In pre- and post-testing situations, both groups were submitted to the Test of Visual-Perceptual Skills (TVPS-3), and the quality of handwriting was analyzed using the Dysgraphia Scale. The analyzed statistical results showed that both groups of students had dysgraphia in pretesting situation. In visual perceptual skills, GI presented a lower performance compared to GII, as well as in the quality of writing. After undergoing the intervention program, GI increased the average of correct answers in TVPS-3 and improved the quality of handwriting. The developed intervention program proved appropriate for being applied to students with dyslexia, and showed positive effects because it provided improved visual perception skills and quality of writing for students with developmental dyslexia.
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
Yu, Chen; Smith, Linda B.
2016-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of the present study is to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention – and the sensory-motor behaviors that underlie it – using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention, and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings – like skills in other sensory-motor domains – emerges from multiple pathways to the same functional end. PMID:27016038
Aungudornpukdee, P; Vichit-Vadakan, N
2009-12-01
Thailand has been changed to rapid urbanization and industrialization since 1980s. During 1992 through 1996, the number of industrial factories in Rayong province increased very sharply. The major types of industries are petrol-chemical and plastic production. However, after the petrochemical industry boomed, the higher demand led to an industrial area expansion. The establishment of factories in this area leads to serious environmental and health impacts. The study aims to investigate the factors that affect visual-motor coordination deficit among children, 6-13 years of age, residing near the Petrochemical Industrial Estate, Map Ta Phut, Rayong province. A population-based cross-sectional study was employed for collecting data on neurobehavioral effects using the Digit Symbol Test. The study found one-third of 2,956 children presented with visual-motor coordination deficits. Three factors were identified that caused children to have a higher risk of visual-motor coordination deficits: gender (adjusted OR 1.934), monthly parental income (range of adjusted OR 1.977 - 2.612), and household environmental tobacco smoke (adjusted OR 1.284), while age (adjusted OR 0.874) and living period (adjusted OR 0.954) in study areas were reversed effects on visual-motor coordination deficit among children. The finding indicated that children with visual-motor coordination deficit were affected by gender, monthly parental income, age of children, length of living period, and household environmental tobacco smoke.
Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery.
Lesourd, Mathieu; Navarro, Jordan; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François
2017-05-01
The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention.
Yu, Chen; Smith, Linda B
2017-02-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that may underlie the establishment of joint attention between parents and toddlers. In an experimental task, parents and toddlers played together with multiple toys. We objectively measured joint attention-and the sensory-motor behaviors that underlie it-using a dual head-mounted eye-tracking system and frame-by-frame coding of manual actions. By tracking the momentary visual fixations and hand actions of each participant, we precisely determined just how often they fixated on the same object at the same time, the visual behaviors that preceded joint attention and manual behaviors that preceded and co-occurred with joint attention. We found that multiple sequential sensory-motor patterns lead to joint attention. In addition, there are developmental changes in this multi-pathway system evidenced as variations in strength among multiple routes. We propose that coordinated visual attention between parents and toddlers is primarily a sensory-motor behavior. Skill in achieving coordinated visual attention in social settings-like skills in other sensory-motor domains-emerges from multiple pathways to the same functional end. Copyright © 2016 Cognitive Science Society, Inc.
Effects of motor congruence on visual working memory.
Quak, Michel; Pecher, Diane; Zeelenberg, Rene
2014-10-01
Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.
Abe Silverstein Leads Tour of the 10- by 10-Foot Supersonic Wind Tunnel
1955-11-21
Abe Silverstein, Associate Director of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory, provides a personal tour of the new 10- by 10-Foot Supersonic Wind Tunnel for US Senator George Bender (hat in hand) and General Lemuel Shepherd. Shepherd was Commandant of the Marine Corps and had served in World War I, World War II, and the Korean War. The general was accompanied by Admiral Herbert Leary, in dark uniform. Bender was a Republican Senator from Ohio. Behind Bender is President of the Cleveland Chamber of Commerce Curtis Smith. NACA Lewis managers Eugene Manganiello and Wilson Hunter assist with the tour. Abe Silverstein oversaw all research at the laboratory. Upon taking his post in 1952 he reorganized the research staff and began shifting the focus away from airbreathing aircraft engines to new fields such as high energy fuels, electric propulsion, and nuclear power and propulsion. He was an early advocate of the NACA’s involvement in the space program and crucial to the founding of National Aeronautics and Space Administration in 1958. Silverstein began his career helping design and conduct research in the Full Scale Tunnel in 1929 at the Langley Memorial Aeronautical Laboratory. Silverstein advocated a series of increasingly large supersonic wind tunnels after the war, culminating in the 10- by 10.
NASA Astrophysics Data System (ADS)
Milecki, Andrzej; Pelic, Marcin
2016-10-01
This paper presents results of studies of an application of a new method of piezo bender actuators modelling. A special hysteresis simulation model was developed and is presented. The model is based on a geometrical deformation of main hysteresis loop. The piezoelectric effect is described and the history of the hysteresis modelling is briefly reviewed. Firstly, a simple model for main loop modelling is proposed. Then, a geometrical description of the non-saturated hysteresis is presented and its modelling method is introduced. The modelling makes use of the function describing the geometrical shape of the two hysteresis main curves, which can be defined theoretically or obtained by measurement. These main curves are stored in the memory and transformed geometrically in order to obtain the minor curves. Such model was prepared in the Matlab-Simulink software, but can be easily implemented using any programming language and applied in an on-line controller. In comparison to the other known simulation methods, the one presented in the paper is easy to understand, and uses simple arithmetical equations, allowing to quickly obtain the inversed model of hysteresis. The inversed model was further used for compensation of a non-saturated hysteresis of the piezo bender actuator and results have also been presented in the paper.
Howe, Tsu-Hsin; Roston, Karen Laurie; Sheu, Ching-Fan; Hinojosa, Jim
2013-01-01
This study examined the effectiveness of two approaches used in elementary schools to improve children's handwriting. Participants were 72 New York City public school students from the first and second grades. A nonequivalent pretest-posttest group design was used in which students engaged in handwriting activities using two approaches: intensive handwriting practice and visual-perceptual-motor activities. Handwriting speed, legibility, and visual-motor skills were examined after a 12-wk Handwriting Club using multivariate analysis of variance. The results showed that students in the intensive handwriting practice group demonstrated significant improvements in handwriting legibility compared with students in the visual-perceptual-motor activity group. No significant effects in handwriting speed and visual-motor skills were found between the students in intensive handwriting practice group and the students in visual-perceptual-motor activities group. The Handwriting Club model is a natural intervention that fits easily into existing school curriculums and can be an effective short-term intervention (response to intervention Tier II). Copyright © 2013 by the American Occupational Therapy Association, Inc.
Evidence for multisensory spatial-to-motor transformations in aiming movements of children.
King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E
2009-01-01
The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.
ERIC Educational Resources Information Center
Poon, K. W.; Li-Tsang, C. W .P.; Weiss, T. P. L.; Rosenblum, S.
2010-01-01
This study aimed to investigate the effect of a computerized visual perception and visual-motor integration training program to enhance Chinese handwriting performance among children with learning difficulties, particularly those with handwriting problems. Participants were 26 primary-one children who were assessed by educational psychologists and…
Motor-visual neurons and action recognition in social interactions.
de la Rosa, Stephan; Bülthoff, Heinrich H
2014-04-01
Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions - namely, context-specific and contingency based learning.
ERIC Educational Resources Information Center
Geldof, C. J. A.; van Wassenaer, A. G.; de Kieviet, J. F.; Kok, J. H.; Oosterlaan, J.
2012-01-01
A range of neurobehavioral impairments, including impaired visual perception and visual-motor integration, are found in very preterm born children, but reported findings show great variability. We aimed to aggregate the existing literature using meta-analysis, in order to provide robust estimates of the effect of very preterm birth on visual…
Lindor, Ebony; Rinehart, Nicole; Fielding, Joanne
2018-05-22
Individuals with Autism Spectrum Disorder (ASD) often excel on visual search and crowding tasks; however, inconsistent findings suggest that this 'islet of ability' may not be characteristic of the entire spectrum. We examined whether performance on these tasks changed as a function of motor proficiency in children with varying levels of ASD symptomology. Children with high ASD symptomology outperformed all others on complex visual search tasks, but only if their motor skills were rated at, or above, age expectations. For the visual crowding task, children with high ASD symptomology and superior motor skills exhibited enhanced target discrimination, whereas those with high ASD symptomology but poor motor skills experienced deficits. These findings may resolve some of the discrepancies in the literature.
Gross Motor Skill Acquisition in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Meegan, Sarah; Maraj, Brian K. V.; Weeks, Daniel; Chua, Romeo
2006-01-01
The purpose of this study was to assess whether verbal-motor performances deficits exhibited by individuals with Down syndrome limited their ability to acquire gross motor skills when given visual and verbal instruction together and then transferred to either a visual or verbal instructional mode to reproduce the movement. Nine individuals with…
40 CFR 202.22 - Visual exhaust system inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...
40 CFR 202.22 - Visual exhaust system inspection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...
40 CFR 202.22 - Visual exhaust system inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...
Bendable X-ray Optics at the ALS: Design, Tuning, Performance and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Light Source, Lawrence Berkeley National Laboratory; Yashchuk, Valeriy V.; Church, Matthew N.
2008-09-08
We review the development at the Advanced Light Source (ALS) of bendable x-ray optics widely used for focusing of beams of soft and hard x-rays. Typically, the focusing is divided in the tangential and sagittal directions into two elliptically cylindrical reflecting elements, the so-called Kirkpatrick-Baez (KB) pair [1]. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. This is in contrast to flat optics, that are simpler to manufacture and easier to measure by conventional interferometry. The figure of a flat substrate can be changed by placing torques (couples) at eachmore » end. Equal couples form a tangential cylinder, and unequal couples can approximate a tangential ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, and describe a technique developed at the ALS Optical Metrology Laboratory (OML) for optimal tuning of bendable mirrors before installation in the beamline [2]. The tuning technique adapts a method previously used to adjust bendable mirrors on synchrotron radiation beamlines [3]. However, in our case, optimal tuning of a bendable mirror is based on surface slope trace data obtained with a slope measuring instrument--in our case, the long trace profiler (LTP). We show that due to the near linearity of the bending problem, the minimal set of data, necessary for tuning of two benders, consists of only three slope traces measured before and after a single adjustment of each bending couple. We provide an algorithm that was used in dedicated software for finding optimal settings for the mirror benders. The algorithm is based on the method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired slope shape provides nearly final settings for the benders. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning of the optics to a new desired shape without removing it from the beamline and re-measuring with the LTP. The result of practical use of the developed technique to precisely tune a KB mirror used at the ALS for micro-focusing is also presented. We also describe a simple ray trace using the profiler data which shows expected performance in the beamline and compare the simulation with experimental data. In summary, we also discuss the next steps in the systematic improvement of optical performance for the application of KB pairs in synchrotron beamlines at the ALS.« less
Behavioral and neural effects of congruency of visual feedback during short-term motor learning.
Ossmy, Ori; Mukamel, Roy
2018-05-15
Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.
Landa, Rebecca J.; Haworth, Joshua L.; Nebel, Mary Beth
2016-01-01
Children with autism spectrum disorder (ASD) demonstrate a host of motor impairments that may share a common developmental basis with ASD core symptoms. School-age children with ASD exhibit particular difficulty with hand-eye coordination and appear to be less sensitive to visual feedback during motor learning. Sensorimotor deficits are observable as early as 6 months of age in children who later develop ASD; yet the interplay of early motor, visual and social skill development in ASD is not well understood. Integration of visual input with motor output is vital for the formation of internal models of action. Such integration is necessary not only to master a wide range of motor skills, but also to imitate and interpret the actions of others. Thus, closer examination of the early development of visual-motor deficits is of critical importance to ASD. In the present study of infants at high risk (HR) and low risk (LR) for ASD, we examined visual-motor coupling, or action anticipation, during a dynamic, interactive ball-rolling activity. We hypothesized that, compared to LR infants, HR infants would display decreased anticipatory response (perception-guided predictive action) to the approaching ball. We also examined visual attention before and during ball rolling to determine whether attention engagement contributed to differences in anticipation. Results showed that LR and HR infants demonstrated context appropriate looking behavior, both before and during the ball’s trajectory toward them. However, HR infants were less likely to exhibit context appropriate anticipatory motor response to the approaching ball (moving their arm/hand to intercept the ball) than LR infants. This finding did not appear to be driven by differences in motor skill between risk groups at 6 months of age and was extended to show an atypical predictive relationship between anticipatory behavior at 6 months and preference for looking at faces compared to objects at age 14 months in the HR group. PMID:27252667
Visual strategies underpinning the development of visual-motor expertise when hitting a ball.
Sarpeshkar, Vishnu; Abernethy, Bruce; Mann, David L
2017-10-01
It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on studies that have employed case study designs, and/or used simplified tasks that fall short of replicating the spatiotemporal demands experienced in the natural environment. The aim of this study was to provide a comprehensive examination of the eye and head movement strategies that underpin the development of visual-motor expertise when intercepting a fast-moving target. Eye and head movements were examined in situ for 4 groups of cricket batters, who were crossed for playing level (elite or club) and age (U19 or adult), when hitting balls that followed either straight or curving ('swinging') trajectories. The results provide support for some widely cited markers of expertise in batting, while questioning the legitimacy of others. Swinging trajectories alter the visual-motor behavior of all batters, though in large part because of the uncertainty generated by the possibility of a variation in trajectory rather than any actual change in trajectory per se. Moreover, curving trajectories influence visual-motor behavior in a nonlinear fashion, with targets that curve away from the observer influencing behavior more than those that curve inward. The findings provide a more comprehensive understanding of the development of visual-motor expertise in interception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mizuguchi, N; Nakata, H; Kanosue, K
2016-02-19
To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Computerized visual feedback: an adjunct to robotic-assisted gait training.
Banz, Raphael; Bolliger, Marc; Colombo, Gery; Dietz, Volker; Lünenburger, Lars
2008-10-01
Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-10-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.
Exploratory study of the relations between spatial ability and drawing from memory.
Czarnolewski, Mark Y; Eliot, John
2012-04-01
Test scores of 119 students, attending either a public four-year college or a technical school, were related to their proportionality and detail drawing scores on the Memory for Designs Test. In regression models, the ETS Maze Tracing, Eliot-Price Mental Rotations, and Bender-Gestalt tests were consistent predictors of proportionality scores, with the latter two tests uniquely related to these. The ETS Shapes Memory Test and the Form Board Test were the strongest predictors for detail accuracy scores. The Shapes test predicted proportionality when the CTY Visual Memory Test BB was excluded. The models then provided support for the hypothesis that drawing designs from memory, a critical skill in drawing, regardless of whether one focuses on accuracy for proportionality scores or for detail scores, is jointly related to the measures of recognition, production, and traditional spatial ability measures. This study identified multifaceted skills in drawing from memory.
Yu, Tzu-Ying; Chou, Willy; Chow, Julie Chi; Lin, Chien-Ho; Tung, Li-Chen; Chen, Kuan-Lin
2018-01-01
We investigated 1) the impact of differences in intelligence quotient discrepancy (IQD) on motor skills of preschool-aged children with autism spectrum disorders (ASD); 2) the relationships between IQD and motor skills in preschool-aged children with ASD. A total of 127 ASD preschool-aged children were divided into three groups according to the size of the IQD: IQD within 1 standard deviation (1SD; EVENIQ; n=81), discrepantly higher verbal intelligence quotient (VIQ; n=22; VIQ>performance intelligence quotient [PIQ] above 1SD [≥15 points]), and discrepantly higher PIQ (n=24; PIQ>VIQ above 1SD [≥15 points]). Children's IQD and motor skills were determined with the Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition and the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers (CDIIT), respectively. One-way analysis of variance revealed significant group differences for the fine motor domain of the CDIIT and the visual-motor coordination subtest ( F =3.37-4.38, p <0.05). Children with discrepantly higher PIQ were associated with better fine motor skills than were children with even IQD and those with discrepantly higher VIQ, and vice versa. IQD (PIQ - VIQ) had significant positive correlations with the fine motor domain and fine motor subtests of the CDIIT ( r =0.18-0.29, p <0.05). The IQD can identify different levels of fine motor skills in preschool-aged children with ASD. This study suggests important implications for clinicians, therapists, and researchers: discrepantly higher PIQ could be related to better visual-motor coordination, and discrepantly higher VIQ could be related to poor visual-motor coordination. Furthermore, the results support that when therapists are working with preschool-aged children with ASD who are developing fine motor skills or undertaking fine motor tasks related to visual-motor coordination, they may need to pay attention to the children's IQD.
ERIC Educational Resources Information Center
Gkouvatzi, Anastasia N.; Mantis, Konstantinos; Kambas, Antonis
2010-01-01
Using the Bruininks-Oseretsky Test the motor performance of 34 deaf--hard-of-hearing pupils, 6-14 year, was evaluated in reaction time, visual-motor control and upper limb speed and dexterity. The two-way ANOVA variance analysis for two independent variables, group, age, and the Post Hoc (Scheffe test) for multiple comparisons were used. The…
Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An
2018-05-11
Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R
2010-04-01
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
Improvement of fine motor skills in children with visual impairment: an explorative study.
Reimer, A M; Cox, R F A; Nijhuis-Van der Sanden, M W G; Boonstra, F N
2011-01-01
In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement ABC), before and after receiving a 12-sessions training within a 6-weeks period. The training was designed to practice the use of a stand magnifier, as part of a larger research project on low-vision aids. In this study, fifteen children trained with a magnifier; seven without. Sixteen children had nystagmus. In this group head orientation (ocular torticollis) was monitored. Results showed an age-related progress in children's fine-motor skills after the training, irrespective of magnifier condition: performance speed of the ManuVis items went from 333.4s to 273.6s on average. Accuracy in the writing tasks also increased. Finally, for the children with nystagmus, an increase of ocular torticollis was found. These results suggest a careful reconsideration of which intervention is most effective for enhancing perceptuomotor performance in visually impaired children: specific 'fine-motor' training or 'non-specific' visual-attention training with a magnifier. Copyright © 2011 Elsevier Ltd. All rights reserved.
VizieR Online Data Catalog: Stellar kinematics for NGC 2859 and NGC 4371 (Erwin+, 2015)
NASA Astrophysics Data System (ADS)
Erwin, P.; Saglia, R. P.; Fabricius, M.; Thomas, J.; Nowak, N.; Rusli, S.; Bender, R.; Vega Beltran, J. C.; Beckman, J. E.
2017-11-01
We obtained long-slit spectroscopy of NGC 2959 with the ISIS spectrograph of the WHT on 2000 December 13, using the blue arm with the R600B grating. NGC 4371 was observed with an almost identical instrumental setup as part of ING service-time observations on 2001 June 4. Following standard MIDAS reduction of the ISIS observations, including bias subtraction, flat-fielding and wavelength calibration using CuAr and CuNe+CuAr lamp exposures, the extracted galaxy spectra were analysed using the Fourier Correlation Quotient method (Bender 1990A&A...229..441B; Bender, Saglia & Gerhard 1994MNRAS.269..785B) in order to determine the stellar kinematics. (2 data files).
Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias
2010-12-01
To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
40 CFR 202.23 - Visual tire inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Visual tire inspection. 202.23 Section... Visual tire inspection. No motor carrier subject to these regulations shall at any time operate any motor vehicle of a type to which this regulation is applicable on a tire or tires having a tread pattern which...
ERIC Educational Resources Information Center
Subrahmaniyan, Neeraja; Krishnaswamy, Swetha; Chowriappa, Ashirwad; Srimathveeravalli, Govindarajan; Bisantz, Ann; Shriber, Linda; Kesavadas, Thenkurussi
2012-01-01
Research has shown that children with learning disabilities exhibit considerable challenges with visual motor integration. While there are specialized Occupational Therapy interventions aimed at visual motor integration, computer games and virtual toys have now become increasingly popular, forming an integral part of children's learning and play.…
Higher integrity of the motor and visual pathways in long-term video game players.
Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.
Higher integrity of the motor and visual pathways in long-term video game players
Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981
Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
Gabbard, Carl; Ammar, Diala; Cordova, Alberto
2009-01-01
We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.
Lahav, Orit; Apter, Alan; Ratzon, Navah Z
2013-01-01
This study evaluates how much the effects of intervention programs are influenced by pre-existing psychological adjustment and self-esteem levels in kindergarten and first grade children with poor visual-motor integration skills, from low socioeconomic backgrounds. One hundred and sixteen mainstream kindergarten and first-grade children, from low socioeconomic backgrounds, scoring below the 25th percentile on a measure of visual-motor integration (VMI) were recruited and randomly divided into two parallel intervention groups. One intervention group received directive visual-motor intervention (DVMI), while the second intervention group received a non-directive supportive intervention (NDSI). Tests were administered to evaluate visual-motor integration skills outcome. Children with higher baseline measures of psychological adjustment and self-esteem responded better in NDSI while children with lower baseline performance on psychological adjustment and self-esteem responded better in DVMI. This study suggests that children from low socioeconomic backgrounds with low VMI performance scores will benefit more from intervention programs if clinicians choose the type of intervention according to baseline psychological adjustment and self-esteem measures. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diminished kinesthetic and visual motor imagery ability in adults with chronic low back pain.
La Touche, Roy; Grande-Alonso, Mónica; Cuenca-Martínez, Ferran; Gónzalez-Ferrero, Luis; Suso-Martí, Luis; Paris-Alemany, Alba
2018-06-14
Low back pain (LBP) is the most prevalent musculoskeletal problem among adults. It has been observed that patients with chronic pain have maladaptive neuroplastic changes and difficulty in imagination processes. To assess the ability of patients with chronic LBP (CLBP) to generate kinesthetic and visual motor images and the time they spent on this mental task compared with asymptomatic participants. Prospective, A cross-sectional study. Primary health care center in Madrid, Spain. A total of 200 participants were classified into two groups: asymptomatic participants (n = 100) and patients with CLBP (n = 100). After consenting to participate, all recruited participants received a sociodemographic questionnaire, a set of self-report measures and completed the Revised Movement Imagery Questionnaire (MIQ-R). Visual and Kinesthetic Motor Imagery Ability using the Revised Movement Imagery Questionnaire (MIQ-R). A mental chronometry using a stopwatch and psychosocial variables using self-reported questionnaires. Our results indicated that patients with CLBP had difficulty generating kinesthetic and visual motor images and also took a longer time to imagine them. A regression analysis indicated that in the CLBP group, the predictor variable for fear of activity and coping symptom self-efficacy was visual motor imagery (explaining 16.2% of the variance); however, the predictor variable for LBP disability and pain management self-efficacy was kinesthetic motor imagery (explaining 17.8% of the variance). It appears that patients with CLBP have greater difficulty generating visual and kinesthetic motor images compared with asymptomatic participants, and they also need more time to perform these mental tasks. II. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Vision Problems and Reduced Reading Outcomes in Queensland Schoolchildren.
Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M
2017-03-01
To assess the relationship between vision and reading outcomes in Indigenous and non-Indigenous schoolchildren to determine whether vision problems are associated with lower reading outcomes in these populations. Vision testing and reading assessments were performed on 508 Indigenous and non-Indigenous schoolchildren in Queensland, Australia divided into two age groups: Grades 1 and 2 (6-7 years of age) and Grades 6 and 7 (12-13 years of age). Vision parameters measured included cycloplegic refraction, near point of convergence, heterophoria, fusional vergence range, rapid automatized naming, and visual motor integration. The following vision conditions were then classified based on the vision findings: uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration. Reading accuracy and reading comprehension were measured with the Neale reading test. The effect of uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration on reading accuracy and reading comprehension were investigated with ANCOVAs. The ANCOVAs explained a significant proportion of variance in both reading accuracy and reading comprehension scores in both age groups, with 40% of the variation in reading accuracy and 33% of the variation in reading comprehension explained in the younger age group, and 27% and 10% of the variation in reading accuracy and reading comprehension, respectively, in the older age group. The vision parameters of visual motor integration and rapid automatized naming were significant predictors in all ANCOVAs (P < .01). The direction of the relationship was such that reduced reading results were explained by reduced visual motor integration and rapid automatized naming results. Both reduced rapid automatized naming and visual motor integration were associated with poorer reading outcomes in Indigenous and non-Indigenous children. This is an important finding given the recent emphasis placed on Indigenous children's reading skills and the fact that reduced rapid automatized naming and visual motor integration skills are more common in this group.
The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.
Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo
2014-09-01
Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus non-motor functions, with only the posterior lobe being responsible for learning in the perceptual domain. Copyright © 2014. Published by Elsevier Ltd.
Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFASs) and child cognition.
Harris, Maria H; Oken, Emily; Rifas-Shiman, Sheryl L; Calafat, Antonia M; Ye, Xiaoyun; Bellinger, David C; Webster, Thomas F; White, Roberta F; Sagiv, Sharon K
2018-06-01
Per- and polyfluoroalkyl substances (PFASs) are suspected developmental toxicants, but epidemiological evidence on neurodevelopmental effects of PFAS exposure is inconsistent. We examined associations of prenatal and childhood PFAS exposure with performance on assessments of cognition in children. We included mother-child pairs from Project Viva, a longitudinal Boston-area birth cohort enrolled during 1999-2002. We quantified concentrations of eight PFASs, including perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexane sulfonate (PFHxS), in plasma collected from women during pregnancy (median 9.7 weeks gestation) and from children at a visit in mid-childhood (median age 7.7 years). In early childhood (median age 3.2 years) we administered standardized assessments of visual motor skills and vocabulary comprehension, and in mid-childhood we assessed visual motor skills, visual memory, and verbal and non-verbal intelligence. Using multivariable regression, we estimated associations of prenatal and childhood PFAS plasma concentrations with children's cognitive assessment scores, adjusted for relevant covariates including breastfeeding, maternal intelligence, parental education, and household income. Samples sizes ranged from 631 to 971, depending on analysis. Prenatal PFAS concentrations were associated with both better and worse cognitive performance; children with top quartile prenatal concentrations of some PFASs had better visual motor abilities in early childhood and non-verbal IQ and visual memory in mid-childhood, while children with upper quartile prenatal PFOA and PFOS had lower mid-childhood visual-motor scores. In cross-sectional analyses of mid-childhood PFAS concentrations and cognitive assessments, visual-motor scores on the Wide Range Assessment of Visual Motor Abilities (WRAVMA) (standardized mean = 100, standard deviation = 15) were lower among children with higher PFHxS (fourth quartile (Q4) vs. Q1: -5.0, 95% confidence interval (CI): -9.1, -0.8). Upper quartiles of childhood PFOA and PFOS were also associated with somewhat lower childhood WRAVMA scores, but childhood PFASs were not associated with verbal or non-verbal IQ or visual memory. We present evidence suggesting associations of prenatal and childhood PFAS exposure with lower childhood visual motor abilities. Other results were inconsistent, with higher prenatal PFASs associated in some cases with better cognitive outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kristensen, Hanne; Oerbeck, Beate
2006-01-01
Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.
The influence of ergonomic factors and perceptual-motor abilities on handwriting performance.
Tseng, M H; Cermak, S A
1993-10-01
Difficulty with handwriting is one of the most frequent reasons that children in the public schools are referred to occupational therapy. Current research on the influence of ergonomic factors, such as pencil grip and pressure, and perceptual-motor factors traditionally believed to affect handwriting, is reviewed. Factors such as visual perception show little relationship to handwriting, whereas tactile-kinesthetic, visual-motor, and motor planning appear to be more closely related to handwriting. By better understanding the ergonomic and perceptual-motor factors that contribute to and influence handwriting, therapists will be better able to design rationally based intervention programs.
Impaired Visual Motor Coordination in Obese Adults.
Gaul, David; Mat, Arimin; O'Shea, Donal; Issartel, Johann
2016-01-01
Objective. To investigate whether obesity alters the sensory motor integration process and movement outcome during a visual rhythmic coordination task. Methods. 88 participants (44 obese and 44 matched control) sat on a chair equipped with a wrist pendulum oscillating in the sagittal plane. The task was to swing the pendulum in synchrony with a moving visual stimulus displayed on a screen. Results. Obese participants demonstrated significantly ( p < 0.01) higher values for continuous relative phase (CRP) indicating poorer level of coordination, increased movement variability ( p < 0.05), and a larger amplitude ( p < 0.05) than their healthy weight counterparts. Conclusion. These results highlight the existence of visual sensory integration deficiencies for obese participants. The obese group have greater difficulty in synchronizing their movement with a visual stimulus. Considering that visual motor coordination is an essential component of many activities of daily living, any impairment could significantly affect quality of life.
Allen, K A; Bredero, B; Van Damme, T; Ulrich, D A; Simons, J
2017-03-01
The validity and reliability of the Test of Gross Motor Development-3 (TGMD-3) were measured, taking into consideration the preference for visual learning of children with autism spectrum disorder (ASD). The TGMD-3 was administered to 14 children with ASD (4-10 years) and 21 age-matched typically developing children under two conditions: TGMD-3 traditional protocol, and TGMD-3 visual support protocol. Excellent levels of internal consistency, test-retest, interrater and intrarater reliability were achieved for the TGMD-3 visual support protocol. TGMD-3 raw scores of children with ASD were significantly lower than typically developing peers, however, significantly improved using the TGMD-3 visual support protocol. This demonstrates that the TGMD-3 visual support protocol is a valid and reliable assessment of gross motor performance for children with ASD.
Effect of visual feedback on brain activation during motor tasks: an FMRI study.
Noble, Jeremy W; Eng, Janice J; Boyd, Lara A
2013-07-01
This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.
Effect of prematurity and low birth weight in visual abilities and school performance.
Perez-Roche, T; Altemir, I; Giménez, G; Prieto, E; González, I; Peña-Segura, J L; Castillo, O; Pueyo, V
2016-12-01
Prematurity and low birth weight are known risk factors for cognitive and developmental impairments, and school failure. Visual perceptual and visual motor skills seem to be among the most affected cognitive domains in these children. To assess the influence of prematurity and low birth weight in visual cognitive skills and school performance. We performed a prospective cohort study, which included 80 boys and girls in an age range from 5 to 13. Subjects were grouped by gestational age at birth (preterm, <37 weeks; term, 37-42 weeks) and birth weight (small for gestational age (SGA), <10th centile; appropriate weight for gestational age (AGA), ≥10th centile). Each child underwent full ophthalmologic assessment and standardized testing of visual cognitive abilities (Test of Visual Perceptual Skills and Test of Visual Analysis Skills). Parents completed a questionnaire on school performance in children. Figure-ground skill and visual motor integration were significantly decreased in the preterm birth group, compared with term control subjects (figure-ground: 45.7 vs 66.5, p=0.012; visual motor integration, TVAS: (9.9 vs 11.8, p=0.018), while outcomes of visual memory (29.0 vs 47.7, p=0.012), form constancy (33.3 vs 52.8, p=0.019), figure-ground (37.4 vs 65.6, p=0.001), and visual closure (43.7 vs 62.6 p=0.016) testing were lower in the SGA (vs AGA) group. Visual cognitive difficulties corresponded with worse performance in mathematics (r=0.414, p=0.004) and reading (r=0.343, p=0.018). Specific patterns of visual perceptual and visual motor deficits are displayed by children born preterm or SGA, which hinder mathematics and reading performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modality-dependent effect of motion information in sensory-motor synchronised tapping.
Ono, Kentaro
2018-05-14
Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.
Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M
2016-05-01
In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement.
Cai, Chang; Ogawa, Kenji; Kochiyama, Takanori; Tanaka, Hirokazu; Imamizu, Hiroshi
2018-05-15
Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Girón, Elizabeth Coker; McIsaac, Tara; Nilsen, Dawn
2012-03-01
Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.
Gabbard, Carl; Lee, Jihye; Caçola, Priscila
2013-01-01
This study examined the role of visual working memory when transforming visual representations to motor representations in the context of motor imagery. Participants viewed randomized number sequences of three, four, and five digits, and then reproduced the sequence by finger tapping using motor imagery or actually executing the movements; movement duration was recorded. One group viewed the stimulus for three seconds and responded immediately, while the second group had a three-second view followed by a three-second blank screen delay before responding. As expected, delay group times were longer with each condition and digit load. Whereas correlations between imagined and executed actions (temporal congruency) were significant in a positive direction for both groups, interestingly, the delay group's values were significantly stronger. That outcome prompts speculation that delay influenced the congruency between motor representation and actual execution.
Bock, Otmar; Bury, Nils
2018-03-01
Our perception of the vertical corresponds to the weighted sum of gravicentric, egocentric, and visual cues. Here we evaluate the interplay of those cues not for the perceived but rather for the motor vertical. Participants were asked to flip an omnidirectional switch down while their egocentric vertical was dissociated from their visual-gravicentric vertical. Responses were directed mid-between the two verticals; specifically, the data suggest that the relative weight of congruent visual-gravicentric cues averages 0.62, and correspondingly, the relative weight of egocentric cues averages 0.38. We conclude that the interplay of visual-gravicentric cues with egocentric cues is similar for the motor and for the perceived vertical. Unexpectedly, we observed a consistent dependence of the motor vertical on hand position, possibly mediated by hand orientation or by spatial selective attention.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-01-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118
Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.
Krasheninnikova, Anastasia
2013-01-01
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.
Fang, Ying; Zhang, Ying
2017-01-01
Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030
Sensori-motor experience leads to changes in visual processing in the developing brain.
James, Karin Harman
2010-03-01
Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.
Urban sprawl as a risk factor in motor vehicle crashes
Ewing, Reid; Hamidi, Shima; Grace, James B.
2016-01-01
A decade ago, compactness/sprawl indices were developed for metropolitan areas and counties which have been widely used in health and other research. In this study, we first update the original county index to 2010, then develop a refined index that accounts for more relevant factors, and finally seek to test the relationship between sprawl and traffic crash rates using structural equation modelling. Controlling for covariates, we find that sprawl is associated with significantly higher direct and indirect effects on fatal crash rates. The direct effect is likely due to the higher traffic speeds in sprawling areas, and the indirect effect is due to greater vehicle miles driven in such areas. Conversely, sprawl has negative direct relationships with total crashes and non-fatal injury crashes, and these offset (and sometimes overwhelm) the positive indirect effects of sprawl on both types of crashes through the mediating effect of increased vehicle miles driven. The most likely explanation is the greater prevalence of fender benders and other minor accidents in the low speed, high conflict traffic environments of compact areas, negating the lower vehicle miles travelled per capita in such areas.
Albinism: Particular Attention to the Ocular Motor System
Hertle, Richard W.
2013-01-01
The purpose of this report is to summarize an understanding of the ocular motor system in patients with albinism. Other than the association of vertical eccentric gaze null positions and asymmetric, (a) periodic alternating nystagmus in a large percentage of patients, the ocular motor system in human albinism does not contain unique pathology, rather has “typical” types of infantile ocular oscillations and binocular disorders. Both the ocular motor and afferent visual system are affected to varying degrees in patients with albinism, thus, combined treatment of both systems will maximize visual function. PMID:24014991
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463
Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg
2016-01-01
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Li, Guang
1995-01-01
The work described in this report covers various aspects of the Rainbow solid-state actuator technology. It is presented in six parts dealing with materials, processing, fabrication, properties and associated phenomena. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It consists of a new processing technology for preparing piezoelectric and electrostrictive ceramic materials. It involves a high temperature chemical reduction process which leads to an internal pre-stressing of the oxide wafer, thus the name Rainbow, an acronym for Reduced And INternally Biased Oxide Wafer. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders (unimorphs, bimorphs). It is anticipated that these solid-state, electromechanical actuators which can be used in a number of applications in space such as cryopump motors, anti-vibration active structures, autoleveling platforms, telescope mirror correctors and autofocusing devices. When considering any of these applications, the key to the development of a successful device is the successful development of a ceramic material which can produce maximum displacement per volt input; hence, this initiative involving a solid-state means for achieving unusually high electromechanical displacement can be significant and far reaching. An additional benefit obtained from employing the piezoelectric effect in these actuator devices is the ability to also utilize them as sensors; and, indeed, they can be used as both motor (actuator) and generator (sensor) in multifunction devices.
Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C
2016-11-19
When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effect of visual field presentation on action planning (estimating reach) in children.
Gabbard, Carl; Cordova, Alberto
2012-01-01
In this article, the authors examined the effects of target information presented in different visual fields (lower, upper, central) on estimates of reach via use of motor imagery in children (5-11 years old) and young adults. Results indicated an advantage for estimating reach movements for targets placed in lower visual field (LoVF), with all groups having greater difficulty in the upper visual field (UpVF) condition, especially 5- and 7-year-olds. Complementing these results was an overall age-related increase in accuracy. Based in part on the equivalence hypothesis suggesting that motor imagery and motor planning and execution are similar, the findings support previous work of executed behaviors showing that there is a LoVF bias for motor skill actions of the hand. Given that previous research hints that the UpVF may be bias for visuospatial (perceptual) qualities, research in that area and its association with visuomotor processing (LoVF) should be considered.
What Do Eye Gaze Metrics Tell Us about Motor Imagery?
Poiroux, Elodie; Cavaro-Ménard, Christine; Leruez, Stéphanie; Lemée, Jean Michel; Richard, Isabelle; Dinomais, Mickael
2015-01-01
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to "spy" on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596
Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI
2015-10-01
accomplish this, we apply comparative assessments of fMRI mappings of language, memory , and motor function, and performance on clinical neurocognitive...community at a target rate of 13 volunteers per quarter period; acquire fMRI data for language, memory , and visual-motor functions (months 3-12). c...consensus fMRI activation maps for language, memory , and visual-motor tasks (months 8-12). f) Subtask 1f. Prepare publication to disseminate our
Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro
2011-01-01
During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649
Monitoring others' errors: The role of the motor system in early childhood and adulthood.
Meyer, Marlene; Braukmann, Ricarda; Stapel, Janny C; Bekkering, Harold; Hunnius, Sabine
2016-03-01
Previous research demonstrates that from early in life, our cortical sensorimotor areas are activated both when performing and when observing actions (mirroring). Recent findings suggest that the adult motor system is also involved in detecting others' rule violations. Yet, how this translates to everyday action errors (e.g., accidentally dropping something) and how error-sensitive motor activity for others' actions emerges are still unknown. In this study, we examined the role of the motor system in error monitoring. Participants observed successful and unsuccessful pincer grasp actions while their electroencephalography was registered. We tested infants (8- and 14-month-olds) at different stages of learning the pincer grasp and adults as advanced graspers. Power in Alpha- and Beta-frequencies was analysed to assess motor and visual processing. Adults showed enhanced motor activity when observing erroneous actions. However, neither 8- nor 14-month-olds displayed this error sensitivity, despite showing motor activity for both actions. All groups did show similar visual activity, that is more Alpha-suppression, when observing correct actions. Thus, while correct and erroneous actions were processed as visually distinct in all age groups, only the adults' motor system was sensitive to action correctness. Functionality of different brain oscillations in the development of error monitoring and mirroring is discussed. © 2015 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Stoltzfus, J. M.
1983-01-01
Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.
Northwest corner, showing arcade at ground level, and triple leaded ...
Northwest corner, showing arcade at ground level, and triple leaded glass windows of bender room high on north elevation. - Stanford University Library, Stanford University, Palo Alto, Santa Clara County, CA
The Neural Basis of Mark Making: A Functional MRI Study of Drawing
Yuan, Ye; Brown, Steven
2014-01-01
Compared to most other forms of visually-guided motor activity, drawing is unique in that it “leaves a trail behind” in the form of the emanating image. We took advantage of an MRI-compatible drawing tablet in order to examine both the motor production and perceptual emanation of images. Subjects participated in a series of mark making tasks in which they were cued to draw geometric patterns on the tablet's surface. The critical comparison was between when visual feedback was displayed (image generation) versus when it was not (no image generation). This contrast revealed an occipito-parietal stream involved in motion-based perception of the emerging image, including areas V5/MT+, LO, V3A, and the posterior part of the intraparietal sulcus. Interestingly, when subjects passively viewed animations of visual patterns emerging on the projected surface, all of the sensorimotor network involved in drawing was strongly activated, with the exception of the primary motor cortex. These results argue that the origin of the human capacity to draw and write involves not only motor skills for tool use but also motor-sensory links between drawing movements and the visual images that emanate from them in real time. PMID:25271440
Two memories for geographical slant: separation and interdependence of action and awareness
NASA Technical Reports Server (NTRS)
Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1998-01-01
The present study extended previous findings of geographical slant perception, in which verbal judgments of the incline of hills were greatly overestimated but motoric (haptic) adjustments were much more accurate. In judging slant from memory following a brief or extended time delay, subjects' verbal judgments were greater than those given when viewing hills. Motoric estimates differed depending on the length of the delay and place of response. With a short delay, motoric adjustments made in the proximity of the hill did not differ from those evoked during perception. When given a longer delay or when taken away from the hill, subjects' motoric responses increased along with the increase in verbal reports. These results suggest two different memorial influences on action. With a short delay at the hill, memory for visual guidance is separate from the explicit memory informing the conscious response. With short or long delays away from the hill, short-term visual guidance memory no longer persists, and both motor and verbal responses are driven by an explicit representation. These results support recent research involving visual guidance from memory, where actions become influenced by conscious awareness, and provide evidence for communication between the "what" and "how" visual processing systems.
Changing motor perception by sensorimotor conflicts and body ownership
Salomon, R.; Fernandez, N. B.; van Elk, M.; Vachicouras, N.; Sabatier, F.; Tychinskaya, A.; Llobera, J.; Blanke, O.
2016-01-01
Experimentally induced sensorimotor conflicts can result in a loss of the feeling of control over a movement (sense of agency). These findings are typically interpreted in terms of a forward model in which the predicted sensory consequences of the movement are compared with the observed sensory consequences. In the present study we investigated whether a mismatch between movements and their observed sensory consequences does not only result in a reduced feeling of agency, but may affect motor perception as well. Visual feedback of participants’ finger movements was manipulated using virtual reality to be anatomically congruent or incongruent to the performed movement. Participants made a motor perception judgment (i.e. which finger did you move?) or a visual perceptual judgment (i.e. which finger did you see moving?). Subjective measures of agency and body ownership were also collected. Seeing movements that were visually incongruent to the performed movement resulted in a lower accuracy for motor perception judgments, but not visual perceptual judgments. This effect was modified by rotating the virtual hand (Exp.2), but not by passively induced movements (Exp.3). Hence, sensorimotor conflicts can modulate the perception of one’s motor actions, causing viewed “alien actions” to be felt as one’s own. PMID:27225834
Subconscious Visual Cues during Movement Execution Allow Correct Online Choice Reactions
Leukel, Christian; Lundbye-Jensen, Jesper; Christensen, Mark Schram; Gollhofer, Albert; Nielsen, Jens Bo; Taube, Wolfgang
2012-01-01
Part of the sensory information is processed by our central nervous system without conscious perception. Subconscious processing has been shown to be capable of triggering motor reactions. In the present study, we asked the question whether visual information, which is not consciously perceived, could influence decision-making in a choice reaction task. Ten healthy subjects (28±5 years) executed two different experimental protocols. In the Motor reaction protocol, a visual target cue was shown on a computer screen. Depending on the displayed cue, subjects had to either complete a reaching movement (go-condition) or had to abort the movement (stop-condition). The cue was presented with different display durations (20–160 ms). In the second Verbalization protocol, subjects verbalized what they experienced on the screen. Again, the cue was presented with different display durations. This second protocol tested for conscious perception of the visual cue. The results of this study show that subjects achieved significantly more correct responses in the Motor reaction protocol than in the Verbalization protocol. This difference was only observed at the very short display durations of the visual cue. Since correct responses in the Verbalization protocol required conscious perception of the visual information, our findings imply that the subjects performed correct motor responses to visual cues, which they were not conscious about. It is therefore concluded that humans may reach decisions based on subconscious visual information in a choice reaction task. PMID:23049749
Pacing Visual Attention: Temporal Structure Effects
1993-06-01
of perception and motor action: Ideomotor compatibility and interference in divided attention . Journal of Motor Behavior, 2, (3), 155-162. Kwak, H...1993 Dissertation, Jun 89 - Jun 93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Pacing Visual Attention : Temporal Structure Effects PE - 62202F 6. AUTHOR(S...that persisting temporal relationships may be an important factor in the external (exogenous) control of visual attention , at least to some extent, was
Sanders, Geoff
2013-01-01
This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.
Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju
2016-01-01
Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.
Wang, Wei; Ji, Xiangtong; Ni, Jun; Ye, Qian; Zhang, Sicong; Chen, Wenli; Bian, Rong; Yu, Cui; Zhang, Wenting; Shen, Guangyu; Machado, Sergio; Yuan, Tifei; Shan, Chunlei
2015-01-01
To compare the effect of visual spatial training on the spatial attention to that on motor control and to correlate the improvement of spatial attention to motor control progress after visual spatial training in subjects with unilateral spatial neglect (USN). 9 cases with USN after right cerebral stroke were randomly divided into Conventional treatment group + visual spatial attention and Conventional treatment group. The Conventional treatment group + visual spatial attention received conventional rehabilitation therapy (physical and occupational therapy) and visual spatial attention training (optokinetic stimulation and right half-field eye patching). The Conventional treatment group was only treated with conventional rehabilitation training (physical and occupational therapy). All patients were assessed by behavioral inattention test (BIT), Fugl-Meyer Assessment of motor function (FMA), equilibrium coordination test (ECT) and non-equilibrium coordination test (NCT) before and after 4 weeks treatment. Total scores in both groups (without visual spatial attention/with visual spatial attention) improved significantly (BIT: P=0.021/P=0.000, d=1.667/d=2.116, power=0.69/power=0.98, 95%CI[-0.8839,45.88]/95%CI=[16.96,92.64]; FMA: P=0.002/P=0.000, d=2.521/d=2.700, power=0.93/power=0.98, 95%CI[5.707,30.79]/95%CI=[16.06,53.94]; ECT: P=0.002/ P=0.000, d=2.031/d=1.354, power=0.90/power=0.17, 95%CI[3.380,42.61]/95%CI=[-1.478,39.08]; NCT: P=0.013/P=0.000, d=1.124/d=1.822, power=0.41/power=0.56, 95%CI[-7.980,37.48]/95%CI=[4.798,43.60],) after treatment. Among the 2 groups, the group with visual spatial attention significantly improved in BIT (P=0.003, d=3.103, power=1, 95%CI[15.68,48.92]), FMA of upper extremity (P=0.006, d=2.771, power=1, 95%CI[5.061,20.14]) and NCT (P=0.010, d=2.214, power=0.81-0.90, 95%CI[3.018,15.88]). Correlative analysis shows that the change of BIT scores is positively correlated to the change of FMA total score (r=0.77, P<;0.01), FMA of upper extremity (r=0.81, P<0.01), NCT (r=0.78, P<0.01). Four weeks visual spatial training could improve spatial attention as well as motor control functions in hemineglect patients. The improvement of motor function is positively correlated to the progresses of visual spatial functions after visual spatial attention training.
A SUGGESTED METHOD FOR PRE-SCHOOL IDENTIFICATION OF POTENTIAL READING DISABILITY.
ERIC Educational Resources Information Center
NEWTON, KENNETH R.; AND OTHERS
THE RELATIONSHIPS BETWEEN PREREADING MEASURES OF VISUAL-MOTOR-PERCEPTUAL SKILLS AND READING ACHIEVEMENT WERE STUDIED. SUBJECTS WERE 172 FIRST GRADERS. PRETESTS AND POST-TESTS FOR WORD RECOGNITION, MOTOR COORDINATION, AND VISUAL PERCEPTION WERE ADMINISTERED. FOURTEEN VARIABLES WERE TESTED. RESULTS INDICATED THAT FORM-COPYING WAS MORE EFFECTIVE THAN…
Multiple Sensory-Motor Pathways Lead to Coordinated Visual Attention
ERIC Educational Resources Information Center
Yu, Chen; Smith, Linda B.
2017-01-01
Joint attention has been extensively studied in the developmental literature because of overwhelming evidence that the ability to socially coordinate visual attention to an object is essential to healthy developmental outcomes, including language learning. The goal of this study was to understand the complex system of sensory-motor behaviors that…
Visual Motor Short Term Memory in Educationally Subnormal Boys.
ERIC Educational Resources Information Center
Sugden, D. A.
1978-01-01
This investigation attempted to describe the developmental sequence of visual motor short term memory in mentally handicapped boys (mental ages 6, 9, and 12) during conditions of rest and interpolated activity, and to explore their use of spontaneous rehearsal strategies. Results are compared with those for normal boys. (Author/SJL)
Movement Perception and Movement Production in Asperger's Syndrome
ERIC Educational Resources Information Center
Price, Kelly J.; Shiffrar, Maggie; Kerns, Kimberly A.
2012-01-01
To determine whether motor difficulties documented in Asperger's Syndrome (AS) are related to compromised visual abilities, this study examined perception and movement in response to dynamic visual environments. Fourteen males with AS and 16 controls aged 7-23 completed measures of motor skills, postural response to optic flow, and visual…
Mohanty, Suman; Greene, Rachel K.; Cook, Edwin H.; Vaillancourt, David E.; Sweeney, John A.
2015-01-01
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. PMID:25653359
Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.
Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh
2017-12-01
Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.
When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.
Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-26
Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Portable Platform for Evaluation of Visual Performance in Glaucoma Patients
Rosen, Peter N.; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Marvasti, Amir H.; Medeiros, Felipe A.
2015-01-01
Purpose To propose a new tablet-enabled test for evaluation of visual performance in glaucoma, the PERformance CEntered Portable Test (PERCEPT), and to evaluate its ability to predict history of falls and motor vehicle crashes. Design Cross-sectional study. Methods The study involved 71 patients with glaucomatous visual field defects on standard automated perimetry (SAP) and 59 control subjects. The PERCEPT was based on the concept of increasing visual task difficulty to improve detection of central visual field losses in glaucoma patients. Subjects had to perform a foveal 8-alternative-forced-choice orientation discrimination task, while detecting a simultaneously presented peripheral stimulus within a limited presentation time. Subjects also underwent testing with the Useful Field of View (UFOV) divided attention test. The ability to predict history of motor vehicle crashes and falls was investigated by odds ratios and incident-rate ratios, respectively. Results When adjusted for age, only the PERCEPT processing speed parameter showed significantly larger values in glaucoma compared to controls (difference: 243ms; P<0.001). PERCEPT results had a stronger association with history of motor vehicle crashes and falls than UFOV. Each 1 standard deviation increase in PERCEPT processing speed was associated with an odds ratio of 2.69 (P = 0.003) for predicting history of motor vehicle crashes and with an incident-rate ratio of 1.95 (P = 0.003) for predicting history of falls. Conclusion A portable platform for testing visual function was able to detect functional deficits in glaucoma, and its results were significantly associated with history of involvement in motor vehicle crashes and history of falls. PMID:26445501
Abrams, Michael S; Duncan, Candace L; McMurtrey, Ryan
2011-04-01
To document the development of motor fusion when patients with a history of strabismic amblyopia are treated part-time with Bangerter foils. This was a prospective interventional outcome study of consecutive patients with a history of strabismic amblyopia, horizontal strabismus (only) ≤20(∆), visual acuity of 20/60 or better in the nonfixating eye, and no motor fusion (as indicated by the absence of prism vergence) for 1 year before entry into the study. Subjects wore a 0.1 density Bangerter foil for 3-4 hours daily. Data on visual acuity, alignment, and motor fusion status were collected for a minimum of 2 years. Patients with motor fusion were then followed for a minimum of 18 months to assess the stability of their motor fusion status after the Bangerter foil was discontinued. Of the 46 patients meeting entry criteria (mean age, 5.3 ± 1.7 years) who completed follow-up, 28 (61%) developed motor fusion. Motor fusion was retained in all 17 patients who were followed after their foils were discontinued for a mean of 13.3 months. A child's motor fusion status is generally believed to be established during an early formative period of visual development. The development of motor fusion in many of our patients during the course of part-time Bangerter foil treatment suggests that improvements in motor fusion status can occur at a later age than previously believed. Copyright © 2011 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
ERIC Educational Resources Information Center
Whitcraft, Carol
Investigations and theories concerning interrelationships of motoric experiences, perceptual-motor skills, and learning are reviewed, with emphasis on early engramming of form and space concepts. Covered are studies on haptic perception of form, the matching of perceptual data and motor information, Kephart's perceptual-motor theory, and…
Implicit and explicit motor sequence learning in children born very preterm.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2017-01-01
Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual-Motor Symbol Production Facilitates Letter Recognition in Young Children
ERIC Educational Resources Information Center
Zemlock, Deborah; Vinci-Booher, Sophia; James, Karin H.
2018-01-01
Previous research has suggested that handwriting letters may be an important exerciser to facilitate early letter understanding. Experimental studies to date, however, have not investigated whether this effect is general to any visual-motor experience or specific to handwriting letters. In the present work, we addressed this issue by testing…
THE USES AND ABUSES OF VISUAL TRAINING FOR CHILDREN WITH PERCEPTUAL-MOTOR LEARNING PROBLEMS.
ERIC Educational Resources Information Center
CARLSON, PAUL V.; GREENSPOON, MORTON K.
THE ROLE OF THE OPTOMETRIST IN DIAGNOSING AND CORRECTING PERCEPTUAL-MOTOR LEARNING PROBLEMS IS DISCUSSED. ONE GROUP OF OPTOMETRISTS ADHERES TO STANDARD TECHNIQUES, INCLUDING THE PRESCRIPTION OF CORRECTIVE LENSES AND THE USE OF ORTHOPTIC TECHNIQUES FOR THE SAKE OF CLEAR, COMFORTABLE, AND EFFECTIVE VISUAL PERFORMANCE. OTHERS EMPLOY DIVERSE…
ERIC Educational Resources Information Center
Dikowski, Timothy J.
This practicum was designed to remediate handwriting skills in school-aged children who displayed visual-motor deficiencies that affect mechanical skills. Practicum goals were to: (1) identify and diagnose children with handwriting delays; (2) involve school and parent interaction by involving them with pre- and post-program assessment; (3)…
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands
Ossmy, Ori; Mukamel, Roy
2017-01-01
Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
Web-Based Assessment of Visual and Visuospatial Symptoms in Parkinson's Disease
Amick, Melissa M.; Miller, Ivy N.; Neargarder, Sandy; Cronin-Golomb, Alice
2012-01-01
Visual and visuospatial dysfunction is prevalent in Parkinson's disease (PD). To promote assessment of these often overlooked symptoms, we adapted the PD Vision Questionnaire for Internet administration. The questionnaire evaluates visual and visuospatial symptoms, impairments in activities of daily living (ADLs), and motor symptoms. PD participants of mild to moderate motor severity (n = 24) and healthy control participants (HC, n = 23) completed the questionnaire in paper and web-based formats. Reliability was assessed by comparing responses across formats. Construct validity was evaluated by reference to performance on measures of vision, visuospatial cognition, ADLs, and motor symptoms. The web-based format showed excellent reliability with respect to the paper format for both groups (all P′s < 0.001; HC completing the visual and visuospatial section only). Demonstrating the construct validity of the web-based questionnaire, self-rated ADL and visual and visuospatial functioning were significantly associated with performance on objective measures of these abilities (all P′s < 0.01). The findings indicate that web-based administration may be a reliable and valid method of assessing visual and visuospatial and ADL functioning in PD. PMID:22530162
Kondo, Ryota; Sugimoto, Maki; Minamizawa, Kouta; Hoshi, Takayuki; Inami, Masahiko; Kitazaki, Michiteru
2018-05-15
Body ownership can be modulated through illusory visual-tactile integration or visual-motor synchronicity/contingency. Recently, it has been reported that illusory ownership of an invisible body can be induced by illusory visual-tactile integration from a first-person view. We aimed to test whether a similar illusory ownership of the invisible body could be induced by the active method of visual-motor synchronicity and if the illusory invisible body could be experienced in front of and facing away from the observer. Participants observed left and right white gloves and socks in front of them, at a distance of 2 m, in a virtual room through a head-mounted display. The white gloves and socks were synchronized with the observers' actions. In the experiments, we tested the effect of synchronization, and compared this to a whole-body avatar, measuring self-localization drift. We observed that visual hands and feet were sufficient to induce illusory body ownership, and this effect was as strong as using a whole-body avatar.
Motor and cognitive growth following a Football Training Program.
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.
Motor and cognitive growth following a Football Training Program
Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria
2015-01-01
Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a “natural and enjoyable tool” to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development. PMID:26579014
Hirashima, Masaya
2016-01-01
Abstract When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation. PMID:27275006
Hayashi, Takuji; Yokoi, Atsushi; Hirashima, Masaya; Nozaki, Daichi
2016-01-01
When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation.
Determinants of gross motor skill performance in children with visual impairments.
Haibach, Pamela S; Wagner, Matthias O; Lieberman, Lauren J
2014-10-01
Children with visual impairments (CWVI) generally perform poorer in gross motor skills when compared with their sighted peers. This study examined the influence of age, sex, and severity of visual impairment upon locomotor and object control skills in CWVI. Participants included 100 CWVI from across the United States who completed the Test of Gross Motor Development II (TGMD-II). The TGMD-II consists of 12 gross motor skills including 6 object control skills (catching, kicking, striking, dribbling, throwing, and rolling) and 6 locomotor skills (running, sliding, galloping, leaping, jumping, and hopping). The full range of visual impairments according to United States Association for Blind Athletes (USABA; B3=20/200-20/599, legally blind; B2=20/600 and up, travel vision; B1=totally blind) were assessed. The B1 group performed significantly worse than the B2 (0.000 ≤ p ≤ 0.049) or B3 groups (0.000 ≤ p ≤ 0.005); however, there were no significant differences between B2 and B3 except for the run (p=0.006), catch (p=0.000), and throw (p=0.012). Age and sex did not play an important role in most of the skills, with the exception of boys outperforming girls striking (p=0.009), dribbling (p=0.013), and throwing (p=0.000), and older children outperforming younger children in dribbling (p=0.002). The significant impact of the severity of visual impairment is likely due to decreased experiences and opportunities for children with more severe visual impairments. In addition, it is likely that these reduced experiences explain the lack of age-related differences in the CWVI. The large disparities in performance between children who are blind and their partially sighted peers give direction for instruction and future research. In addition, there is a critical need for intentional and specific instruction on motor skills at a younger age to enable CWVI to develop their gross motor skills. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jola, Corinne; Abedian-Amiri, Ali; Kuppuswamy, Annapoorna; Pollick, Frank E.; Grosbras, Marie-Hélène
2012-01-01
The human “mirror-system” is suggested to play a crucial role in action observation and execution, and is characterized by activity in the premotor and parietal cortices during the passive observation of movements. The previous motor experience of the observer has been shown to enhance the activity in this network. Yet visual experience could also have a determinant influence when watching more complex actions, as in dance performances. Here we tested the impact visual experience has on motor simulation when watching dance, by measuring changes in corticospinal excitability. We also tested the effects of empathic abilities. To fully match the participants' long-term visual experience with the present experimental setting, we used three live solo dance performances: ballet, Indian dance, and non-dance. Participants were either frequent dance spectators of ballet or Indian dance, or “novices” who never watched dance. None of the spectators had been physically trained in these dance styles. Transcranial magnetic stimulation was used to measure corticospinal excitability by means of motor-evoked potentials (MEPs) in both the hand and the arm, because the hand is specifically used in Indian dance and the arm is frequently engaged in ballet dance movements. We observed that frequent ballet spectators showed larger MEP amplitudes in the arm muscles when watching ballet compared to when they watched other performances. We also found that the higher Indian dance spectators scored on the fantasy subscale of the Interpersonal Reactivity Index, the larger their MEPs were in the arms when watching Indian dance. Our results show that even without physical training, corticospinal excitability can be enhanced as a function of either visual experience or the tendency to imaginatively transpose oneself into fictional characters. We suggest that spectators covertly simulate the movements for which they have acquired visual experience, and that empathic abilities heighten motor resonance during dance observation. PMID:22457754
Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole
2011-05-01
Seeing or hearing manual actions activates the mirror neuron system, that is, specialized neurons within motor areas which fire when an action is performed but also when it is passively perceived. Using TMS, it was shown that motor cortex of typically developed subjects becomes facilitated not only from seeing others' actions, but also from merely hearing action-related sounds. In the present study, TMS was used for the first time to explore the "auditory" and "visual" responsiveness of motor cortex in individuals with congenital blindness or deafness. TMS was applied over left primary motor cortex (M1) to measure cortico-motor facilitation while subjects passively perceived manual actions (either visually or aurally). Although largely unexpected, congenitally blind or deaf subjects displayed substantially lower resonant motor facilitation upon action perception compared to seeing/hearing control subjects. Moreover, muscle-specific changes in cortico-motor excitability within M1 appeared to be absent in individuals with profound blindness or deafness. Overall, these findings strongly argue against the hypothesis that an increased reliance on the remaining sensory modality in blind or deaf subjects is accompanied by an increased responsiveness of the "auditory" or "visual" perceptual-motor "mirror" system, respectively. Moreover, the apparent lack of resonant motor facilitation for the blind and deaf subjects may challenge the hypothesis of a unitary mirror system underlying human action recognition and may suggest that action perception in blind and deaf subjects engages a mode of action processing that is different from the human action recognition system recruited in typically developed subjects.
Boraxbekk, C J; Hagkvist, Filip; Lindner, Philip
2016-08-01
Learning new motor skills may become more difficult with advanced age. In the present study, we randomized 56 older individuals, including 30 women (mean age 70.6 years), to 6 weeks of motor training, mental (motor imagery) training, or a combination of motor and mental training of a finger tapping sequence. Performance improvements and post-training functional magnetic resonance imaging (fMRI) were used to investigate performance gains and associated underlying neural processes. Motor-only training and a combination of motor and mental training improved performance in the trained task more than mental-only training. The fMRI data showed that motor training was associated with a representation in the premotor cortex and mental training with a representation in the secondary visual cortex. Combining motor and mental training resulted in both premotor and visual cortex representations. During fMRI scanning, reduced performance was observed in the combined motor and mental training group, possibly indicating interference between the two training methods. We concluded that motor and motor imagery training in older individuals is associated with different functional brain responses. Furthermore, adding mental training to motor training did not result in additional performance gains compared to motor-only training and combining training methods may result in interference between representations, reducing performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A
2015-02-04
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.
Kim, Haram R; Hong, Su Z; Fiorillo, Christopher D
2015-01-01
Although neurons within intact nervous systems can be classified as 'sensory' or 'motor,' it is not known whether there is any general distinction between sensory and motor neurons at the cellular or molecular levels. Here, we extend and test a theory according to which activation of certain subtypes of voltage-gated ion channel (VGC) generate patterns of spikes in neurons of motor systems, whereas VGC are proposed to counteract patterns in sensory neurons. We previously reported experimental evidence for the theory from visual thalamus, where we found that T-type calcium channels (TtCCs) did not cause bursts of spikes but instead served the function of 'predictive homeostasis' to maximize the causal and informational link between retinogeniculate excitation and spike output. Here, we have recorded neurons in brain slices from eight sensory and motor regions of rat thalamus while mimicking key features of natural excitatory and inhibitory post-synaptic potentials. As predicted by theory, TtCC did cause bursts of spikes in motor thalamus. TtCC-mediated responses in motor thalamus were activated at more hyperpolarized potentials and caused larger depolarizations with more spikes than in visual and auditory thalamus. Somatosensory thalamus is known to be more closely connected to motor regions relative to auditory and visual thalamus, and likewise the strength of its TtCC responses was intermediate between these regions and motor thalamus. We also observed lower input resistance, as well as limited evidence of stronger hyperpolarization-induced ('H-type') depolarization, in nuclei closer to motor output. These findings support our theory of a specific difference between sensory and motor neurons at the cellular level.
A closer look at visually guided saccades in autism and Asperger’s disorder
Johnson, Beth P.; Rinehart, Nicole J.; Papadopoulos, Nicole; Tonge, Bruce; Millist, Lynette; White, Owen; Fielding, Joanne
2012-01-01
Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD) in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioral evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude, and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5°) and large (10°) target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA. PMID:23162442
Separate visual representations for perception and for visually guided behavior
NASA Technical Reports Server (NTRS)
Bridgeman, Bruce
1989-01-01
Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.
Jansen, Petra; Kellner, Jan
2015-01-01
Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262
Jansen, Petra; Kellner, Jan
2015-01-01
Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Slingsby Systems, Inc., Jupiter, Florida. TA-W-72,372: Kaiser Permanente, Corona, California, covered by TA-W- 71,894: Kaiser Permanente, Corona, California. TA-W-72,432: Matthew Bender and Company, Inc...
Viewing Objects and Planning Actions: On the Potentiation of Grasping Behaviours by Visual Objects
ERIC Educational Resources Information Center
Makris, Stergios; Hadar, Aviad A.; Yarrow, Kielan
2011-01-01
How do humans interact with tools? Gibson (1979) suggested that humans perceive directly what tools afford in terms of meaningful actions. This "affordances" hypothesis implies that visual objects can potentiate motor responses even in the absence of an intention to act. Here we explore the temporal evolution of motor plans afforded by common…
Training of Paraeducators for Physical Education for Children with Visual Impairments
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Conroy, Paula
2013-01-01
Introduction: Children with visual impairments are often behind their peers in physical and motor skills. It is often necessary for these children to work one to one with a paraeducator to gain the benefits of physical education, improve physical activity and motor skills, and attain the basic standards of the Expanded Core Curriculum (ECC).…
Developing Learning Readiness; A Visual-Motor-Tactile Skills Program. Teacher's Manual.
ERIC Educational Resources Information Center
Getman, G.N.; And Others
A flexible program for preschool, primary grades, or remedial classes provides opportunities for the child to achieve readiness for learning through the development of visual, motor, and tactile skills. A cardboard doll is discussed which may be utilized by the teacher and children in a variety of gymnasium routines to increase knowledge of body…
Motor Skill Performance of Children and Adolescents with Visual Impairments: A Review
ERIC Educational Resources Information Center
Houwen, Suzanne; Visscher, Chris; Lemmink, Koen A. P. M.; Hartman, Esther
2009-01-01
This article reviews studies on variables that are related to the motor skill performance of children and adolescents with visual impairments (VI). Three major groups of variables are considered (child, environmental, and task). Thirty-nine studies are included in this review, 26 of which examined the effects of child, environmental, and/or task…
A Culture in Transition: Poor Reading and Writing Ability among Children in South African Townships.
ERIC Educational Resources Information Center
Pretorius, E.; Naude, H.
2002-01-01
This study examined factors contributing to poor literacy and numeracy development among black South African children ages 5.5 to 7 years. Findings pointed to a conglomerate of factors, namely inadequate visual-motor integration, poor visual analysis and synthesis, poor fine motor development, and inadequate exposure to mediated reading and…
Motor system contributions to verbal and non-verbal working memory.
Liao, Diana A; Kronemer, Sharif I; Yau, Jeffrey M; Desmond, John E; Marvel, Cherie L
2014-01-01
Working memory (WM) involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters), in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS) to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords) and non-verbalizable (Chinese characters) visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times (RTs) on verbal WM trials with high (pseudoword) vs. low (real word) phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex (VC). Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system's contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance.
Motor system contributions to verbal and non-verbal working memory
Liao, Diana A.; Kronemer, Sharif I.; Yau, Jeffrey M.; Desmond, John E.; Marvel, Cherie L.
2014-01-01
Working memory (WM) involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters), in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS) to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords) and non-verbalizable (Chinese characters) visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times (RTs) on verbal WM trials with high (pseudoword) vs. low (real word) phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex (VC). Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system’s contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance. PMID:25309402
Motor Proficiency Traits of Deaf Children.
ERIC Educational Resources Information Center
Brunt, Denis; Broadhead, Geoffrey D.
1982-01-01
Children at the Louisiana State School for the Deaf were tested for motor proficiency using the Short Form of the Bruininks-Oseretsky Test of Motor Proficiency. The children appeared to lack balancing skills but scored better than hearing children in visual motor control. Sex and age differences are noted. (PP)
Hsieh, Hsieh-Chun; Lin, Hung-Yu; Chiu, Wen-Hsin; Meng, Ling Fu; Liu, Chun Kai
2015-01-01
This study used a novel device to make video games accessible to children with developmental disabilities (DD) by modifying the training software and interfaces to enhance motor training. In the pretest-posttest design, 20 children (13 boys, 7 girls; mean age=5.2 yr) with DD received adaptive upper-limb motor rehabilitation consisting of fifteen 30-min individual sessions 3 times per week for 5 wk. Improvement in Beery-Buktenica Developmental Test of Visual Motor Integration and Peabody Developmental Motor Scales, Second Edition, scores for children with DD indicated significant differences between pretest and posttest. The rehabilitation device modified for the needs of children with DD is effective in improving visual-motor performance of children with DD. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Sexual motivation is reflected by stimulus-dependent motor cortex excitability.
Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B
2015-08-01
Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Visual-Motor Control of Drop Landing After Anterior Cruciate Ligament Reconstruction.
Grooms, Dustin R; Chaudhari, Ajit; Page, Stephen J; Nichols-Larsen, Deborah S; Onate, James A
2018-05-11
Visual feedback is crucial in the control of human movement. When vision is obstructed, alterations in landing neuromuscular control may increase movements that place individuals at risk for injury. Anterior cruciate ligament (ACL) injury may further alter the motor-control response to alterations in visual feedback. The development of stroboscopic glasses that disrupt visual feedback without fully obscuring it has enabled researchers to assess visual-motor control during movements that simulate the dynamic demands of athletic activity. To investigate the effect of stroboscopic visual-feedback disruption (SVFD) on drop vertical-jump landing mechanics and to determine whether injury history influenced the effect. Cohort study. Movement-analysis laboratory. A total of 15 participants with ACL reconstruction (ACLR; 7 men, 8 women; age = 21.41 ± 2.60 years, height = 1.72 ± 0.09 m, mass = 69.24 ± 15.24 kg, Tegner Activity Scale score = 7.30 ± 1.30, time since surgery = 36.18 ± 26.50 months, hamstrings grafts = 13, patellar tendon grafts = 2) and 15 matched healthy control participants (7 men, 8 women; age = 23.15 ± 3.48 years, height = 1.73 ± 0.09 m, mass = 69.98 ± 14.83 kg, Tegner Activity Scale score = 6.77 ± 1.48). Drop vertical-jump landings under normal and SVFD conditions. The SVFD effect for knee sagittal- and frontal-plane excursion, peak moments, and vertical ground reaction force were calculated during landing and compared with previously established measurement error and between groups. The SVFD altered knee sagittal-plane excursion (4.04° ± 2.20°, P = .048) and frontal-plane excursion (1.98° ± 1.53°, P = .001) during landing above within-session measurement error. Joint-moment difference scores from full vision to the SVFD condition were not greater than within-session error. We observed an effect of ACLR history only for knee flexion (ACLR group = 3.12° ± 3.76°, control group = -0.84° ± 4.45°; P = .001). We did not observe an effect of side or sex. The SVFD altered sagittal- and frontal-plane landing knee kinematics but did not alter moments. Anterior cruciate ligament reconstruction may induce alterations in sagittal-plane visual-motor control of the knee. The group SVFD effect was on a level similar to that of an in-flight perturbation, motor-learning intervention, or plyometric-training program, indicating that visual-motor ability may contribute to knee neuromuscular control on a clinically important level. The individual effects of the SVFD indicated possible unique sensorimotor versus visual-motor movement strategies during landing.
ERIC Educational Resources Information Center
Hendrickson, Homer
1988-01-01
Spelling problems arise due to problems with form discrimination and inadequate visualization. A child's sequence of visual development involves learning motor control and coordination, with vision directing and monitoring the movements; learning visual comparison of size, shape, directionality, and solidity; developing visual memory or recall;…
Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Chandrakumar, Manokaraananthan; Wong, Agnes M F
2012-01-01
Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements. Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50-100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R(2)) which correlates the spatial position of the limb during the movement to endpoint position. Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R(2) values at 70% of movement time along the elevation and depth axes during amblyopic eye viewing. Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implement online corrections depends on the severity of the visual deficit, viewing condition, and the axis of the reaching movement. Patients with mild amblyopia used online control effectively to compensate for the reduced precision of the motor plan. In contrast, patients with severe amblyopia were not able to use online control as effectively to amend the limb trajectory especially along the depth axis, which could be due to their abnormal stereopsis.
Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Wong, Agnes M. F.
2012-01-01
Background Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements. Methods Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50–100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R2) which correlates the spatial position of the limb during the movement to endpoint position. Results Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R2 values at 70% of movement time along the elevation and depth axes during amblyopic eye viewing. Conclusion Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implement online corrections depends on the severity of the visual deficit, viewing condition, and the axis of the reaching movement. Patients with mild amblyopia used online control effectively to compensate for the reduced precision of the motor plan. In contrast, patients with severe amblyopia were not able to use online control as effectively to amend the limb trajectory especially along the depth axis, which could be due to their abnormal stereopsis. PMID:22363549
Selective Effect of Physical Fatigue on Motor Imagery Accuracy
Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric
2012-01-01
While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r = 0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to the co-dependent relationship between mental and motor processes. PMID:23082148
Selective effect of physical fatigue on motor imagery accuracy.
Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric
2012-01-01
While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary feedback originating from actual motor practice under fatigue. These findings provide insights to the co-dependent relationship between mental and motor processes.
Motor excitability during visual perception of known and unknown spoken languages.
Swaminathan, Swathi; MacSweeney, Mairéad; Boyles, Rowan; Waters, Dafydd; Watkins, Kate E; Möttönen, Riikka
2013-07-01
It is possible to comprehend speech and discriminate languages by viewing a speaker's articulatory movements. Transcranial magnetic stimulation studies have shown that viewing speech enhances excitability in the articulatory motor cortex. Here, we investigated the specificity of this enhanced motor excitability in native and non-native speakers of English. Both groups were able to discriminate between speech movements related to a known (i.e., English) and unknown (i.e., Hebrew) language. The motor excitability was higher during observation of a known language than an unknown language or non-speech mouth movements, suggesting that motor resonance is enhanced specifically during observation of mouth movements that convey linguistic information. Surprisingly, however, the excitability was equally high during observation of a static face. Moreover, the motor excitability did not differ between native and non-native speakers. These findings suggest that the articulatory motor cortex processes several kinds of visual cues during speech communication. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.
2009-01-01
Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…
Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy
ERIC Educational Resources Information Center
Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert
2010-01-01
We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…
Computational motor control: feedback and accuracy.
Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel
2008-02-01
Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.
Reversal and Rotation Errors by Normal and Retarded Readers
ERIC Educational Resources Information Center
Black, F. William
1973-01-01
Reports an investigation of the incidence of and relationships among word and letter reversals in writing and Bender-Gestalt rotation errors in matched samples of normal and retarded readers. No significant diffenences were found in the two groups. (TO)
ERIC Educational Resources Information Center
Bonicamp, Judith M.; And Others
1989-01-01
Provides a demonstration for showing the usefulness of thermal principles to physical science students who have difficulty understanding conventional explanations. Outlines materials, procedures, discussion, and advantages of using this method. (RT)
Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.
Mirdamadi, J L; Suzuki, L Y; Meehan, S K
2017-09-17
Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2017-01-01
Purpose The purpose was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom over the preschool year. Method 92 children between the ages of 3–5 years old (mean age 4.31 years) were recruited to participate. Comprehensive measures of visual motor integration skills, object manipulation skills, executive function and social behaviors were administered in the fall and spring of the preschool year. Results Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores, (B = .47 [.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head-Start status, and site location, but not after controlling for children’s baseline levels of executive function. In addition, children who demonstrated better object-manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control, (B −.03 [.00], p < .05, β = .40), more cooperation, (B = .02 [.01], p < .05, β = .28), and less externalizing/hyperactivity, (B = −.02 [.01], p < .05, β = −.28) after controlling for social behavior in the fall and other covariates. Conclusion Children’s visual motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness. PMID:27732149
Memory-guided force output is associated with self-reported ADHD symptoms in young adults.
Neely, Kristina A; Chennavasin, Amanda P; Yoder, Arie; Williams, Genevieve K R; Loken, Eric; Huang-Pollock, Cynthia L
2016-11-01
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental health disorder in childhood and persists into adulthood in up to 65 % of cases. ADHD is associated with adverse outcomes such as the ability to gain and maintain employment and is associated with an increased risk for substance abuse obesity workplace injuries and traffic accidents A majority of diagnosed children have motor deficits; however, few studies have examined motor deficits in young adults. This study provides a novel examination of visuomotor control of grip force in young adults with and without ADHD. Participants were instructed to maintain force production over a 20-second trial with and without real-time visual feedback about their performance. The results demonstrated that when visual feedback was available, adults with ADHD produced slightly higher grip force than controls. However, when visual feedback was removed, adults with ADHD had a faster rate of decay of force, which was associated with ADHD symptom severity and trait impulsivity. These findings suggest that there may be important differences in the way that adults with ADHD integrate visual feedback during continuous motor tasks. These may account for some of the motor impairments reported in children with ADHD. These deficits could result from (1) dysfunctional sensory motor integration and/or (2) deficits in short-term visuomotor memory.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
NASA Astrophysics Data System (ADS)
Pilecka, Elżbieta; Zięba, Jakub
2017-11-01
The article presents the results of laboratory tests for determining the dynamic modules of the elasticity M and the shear G, for soil samples from the landfill of the closed Solvay Sodium Plant in Krakow. The tests were performed using a triaxial apparatus equipped with "bender" piezoelements. The samples subjected to these tests were taken from two boreholes, located in the area known as the "white seas", whose formation is the result of Solvay Plant activity throughout the 20th century. The location of the test holes was planned at the place in which a road known as the "Łagiewnicka route" was planned. Studies on soil stiffness were also conducted as part of the one of the dissertation from 2008 to 2010 in the Cracow University of Technology. The results of these tests and the results of the laboratory tests that are presented in the article will be used in the designing of a computer model. This model is intended to help in assessing the dynamic impact of motor vehicle traffic on the planned Łagiewnicka route on the structure of the existing buildings located in the former Solvay Plant.
ERIC Educational Resources Information Center
Schooler, Douglas L.; Anderson, Robert L.
1979-01-01
Analyzes preschoolers' scores on the Developmental Test of Visual Motor Integration (VMI), the Slosson Intelligence Test (SIT), and the ABC Inventory (ABCI). Separate ANOVAs reveal no race effect on the VMI. Race differences favoring Whites are found for SIT and ABCI. There were no effects for sex on any measure. (Author)
ERIC Educational Resources Information Center
Vogel, Susan A.
1990-01-01
Among conclusions of the review of the literature are that learning-disabled (LD) females have lower IQ's and more severe academic achievement deficits in some aspects of reading and math, but are somewhat better in visual-motor abilities, spelling, and written language mechanics than LD males. (Author/DB)
ERIC Educational Resources Information Center
Taha, Mohamed Mostafa
2016-01-01
This study aimed to test a proposed structural model of the relationships and existing paths among cognitive processes (attention and planning), visual motor integration, and academic achievement in reading, writing, and mathematics. The study sample consisted of 50 students with mild intellectual disability or MID. The average age of these…
ERIC Educational Resources Information Center
Carmichael, Karla Delle
The Developmental Indicators for the Assessment of Learning-Revised (Dial-R) Test, the Peabody Picture Vocabulary Test (PPVT), and the Motor-Free Visual Perception Test (MFVPT) were used for kindergarten screening in three rural schools in Texas. Teachers in the schools requested a handbook that would help them interpret test scores and plan…
ERIC Educational Resources Information Center
Behrmann, Polly; Millman, Joan
The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…
ERIC Educational Resources Information Center
Lahav, Orit; Apter, Alan; Ratzon, Navah Z.
2013-01-01
This study evaluates how much the effects of intervention programs are influenced by pre-existing psychological adjustment and self-esteem levels in kindergarten and first grade children with poor visual-motor integration skills, from low socioeconomic backgrounds. One hundred and sixteen mainstream kindergarten and first-grade children, from low…
ERIC Educational Resources Information Center
Sutton, Griffin P.; Barchard, Kimberly A.; Bello, Danielle T.; Thaler, Nicholas S.; Ringdahl, Erik; Mayfield, Joan; Allen, Daniel N.
2011-01-01
Evaluation of visuoconstructional abilities is a common part of clinical neuropsychological assessment, and the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI; K. E. Beery & N. A. Beery, 2004) is often used for this purpose. However, few studies have examined its psychometric properties when used to assess children and…
NASA Astrophysics Data System (ADS)
Daly, Ian; Blanchard, Caroline; Holmes, Nicholas P.
2018-04-01
Objective. Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach. We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results. We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance. Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD.
Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred
2012-01-01
Background Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Results Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Conclusions Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems. PMID:22844499
Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred
2012-01-01
Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.
Visual and skill effects on soccer passing performance, kinematics, and outcome estimations
Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul
2015-01-01
The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886
Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray
2014-11-01
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.
46 CFR 108.187 - Ventilation for brush type electric motors in classified spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for brush type electric motors in classified... Ventilation for brush type electric motors in classified spaces. Ventilation for brush type electric motors in... Electrical Equipment in Hazardous Locations”, except audible and visual alarms may be used if shutting down...
Dissociable contributions of motor-execution and action-observation to intramanual transfer.
Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J
2012-09-01
We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA).
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-01-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching–grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. PMID:27733538
Functional handwriting performance in school-age children with fetal alcohol spectrum disorders.
Duval-White, Cherie J; Jirikowic, Tracy; Rios, Dianne; Deitz, Jean; Olson, Heather Carmichael
2013-01-01
Handwriting is a critical skill for school success. Children with fetal alcohol spectrum disorders (FASD) often present with fine motor and visual-motor impairments that can affect handwriting performance, yet handwriting skills have not been systematically investigated in this clinical group. This study aimed to comprehensively describe handwriting skills in 20 school-age children with FASD. Children were tested with the Process Assessment of the Learner, 2nd Edition (PAL-II), and the Visuomotor Precision subtest of NEPSY, a developmental neuropsychological assessment. Participants performed below average on PAL-II measures of handwriting legibility and speed and on NEPSY visual-motor precision tasks. In contrast, PAL-II measures of sensorimotor skills were broadly within the average range. Results provide evidence of functional handwriting challenges for children with FASD and suggest diminished visual-motor skills and increased difficulty as task complexity increases. Future research is needed to further describe the prevalence and nature of handwriting challenges in this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.
Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J
2013-07-01
To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.
View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid
Dawood, Farhan; Loo, Chu Kiong
2016-01-01
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923
View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.
Dawood, Farhan; Loo, Chu Kiong
2016-01-01
Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator
NASA Astrophysics Data System (ADS)
Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi
Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.
Visual cues that are effective for contextual saccade adaptation
Azadi, Reza
2014-01-01
The accuracy of saccades, as maintained by saccade adaptation, has been shown to be context dependent: able to have different amplitude movements to the same retinal displacement dependent on motor contexts such as orbital starting location. There is conflicting evidence as to whether purely visual cues also effect contextual saccade adaptation and, if so, what function this might serve. We tested what visual cues might evoke contextual adaptation. Over 5 experiments, 78 naive subjects made saccades to circularly moving targets, which stepped outward or inward during the saccade depending on target movement direction, speed, or color and shape. To test if the movement or context postsaccade were critical, we stopped the postsaccade target motion (experiment 4) or neutralized the contexts by equating postsaccade target speed to an intermediate value (experiment 5). We found contextual adaptation in all conditions except those defined by color and shape. We conclude that some, but not all, visual cues before the saccade are sufficient for contextual adaptation. We conjecture that this visual contextuality functions to allow for different motor states for different coordinated movement patterns, such as coordinated saccade and pursuit motor planning. PMID:24647429
Liu, Anli; Werner, Kelly; Roy, Subhojit; Trojanowski, John Q.; Morgan-Kane, Ursula; Miller, Bruce L.; Rankin, Katherine P.
2009-01-01
Patients with presenting with left-sided FTLD syndromes sometimes develop a new preoccupation with art, greater attention to visual stimuli, and increased visual creativity. We describe the case of a 53-year-old, right-handed man with a history of bipolar disorder who presented with language and behavior impairments characteristic of FTLD, then developed motor symptoms consistent with a second diagnosis of amyotrophic lateral sclerosis. Though the patient had never created visual art before, he developed a compulsion for painting beginning at the earliest stages of his disease, and continued producing art daily until he could no longer lift a paintbrush because of his motor deficits. Upon autopsy, he was found to have ubiquitin and TDP43-positive inclusions with MND pathology. This case study details the patient’s longitudinal neuropsychological, emotional, behavioral, and motor symptoms, along with structural imaging, neurologic, and neuropathologic findings. Multiple examples of the patient’s art are depicted throughout all stages of his illness, and the possible cognitive, behavioral, and neurologic correlates of his new-onset visual artistry are discussed. PMID:19274573
Visual guidance in control of grasping.
Janssen, Peter; Scherberger, Hansjörg
2015-07-08
Humans and other primates possess a unique capacity to grasp and manipulate objects skillfully, a facility pervasive in everyday life that has undoubtedly contributed to the success of our species. When we reach and grasp an object, various cortical areas in the parietal and frontal lobes work together effortlessly to analyze object shape and position, transform this visual information into useful motor commands, and implement these motor representations to preshape the hand before contact with the object is made. In recent years, a growing number of studies have investigated the neural circuits underlying object grasping in both the visual and motor systems of the macaque monkey. The accumulated knowledge not only helps researchers understand how object grasping is implemented in the primate brain but may also contribute to the development of novel neural interfaces and neuroprosthetics.
Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi
2015-05-01
Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Emerging Technologies in Aircraft Crashworthiness
1999-05-01
is both lightweight and accommodates the expanding occupant range. Solutions such as EA’s with variable-thickness wire-benders, multiple-stage wire ... bending mechanisms, and energy-absorbing foams have been developed. Another focus will be on restraint-system integration that is designed for a
ERIC Educational Resources Information Center
Hencey, Robert
1981-01-01
Considers the methodology, findings, and conclusions of three studies conducted by Stephen Epler, Louis Bender, and James Perkins, which evaluated the Junior College Leadership Program. The project was funded from 1959 through 1974 to establish university programs for the preparation of two-year college administrators. (DML)
Special Libraries Division. Papers.
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
In "How Special Libraries Use Networks," a paper presented at the 1982 International Federation of Library Associations (IFLA) conference, David R. Bender (United States) advocates cooperation among academic, public, school, and special libraries in the areas of information management, staff services, and acquisition of technology. He…
Marino, Robert A; Levy, Ron; Munoz, Douglas P
2015-08-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. Copyright © 2015 the American Physiological Society.
Levy, Ron; Munoz, Douglas P.
2015-01-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. PMID:26063770
Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.
Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A
2007-06-01
We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine
2017-01-01
The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024
Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.
Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs
NASA Astrophysics Data System (ADS)
Vos, Roelof; Barrett, Ron; de Breuker, Roeland; Tiso, Paolo
2007-06-01
This paper describes how post-buckled precompressed (PBP) piezoelectric bender actuators are employed in a deformable wing structure to manipulate its camber distribution and thereby induce roll control on a subscale UAV. By applying axial compression to piezoelectric bimorph bender actuators, significantly higher deflections can be achieved than for conventional piezoelectric bender actuators. Classical laminated plate theory is shown to capture the behavior of the unloaded elements. A Newtonian deflection model employing nonlinear structural relations is demonstrated to predict the behavior of the PBP elements accurately. A proof of concept 100 mm (3.94'') span wing employing two outboard PBP actuator sets and a highly compliant latex skin was fabricated. Bench tests showed that, with a wing chord of 145 mm (5.8'') and an axial compression of 70.7 gmf mm-1, deflection levels increased by more than a factor of 2 to 15.25° peak-to-peak, with a corner frequency of 34 Hz (an order of magnitude higher than conventional subscale servoactuators). A 1.4 m span subscale UAV was equipped with two PBP morphing panels at the outboard stations, each measuring 230 mm (9.1'') in span. Flight testing was carried out, showing a 38% increase in roll control authority and 3.7 times greater control derivatives compared to conventional ailerons. The solid state PBP actuator in the morphing wing reduced the part count from 56 down to only 6, with respect to a conventional servoactuated aileron wing. Furthermore, power was reduced from 24 W to 100 mW, current draw was cut from 5 A to 1.4 mA, and the actuator weight increment dropped dramatically from 59 g down to 3 g.
ERIC Educational Resources Information Center
Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu
2009-01-01
The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…
2017-10-01
networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4 For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in
ERIC Educational Resources Information Center
Houwen, Suzanne; Hartman, Esther; Visscher, Chris
2010-01-01
This study compares the motor skills and physical fitness of school-age children (6-12 years) with visual impairments (VI; n = 60) and sighted children (n = 60). The relationships between the performance parameters and the children's body composition are investigated as well as the role of the severity of the impairment. The degree of VI did not…
ERIC Educational Resources Information Center
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2016-01-01
Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…
Automatic motor activation in the executive control of action
McBride, Jennifer; Boy, Frédéric; Husain, Masud; Sumner, Petroc
2012-01-01
Although executive control and automatic behavior have often been considered separate and distinct processes, there is strong emerging and convergent evidence that they may in fact be intricately interlinked. In this review, we draw together evidence showing that visual stimuli cause automatic and unconscious motor activation, and how this in turn has implications for executive control. We discuss object affordances, alien limb syndrome, the visual grasp reflex, subliminal priming, and subliminal triggering of attentional orienting. Consideration of these findings suggests automatic motor activation might form an intrinsic part of all behavior, rather than being categorically different from voluntary actions. PMID:22536177
ERIC Educational Resources Information Center
Schneekloth, Lynda H.; Day, Diane
The study compared the motor activities and environmental interactions of 36 sighted, partially sighted, and blind children (7 to 13 years old) during unstructured play. Objectives were to assess motor proficiency level; to establish frequency and kind of gross motor, manipulative self stimulation, and social/play behaviors; and to assess use of…
Moving to higher ground: The dynamic field theory and the dynamics of visual cognition
Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor
2009-01-01
In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013
Motor performance in children with Noonan syndrome.
Croonen, Ellen A; Essink, Marlou; van der Burgt, Ineke; Draaisma, Jos M; Noordam, Cees; Nijhuis-van der Sanden, Maria W G
2017-09-01
Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen using valid norm-referenced tests. The study assessed motor performance in 19 children with Noonan syndrome (12 females, mean age 9 years 4 months, range 6 years 1 month to 11 years and 11 months, SDS 1 year and 11 months). More than 60% of the parents of the children reported pain, decreased muscle strength, reduced endurance, and/or clumsiness in daily functioning. The mean standard scores on the Visual Motor Integration (VMI) test and Movement Assessment Battery for Children 2, Dutch version (MABC-2-NL) items differed significantly from the reference scores. Grip strength, muscle force, and 6 min Walking Test (6 MWT) walking distance were significantly lower, and the presence of generalized hypermobility was significantly higher. All MABC-2-NL scores (except manual dexterity) correlated significantly with almost all muscle strength tests, VMI total score, and VMI visual perception score. The 6 MWT was only significantly correlated to grip strength. This is the first study that confirms that motor performance, strength, and endurance are significantly impaired in children with Noonan syndrome. Decreased functional motor performance seems to be related to decreased visual perception and reduced muscle strength. Research on causal relationships and the effectiveness of interventions is needed. Physical and/or occupational therapy guidance should be considered to enhance participation in daily life. © 2017 Wiley Periodicals, Inc.
Brain representations for acquiring and recalling visual-motor adaptations
Bédard, Patrick; Sanes, Jerome N.
2014-01-01
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676
Dingwall, Kylie M; Maruff, Paul; Cairney, Sheree
2011-08-01
The cognitive impairment and recovery associated with chronic alcohol abuse and subsequent abstinence is well understood. However, the recovery profile following heavy episodic or 'binge' use, which is common among some Australian Aboriginal users, has not been investigated thoroughly and no empirical studies have examined chronic use in this population. The aim of this study was to identify and compare cognitive impairment and recovery associated with chronic and episodic alcohol use among Aboriginal Australians. Longitudinal case-control design. Residential alcohol treatment programmes in northern Australia. Forty chronic alcohol users, 24 episodic users and 41 healthy controls [mean age = 34.24; standard deviation (SD) = 9.73]. Cognitive assessments of visual motor, attention, memory, learning and executive functions at baseline (start of treatment), then 4 weeks and 8 weeks later. Reassessment of 31% of participants an average of 11 months later (SD = 4.4) comparing those who remained abstinent (n = 5), those who relapsed (n = 11) and healthy controls (n = 19). At baseline, chronic and episodic alcohol users showed impaired visual motor, learning, memory and executive functions. With the exception of visual motor impairment, all deficits had improved to normal levels within 4 weeks. Visual motor deficits had normalized within 11 months. Performances did not differ at any time between chronic and episodic alcohol groups. In Aboriginal Australians, episodic drinking is associated with similar patterns of impairment and recovery as chronic alcohol use. Most cognitive deficits appear to recover within the first month of abstinence, while persisting visual motor problems recover within 1 year. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly
2016-12-01
The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p < .05, β = .27) in the spring of the preschool year after controlling for age, gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p < .05, β = .40), more cooperation (B = 0.02 [0.01], p < .05, β = .28), and less externalizing/hyperactivity (B = - 0.02 [0.01], p < .05, β = - .28) after controlling for social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.
Sakurada, Takeshi; Nakajima, Takeshi; Morita, Mitsuya; Hirai, Masahiro; Watanabe, Eiju
2017-01-01
It is believed that motor performance improves when individuals direct attention to movement outcome (external focus, EF) rather than to body movement itself (internal focus, IF). However, our previous study found that an optimal individual attentional strategy depended on motor imagery ability. We explored whether the individual motor imagery ability in stroke patients also affected the optimal attentional strategy for motor control. Individual motor imagery ability was determined as either kinesthetic- or visual-dominant by a questionnaire in 28 patients and 28 healthy-controls. Participants then performed a visuomotor task that required tracing a trajectory under three attentional conditions: no instruction (NI), attention to hand movement (IF), or attention to cursor movement (EF). Movement error in the stroke group strongly depended on individual modality dominance of motor imagery. Patients with kinesthetic dominance showed higher motor accuracy under the IF condition but with concomitantly lower velocity. Alternatively, patients with visual dominance showed improvements in both speed and accuracy under the EF condition. These results suggest that the optimal attentional strategy for improving motor accuracy in stroke rehabilitation differs according to the individual dominance of motor imagery. Our findings may contribute to the development of tailor-made pre-assessment and rehabilitation programs optimized for individual cognitive abilities. PMID:28094320
Code of Federal Regulations, 2013 CFR
2013-10-01
..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...
LIGHT UTILIZATION AND PHOTOINHIBITION OF PHOTOSYNTHESIS IN MARINE PHYTOPLANKTON
Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 x 10 9 years ago in the form of marine single-celled, planktonic prokaryotes (Riding, 1992; Sarmiento and Bender, 1994) (planktonic was derived from the Greek plan...
ERIC Educational Resources Information Center
Rumble, Greville, Ed.; Oliveira, Joao, Ed.
This book contains the following papers on distance vocational education programs: "Vocational Education at a Distance" (Oliveira, Rumble); "An Introduction to Case Studies" (Oliveira, Rumble); "'Working on Work': Orientation on Work and the Labour Market in the Netherlands" (Bender, Bronkhorst); "Expanding…
Investigations in Science Education. Volume 11, Number 4.
ERIC Educational Resources Information Center
Blosser, Patricia E., Ed.; Helgeson, Stanley L., Ed.
1985-01-01
Presented are abstracts and abstractors' analyses of four studies dealing with cognitive development, four studies dealing with attitudes, and two studies dealing with problem-solving. The cognitive development studies are: "College Chemistry and Piaget: The Relationship of Aptitude and Achievement Measures" (David Bender and Louis…
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units
Sanchez, Gabriel N.; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L.; Schnitzer, Mark J.
2017-01-01
SUMMARY Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle’s contractile units. Despite the motor unit’s centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. PMID:26687220
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.
Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J
2015-12-16
Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of the posterior parietal cortex in updating reaching movements to a visual target.
Desmurget, M; Epstein, C M; Turner, R S; Prablanc, C; Alexander, G E; Grafton, S T
1999-06-01
The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.
Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.
Kast, Volker; Leukel, Christian
2016-01-01
Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.
Do Visual Illusions Probe the Visual Brain?: Illusions in Action without a Dorsal Visual Stream
ERIC Educational Resources Information Center
Coello, Yann; Danckert, James; Blangero, Annabelle; Rossetti, Yves
2007-01-01
Visual illusions have been shown to affect perceptual judgements more so than motor behaviour, which was interpreted as evidence for a functional division of labour within the visual system. The dominant perception-action theory argues that perception involves a holistic processing of visual objects or scenes, performed within the ventral,…
Warabi, Tateo; Furuyama, Hiroyasu; Sugai, Eri; Kato, Masamichi; Yanagisawa, Nobuo
2018-01-01
This study examined how gait bradykinesia is changed by the motor programming in Parkinson's disease. Thirty-five idiopathic Parkinson's disease patients and nine age-matched healthy subjects participated in this study. After the patients fixated on a visual-fixation target (conditioning-stimulus), the voluntary-gait was triggered by a visual on-stimulus. While the subject walked on a level floor, soleus, tibialis anterior EMG latencies, and the y-axis-vector of the sole-floor reaction force were examined. Three paradigms were used to distinguish between the off-/on-latencies. The gap-task: the visual-fixation target was turned off; 200 ms before the on-stimulus was engaged (resulting in a 200 ms-gap). EMG latency was not influenced by the visual-fixation target. The overlap-task: the on-stimulus was turned on during the visual-fixation target presentation (200 ms-overlap). The no-gap-task: the fixation target was turned off and the on-stimulus was turned on simultaneously. The onset of EMG pause following the tonic soleus EMG was defined as the off-latency of posture (termination). The onset of the tibialis anterior EMG burst was defined as the on-latency of gait (initiation). In the gap-task, the on-latency was unchanged in all of the subjects. In Parkinson's disease, the visual-fixation target prolonged both the off-/on-latencies in the overlap-task. In all tasks, the off-latency was prolonged and the off-/on-latencies were unsynchronized, which changed the synergic movement to a slow, short-step-gait. The synergy of gait was regulated by two independent sensory-motor programs of the off- and on-latency levels. In Parkinson's disease, the delayed gait initiation was due to the difficulty in terminating the sensory-motor program which controls the subject's fixation. The dynamic gait bradykinesia was involved in the difficulty (long off-latency) in terminating the motor program of the prior posture/movement.
The effect of haptic guidance and visual feedback on learning a complex tennis task.
Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert
2013-11-01
While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.
Trivedi, Chintan A; Bollmann, Johann H
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.
Children with Heavy Prenatal Alcohol Exposure Experience Reduced Control of Isotonic Force
Nguyen, Tanya T.; Levy, Susan S.; Riley, Edward P.; Thomas, Jennifer D.; Simmons, Roger W.
2013-01-01
Background Heavy prenatal alcohol exposure can result in diverse and extensive damage to the central nervous system, including the cerebellum, basal ganglia, and cerebral cortex. Given that these brain regions are involved in the generation and maintenance of motor force, we predicted that prenatal alcohol exposure would adversely affect this parameter of motor control. We previously reported that children with gestational alcohol exposure experience significant deficits in regulating isometric (i.e., constant) force. The purpose of the present study was to determine if these children exhibit similar deficits when producing isotonic (i.e., graded) force. Methods Children with heavy prenatal alcohol exposure and typically developing children completed a series of isotonic force contractions by exerting force on a load cell to match a criterion target force displayed on a computer monitor. Two levels of target force (5% or 20% of maximum voluntary force) were investigated in combination with varying levels of visual feedback. Results Compared to controls, children with heavy prenatal alcohol exposure generated isotonic force signals that were less accurate, more variable, and less complex in the time domain compared to control children. Specifically, interactions were found between group and visual feedback for response accuracy and signal complexity, suggesting that these children have greater difficulty altering their motor output when visual feedback is low. Conclusions These data suggest that prenatal alcohol exposure produces deficits in regulating isotonic force, which presumably result from alcohol-related damage to developing brain regions involved in motor control. These children will most likely experience difficulty performing basic motor skills and daily functional skills that require coordination of finely graded force. Therapeutic strategies designed to increase feedback and, consequently, facilitate visual-motor integration could improve isotonic force production in these children. PMID:22834891
Willford, Jennifer A.; Chandler, Lynette S.; Goldschmidt, Lidush; Day, Nancy L.
2010-01-01
Deficits in motor control are often reported in children with prenatal alcohol exposure (PAE). Less is known about the effects of prenatal tobacco exposure (PTE) and prenatal marijuana exposure (PME) on motor coordination, and previous studies have not considered whether PTE, PAE, and PME interact to affect motor control. This study investigated the effects of PTE, PAE, and PME as well as current drug use on speed of processing, visual-motor coordination, and interhemispheric transfer in 16-year-old adolescents. Data were collected as part of the Maternal Health Practices and Child Development Project. Adolescents (age 16, n=320) participating in a longitudinal study of the effects of prenatal substance exposure on developmental outcomes were evaluated in this study. The computerized Bimanual Coordination Test (BCT) was used to assess each domain of function. Other important variables, such as demographics, home environment, and psychological characteristics of the mother and adolescent were also considered in the analyses. There were significant and independent effects of PTE, PAE, and PME on processing speed and interhemispheric transfer of information. PTEand PME were associated with deficits in visual motor coordination. There were no interactions between PAE, PTE, and PME. Current tobacco use predicted deficits in speed of processing. Current alcohol and marijuana use by the offspring were not associated with any measures of performance on the BCT. PMID:20600845
Handwriting Development, Competency, and Intervention
ERIC Educational Resources Information Center
Feder, Katya P.; Majnemer, Annette
2007-01-01
Failure to attain handwriting competency during the school-age years often has far-reaching negative effects on both academic success and self-esteem. This complex occupational task has many underlying component skills that may interfere with handwriting performance. Fine motor control, bilateral and visual-motor integration, motor planning,…
46 CFR 154.1010 - Electrical equipment in gas-dangerous space or zone.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (c) A submerged cargo pump motor may be in a cargo tank if: (1) Low liquid level, motor current, or pump discharge pressure automatically shuts down power to the pump motor if the pump loses suction; (2) There is an audible and visual alarm at the cargo control station that actuates if the motor shuts down...
46 CFR 154.1010 - Electrical equipment in gas-dangerous space or zone.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (c) A submerged cargo pump motor may be in a cargo tank if: (1) Low liquid level, motor current, or pump discharge pressure automatically shuts down power to the pump motor if the pump loses suction; (2) There is an audible and visual alarm at the cargo control station that actuates if the motor shuts down...
Bucci, Maria Pia; Nassibi, Naziha; Gerard, Christophe-Loic; Bui-Quoc, Emmanuel; Seassau, Magali
2012-01-01
Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT®, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement's patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction. PMID:22438934
Development of an Age Band on the ManuVis for 3-Year-Old Children with Visual Impairments.
Reimer, A M; Barsingerhorn, A D; Overvelde, A; Nijhuis-Van der Sanden, M W G; Boonstra, F N; Cox, R F A
2017-08-01
To compare fine motor performance of 3-year-old children with visual impairment with peers having normal vision, to provide reference scores for 3-year-old children with visual impairment on the ManuVis, and to assess inter-rater reliability. 26 children with visual impairment (mean age: 3 years 7 months (SD 3 months); 17 boys) and 28 children with normal vision (mean age: 3 years 7 months (SD 4 months); 14 boys) participated in the study. The ManuVis age band for 3-year-old children comprised two one-handed tasks, two two-handed tasks, and a pre-writing task. Children with visual impairment needed more time on all tasks (p < .01) and performed the pre-writing task less accurately than children with normal vision (p < .001). Children aged 42-47 months performed significantly faster on two tasks and had better total scores than children aged 36-41 months (p < .05). Inter-rater reliability was excellent (Intra-class Correlation Coefficient = 0.96-0.99). The ManuVis age band for 3-year-old children is appropriate to assess fine motor skills, and is sensitive to differences between children with visual impairment and normal vision and between half-year age groups. Reference scores are provided for 3-year-old children with visual impairment to identify delayed fine motor development.
Caruso, Valeria C; Pages, Daniel S; Sommer, Marc A; Groh, Jennifer M
2016-06-01
Saccadic eye movements can be elicited by more than one type of sensory stimulus. This implies substantial transformations of signals originating in different sense organs as they reach a common motor output pathway. In this study, we compared the prevalence and magnitude of auditory- and visually evoked activity in a structure implicated in oculomotor processing, the primate frontal eye fields (FEF). We recorded from 324 single neurons while 2 monkeys performed delayed saccades to visual or auditory targets. We found that 64% of FEF neurons were active on presentation of auditory targets and 87% were active during auditory-guided saccades, compared with 75 and 84% for visual targets and saccades. As saccade onset approached, the average level of population activity in the FEF became indistinguishable on visual and auditory trials. FEF activity was better correlated with the movement vector than with the target location for both modalities. In summary, the large proportion of auditory-responsive neurons in the FEF, the similarity between visual and auditory activity levels at the time of the saccade, and the strong correlation between the activity and the saccade vector suggest that auditory signals undergo tailoring to match roughly the strength of visual signals present in the FEF, facilitating accessing of a common motor output pathway. Copyright © 2016 the American Physiological Society.
Parkington, Karisa B; Clements, Rebecca J; Landry, Oriane; Chouinard, Philippe A
2015-10-01
We examined how performance on an associative learning task changes in a sample of undergraduate students as a function of their autism-spectrum quotient (AQ) score. The participants, without any prior knowledge of the Japanese language, learned to associate hiragana characters with button responses. In the novel condition, 50 participants learned visual-motor associations without any prior exposure to the stimuli's visual attributes. In the familiar condition, a different set of 50 participants completed a session in which they first became familiar with the stimuli's visual appearance prior to completing the visual-motor association learning task. Participants with higher AQ scores had a clear advantage in the novel condition; the amount of training required reaching learning criterion correlated negatively with AQ. In contrast, participants with lower AQ scores had a clear advantage in the familiar condition; the amount of training required to reach learning criterion correlated positively with AQ. An examination of how each of the AQ subscales correlated with these learning patterns revealed that abilities in visual discrimination-which is known to depend on the visual ventral-stream system-may have afforded an advantage in the novel condition for the participants with the higher AQ scores, whereas abilities in attention switching-which are known to require mechanisms in the prefrontal cortex-may have afforded an advantage in the familiar condition for the participants with the lower AQ scores.
McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M
2017-10-01
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.
Assessment in School Psychology Training and Practice.
ERIC Educational Resources Information Center
Wilson, Marilyn S.; Reschly, Daniel J.
1996-01-01
Examines the empirical analysis of assessment instruments currently used by school psychologists. Wechsler Intelligence Scales, Bender-Gestalt, and Draw-A-Person are the instruments most often used by the 251 practitioners surveyed. Data found a strong relationship between training and practice. Discusses the effectiveness of current measures used…
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Inhibitory control differentiates rare target search performance in children.
Li, Hongting; Chan, John S Y; Cheung, Sui-Yin; Yan, Jin H
2012-02-01
Age-related differences in rare-target search are primarily explained by the speed-accuracy trade-off, primed responses, or decision making. The goal was to examine how motor inhibition influences visual search. Children pressed a key when a rare target was detected. On no-target trials, children withheld reactions. Response time (RT), hits, misses, correct rejection, and false alarms were measured. Tapping tests assessed motor control. Older children tapped faster, were more sensitive to rare targets (higher d'), and reacted more slowly than younger ones. Girls outperformed boys in search sensitivity but not in RT. Motor speed was closely associated with hit rate and RT. Results suggest that development of inhibitory control plays a key role in visual detection. The potential implications for cognitive-motor development and individual differences are discussed.
Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease.
Memedi, Mevludin; Sadikov, Aleksander; Groznik, Vida; Žabkar, Jure; Možina, Martin; Bergquist, Filip; Johansson, Anders; Haubenberger, Dietrich; Nyholm, Dag
2015-09-17
A challenge for the clinical management of advanced Parkinson's disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Brossard-Racine, Marie; Shevell, Michael; Snider, Laurie; Bélanger, Stacey Ageranioti; Majnemer, Annette
2012-01-01
Motor difficulties are common in children with Attention Deficit Hyperactivity Disorder (ADHD). Although preliminary evidence has suggested that methylphenidate can improve the motor skills in children with ADHD and Developmental Coordination Disorder (DCD), the effect of stimulant medication on motor performance in children newly diagnosed with ADHD with or without motor impairment remains unclear. A cohort study of 49 medication-naïve children (39 male; mean age 8.4±1.3 years) with ADHD was conducted. Children were evaluated using the Movement Assessment Battery for Children and the developmental test of visual motor integration at diagnosis and again three months following daily treatment with a stimulant medication. Motor difficulties were highly present at baseline (73.5%) but resolved in a subset after treatment with stimulant medication, suggesting that their motor difficulties may be attributed in part to their attentional problems. Nevertheless, motor impairment persisted in 55.1% of the sample. The severity of the behavioural symptoms was significantly associated with balance skills in children without motor impairments (r(2)=0.30, p<0.01) and with visual motor integration skills in children with persisting motor difficulties (r(2)=0.27, p<0.01). Attentional difficulties negatively affect the motor skills of children with ADHD. Following the use of stimulant medication, an important subset continued to demonstrate motor difficulties. The improvement in behaviour was insufficient to resolve motor problems and these children should therefore be targeted for rehabilitation services. Copyright © 2012 Elsevier Ltd. All rights reserved.
Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State
Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun
2014-01-01
Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577
Visual cues that are effective for contextual saccade adaptation.
Azadi, Reza; Harwood, Mark R
2014-06-01
The accuracy of saccades, as maintained by saccade adaptation, has been shown to be context dependent: able to have different amplitude movements to the same retinal displacement dependent on motor contexts such as orbital starting location. There is conflicting evidence as to whether purely visual cues also effect contextual saccade adaptation and, if so, what function this might serve. We tested what visual cues might evoke contextual adaptation. Over 5 experiments, 78 naive subjects made saccades to circularly moving targets, which stepped outward or inward during the saccade depending on target movement direction, speed, or color and shape. To test if the movement or context postsaccade were critical, we stopped the postsaccade target motion (experiment 4) or neutralized the contexts by equating postsaccade target speed to an intermediate value (experiment 5). We found contextual adaptation in all conditions except those defined by color and shape. We conclude that some, but not all, visual cues before the saccade are sufficient for contextual adaptation. We conjecture that this visual contextuality functions to allow for different motor states for different coordinated movement patterns, such as coordinated saccade and pursuit motor planning. Copyright © 2014 the American Physiological Society.
Figure-ground activity in V1 and guidance of saccadic eye movements.
Supèr, Hans
2006-01-01
Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.
Birkett, Emma E; Talcott, Joel B
2012-01-01
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks that are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty-one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico
2012-07-24
The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.
When writing impairs reading: letter perception's susceptibility to motor interference.
James, Karin H; Gauthier, Isabel
2009-08-01
The effect of writing on the concurrent visual perception of letters was investigated in a series of studies using an interference paradigm. Participants drew shapes and letters while simultaneously visually identifying letters and shapes embedded in noise. Experiments 1-3 demonstrated that letter perception, but not the perception of shapes, was affected by motor interference. This suggests a strong link between the perception of letters and the neural substrates engaged during writing. The overlap both in category (letter vs. shape) and in the perceptual similarity of the features (straight vs. curvy) of the seen and drawn items determined the amount of interference. Experiment 4 demonstrated that intentional production of letters is not necessary for the interference to occur, because passive movement of the hand in the shape of letters also interfered with letter perception. When passive movements were used, however, only the category of the drawn items (letters vs. shapes), but not the perceptual similarity, had an influence, suggesting that motor representations for letters may selectively influence visual perception of letters through proprioceptive feedback, with an additional influence of perceptual similarity that depends on motor programs.
Casellato, Claudia; Pedrocchi, Alessandra; Zorzi, Giovanna; Vernisse, Lea; Ferrigno, Giancarlo; Nardocci, Nardo
2013-05-01
New insights suggest that dystonic motor impairments could also involve a deficit of sensory processing. In this framework, biofeedback, making covert physiological processes more overt, could be useful. The present work proposes an innovative integrated setup which provides the user with an electromyogram (EMG)-based visual-haptic biofeedback during upper limb movements (spiral tracking tasks), to test if augmented sensory feedbacks can induce motor control improvement in patients with primary dystonia. The ad hoc developed real-time control algorithm synchronizes the haptic loop with the EMG reading; the brachioradialis EMG values were used to modify visual and haptic features of the interface: the higher was the EMG level, the higher was the virtual table friction and the background color proportionally moved from green to red. From recordings on dystonic and healthy subjects, statistical results showed that biofeedback has a significant impact, correlated with the local impairment, on the dystonic muscular control. These tests pointed out the effectiveness of biofeedback paradigms in gaining a better specific-muscle voluntary motor control. The flexible tool developed here shows promising prospects of clinical applications and sensorimotor rehabilitation.
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-12-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching-grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. © The Author 2016. Published by Oxford University Press.
Utilizing Oral-Motor Feedback in Auditory Conceptualization.
ERIC Educational Resources Information Center
Howard, Marilyn
The Auditory Discrimination in Depth (ADD) program, an oral-motor approach to beginning reading instruction, trains first grade children in auditory skills by a process in which language and oral-motor feedback are used to integrate auditory properties with visual properties. This emphasis of the ADD program makes the child's perceptual…
Analysing Simple Electric Motors in the Classroom
ERIC Educational Resources Information Center
Yap, Jeff; MacIsaac, Dan
2006-01-01
Electromagnetic phenomena and devices such as motors are typically unfamiliar to both teachers and students. To better visualize and illustrate the abstract concepts (such as magnetic fields) underlying electricity and magnetism, we suggest that students construct and analyse the operation of a simply constructed Johnson electric motor. In this…
Color discrimination errors associate with axial motor impairments in Parkinson's disease.
Bohnen, Nicolaas I; Haugen, Jacob; Ridder, Andrew; Kotagal, Vikas; Albin, Roger L; Frey, Kirk A; Müller, Martijn L T M
2017-01-01
Visual function deficits are more common in imbalance-predominant compared to tremor-predominant PD suggesting a pathophysiological role of impaired visual functions in axial motor impairments. To investigate the relationship between changes in color discrimination and motor impairments in PD while accounting for cognitive or other confounder factors. PD subjects (n=49, age 66.7±8.3 years; Hoehn & Yahr stage 2.6±0.6) completed color discrimination assessment using the Farnsworth-Munsell 100 Hue Color Vision Test, neuropsychological, motor assessments and [ 11 C]dihydrotetrabenazine vesicular monoamine transporter type 2 PET imaging. MDS-UPDRS sub-scores for cardinal motor features were computed. Timed up and go mobility and walking tests were assessed in 48 subjects. Bivariate correlation coefficients between color discrimination and motor variables were significant only for the Timed up and go (R S =0.44, P=0.0018) and the MDS-UPDRS axial motor scores (R S =0.38, P=0.0068). Multiple regression confounder analysis using the Timed up and go as outcome parameter showed a significant total model (F (5,43) = 7.3, P<0.0001) with significant regressor effects for color discrimination (standardized β=0.32, t=2.6, P=0.012), global cognitive Z-score (β=-0.33, t=-2.5, P=0.018), duration of disease (β=0.26, t=1.8, P=0.038), but not for age or striatal dopaminergic binding. The color discrimination test was also a significant independent regressor in the MDS-UPDRS axial motor model (standardized β=0.29, t=2.4, P=0.022; total model t (5,43) = 6.4, P=0.0002). Color discrimination errors associate with axial motor features in PD independent of cognitive deficits, nigrostriatal dopaminergic denervation, and other confounder variables. These findings may reflect shared pathophysiology between color discrimination visual impairments and axial motor burden in PD.
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Sufrinko, Alicia M; Marchetti, Gregory F; Cohen, Paul E; Elbin, R J; Re, Valentina; Kontos, Anthony P
2017-04-01
A sport-related concussion (SRC) is a heterogeneous injury that requires a multifaceted and comprehensive approach for diagnosis and management, including symptom reports, vestibular/ocular motor assessments, and neurocognitive testing. To determine which acute (eg, within 7 days) vestibular, ocular motor, neurocognitive, and symptom impairments predict the duration of recovery after an SRC. Cohort study (prognosis); Level of evidence, 2. Sixty-nine patients with a mean age of 15.3 ± 1.9 years completed a neurocognitive, vestibular/ocular motor, and symptom assessment within 7 days of a diagnosed concussion. Patients were grouped by recovery time: ≤14 days (n = 27, 39.1%), 15-29 days (n = 25, 36.2%), and 30-90 days (n = 17, 24.6%). Multinomial regression was used to identify the best subset of predictors associated with prolonged recovery relative to ≤14 days. Acute visual motor speed and cognitive-migraine-fatigue symptoms were associated with an increased likelihood of recovery times of 30-90 days and 15-29 days relative to a recovery time of ≤14 days. A model with visual motor speed and cognitive-migraine-fatigue symptoms within the first 7 days of an SRC was 87% accurate at identifying patients with a recovery time of 30-90 days. The current study identified cognitive-migraine-fatigue symptoms and visual motor speed as the most robust predictors of protracted recovery after an SRC according to the Post-concussion Symptom Scale, Immediate Post-concussion Assessment and Cognitive Testing, and Vestibular/Ocular Motor Screening (VOMS). While VOMS components were sensitive in identifying a concussion, they were not robust predictors for recovery. Clinicians may consider particular patterns of performance on clinical measures when providing treatment recommendations and discussing anticipated recovery with patients.
Spelling: Do the Eyes Have It?
ERIC Educational Resources Information Center
Westwood, Peter
2015-01-01
This paper explores the question of whether the ability to spell depends mainly on visual perception and visual imagery, or on other equally important auditory, cognitive, and motor processes. The writer examines the evidence suggesting that accurate spelling draws on a combination of visual processing, visual memory, phonological awareness,…
ERIC Educational Resources Information Center
Washington County Public Schools, Washington, PA.
Symptoms displayed by primary age children with learning disabilities are listed; perceptual handicaps are explained. Activities are suggested for developing visual perception and perception involving motor activities. Also suggested are activities to develop body concept, visual discrimination and attentiveness, visual memory, and figure ground…
Milazzo, Nicolas; Farrow, Damian; Fournier, Jean F
2016-08-01
This study investigated the effect of a 12-session, implicit perceptual-motor training program on decision-making skills and visual search behavior of highly skilled junior female karate fighters (M age = 15.7 years, SD = 1.2). Eighteen participants were required to make (physical or verbal) reaction decisions to various attacks within different fighting scenarios. Fighters' performance and eye movements were assessed before and after the intervention, and during acquisition through the use of video-based and on-mat decision-making tests. The video-based test revealed that following training, only the implicit perceptual-motor group (n = 6) improved their decision-making accuracy significantly compared to a matched motor training (placebo, n = 6) group and a control group (n = 6). Further, the implicit training group significantly changed their visual search behavior by focusing on fewer locations for longer durations. In addition, the session-by-session analysis showed no significant improvement in decision accuracy between training session 1 and all the other sessions, except the last one. Coaches should devote more practice time to implicit learning approaches during perceptual-motor training program to achieve significant decision-making improvements and more efficient visual search strategy with elite athletes. © The Author(s) 2016.
Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard
2010-11-01
In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Howe, Tsu-Hsin; Chen, Hao-Ling; Lee, Candy Chieh; Chen, Ying-Dar; Wang, Tien-Ni
2017-10-01
Visual perceptual motor skills have been proposed as underlying courses of handwriting difficulties. However, there is no evaluation tool currently available to assess these skills comprehensively and to serve as a sensitive measure. The purpose of this study was to validate the Computerized Perceptual Motor Skills Assessment (CPMSA), a newly developed evaluation tool for children in early elementary grades. Its test-retest reliability, concurrent validity, discriminant validity, and responsiveness were examined in 43 typically developing children and 26 children with handwriting difficulty. The CPMSA demonstrated excellent reliability across all subtests with intra-class correlation coefficients (ICCs)≥0.80. Significant moderate correlations between the domains of the CPMSA and corresponding gold standards including Beery VMI, the TVPS-3, and the eye-hand coordination subtest of the DTVP-2 demonstrated good concurrent validity. In addition, the CPMSA showed evidence of discriminant validity in samples of children with and without handwriting difficulty. This article provides evidence in support of the CPMSA. The CPMSA is a reliable, valid, and promising measure of visual perceptual motor skills for children in early elementary grades. Directions for future study and improvements to the assessment are discussed. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Allen, K. A.; Bredero, B.; Van Damme, T.; Ulrich, D. A.; Simons, J.
2017-01-01
The validity and reliability of the Test of Gross Motor Development-3 (TGMD-3) were measured, taking into consideration the preference for visual learning of children with autism spectrum disorder (ASD). The TGMD-3 was administered to 14 children with ASD (4-10 years) and 21 age-matched typically developing children under two conditions: TGMD-3…
ERIC Educational Resources Information Center
Emam, Mahmoud Mohamed; Kazem, Ali Mahdi
2016-01-01
Visual motor integration (VMI) is the ability of the eyes and hands to work together in smooth, efficient patterns. In Oman, there are few effective methods to assess VMI skills in children in inclusive settings. The current study investigated the performance of preschool and early school years responders and non-responders on a VMI test. The full…
ERIC Educational Resources Information Center
Ercan, Zülfiye Gül; Ahmetoglu, Emine; Aral, Neriman
2011-01-01
This study aims to define whether age creates any differences in the visual-motor integration skills of 60-72 months old children at low and high socio-economic status. The study was conducted on a total of 148 children consisting of 78 children representing low socio-economic status and 70 children representing high socio-economic status in the…
Kellenbach, Marion L; Wijers, Albertus A; Hovius, Marjolijn; Mulder, Juul; Mulder, Gijsbertus
2002-05-15
Event-related potentials (ERPs) were used to investigate whether processing differences between nouns and verbs can be accounted for by the differential salience of visual-perceptual and motor attributes in their semantic specifications. Three subclasses of nouns and verbs were selected, which differed in their semantic attribute composition (abstract, high visual, high visual and motor). Single visual word presentation with a recognition memory task was used. While multiple robust and parallel ERP effects were observed for both grammatical class and attribute type, there were no interactions between these. This pattern of effects provides support for lexical-semantic knowledge being organized in a manner that takes account both of category-based (grammatical class) and attribute-based distinctions.
Neural Correlates of Expert Visuomotor Performance in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2016-11-01
Elite/skilled athletes participating in sports that require the initiation of targeted movements in response to visual cues under critical time pressure typically outperform nonathletes in a visuomotor reaction task. However, the exact physiological mechanisms of this advantage remain unclear. Therefore, this study aimed to determine the neurophysiological processes contributing to superior visuomotor performance in athletes using visual evoked potential (VEP). Central and peripheral determinants of visuomotor reaction time were investigated in 15 skilled badminton players and 28 age-matched nonathletic controls. To determine the speed of visual signal perception in the cortex, chromatic and achromatic pattern reversal stimuli were presented, and VEP values were recorded with a 64-channel EEG system. Further, a simple visuomotor reaction task was performed to investigate the transformation of the visual into a motor signal in the brain as well as the timing of muscular activation. Amplitude and latency of VEP (N75, P100, and N145) revealed that the athletes did not significantly differ from the nonathletes. However, visuomotor reaction time was significantly reduced in the athletes compared with nonathletes (athletes = 234.9 ms, nonathletes = 260.3 ms, P = 0.015). This was accompanied by an earlier activation of the premotor and supplementary motor areas (athletes = 163.9 ms, nonathletes = 199.1 ms, P = 0.015) as well as an earlier EMG onset (athletes = 167.5 ms, nonathletes = 206.5 ms, P < 0.001). The latency of premotor and supplementary motor area activation was correlated with EMG onset (r = 0.41) and visuomotor reaction time (r = 0.43). The results of this study indicate that superior visuomotor performance in athletes originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather than from earlier perception of visual signals in the visual cortex.
Secondary School Experiences of Male Recovering Substance Abusers
ERIC Educational Resources Information Center
Maher, Rebecca C.
2012-01-01
Problem: Adolescents who begin abusing substances, including alcohol, prescription drugs, and illegal drugs often fail in school suffering life-altering consequences (Cox, Zhang, Johnson, & Bender, 2007). While plentiful research exists on substance abuse, there is a dearth of research on the school experiences of recovering substance abusers.…
ERIC Educational Resources Information Center
Bevin, Roy Q.; Raudebaugh, Robert A.
This book is based on an integrated approach to science and technology and targets middle schools students. Each unit includes a teacher's guide and eight science activities. Units include: (1) "The Mousetrap Car"; (2) "The CO2 Car"; and (3) "The Space Frame Vehicle". Supplemental materials consist of seven readings including: (1) "Brainstorming";…
Interrelationships of Psychopathology and Adience-Abience on the HABGT
ERIC Educational Resources Information Center
Hutt, Max L.; Miller, Lawrence J.
1976-01-01
Explores the interrelationships of two measures, based on the Hutt Adaptation of the Bender Gestalt Test (HABGT), of psychopathology and of perceptual adience-abience with two different populations: hospitalized schizoprenics and out patient psychotherapy patients. Schizophrenics were found to be higher in severity of psychopathology and lower in…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Regarding Eligibility To Apply for Worker Adjustment Assistance: Auburn Hills, MI Electronic Data Systems, a... Suppliers, Affiliated Computer Services, Inc., Apex Systems, Inc., ASA Solutions, Inc., Avaya, Inc., Bender... Systems, Educorp Training and Consulting, Inc., EMC Corp., Empirix, Inc., Fujitsu Computer Systems Corp...
Navy Virginia (SSN 774) Class Attack Submarine Procurement: Background and Issues for Congress
2016-04-14
programs before the Seapower subcommittee of the Senate Armed Services Committee, the following exchange occurred: SENATOR KELLY AYOTTE (continuing... Bryan Bender, “Navy Eyes Cutting Submarine Force,” Boston Globe, May 12, 2004, p. 1; Lolita C. Baldor, “Study Recommends Cutting Submarine Fleet
Research Staff | Chemistry and Nanoscience Research | NREL
Jeffrey Blackburn Jeffrey Blackburn Group Research Manager III-Materials Science Dr. Blackburn is a Senior Scientist and Group Manager at NREL, leading projects on a variety of fundamental and applied research -Electrical Engineering Guido.Bender@nrel.gov 303-275-3810 Blackburn, Jeffrey Group Research Manager III
A Defender-Attacker Optimization of Port Radar Surveillance
2011-01-01
security; optimization; attacker-defender “And thence discover how with most advantage They may vex us with shot, or with assault.” Shakespeare , KingHenryVI...ed., McGraw-Hill, New York, 1990. [23] H. von Stackelberg, The theory of the market economy, William Hodge, London, UK, 1952. [24] J. Benders
BOOK REVIEW: ARE YOU AN ADVOCATE, TACIT SUPPORTER, CRITICAL SKEPTIC, OR SILENT SKEPTIC?
"Silent Sperm," "You're not half the man your grandfather was," "Assault on the Male," "Gender Benders,"-perhaps no other public health concern has given rise to the number of memorable sound bites than has the issue of whether environmental contaminants are causing adverse healt...
Mouths Wide Shut: Gender-Quiet Teenage Males on Gender-Bending, Gender-Passing and Masculinities
ERIC Educational Resources Information Center
Davidson, Samuel M.
2009-01-01
Through individual narratives, three adolescent males of colour reflect on their fluid masculinities in relation to ethnicity, spirituality and sexuality. The self-described gender benders examine their complex relationships and hybrid identities, which cross the various boundaries of heteronormativity routinely legitimatised through peer norms…
Moreno-Granados, Josefa María; Ferrín, Maite; Salcedo-Marín, Dolores M; Ruiz-Veguilla, Miguel
2014-01-01
The importance of neuropsychological functioning in First-Episode Psychosis (FEP) has led to the publication of a growing number of studies in this area of research. The present study pursued three goals: First, to examine verbal and visual memory in a sample of Child and Adolescent FEP, second, to evaluate the effect of other cognitive domains on verbal and visual memory, and finally, to examine the relationship between performance in this cognitive dimension and the use of cannabis at this age. A sample of 41 FEPs and 39 healthy subjects were evaluated. The variables assessed were verbal and visual memory, attention, working memory, processing speed, mental flexibility, verbal fluency, motor coordination, planning ability and intelligence. Our results found impairment of short and long-term recall of verbal memory, and short-term visual memory in early psychosis. They also found relationships between cognitive dimensions, such as visual memory and intelligence and motor coordination. Finally, a «paradoxical» effect was found in patients who used cannabis, as the FEP consumers performed the visual memory test better than those who had not used it. Patients showed impairment of short and long-term recall of verbal information and short-term visual reproduction. In the second place, motor coordination and intelligence influenced short-term visual memory in patients in the early stages of the illness. Third, use of cannabis in patients with FEP was associated with better performance in the test that evaluated the short-term visual memory, as measured by task completion time, that is, efficiency in performing the test. However, when measured by task execution accuracy, their visual memory was no better than the controls. Copyright © 2012 SEP y SEPB. Published by Elsevier España. All rights reserved.
Gross motor skill performance in children with and without visual impairments--research to practice.
Wagner, Matthias O; Haibach, Pamela S; Lieberman, Lauren J
2013-10-01
The aim of this study was to provide an empirical basis for teaching gross motor skills in children with visual impairments. For this purpose, gross motor skill performance of 23, 6-12 year old, boys and girls who are blind (ICD-10 H54.0) and 28 sighted controls with comparable age and gender characteristics was compared on six locomotor and six object control tasks using the Test of Gross Motor Development-Second Edition. Results indicate that children who are blind perform significantly (p<.05) worse in all assessed locomotor and object control skills, whereby running, leaping, kicking and catching are the most affected skills, and corresponding differences are related to most running, leaping, kicking and catching component. Practical implications are provided. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.
Tosoni, Annalisa; Guidotti, Roberto; Del Gratta, Cosimo; Committeri, Giorgia; Sestieri, Carlo
2016-12-01
The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations. Copyright © 2016. Published by Elsevier Ltd.
Variable practice with lenses improves visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.
2001-01-01
Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.
Kumar, Mukesh; Modi, Shilpi; Rana, Poonam; Kumar, Pawan; Kanwar, Ratnesh; Sekhri, Tarun; D'souza, Maria; Khushu, Subash
2018-03-05
Subclinical hypothyroidism (SCH) is characterized by mild elevation of thyroid stimulating hormone (TSH) (range 5-10 μIU/ml) and normal free triiodothyronine (FT3) and free thyroxine (FT4). The cognitive function impairment is well known in thyroid disorders such as hypothyroidism and hyperthyroidism, but little is known about deficits in brain functions in SCH subjects. Also, whether hormone-replacement treatment is necessary or not in SCH subjects is still debatable. In order to have an insight into the cognition of SCH subjects, intrinsic and extrinsic functional connectivity (FC) of the resting state networks (RSNs) was studied. For resting state data analysis we used an unbiased, data-driven approach based on Independent Component Analysis (ICA) and dual-regression that can emphasize widespread changes in FC without restricting to a set of predefined seeds. 28 SCH subjects and 28 matched healthy controls (HC) participated in the study. RSN analysis showed significantly decreased intrinsic FC in somato-motor network (SMN) and right fronto-parietal attention network (RAN) and increased intrinsic FC in default mode network (DMN) in SCH subjects as compared to control subjects. The reduced intrinsic FC in the SMN and RAN suggests neuro-cognitive alterations in SCH subjects in the corresponding functions which were also evident from the deficit in the neuropsychological performance of the SCH subjects on behavioural tests such as digit span, delayed recall, visual retention, recognition, Bender Gestalt and Mini-Mental State Examination (MMSE). We also found a significant reduction in extrinsic network FC between DMN and RAN; SMN and posterior default mode network (PDMN); and increased extrinsic FC between SMN and anterior default mode network (ADMN) in SCH subjects as compared to controls. An altered extrinsic FC in SCH suggests functional reorganization in response to neurological disruption. The partial correlation analysis between intrinsic and extrinsic RSNs FC and neuropsychological performances as well as clinical indices give interesting insights into brain-behavior relationship in SCH subjects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Limitations of the Neurological Evolutional Exam (ENE) as a motor assessment for first graders.
Caçola, Priscila M; Bobbio, Tatiana G; Arias, Amabile V; Gonçalves, Vanda G; Gabbard, Carl
2010-01-01
many clinicians and researchers in Brazil consider the Neurological Developmental Exam (NDE), a valid and reliable assessment for Brazilian school-aged children. However, since its inception, several tests have emerged that, according to some researchers, provide more in-depth evaluation of motor ability and go beyond the detection of general motor status (soft neurological signs). to highlight the limitations of the NDE as a motor skill assessment for first graders. thirty-five children were compared on seven selected items of the NDE, seven of the Bruininks-Oseretsky Test (BOT), and seven of the Visual-Motor Integration test (VMI). Participants received a "pass" or "fail" score for each item, as prescribed by the respective test manual. chi-square and ANOVA results indicated that the vast majority of children (74%) passed the NDE items, whereas values for the other tests were 29% (BOT) and 20% (VMI). Analysis of specific categories (e.g. visual, fine, and gross motor coordination) revealed a similar outcome. our data suggest that while the NDE may be a valid and reliable test for the detection of general motor status, its use as a diagnostic/remedial tool for identifying motor ability is questionable. One of our recommendations is the consideration of a revised NDE in light of the current needs of clinicians and researchers.
Developmental coordination disorders: state of art.
Vaivre-Douret, L
2014-01-01
In the literature, descriptions of children with motor coordination difficulties and clumsy movements have been discussed since the early 1900s. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), it is a marked impairment in the development of fine or global motor coordination, affecting 6% of school-age children. All these children are characterized for developmental coordination disorder (DCD) in motor learning and new motor skill acquisition, in contrast to adult apraxia which is a disorder in the execution of already learned movements. No consensus has been established about etiology of DCD. Intragroup approach through factor and cluster analysis highlights that motor impairment in DCD children varies both in severity and nature. Indeed, most studies have used screening measures of performance on some developmental milestones derived from global motor tests. A few studies have investigated different functions together with standardized assessments, such as neuromuscular tone and soft signs, qualitative and quantitative measures related to gross and fine motor coordination and the specific difficulties -academic, language, gnosic, visual motor/visual-perceptual, and attentional/executive- n order to allow a better identification of DCD subtypes with diagnostic criteria and to provide an understanding of the mechanisms and of the cerebral involvement. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Butler, Andrew J.; Cazeaux, Jennifer; Fidler, Anna; Jansen, Jessica; Lefkove, Nehama; Gregg, Melanie; Hall, Craig; Easley, Kirk A.; Shenvi, Neeta; Wolf, Steven L.
2012-01-01
Mental imagery can improve motor performance in stroke populations when combined with physical therapy. Valid and reliable instruments to evaluate the imagery ability of stroke survivors are needed to maximize the benefits of mental imagery therapy. The purposes of this study were to: examine and compare the test-retest intra-rate reliability of the Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) in stroke survivors and able-bodied controls, examine internal consistency of the visual and kinesthetic items of the MIQ-RS, determine if the MIQ-RS includes both the visual and kinesthetic dimensions of mental imagery, correlate impairment and motor imagery scores, and investigate the criterion validity of the MIQ-RS in stroke survivors by comparing the results to the KVIQ-10. Test-retest analysis indicated good levels of reliability (ICC range: .83–.99) and internal consistency (Cronbach α: .95–.98) of the visual and kinesthetic subscales in both groups. The two-factor structure of the MIQ-RS was supported by factor analysis, with the visual and kinesthetic components accounting for 88.6% and 83.4% of the total variance in the able-bodied and stroke groups, respectively. The MIQ-RS is a valid and reliable instrument in the stroke population examined and able-bodied populations and therefore useful as an outcome measure for motor imagery ability. PMID:22474504
Musical learning in children and adults with Williams syndrome.
Lense, M; Dykens, E
2013-09-01
There is recent interest in using music making as an empirically supported intervention for various neurodevelopmental disorders due to music's engagement of perceptual-motor mapping processes. However, little is known about music learning in populations with developmental disabilities. Williams syndrome (WS) is a neurodevelopmental genetic disorder whose characteristic auditory strengths and visual-spatial weaknesses map onto the processes used to learn to play a musical instrument. We identified correlates of novel musical instrument learning in WS by teaching 46 children and adults (7-49 years) with WS to play the Appalachian dulcimer. Obtained dulcimer skill was associated with prior musical abilities (r = 0.634, P < 0.001) and visual-motor integration abilities (r = 0.487, P = 0.001), but not age, gender, IQ, handedness, auditory sensitivities or musical interest/emotionality. Use of auditory learning strategies, but not visual or instructional strategies, predicted greater dulcimer skill beyond individual musical and visual-motor integration abilities (β = 0.285, sr(2) = 0.06, P = 0.019). These findings map onto behavioural and emerging neural evidence for greater auditory-motor mapping processes in WS. Results suggest that explicit awareness of task-specific learning approaches is important when learning a new skill. Implications for using music with populations with syndrome-specific strengths and weakness will be discussed. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.
Error amplification to promote motor learning and motivation in therapy robotics.
Shirzad, Navid; Van der Loos, H F Machiel
2012-01-01
To study the effects of different feedback error amplification methods on a subject's upper-limb motor learning and affect during a point-to-point reaching exercise, we developed a real-time controller for a robotic manipulandum. The reaching environment was visually distorted by implementing a thirty degrees rotation between the coordinate systems of the robot's end-effector and the visual display. Feedback error amplification was provided to subjects as they trained to learn reaching within the visually rotated environment. Error amplification was provided either visually or through both haptic and visual means, each method with two different amplification gains. Subjects' performance (i.e., trajectory error) and self-reports to a questionnaire were used to study the speed and amount of adaptation promoted by each error amplification method and subjects' emotional changes. We found that providing haptic and visual feedback promotes faster adaptation to the distortion and increases subjects' satisfaction with the task, leading to a higher level of attentiveness during the exercise. This finding can be used to design a novel exercise regimen, where alternating between error amplification methods is used to both increase a subject's motor learning and maintain a minimum level of motivational engagement in the exercise. In future experiments, we will test whether such exercise methods will lead to a faster learning time and greater motivation to pursue a therapy exercise regimen.
Naturalistic distraction and driving safety in older drivers.
Aksan, Nazan; Dawson, Jeffrey D; Emerson, Jamie L; Yu, Lixi; Uc, Ergun Y; Anderson, Steven W; Rizzo, Matthew
2013-08-01
In this study, we aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and to predict older drivers performance given functioning in visual, motor, and cognitive domains. Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. A total of 203 drivers, 120 healthy older (61 men and 59 women, ages 65 years and older) and 83 middle-aged drivers (38 men and 45 women, ages 40 to 64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Older drivers identified fewer landmarks and drove slower but committed more safety errors than did middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers.Visual cognition predicted both traffic sign identification and safety errors, and executive function predicted traffic sign identification over and above vision. Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older drivers' management of driving tasks at multiple levels and can help inform the design of on-road tests and interventions for older drivers.
Thaler, Lore; Todd, James T
2009-04-01
Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.
Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.
Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico
2014-01-01
Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.
The effect of contextual cues on the encoding of motor memories.
Howard, Ian S; Wolpert, Daniel M; Franklin, David W
2013-05-01
Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.
ERIC Educational Resources Information Center
Brown, Ted; Murdolo, Yuki
2015-01-01
The "Developmental Test of Visual Perception-Third Edition" (DTVP-3) is a recent revision of the "Developmental Test of Visual Perception-Second Edition" (DTVP-2). The DTVP-3 is designed to assess the visual perceptual and/or visual-motor integration skills of children from 4 to 12 years of age. The test is standardized using…
Predicting future learning from baseline network architecture.
Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S
2018-05-15
Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate: sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Tarrasch, Ricardo; Margalit-Shalom, Lilach; Berger, Rony
2017-01-01
The present study assessed the effects of the mindfulness/compassion cultivating program: “Call to Care-Israel” on the performance in visual perception (VP) and motor accuracy, as well as on anxiety levels and self-reported mindfulness among 4th and 5th grade students. One hundred and thirty-eight children participated in the program for 24 weekly sessions, while 78 children served as controls. Repeated measures ANOVA’s yielded significant interactions between time of measurement and group for VP, motor accuracy, reported mindfulness, and anxiety. Post hoc tests revealed significant improvements in the four aforementioned measures in the experimental group only. In addition, significant correlations were obtained between the improvement in motor accuracy and the reduction in anxiety and the increase in mindfulness. Since VP and motor accuracy are basic skills associated with quantifiable academic characteristics, such as reading and mathematical abilities, the results may suggest that mindfulness practice has the ability to improve academic achievements. PMID:28286492
Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei
2015-10-01
Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluating the Visually Impaired: Neuropsychological Techniques.
ERIC Educational Resources Information Center
Price, J. R.; And Others
1987-01-01
Assessment of nonvisual neuropsychological impairments in visually impaired persons can be achieved through modification of existing intelligence, memory, sensory-motor, personality, language, and achievement tests so that they do not require vision or penalize visually impaired persons. The Halstead-Reitan and Luria-Nebraska neuropsychological…
Adaptive Locomotor Behavior in Larval Zebrafish
Portugues, Ruben; Engert, Florian
2011-01-01
In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325
Adaptive locomotor behavior in larval zebrafish.
Portugues, Ruben; Engert, Florian
2011-01-01
In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno
2016-01-01
Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours. PMID:26963919
Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo
2016-01-01
Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours.
RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT
Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...
Identification of non-visual photomotor response cells in the vertebrate hindbrain
Kokel, David; Dunn, Timothy W.; Ahrens, Misha B.; Alshut, Rüdiger; Cheung, Chung Yan J.; Saint-Amant, Louis; Bruni, Giancarlo; Mateus, Rita; van Ham, Tjakko J.; Shiraki, Tomoya; Fukada, Yoshitaka; Kojima, Daisuke; Yeh, Jing-Ruey J.; Mikut, Ralf; von Lintig, Johannes; Engert, Florian; Peterson, Randall T.
2013-01-01
Non-visual photosensation enables animals to sense light without sight. However, the cellular and molecular mechanisms of non-visual photobehaviors are poorly understood, especially in vertebrate animals. Here, we describe the photomotor response (PMR), a robust and reproducible series of motor behaviors in zebrafish that is elicited by visual wavelengths of light, but does not require the eyes, pineal gland or other canonical deep-brain photoreceptive organs. Unlike the relatively slow effects of canonical non-visual pathways, motor circuits are strongly and quickly (seconds) recruited during the PMR behavior. We find that the hindbrain is both necessary and sufficient to drive these behaviors. Using in vivo calcium imaging, we identify a discrete set of neurons within the hindbrain whose responses to light mirror the PMR behavior. Pharmacological inhibition of the visual cycle blocks PMR behaviors, suggesting that opsin-based photoreceptors control this behavior. These data represent the first known light-sensing circuit in the vertebrate hindbrain. PMID:23447595
Escape from harm: linking affective vision and motor responses during active avoidance
Keil, Andreas
2014-01-01
When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849
Neuronal connectome of a sensory-motor circuit for visual navigation
Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár
2014-01-01
Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217
Strauss, Soeren; Woodgate, Philip J.W.; Sami, Saber A.; Heinke, Dietmar
2015-01-01
We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain’s attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO’s predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353
ERIC Educational Resources Information Center
Viczko, Jeremy; Sergeeva, Valya; Ray, Laura B.; Owen, Adrian M.; Fogel, Stuart M.
2018-01-01
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation…
Christophe, Laure; Chabanat, Eric; Delporte, Ludovic; Revol, Patrice; Volckmann, Pierre; Jacquin-Courtois, Sophie; Rossetti, Yves
Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations.
Hendrix, Philipp; Senger, Sebastian; Griessenauer, Christoph J; Simgen, Andreas; Linsler, Stefan; Oertel, Joachim
2018-01-01
To report a technique for endoscopic cystoventriculostomy guided by preoperative navigated transcranial magnetic stimulation (nTMS) and tractography in a patient with a large speech eloquent arachnoid cyst. A 74-year old woman presented with a seizure and subsequent persistent anomic aphasia from a progressive left-sided parietal arachnoid cyst. An endoscopic cystoventriculostomy and endoscope-assisted ventricle catheter placement were performed. Surgery was guided by preoperative nTMS and tractography to avoid eloquent language, motor, and visual pathways. Preoperative nTMS motor and language mapping were used to guide tractography of motor and language white matter tracts. The ideal locations of entry point and cystoventriculostomy as well as trajectory for stent-placement were determined preoperatively with a pseudo-3-dimensional model visualizing eloquent language, motor, and visual cortical and subcortical information. The early postoperative course was uneventful. At her 3-month follow-up visit, her language impairments had completely recovered. Additionally, magnetic resonance imaging demonstrated complete collapse of the arachnoid cyst. The combination of nTMS and tractography supports the identification of a safe trajectory for cystoventriculostomy in eloquent arachnoid cysts. Copyright © 2017 Elsevier Inc. All rights reserved.
Redfern, Mark S; Chambers, April J; Jennings, J Richard; Furman, Joseph M
2017-08-01
This study investigated the impact of attention on the sensory and motor actions during postural recovery from underfoot perturbations in young and older adults. A dual-task paradigm was used involving disjunctive and choice reaction time (RT) tasks to auditory and visual stimuli at different delays from the onset of two types of platform perturbations (rotations and translations). The RTs were increased prior to the perturbation (preparation phase) and during the immediate recovery response (response initiation) in young and older adults, but this interference dissipated rapidly after the perturbation response was initiated (<220 ms). The sensory modality of the RT task impacted the results with interference being greater for the auditory task compared to the visual task. As motor complexity of the RT task increased (disjunctive versus choice) there was greater interference from the perturbation. Finally, increasing the complexity of the postural perturbation by mixing the rotational and translational perturbations together increased interference for the auditory RT tasks, but did not affect the visual RT responses. These results suggest that sensory and motoric components of postural control are under the influence of different dynamic attentional processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... Hills, CA.... February 14, 2010. Applications, WellPoint Co., BC of CA, Leased Workers Bender, etc. 75.... 75,285 VisLink, Inc., VisLink, North Billerica, MA... February 14, 2010. PLC; Leased Workers from...Link, PLC. 75,300 Key Plastics, LLC, Exterior Hartford City, IN..... February 14, 2010. Division...
Anna G. Sherman: A "Benderly Girl"?
ERIC Educational Resources Information Center
Ingall, Carol K.
2004-01-01
Anna G. Sherman (1897?-1980) taught Hebrew language at the various extension schools of the Jewish Theological Seminary (JTS) in a career that began in 1923 and lasted for nearly forty years. Her name appears on the academic registers of the institution--with respites for residence in "Eretz Yisrael," childbirth, or illness--through 1960-1964,…
View north of tube bending shop in boilermakers department located ...
View north of tube bending shop in boilermakers department located in southeast corner of the structural shop building (building 57). The computer controlled tube bender can be programmed to bend boiler tubing to nearly any required configuration - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
ERIC Educational Resources Information Center
McCoy, Leah P., Ed.
This collection of papers includes: "Cheating: Ethics and Honor of High School Students" (Nick Bender); "Assessing Listening Proficiency in High School Spanish Classes" (Michelle Bennett); "Multiple Intelligences, Assessment and Achievement in Traditional High School Classes" (Kathryn Byrnes); "Who Wants To Be a…
Breakers, Benders, and Obeyers: Inquiring into Teacher Educators' Mediation of edTPA
ERIC Educational Resources Information Center
Ratner, Andrew R.; Kolman, Joni S.
2016-01-01
This article reflects a qualitative exploratory inquiry into the lived experiences of faculty members working within a system of urban schools of education as they supported diverse teacher candidates in completing the Educative Teacher Performance Assessment (edTPA) during its first semesters of high-stakes implementation. Drawing upon…
ERIC Educational Resources Information Center
Nelken, Miranda
2009-01-01
This article presents a lesson that allows third and fourth graders to forge the steel bodies of automobiles through repousse, the art of applying pressure to metal with a wooden point. In this lesson, the students draw cars paired with a landscape, making the road trip an adventure in drawing. Both parts of the lesson challenge students'…
Censors in the Classroom: The Mind Benders.
ERIC Educational Resources Information Center
Jenkinson, Edward B.
Selected incidents of censorship in the schools are examined in this book, and suggestions are made for preserving students' and teachers' rights. The aim is to offer a calm, rational, informed discussion of censorship issues and an awareness of the organization and goals of pressure groups so that censorship efforts can be countered effectively.…
Texts, Talk...and Fear? English Language Arts Teachers Negotiate Social Justice Teaching
ERIC Educational Resources Information Center
Bender-Slack, Delane
2010-01-01
Delane Bender-Slack takes on the important subject of teaching for social justice. Her article's strength is in its uncompromising look at complex, often misinterpreted teaching challenges. This article focuses on actual teachers working for social justice in their classrooms. Working from a strong theoretical framework, she pushes us in new…
Butler, Andrew J; James, Thomas W; James, Karin Harman
2011-11-01
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.
NASA Astrophysics Data System (ADS)
Gibson, Stephen; Laws, Benjamin; Suits, Arthur; Fernando, Ravin; Field, Robert W.
2015-06-01
In 1989 the Lineberger group observed S0 vinylidene in the negative ion photoelectron spectrum. Excess widths were interpreted by some as indicating a sub-picosecond lifetime for vinylidene. 1998 Coulomb explosion experiments showed that vinylidene character survives for at least 3.5 μs. Chirped Pulse mm-Wave spectra showed that 193 nm photolysis of Vinyl Cyanide produces many vibrational levels of HCN and HNC but no trace of vinylidene or local-bender excited acetylene. David Perry's and Michel Herman's effective Hamiltonian model for local-bender acetylene showed that IVR is complete at J approximately 100. Observation of long-lived vinylidene requires formation at low-J. Photodetachment of an electron from the Vinylidene negative ion deposits negligible angular momentum in the C2H2 moiety. The high-resolution negative-ion Photoelectron Velocity Map Imaging spectrometer at ANU reveals vinylidene with strongly vibration-dependent β asymmetry parameters. Infrared Multi-Photon Dissociation of Vinyl Chloride in the Wayne State Velocity Map Imaging spectrometer reveals rotationally and vibrationally cold HCl, presumably the 3-center photofragmentation co-product of rotationally cold vinylidene. The mechanism of vinylidene-acetylene isomerization is emerging...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staschus, K.
1985-01-01
In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less
Thomas, Alyssa R; Lacadie, Cheryl; Vohr, Betty; Ment, Laura R; Scheinost, Dustin
2017-01-01
Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey-Osterrieth Complex Figure Test (ROCF), the Beery visual-motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion-weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential. © The Author 2017. Published by Oxford University Press.
Motor (but not auditory) attention affects syntactic choice.
Pokhoday, Mikhail; Scheepers, Christoph; Shtyrov, Yury; Myachykov, Andriy
2018-01-01
Understanding the determinants of syntactic choice in sentence production is a salient topic in psycholinguistics. Existing evidence suggests that syntactic choice results from an interplay between linguistic and non-linguistic factors, and a speaker's attention to the elements of a described event represents one such factor. Whereas multimodal accounts of attention suggest a role for different modalities in this process, existing studies examining attention effects in syntactic choice are primarily based on visual cueing paradigms. Hence, it remains unclear whether attentional effects on syntactic choice are limited to the visual modality or are indeed more general. This issue is addressed by the current study. Native English participants viewed and described line drawings of simple transitive events while their attention was directed to the location of the agent or the patient of the depicted event by means of either an auditory (monaural beep) or a motor (unilateral key press) lateral cue. Our results show an effect of cue location, with participants producing more passive-voice descriptions in the patient-cued conditions. Crucially, this cue location effect emerged in the motor-cue but not (or substantially less so) in the auditory-cue condition, as confirmed by a reliable interaction between cue location (agent vs. patient) and cue type (auditory vs. motor). Our data suggest that attentional effects on the speaker's syntactic choices are modality-specific and limited to the visual and motor, but not the auditory, domain.
Emami, Zahra; Chau, Tom
2018-06-01
Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
The influence of visual ability on learning and memory performance in 13 strains of mice.
Brown, Richard E; Wong, Aimée A
2007-03-01
We calculated visual ability in 13 strains of mice (129SI/Sv1mJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, MOLF/EiJ, SJL/J, SM/J, and SPRET/EiJ) on visual detection, pattern discrimination, and visual acuity and tested these and other mice of the same strains in a behavioral test battery that evaluated visuo-spatial learning and memory, conditioned odor preference, and motor learning. Strain differences in visual acuity accounted for a significant proportion of the variance between strains in measures of learning and memory in the Morris water maze. Strain differences in motor learning performance were not influenced by visual ability. Conditioned odor preference was enhanced in mice with visual defects. These results indicate that visual ability must be accounted for when testing for strain differences in learning and memory in mice because differences in performance in many tasks may be due to visual deficits rather than differences in higher order cognitive functions. These results have significant implications for the search for the neural and genetic basis of learning and memory in mice.
ERIC Educational Resources Information Center
Coelho, Chase J.; Nusbaum, Howard C.; Rosenbaum, David A.; Fenn, Kimberly M.
2012-01-01
Early research on visual imagery led investigators to suggest that mental visual images are just weak versions of visual percepts. Later research helped investigators understand that mental visual images differ in deeper and more subtle ways from visual percepts. Research on motor imagery has yet to reach this mature state, however. Many authors…
Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.
Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande
2015-01-01
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.
Salavati, M; Rameckers, E A A; Waninge, A; Krijnen, W P; Steenbergen, B; van der Schans, C P
2017-01-01
To investigate whether the adapted version of the Gross Motor Function Measure-88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result of a better comprehension of the instruction of the adapted version. The scores of the original and adapted GMFM-88 were compared in the same group of children (n=21 boys and n=16 girls), mean (SD) age 113 (30) months with CP and CVI, within a time span of two weeks. A paediatric physical therapist familiar with the child assessed both tests in random order. The GMFCS level, mental development and age at testing were also collected. The Wilcoxon signed-rank test was used to compare two different measurements (the original and adapted GMFM-88) on a single sample, (the same child with CP and CVI; p<0.05). The comparison between scores on the original and adapted GMFM-88 in all children with CP and CVI showed a positive difference in percentage score on at least one of the five dimensions and positive percentage scores for the two versions differed on all five dimensions for fourteen children. For six children a difference was seen in four dimensions and in 10 children difference was present in three dimensions (GMFM dimension A, B& C or C, D & E) (p<0.001). The adapted GMFM-88 provides a better estimate of gross motor function per se in children with CP and CVI that is not adversely impacted bytheir visual problems. On the basis of these findings, we recommend using the adapted GMFM-88 to measure gross motor functioning in children with CP and CVI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trivedi, Chintan A.; Bollmann, Johann H.
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322
[Change settings for visual analyzer of child users of mobile communication: longitudinal study].
Khorseva, N I; Grigor'ev, Iu G; Gorbunova, N V
2014-01-01
The paper represents theresults of longitudinal monitoring of the changes in the parameters of simple visual-motor reaction, the visual acuity and the rate of the visual discrimination in the child users of mobile communication, which indicate the multivariability of the possible effects of radiation from mobile phones on the auditory system of children.
A Visual Skills Inventory for Children with Neurological Impairments
ERIC Educational Resources Information Center
McCulloch, D. L.; Mackie, R. T.; Dutton, G. N.; Bradnam, M. S.; Day, R. E.; McDaid, G. J.; Phillips, S.; Napier, A.; Herbert, A. M.; Saunders, K. J.; Shepherd, A. J.
2007-01-01
Children with neurological impairments often have visual deficits that are difficult to quantify. We have compared visual skills evaluated by carers with results of a comprehensive visual assessment. Participants were 76 children with mild to profound intellectual and/or motor impairment (33 males, 43 females; age range 7mo-16y; mean age 5y 1mo…
A Brazilian-Portuguese version of the Kinesthetic and Visual Motor Imagery Questionnaire.
Demanboro, Alan; Sterr, Annette; Anjos, Sarah Monteiro Dos; Conforto, Adriana Bastos
2018-01-01
Motor imagery has emerged as a potential rehabilitation tool in stroke. The goals of this study were: 1) to develop a translated and culturally-adapted Brazilian-Portugese version of the Kinesthetic and Visual Motor Imagery Questionnaire (KVIQ20-P); 2) to evaluate the psychometric characteristics of the scale in a group of patients with stroke and in an age-matched control group; 3) to compare the KVIQ20 performance between the two groups. Test-retest, inter-rater reliabilities, and internal consistencies were evaluated in 40 patients with stroke and 31 healthy participants. In the stroke group, ICC confidence intervals showed excellent test-retest and inter-rater reliabilities. Cronbach's alpha also indicated excellent internal consistency. Results for controls were comparable to those obtained in persons with stroke. The excellent psychometric properties of the KVIQ20-P should be considered during the design of studies of motor imagery interventions for stroke rehabilitation.
Reading your own lips: common-coding theory and visual speech perception.
Tye-Murray, Nancy; Spehar, Brent P; Myerson, Joel; Hale, Sandra; Sommers, Mitchell S
2013-02-01
Common-coding theory posits that (1) perceiving an action activates the same representations of motor plans that are activated by actually performing that action, and (2) because of individual differences in the ways that actions are performed, observing recordings of one's own previous behavior activates motor plans to an even greater degree than does observing someone else's behavior. We hypothesized that if observing oneself activates motor plans to a greater degree than does observing others, and if these activated plans contribute to perception, then people should be able to lipread silent video clips of their own previous utterances more accurately than they can lipread video clips of other talkers. As predicted, two groups of participants were able to lipread video clips of themselves, recorded more than two weeks earlier, significantly more accurately than video clips of others. These results suggest that visual input activates speech motor activity that links to word representations in the mental lexicon.
Using neuropsychological profiles to classify neglected children with or without physical abuse.
Nolin, Pierre; Ethier, Louise
2007-06-01
The aim of this study is twofold: First, to investigate whether cognitive functions can contribute to differentiating neglected children with or without physical abuse compared to comparison participants; second, to demonstrate the detrimental impact of children being victimized by a combination of different types of maltreatment. Seventy-nine children aged 6-12 years and currently receiving Child Protection Services because of one of two types of maltreatment (neglect with physical abuse, n=56; neglect without physical abuse, n=28) were compared with a control group of 53 children matched for age, gender, and annual family income. The neuropsychological assessment focused on motor performance, attention, memory and learning, visual-motor integration, language, frontal/executive functions, and intelligence. Discriminant analysis identified auditory attention and response set, and visual-motor integration (Function 1), and problem solving, abstraction, and planning (Function 2) as the two sets of variables that most distinguished the groups. Discriminant analysis predicted group membership in 80% of the cases. Children who were neglected with physical abuse showed cognitive deficits in auditory attention and response set, and visual-motor integration (Function 1) and problem solving, abstraction, and planning (Function 2). Children who were neglected without physical abuse differed from the control group in that they obtained lower scores in auditory attention and response set, and visual-motor integration (Function 1). Surprisingly, these same children demonstrated a greater capacity for problem solving, abstraction, and planning (Function 2) than the physically abused neglected and control children. The present study underscores the relevance of neuropsychology to maltreatment research. The results support the heterogeneity of cognitive deficits in children based on different types of maltreatment and the fact that neglect with physical abuse is more harmful than neglect alone.
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2016-01-01
Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200
Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.
Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M
2017-01-01
Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.
Keenan, Kevin G; Huddleston, Wendy E; Ernest, Bradley E
2017-11-01
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated ( r s = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related ( P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults. NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test. Copyright © 2017 the American Physiological Society.
Consolidation of visuomotor adaptation memory with consistent and noisy environments
Maeda, Rodrigo S.; McGee, Steven E.
2016-01-01
Our understanding of how we learn and retain motor behaviors is still limited. For instance, there is conflicting evidence as to whether the memory of a learned visuomotor perturbation consolidates; i.e., the motor memory becomes resistant to interference from learning a competing perturbation over time. Here, we sought to determine the factors that influence consolidation during visually guided walking. Subjects learned a novel mapping relationship, created by prism lenses, between the perceived location of two targets and the motor commands necessary to direct the feet to their positions. Subjects relearned this mapping 1 wk later. Different groups experienced protocols with or without a competing mapping (and with and without washout trials), presented either on the same day as initial learning or before relearning on day 2. We tested identical protocols under constant and noisy mapping structures. In the latter, we varied, on a trial-by-trial basis, the strength of prism lenses around a non-zero mean. We found that a novel visuomotor mapping is retained at least 1 wk after initial learning. We also found reduced foot-placement error with relearning in constant and noisy mapping groups, despite learning a competing mapping beforehand, and with the exception of one protocol, with and without washout trials. Exposure to noisy mappings led to similar performance on relearning compared with the equivalent constant mapping groups for most protocols. Overall, our results support the idea of motor memory consolidation during visually guided walking and suggest that constant and noisy practices are effective for motor learning. NEW & NOTEWORTHY The adaptation of movement is essential for many daily activities. To interact with targets, this often requires learning the mapping to produce appropriate motor commands based on visual input. Here, we show that a novel visuomotor mapping is retained 1 wk after initial learning in a visually guided walking task. Furthermore, we find that this motor memory consolidates (i.e., becomes more resistant to interference from learning a competing mapping) when learning in constant and noisy mapping environments. PMID:27784800
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2017-07-01
Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.
Visual-Spatial Orienting in Autism.
ERIC Educational Resources Information Center
Wainwright, J. Ann; Bryson, Susan E.
1996-01-01
Visual-spatial orienting in 10 high-functioning adults with autism was examined. Compared to controls, subjects responded faster to central than to lateral stimuli, and showed a left visual field advantage for stimulus detection only when laterally presented. Abnormalities in attention shifting and coordination of attentional and motor systems are…
Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.
McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L
2016-04-04
An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes
Boostani, R.; Asadi, F.; Mohammadi, N.
2017-01-01
Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. Objective: The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Materials and Methods: Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Results: Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Conclusion: Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers. PMID:28462208
Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes.
Boostani, R; Asadi, F; Mohammadi, N
2017-03-01
Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers.
Cognitive-motor integration deficits in young adult athletes following concussion.
Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E
2015-01-01
The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.
Bolk, Jenny; Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika
2018-02-17
This exploratory study aimed to investigate associations between neonatal brain volumes and visual-motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Prospective population-based cohort study in Stockholm, Sweden, during 3 years. All children born before gestational age, 27 weeks, during 2004-2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual-Motor Integration-sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children-second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=-0.38, P=0.04). Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pfeiffer, Beth; Moskowitz, Beverly; Paoletti, Andrew; Brusilovskiy, Eugene; Zylstra, Sheryl Eckberg; Murray, Tammy
2015-01-01
We determined whether a widely used assessment of visual-motor skills, the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), is appropriate for use as an outcome measure for handwriting interventions. A two-group pretest-posttest design was used with 207 kindergarten, first-grade, and second-grade students. Two well-established handwriting measures and the VMI were administered pre- and postintervention. The intervention group participated in the Size Matters Handwriting Program for 40 sessions, and the control group received standard instruction. Paired and independent-samples t tests were used to analyze group differences. The intervention group demonstrated significant improvements on the handwriting measures, with change scores having mostly large effect sizes. We found no significant difference in change scores on the VMI, t(202)=1.19, p=.23. Results of this study suggest that the VMI may not detect changes in handwriting related to occupational therapy intervention. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Motor imagery in reaching: is there a left-hemispheric advantage?
Gabbard, Carl; Ammar, Diala; Rodrigues, Luis
2005-06-01
The study of motor imagery affords an attractive approach in the quest to identify the specific aspects of cognitive and neuromotor mechanisms and relationship involved in action processing. Here, the authors investigated the recently reported finding that compared to the left-hemisphere, the right brain is at a significant disadvantage for mentally simulating reaching movements. The authors investigated this observation with strong right-handers that were asked to estimate the imagined reachability of visual targets (presented at 150 ms) at multiple points at midline, right- and left visual field; responses were compared to actual maximum reaching distance. Results indicated that individuals are relatively accurate at imagined reachability, with no significant distinction between visual field responses. Therefore, these data provide no evidence to support the claim that the right hemisphere is significantly inferior to the left hemisphere in estimations of motor imagery for reaching. The authors do acknowledge differences in the experimental task and subject characteristics compared to earlier work using split-brain and stroke patients.
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-08-04
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.
Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo
2016-10-20
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.
Exploring associations between gaze patterns and putative human mirror neuron system activity.
Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G
2015-01-01
The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.
Longitudinal evaluation of fine motor skills in children with leukemia.
Hockenberry, Marilyn; Krull, Kevin; Moore, Ki; Gregurich, Mary Ann; Casey, Marissa E; Kaemingk, Kris
2007-08-01
Improved survival for children with acute lymphocytic leukemia (ALL) has allowed investigators to focus on the adverse or side effects of treatment and to develop interventions that promote cure while decreasing the long-term effects of therapy. Although much attention has been given to the significant neurocognitive sequelae that can occur after ALL therapy, limited investigation is found addressing fine motor function in these children and motor function that may contribute to neurocognitive deficits in ALL survivors. Fine motor and sensory-perceptual performances were examined in 82 children with ALL within 6-months of diagnosis and annually for 2 years (year 1 and year 2, respectively) during therapy. Purdue Pegboard assessments indicated significant slowing of fine motor speed and dexterity for the dominant hand, nondominant hand, and both hands simultaneously for children in this study. Mean Visual-Motor Integration (VMI) scores for children with low-risk and high-risk ALL decreased from the first evaluation to year 1 and again at year 2. Mean VMI scores for children with standard risk ALL increased from the first evaluation to year 1 and then decreased at year 2. Significant positive correlations were found between the Purdue and the VMI at both year 1 and year 2, suggesting that the Pegboard performance consistently predicts the later decline in visual-motor integration. Significant correlations were found between the Purdue Pegboard at baseline and the Performance IQ during year 1, though less consistently during year 2. A similar pattern was also observed between the baseline Pegboard performance and performance on the Coding and Symbol Search subtests during year 1 and year 2. In this study, children with ALL experienced significant and persistent visual-motor problems throughout therapy. These problems continued during the first and second years of treatment. These basic processing skills are necessary to the development of higher-level cognitive abilities, including nonverbal intelligence and academic achievement, particularly in arithmetic and written language.
Delayed Motor Skill Acquisition in Kindergarten Children with Language Impairment
ERIC Educational Resources Information Center
Adi-Japha, Esther; Strulovich-Schwartz, Orli; Julius, Mona
2011-01-01
The acquisition and consolidation of a new grapho-motor symbol into long-term memory was studied in 5-year-old children with language impairment (LI) and peers matched for age and visual-motor integration skills. The children practiced the production of a new symbol and were tested 24 h and two weeks post-practice day. Differences in performance…
ERIC Educational Resources Information Center
De Kleine, Elian; Van der Lubbe, Rob H. J.
2011-01-01
Learning movement sequences is thought to develop from an initial controlled attentive phase to a more automatic inattentive phase. Furthermore, execution of sequences becomes faster with practice, which may result from changes at a general motor processing level rather than at an effector specific motor processing level. In the current study, we…
Computational validation of the motor contribution to speech perception.
Badino, Leonardo; D'Ausilio, Alessandro; Fadiga, Luciano; Metta, Giorgio
2014-07-01
Action perception and recognition are core abilities fundamental for human social interaction. A parieto-frontal network (the mirror neuron system) matches visually presented biological motion information onto observers' motor representations. This process of matching the actions of others onto our own sensorimotor repertoire is thought to be important for action recognition, providing a non-mediated "motor perception" based on a bidirectional flow of information along the mirror parieto-frontal circuits. State-of-the-art machine learning strategies for hand action identification have shown better performances when sensorimotor data, as opposed to visual information only, are available during learning. As speech is a particular type of action (with acoustic targets), it is expected to activate a mirror neuron mechanism. Indeed, in speech perception, motor centers have been shown to be causally involved in the discrimination of speech sounds. In this paper, we review recent neurophysiological and machine learning-based studies showing (a) the specific contribution of the motor system to speech perception and (b) that automatic phone recognition is significantly improved when motor data are used during training of classifiers (as opposed to learning from purely auditory data). Copyright © 2014 Cognitive Science Society, Inc.
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
The role of Broca's area in speech perception: evidence from aphasia revisited.
Hickok, Gregory; Costanzo, Maddalena; Capasso, Rita; Miceli, Gabriele
2011-12-01
Motor theories of speech perception have been re-vitalized as a consequence of the discovery of mirror neurons. Some authors have even promoted a strong version of the motor theory, arguing that the motor speech system is critical for perception. Part of the evidence that is cited in favor of this claim is the observation from the early 1980s that individuals with Broca's aphasia, and therefore inferred damage to Broca's area, can have deficits in speech sound discrimination. Here we re-examine this issue in 24 patients with radiologically confirmed lesions to Broca's area and various degrees of associated non-fluent speech production. Patients performed two same-different discrimination tasks involving pairs of CV syllables, one in which both CVs were presented auditorily, and the other in which one syllable was auditorily presented and the other visually presented as an orthographic form; word comprehension was also assessed using word-to-picture matching tasks in both auditory and visual forms. Discrimination performance on the all-auditory task was four standard deviations above chance, as measured using d', and was unrelated to the degree of non-fluency in the patients' speech production. Performance on the auditory-visual task, however, was worse than, and not correlated with, the all-auditory task. The auditory-visual task was related to the degree of speech non-fluency. Word comprehension was at ceiling for the auditory version (97% accuracy) and near ceiling for the orthographic version (90% accuracy). We conclude that the motor speech system is not necessary for speech perception as measured both by discrimination and comprehension paradigms, but may play a role in orthographic decoding or in auditory-visual matching of phonological forms. 2011 Elsevier Inc. All rights reserved.
Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.
Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A
2016-01-01
The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.
Naturalistic distraction and driving safety in older drivers
Aksan, Nazan; Dawson, Jeffrey D.; Emerson, Jamie L.; Yu, Lixi; Uc, Ergun Y.; Anderson, Steven W.; Rizzo, Matthew
2013-01-01
Objective This study aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and predict older driver performance given functioning in visual, motor, and cognitive domains. Background Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. Methods Two hundred and three drivers, 120 healthy older (61 men and 59 women, ages 65 years or greater) and 83 middle-aged drivers (38 men and 45 women, ages 40–64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Results Older drivers identified fewer landmarks and drove slower but committed more safety errors than middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers. Visual cognition predicted both traffic sign identification and safety errors while executive function predicted traffic sign identification over and above vision. Conclusion Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older driver management of driving tasks at multiple levels, and can help inform the design of on-road tests and interventions for older drivers. PMID:23964422
Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.
ERIC Educational Resources Information Center
Jan, J. E.; Groenveld, M.
1993-01-01
This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)
Visual Cues, Verbal Cues and Child Development
ERIC Educational Resources Information Center
Valentini, Nadia
2004-01-01
In this article, the author discusses two strategies--visual cues (modeling) and verbal cues (short, accurate phrases) which are related to teaching motor skills in maximizing learning in physical education classes. Both visual and verbal cues are strong influences in facilitating and promoting day-to-day learning. Both strategies reinforce…
Experience, Context, and the Visual Perception of Human Movement
ERIC Educational Resources Information Center
Jacobs, Alissa; Pinto, Jeannine; Shiffrar, Maggie
2004-01-01
Why are human observers particularly sensitive to human movement? Seven experiments examined the roles of visual experience and motor processes in human movement perception by comparing visual sensitivities to point-light displays of familiar, unusual, and impossible gaits across gait-speed and identity discrimination tasks. In both tasks, visual…
The CCH Vision Stimulation Program for Infants with Low Vision: Preliminary Results.
ERIC Educational Resources Information Center
Leguire, L. E.; And Others
1992-01-01
This study evaluated the Columbus (Ohio) Children's Hospital vision stimulation program, involving in-home intervention with 15 visually impaired infants. Comparison with controls indicated benefits of appropriate vision stimulation in increasing the neural foundation for vision and visual-motor function in visually impaired infants. (Author/DB)
Visuomotor Dissociation in Cerebral Scaling of Size.
Potgieser, Adriaan R E; de Jong, Bauke M
2016-01-01
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.
Stöckel, Tino; Fries, Udo
2013-01-01
We examined the influence of visual context information on skilled motor behaviour and motor adaptation in basketball. The rules of basketball in Europe have recently changed, such that that the distance for three-point shots increased from 6.25 m to 6.75 m. As such, we tested the extent to which basketball experts can adapt to the longer distance when a) only the unfamiliar, new three-point line was provided as floor markings (NL group), or b) the familiar, old three-point line was provided in addition to the new floor markings (OL group). In the present study 20 expert basketball players performed 40 three-point shots from 6.25 m and 40 shots from 6.75 m. We assessed the percentage of hits and analysed the landing position of the ball. Results showed better adaptation of throwing performance to the longer distance when the old three-point line was provided as a visual landmark, compared to when only the new three-point line was provided. We hypothesise that the three-point line delivered relevant information needed to successfully adapt to the greater distance in the OL group, whereas it disturbed performance and ability to adapt in the NL group. The importance of visual landmarks on motor adaptation in basketball throwing is discussed relative to the influence of other information sources (i.e. angle of elevation relative to the basket) and sport practice.
Venezia, Jonathan H; Fillmore, Paul; Matchin, William; Isenberg, A Lisette; Hickok, Gregory; Fridriksson, Julius
2016-02-01
Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. Copyright © 2015 Elsevier Inc. All rights reserved.
Venezia, Jonathan H.; Fillmore, Paul; Matchin, William; Isenberg, A. Lisette; Hickok, Gregory; Fridriksson, Julius
2015-01-01
Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. PMID:26608242
Ren, Kai; Gong, Xiao-Ming; Zhang, Rong; Chen, Xiu-Hui
2016-10-01
To study the effects of virtual reality (VR) training on the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy. Thirty-five children with spastic diplegia cerebral palsy were randomly assigned to VR training group (n=19) and conventional training group (n=16). The conventional training group received conventional physical therapy and occupational therapy for three months. The VR training group received VR training and occupational therapy for three months. Grip and visual-motor integration subtests in Peabody Developmental Motor Scales-2 were used to evaluate the fine movement in patients before and after treatment. The D and E domains of the 88-item version of the Gross Motor Function Measure (GMFM-88), Modified Ashworth Scale (MAS), and Berg Balance Scale (BBS) were used to evaluate the gross movement in patients before and after treatment. Before treatment, there were no significant differences in grip, visual-motor integration, fine motor development quotient, scores of D and E domains of GMFM-88, MAS score, or BBS score between the two groups (P>0.05). After treatment, all the indices were significantly improved in the VR training group compared with the conventional training group (P<0.05). VR training can effectively improve the gross motor function of the lower limb and the fine motor function of the upper limb in children with spastic diplegia cerebral palsy.
Radical Reform in a Time of Uncertainty
ERIC Educational Resources Information Center
Sherman, Robert M.
2012-01-01
Jonathan Woocher opens his clarion call for a new paradigm in Jewish education with a nod to Samson Benderly, founding executive of the Bureau of Jewish Education in New York (BJENY), who at the beginning of the 20th century set out to design a communal system built upon the twin pillars of progressive educational theory and practice and cultural…
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2011-04-12
Research Service 4 Figure 1. Virginia-Class Attack Submarine Source: U.S. Navy file photo accessed by CRS on January 11, 2011, at http...September 2001, p. 23. 42 Bryan Bender, “Navy Eyes Cutting Submarine Force,” Boston Globe, May 12, 2004, p. 1; Lolita C. Baldor, “Study Recommends
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2012-03-01
Source: U.S. Navy file photo accessed by CRS on January 11, 2011, at http://www.navy.mil/search/display.asp? story_id=55715. Past and Projected...September 2001, p. 23. 52 Bryan Bender, “Navy Eyes Cutting Submarine Force,” Boston Globe, May 12, 2004, p. 1; Lolita C. Baldor, “Study Recommends
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... Objection to State Operating Permit for Wisconsin Public Service Corporation--JP Pulliam Plant AGENCY... McGillivray Westerberg and Bender, LLC, on behalf of the Sierra Club, to object to the operating permit for Wisconsin Public Service Corporation--JP Pulliam Plant. Pursuant to section 505(b)(2) of the Act, a...
2005-12-01
with a set of expected powder diffraction rings for siderite (JCPDS Card 8-133). The diffraction rings correspond to the d-spacing values (and hkl ...Bender et al., Geochim. Cos- 33j. E. Kostka and K. H. Nealson, in Techniques in Microbial Ecology, mochim. Acta 43(7), 1075 (1979). edited by R. S
Investigation of vibration characteristics of electric motors
NASA Technical Reports Server (NTRS)
Bakshis, A. K.; Tamoshyunas, Y. K.
1973-01-01
The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.
Kinesthetic motor imagery modulates body sway.
Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D
2010-08-25
The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.
Mathematics ability and related skills in preschoolers born very preterm.
Hasler, Holly M; Akshoomoff, Natacha
2017-12-12
Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.
Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.
Schmitz, Gerd; Bock, Otmar L
2017-10-01
Previous work documented that sensorimotor adaptation transfers between sensory modalities: When subjects adapt with one arm to a visuomotor distortion while responding to visual targets, they also appear to be adapted when they are subsequently tested with auditory targets. Vice versa, when they adapt to an auditory-motor distortion while pointing to auditory targets, they appear to be adapted when they are subsequently tested with visual targets. Therefore, it was concluded that visuomotor as well as auditory-motor adaptation use the same adaptation mechanism. Furthermore, it has been proposed that sensory information from the trained modality is weighted larger than sensory information from an untrained one, because transfer between sensory modalities is incomplete. The present study tested these hypotheses for dual arm adaptation. One arm adapted to an auditory-motor distortion and the other either to an opposite directed auditory-motor or visuomotor distortion. We found that both arms adapted significantly. However, compared to reference data on single arm adaptation, adaptation in the dominant arm was reduced indicating interference from the non-dominant to the dominant arm. We further found that arm-specific aftereffects of adaptation, which reflect recalibration of sensorimotor transformation rules, were stronger or equally strong when targets were presented in the previously adapted compared to the non-adapted sensory modality, even when one arm adapted visually and the other auditorily. The findings are discussed with respect to a recently published schematic model on sensorimotor adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Normal Aging on Visuo-Motor Plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2001-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuomotor plasticity is a form of behavioral neural plasticity which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into a microgravity or underwater environment. In order to determine the effects of aging on visuomotor plasticity, we chose the simple and easily measured paradigm of visual-motor re-arrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel analyses for 73 subjects aged 20 to 80 years. We found no statistically significant difference in measures of visuomotor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
The genesis of errors in drawing.
Chamberlain, Rebecca; Wagemans, Johan
2016-06-01
The difficulty adults find in drawing objects or scenes from real life is puzzling, assuming that there are few gross individual differences in the phenomenology of visual scenes and in fine motor control in the neurologically healthy population. A review of research concerning the perceptual, motoric and memorial correlates of drawing ability was conducted in order to understand why most adults err when trying to produce faithful representations of objects and scenes. The findings reveal that accurate perception of the subject and of the drawing is at the heart of drawing proficiency, although not to the extent that drawing skill elicits fundamental changes in visual perception. Instead, the decisive role of representational decisions reveals the importance of appropriate segmentation of the visual scene and of the influence of pictorial schemas. This leads to the conclusion that domain-specific, flexible, top-down control of visual attention plays a critical role in development of skill in visual art and may also be a window into creative thinking. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barnes, Marcia A; Stubbs, Allison; Raghubar, Kimberly P; Agostino, Alba; Taylor, Heather; Landry, Susan; Fletcher, Jack M; Smith-Chant, Brenda
2011-05-01
Preschoolers with spina bifida (SB) were compared to typically developing (TD) children on tasks tapping mathematical knowledge at 36 months (n = 102) and 60 months of age (n = 98). The group with SB had difficulty compared to TD peers on all mathematical tasks except for transformation on quantities in the subitizable range. At 36 months, vocabulary knowledge, visual-spatial, and fine motor abilities predicted achievement on a measure of informal math knowledge in both groups. At 60 months of age, phonological awareness, visual-spatial ability, and fine motor skill were uniquely and differentially related to counting knowledge, oral counting, object-based arithmetic skills, and quantitative concepts. Importantly, the patterns of association between these predictors and mathematical performance were similar across the groups. A novel finding is that fine motor skill uniquely predicted object-based arithmetic abilities in both groups, suggesting developmental continuity in the neurocognitive correlates of early object-based and later symbolic arithmetic problem solving. Models combining 36-month mathematical ability and these language-based, visual-spatial, and fine motor abilities at 60 months accounted for considerable variance on 60-month informal mathematical outcomes. Results are discussed with reference to models of mathematical development and early identification of risk in preschoolers with neurodevelopmental disorder.
Volckmann, Pierre; Jacquin-Courtois, Sophie
2016-01-01
Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations. PMID:27668094
Visual-perceptual impairment in children with cerebral palsy: a systematic review.
Ego, Anne; Lidzba, Karen; Brovedani, Paola; Belmonti, Vittorio; Gonzalez-Monge, Sibylle; Boudia, Baya; Ritz, Annie; Cans, Christine
2015-04-01
Visual perception is one of the cognitive functions often impaired in children with cerebral palsy (CP). The aim of this systematic literature review was to assess the frequency of visual-perceptual impairment (VPI) and its relationship with patient characteristics. Eligible studies were relevant papers assessing visual perception with five common standardized assessment instruments in children with CP published from January 1990 to August 2011. Of the 84 studies selected, 15 were retained. In children with CP, the proportion of VPI ranged from 40% to 50% and the mean visual perception quotient from 70 to 90. None of the studies reported a significant influence of CP subtype, IQ level, side of motor impairment, neuro-ophthalmological outcomes, or seizures. The severity of neuroradiological lesions seemed associated with VPI. The influence of prematurity was controversial, but a lower gestational age was more often associated with lower visual motor skills than with decreased visual-perceptual abilities. The impairment of visual perception in children with CP should be considered a core disorder within the CP syndrome. Further research, including a more systematic approach to neuropsychological testing, is needed to explore the specific impact of CP subgroups and of neuroradiological features on visual-perceptual development. © 2015 The Authors. Developmental Medicine & Child Neurology © 2015 Mac Keith Press.
Structural reorganization of the early visual cortex following Braille training in sighted adults.
Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin
2017-12-12
Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.
1984-08-20
neuropsychological data on the apraxias and the visual agnosias imply that motor and visual memories can be separately spared or destroyed after brain...agraphia Imagery dissociations 53 and (vice versa), and visual object agnosia without apraxia (and vice versa). We next asked him to *draw the letters in
Multiple Disabilities and Visual Impairment: An Action Research Project
ERIC Educational Resources Information Center
Argyropoulos, Vassilios; Thymakis, Paraskevas
2014-01-01
Children with visual and motor disabilities constitute a distinct group with a unique set of educational needs. Such children are often grouped with the broader population of children with multiple disabilities and visual impairments (that is, those who are blind or have low vision) (Erin, 2000; McLinden, 1997). The chief characteristic of…
ERIC Educational Resources Information Center
Stelmack, Joan A.; Rinne, Stephen; Mancil, Rickilyn M.; Dean, Deborah; Moran, D'Anna; Tang, X. Charlene; Cummings, Roger; Massof, Robert W.
2008-01-01
A low vision rehabilitation program with a structured curriculum was evaluated in a randomized controlled trial. The treatment group demonstrated large improvements in self-reported visual function (reading, mobility, visual information processing, visual motor skills, and overall). The team approach and the protocols of the treatment program are…
Visuomotor learning by passive motor experience
Sakamoto, Takashi; Kondo, Toshiyuki
2015-01-01
Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091
Attention and Visual Motor Integration in Young Children with Uncorrected Hyperopia.
Kulp, Marjean Taylor; Ciner, Elise; Maguire, Maureen; Pistilli, Maxwell; Candy, T Rowan; Ying, Gui-Shuang; Quinn, Graham; Cyert, Lynn; Moore, Bruce
2017-10-01
Among 4- and 5-year-old children, deficits in measures of attention, visual-motor integration (VMI) and visual perception (VP) are associated with moderate, uncorrected hyperopia (3 to 6 diopters [D]) accompanied by reduced near visual function (near visual acuity worse than 20/40 or stereoacuity worse than 240 seconds of arc). To compare attention, visual motor, and visual perceptual skills in uncorrected hyperopes and emmetropes attending preschool or kindergarten and evaluate their associations with visual function. Participants were 4 and 5 years of age with either hyperopia (≥3 to ≤6 D, astigmatism ≤1.5 D, anisometropia ≤1 D) or emmetropia (hyperopia ≤1 D; astigmatism, anisometropia, and myopia each <1 D), without amblyopia or strabismus. Examiners masked to refractive status administered tests of attention (sustained, receptive, and expressive), VMI, and VP. Binocular visual acuity, stereoacuity, and accommodative accuracy were also assessed at near. Analyses were adjusted for age, sex, race/ethnicity, and parent's/caregiver's education. Two hundred forty-four hyperopes (mean, +3.8 ± [SD] 0.8 D) and 248 emmetropes (+0.5 ± 0.5 D) completed testing. Mean sustained attention score was worse in hyperopes compared with emmetropes (mean difference, -4.1; P < .001 for 3 to 6 D). Mean Receptive Attention score was worse in 4 to 6 D hyperopes compared with emmetropes (by -2.6, P = .01). Hyperopes with reduced near visual acuity (20/40 or worse) had worse scores than emmetropes (-6.4, P < .001 for sustained attention; -3.0, P = .004 for Receptive Attention; -0.7, P = .006 for VMI; -1.3, P = .008 for VP). Hyperopes with stereoacuity of 240 seconds of arc or worse scored significantly worse than emmetropes (-6.7, P < .001 for sustained attention; -3.4, P = .03 for Expressive Attention; -2.2, P = .03 for Receptive Attention; -0.7, P = .01 for VMI; -1.7, P < .001 for VP). Overall, hyperopes with better near visual function generally performed similarly to emmetropes. Moderately hyperopic children were found to have deficits in measures of attention. Hyperopic children with reduced near visual function also had lower scores on VMI and VP than emmetropic children.
Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.
Johari, Karim; Behroozmand, Roozbeh
2017-05-01
The predictive coding model suggests that neural processing of sensory information is facilitated for temporally-predictable stimuli. This study investigated how temporal processing of visually-presented sensory cues modulates movement reaction time and neural activities in speech and hand motor systems. Event-related potentials (ERPs) were recorded in 13 subjects while they were visually-cued to prepare to produce a steady vocalization of a vowel sound or press a button in a randomized order, and to initiate the cued movement following the onset of a go signal on the screen. Experiment was conducted in two counterbalanced blocks in which the time interval between visual cue and go signal was temporally-predictable (fixed delay at 1000 ms) or unpredictable (variable between 1000 and 2000 ms). Results of the behavioral response analysis indicated that movement reaction time was significantly decreased for temporally-predictable stimuli in both speech and hand modalities. We identified premotor ERP activities with a left-lateralized parietal distribution for hand and a frontocentral distribution for speech that were significantly suppressed in response to temporally-predictable compared with unpredictable stimuli. The premotor ERPs were elicited approximately -100 ms before movement and were significantly correlated with speech and hand motor reaction times only in response to temporally-predictable stimuli. These findings suggest that the motor system establishes a predictive code to facilitate movement in response to temporally-predictable sensory stimuli. Our data suggest that the premotor ERP activities are robust neurophysiological biomarkers of such predictive coding mechanisms. These findings provide novel insights into the temporal processing mechanisms of speech and hand motor systems.
Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637
Implicit visual learning and the expression of learning.
Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael
2013-03-01
Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.
Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future
Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan
2016-01-01
Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour
Liu, Bao-hua; Huberman, Andrew D.; Scanziani, Massimo
2017-01-01
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections1. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood1–4. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system3,5,6, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision5. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life7–11. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei10–13, cortical lesions have suggested that the visual cortex might also be involved9,14,15. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment11,16–18, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function19, to plastically adapt the execution of innate motor behaviours. PMID:27732573