A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable
Jeong, Useok; Cho, Kyu-Jin
2016-01-01
Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959
All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure
NASA Astrophysics Data System (ADS)
Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz
2017-10-01
Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.
Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming
2016-11-14
In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.
Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality
Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez
2013-01-01
This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935
Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia
2013-07-29
This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.
A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend
Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon
2013-01-01
The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323
Liao, Xinqin; Zhang, Zheng; Liang, Qijie; Liao, Qingliang; Zhang, Yue
2017-02-01
Rapid advances in functional sensing electronics place tremendous demands on innovation toward creative uses of versatile advanced materials and effective designs of device structures. Here, we first report a feasible and effective fabrication strategy to integrate commercial abrasive papers with microcracked gold (Au) nanofilms to construct cuttable and self-waterproof crack-based resistive bending strain sensors. Via introducing surface microstructures, the sensitivities of the bending strain sensors are greatly enhanced by 27 times than that of the sensors without surface microstructures, putting forward an alternative suggestion for other flexible electronics to improve their performances. Besides, the bending strain sensors also endow rapid response and relaxation time of 20 ms and ultrahigh stability of >18 000 strain loading-unloading cycles in conjunction with flexibility and robustness. In addition, the concepts of cuttability and self-waterproofness (attain and even surpass IPX-7) of the bending strain sensors have been demonstrated. Because of the distinctive sensing properties, flexibility, cuttability, and self-waterproofness, the bending strain sensors are attractive and promising for wearable electronic devices and smart health monitoring system.
From hemodynamic towards cardiomechanic sensors in implantable devices
NASA Astrophysics Data System (ADS)
Ferek-Petric, Bozidar
2013-06-01
Sensor could significantly improve the cardiac electrotherapy. It has to provide long-term stabile signal not impeding the device longevity and lead reliability. It may not introduce special implantation and adjustment procedures. Hemodynamic sensors based on the blood flow velocity and cardiomechanic sensors based on the lead bending measurement are disclosed. These sensors have a broad clinical utility. Triboelectric and high-frequency lead bending sensors yield accurate and stable signals whereby functioning with every cardiac lead. Moreover, high frequency measurement avoids use of any kind of special hardware mounted on the cardiac lead.
All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG.
Bao, Weijia; Rong, Qiangzhou; Chen, Fengyi; Qiao, Xueguang
2018-04-02
We demonstrate a fiber-optic 3D vector displacement sensor based on the monitoring of Bragg reflection from an eccentric grating inscribed in a depressed-cladding fiber using the femtosecond laser side-illumination and phase-mask technique. The compact sensing probe consists of a short section of depressed cladding fiber (DCF) containing eccentrically positioned fiber Bragg gratings. The eccentric grating breaks the cylindrical symmetry of the fiber cross-section and further has bending orientation-dependence. The generated fundamental resonance is strongly sensitive to bending of the fiber, and the direction of the bending plane can be determined from its responses. When integrated with axis strain monitoring, the sensor achieves a 3D vector displacement measurement via simple geometric analysis.
Integrated optical refractometer based on bend waveguide with air trench structure
NASA Astrophysics Data System (ADS)
Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha
2015-07-01
This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.
NASA Astrophysics Data System (ADS)
Teng, Chuan-xin; Yu, Fang-da; Jing, Ning; Zheng, Jie
2016-09-01
The temperature influence to a refractive index (RI) sensor based on a macro-bending tapered plastic optical fiber (POF) was investigated experimentally. The total temperature dependence loss (TDLtotal) and total temperature dependence RI deviation (TDRtotal) were measured at different temperature (10-60 °C) over an RI range of 1.33-1.41. The temperature dependence RI deviation of the sensor itself was obtained by subtracting the temperature dependence RI of measured liquid from TDRtotal. Therefore, the influence of temperature variation to the sensor was characterized and corrected.
Temperature insensitive bending sensor based on in-line Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Chen, Xue; Yu, Yongqin; Xu, Xiaomei; Huang, Quandong; Ou, Zhilong; Wang, Jishun; Yan, Peiguang; Du, Chenlin
2014-09-01
A simple and compact fiber bending sensor based on the Mach-Zehnder interferometer was proposed. A photonic crystal fiber (PCF) with a length of 10 mm was spliced by collapsing air holes with two conventional single mode fibers to consist of an all fiber bending sensor. The sensitivity of 0.53 nm/m-1 was obtained at 1586 nm for the curvature range from 0 to 8.514 m-1. The temperature sensitivity was very low. The measurement error due to the temperature effect was about 8.68×10-3 m-1/°c, and the temperature effect in the curvature measurement could be ignored. This device can avoid the cross sensitivity of the temperature in the curvature measurement.
Plastic Optical Fibre Sensor for Spine Bending Monitoring with Power Fluctuation Compensation
Zawawi, Mohd Anwar; O'Keeffe, Sinead; Lewis, Elfed
2013-01-01
This paper presents the implementation of power fluctuation compensation for an intensity-based optical fibre bending sensor aimed at monitoring human spine bending in a clinical environment. To compensate for the light intensity changes from the sensor light source, a reference signal was provided via the light reflection from an aluminum foil surface fixed at a certain distance from the source fibre end tips. From the results, it was found that the investigated sensor compensation technique was capable of achieving a 2° resolution for a bending angle working range between 0° and 20°. The study also suggested that the output voltage ratio has a 0.55% diversion due to input voltage variation between 2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor properties, human spine monitoring in a clinical environment can potentially be implemented using this approach with power fluctuation compensation. PMID:24233073
Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand
NASA Astrophysics Data System (ADS)
Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel
2018-03-01
We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.
Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities
Zhang, Shao-Hui; Wang, Feng-Xia; Li, Jia-Jia; Peng, Hong-Dan; Yan, Jing-Hui; Pan, Ge-Bo
2017-01-01
Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%), good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave. PMID:29135928
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Swaminathan, S.
2016-04-01
The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.
NASA Astrophysics Data System (ADS)
Pakdeevanich, Paradorn
2018-05-01
Thermal expansion is an important parameter for characterization of metals. As metal is heated, the molecules vibrate more violently and expand in all direction. Investigators have focused to study the thermal strain. However, the amount of expansion is difficult to measure. An attempt has been made to develop an apparatus using optical technique. The principle of this system is the transformation of length changes into changes of light intensity. The purpose of this work is to design and develop an optical fiber sensor based on a macro-bend of a polymer optical fiber. In this system, thermal expansion of metal was converted into the rolling of a needle in which placed beneath a flat bar of metal. Optical fiber sensor was attached to the ended section of a needle. As the crimp tube of the fiber sensor was moved due to thermal expansion of metal, the bend radii of optical fiber sensor was changed. As a sequence, the loss induced by the bending effect was depended on the expansion of metal that changed with temperature. In this study, we utilized optical fiber sensor to monitor and compare the thermal expansion of copper, brass and aluminum. According to our experimental results, the linear response with temperature was reported. The measured values of coefficient of thermal expansion was analyzed to be 0.45, 0.35 and 0.32 a.u./°C for aluminum bar, brass bar and copper bar, respectively. In addition, the effect of the size of the diameter of a needle on the response of bending loss was investigated.
A plant-inspired robot with soft differential bending capabilities.
Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B
2016-12-20
We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.
A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.
Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng
2016-07-28
A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.
Luo, Ningqi; Huang, Yan; Liu, Jing; Chen, Shih-Chi; Wong, Ching Ping; Zhao, Ni
2017-10-01
A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler-matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene-poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa -1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from -25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee
2017-06-01
In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.
Highly sensitive force sensor based on balloon-like interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng
2018-07-01
An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.
Highly Sensitive Flexible Human Motion Sensor Based on ZnSnO3/PVDF Composite
NASA Astrophysics Data System (ADS)
Yang, Young Jin; Aziz, Shahid; Mehdi, Syed Murtuza; Sajid, Memoon; Jagadeesan, Srikanth; Choi, Kyung Hyun
2017-07-01
A highly sensitive body motion sensor has been fabricated based on a composite active layer of zinc stannate (ZnSnO3) nano-cubes and poly(vinylidene fluoride) (PVDF) polymer. The thin film-based active layer was deposited on polyethylene terephthalate flexible substrate through D-bar coating technique. Electrical and morphological characterizations of the films and sensors were carried out to discover the physical characteristics and the output response of the devices. The synergistic effect between piezoelectric ZnSnO3 nanocubes and β phase PVDF provides the composite with a desirable electrical conductivity, remarkable bend sensitivity, and excellent stability, ideal for the fabrication of a motion sensor. The recorded resistance of the sensor towards the bending angles of -150° to 0° to 150° changed from 20 MΩ to 55 MΩ to 100 MΩ, respectively, showing the composite to be a very good candidate for motion sensing applications.
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
Alcohol sensor based on u-bent hetero-structured fiber optic
NASA Astrophysics Data System (ADS)
Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo
2016-11-01
A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.
2000-01-01
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Miniature fiber optic loop subcomponent for compact sensors and dense routing
NASA Astrophysics Data System (ADS)
Gillham, Frederick J.; Stowe, David W.; Ouellette, Thomas R.; Pryshlak, Adrian P.
1999-05-01
Fiber optic data links and embedded sensors, such as Fabry- Perot and Mach-Zehnders, are important elements in smart structure architectures. Unfortunately, one problem with optical fiber is the inherent limit through which fibers and cables can be looped. A revolutionary, patented technology has been developed which overcomes this problem. Based on processing the fiber into low loss miniature bends, it permits routing the fiber to difficult areas, and minimizing the size of sensors and components. The minimum bend diameter for singlemode fiber is typically over two inches in diameter, to avoid light attenuation and limit stresses which could prematurely break the fiber. With the new miniature bend technology, bend diameters as small as 1 mm are readily achieved. One embodiment is a sub-component with standard singlemode fiber formed into a 180 degree bend and packaged in a glass tube only 1.5 mm OD X 8 mm long, Figure 1. Measured insertion loss is less than 0.2 dB from 1260 nm to 1680 nm. A final processing step which anneals the fiber into the eventual curvature, reduces the internal stress, thereby resulting in long life expectancy with robust immunity to external loading. This paper addresses the optical and physical performance of the sub-component. Particular attention is paid to attenuation spectra, polarization dependent loss, reflectance, thermal cycle, damp heat, and shock tests. Applications are presented which employs the bend technology. Concatenating right angle bends into a 'wire harness' demonstrates the ability to route fiber through a smart engine or satellite structure. Miniature optical coils are proposed for sensors and expansion joints.
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
Wireless digital pressure gauge based on nanomaterials
NASA Astrophysics Data System (ADS)
Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar
2018-03-01
In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.
A transparent bending-insensitive pressure sensor
NASA Astrophysics Data System (ADS)
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-01-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045
Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.
Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham
2017-03-01
The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.
An Artificial Nose Based on Microcantilever Array Sensors
NASA Astrophysics Data System (ADS)
Lang, H. P.; Ramseyer, J. P.; Grange, W.; Braun, T.; Schmid, D.; Hunziker, P.; Jung, C.; Hegner, M.; Gerber, C.
2007-03-01
We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples.
Dielectric Sensors Based on Electromagnetic Energy Tunneling
Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar
2015-01-01
We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188
The Fiber Grating Sensors Applied in the Deformation Measurement of Shipborne Antenna Basement
NASA Astrophysics Data System (ADS)
Liu, Yong; Chen, Jiahong; Zhao, Wenhua
2016-02-01
The optical fiber grating sensor is a novel fibre-optical passive device, its reflecting optical spectrum is linearly related with strain. It is broadly applied in the structural monitoring industry. Shipborne antenna basement is the basic supporting structure for the radar tracking movement. The bending deformation of the basement caused by ship attitude changing influences the antenna tracking precision, According to the structure of shipborne antenna basement, a distributed strain testing method based on the fibre grating sensor is approved to measure the bending deformation under the bending force. The strain-angle model is built. The regularity of the strain distribution is obtained. The finite element method is used to analyze the deformation of the antenna basement. The measuring experiment on the contractible basement mould is carried out to verify the availability of the method. The result of the experiment proves that the model is effective to apply in the deformation measurement. It provides an optimized method for the distribution of the fiber grating sensor in the actual measuring process.
Thundat, Thomas G.; Brown, Gilbert M.
2010-05-18
An electrochemical suspended element-based sensor system includes a solution cell for holding an electrolyte comprising solution including at least one electrochemically reducible or oxidizable species. A working electrode (WE), reference electrode (RE) and a counter electrode (CE) are disposed in the solution. The CE includes an asymmetric suspended element, wherein one side of the suspended element includes a metal or a highly doped semiconductor surface. The suspended element bends when current associated with reduction or oxidation of the electrochemically reducible or oxidizable species at the WE passes through the suspended element. At least one measurement system measures the bending of the suspended element or a parameter which is a function of the bending.
Kalman filter-based EM-optical sensor fusion for needle deflection estimation.
Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan
2018-04-01
In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.
NASA Astrophysics Data System (ADS)
Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong
2017-06-01
This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.
A comparative study on simulation performances of rigid and bendable SAW for gas sensor
NASA Astrophysics Data System (ADS)
Sidek, Fatini; Arsat, Rashidah; Ibrahim, Rafidah; Idris, Aizzat Ayuni Mohad; Johari, Zaharah; Ling, Leow Pei
2017-03-01
Flexible Surface Acoustic Wave (SAW) devices are very promising technology for various applications that offers excellent flexibility, low in cost and light weight. In this paper, a SAW gas sensor is designed and simulated using COMSOL Multiphysics to investigate the degree of bending effect on the frequency and displacement. The investigations were conducted onto SAW gas sensor as rigid and two different bends direction; bend-in (concave) and bend-out (convex). The operating frequency of the SAW sensor were found to be at the range of 80-200 MHz. The frequency shift of the sensor were obtained after exposing the polyisobutylene (PIB) to the dichloromethane DCM gas which will change the density of sensing layer. From the simulation, it is shown that resonance frequency range of 189MHz for the rigid substrate with displacement of 0.706 nm. Notably, the bending degree of h range from 0.2 µm to 1.25 µm exhibits reduction for displacement and frequency. The higher frequency of bend-out (convex) design achieve is 1.8945 MHz with displacement of 0.68 nm at curve of h= 0.2 µm, Improvement have been observed for the frequency shift of 14 Hz and sensitivity of 1324.24. It shows that the sensor is more sensitive to detect the gas. The evaluation of device bending effect on the eigenfrequency, displacement and frequency shift provide ways to enhance the sensitivity of the gas sensor and expand its possibility of realizing their benefit particularly for sensing device enhancement.
JOVE Pilot Research Study in Astronomy and Microgravity Sciences
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Hmelo, Anthony; Vlasse; Peterson, Steven
1995-01-01
The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. We have constructed a prototype of the glove to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. A long gage is used to average the strain generated in the sensor due to bending. This average strain produces an output signal proportional to the angle of the bend. The force sensor, FSR, is manufactured by Interlink. It consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. When the electrode makes contact, current flows through the conductive ink. The resistance of the ink pad is sensitive to pressure. We have also developed circuits for exciting and measuring the sensors. The current version requires a single sided twelve volt power supply which is one inch long and 0.4 inches in diameter.
A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice
NASA Astrophysics Data System (ADS)
Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen
2017-12-01
We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.
NASA Astrophysics Data System (ADS)
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-07-01
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing
2018-04-18
Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.
JOVE Pilot Research Study in Astronomy and Microgravity Sciences
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Hmelo, Anthony; Peterson, Steven
1996-01-01
The purpose of this project was to develop hardware and software facilities for evaluating the biomechanical interactions between human hands and space suit gloves. The first task was to measure finger joint angles inside space suit gloves. A preliminary survey identified three potential systems which could be used in the proposed study. In response to the current market situation, a glove for measuring the positions of the hand inside a space suit has been developed. A prototype of the glove has been constructed to demonstrate its sensing technologies. There are two types of sensors in the glove. The positions of the fingers are measured using bend sensors based on the CyberGlove design. This sensor consists of two strain gages mounted to a 0.003 inch thick mylar sheet. The sensor is encapsulated using 0.001 inch kapton film to give it sufficient rigidity. Along gage is used to average the strain generated in the sensor due to bending This average strain produces an output signal proportional to the angle of the bend. The force sensor consists of conductive ink sandwiched between two plastic sheets. An electrode is printed on one of the plastic sheets using silver ink. The resistance of the ink is sensitive to pressure.
Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.
2002-01-01
A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Miller, Mark S.; Gunther, Michael F.; Murphy, Kent A.; Claus, Richard O.
1993-03-01
A self-referencing technique compensating for fiber losses and source fluctuations in air-gap intensity-based optical fiber sensors is described and demonstrated. A resolution of 0.007 micron has been obtained over a measurement range of 0-250 microns for an intensity-based displacement sensor using this referencing technique. The sensor is shown to have minimal sensitivity to fiber bending losses and variations in the LED input power. A theoretical model for evaluation of step-index multimode optical fiber splice is proposed. The performance of the sensor as a displacement sensor agrees well with the theoretical analysis.
Study on the Ag Nanowire/PDMS Pressure Sensors with Three-Layer and Back-to-Back Structures
NASA Astrophysics Data System (ADS)
Wu, Jianhao; Lan, Qiuming; Yang, Weijia; He, Xin; Yue, Yunting; Jiang, Jiayi; Jiang, Tinghui
2018-01-01
Ag nanowire (NW)/polydimethylsiloxane (PDMS) pressure sensors with the three-layer and back-to-back structures were fabricated by a coating-peeling method. The bending and pressing responses of the sensors were comparably investigated. The results reveal that two kinds of pressure sensors show similar response linearity in the bending test with a bending angle of 0-180°. However, the response sensitivity of the three-layer structured pressure sensor is superior to that of the back-to-back structural one, which exhibits that the relationship between the capacitance value (Y) and the bending angle (X) is: Y = 0.01244X + 2.9763. On the contrary, in the pressing test, the response sensitivity of the back-to-back structural sensor is better than that of the three-layer structural one. The relationship between capacitance value (Y) and the number of paper clips (pressure, X2) is Y = 0.09241X2 + 88.03597.
NASA Astrophysics Data System (ADS)
Yakushin, Sergey S.; Wolf, Alexey A.; Dostovalov, Alexandr V.; Skvortsov, Mikhail I.; Wabnitz, Stefan; Babin, Sergey A.
2018-07-01
Fiber Bragg gratings with different reflection wavelengths have been inscribed in different cores of a dual-core fiber section. The effect of fiber bending on the FBG reflection spectra has been studied. Various interrogation schemes are presented, including a single-end scheme based on a cross-talk between the cores that uses only standard optical components. Simultaneous interrogation of the FBGs in both cores allows to achieve a bending sensitivity of 12.8 pm/m-1, being free of temperature and strain influence. The technology enables the development of real-time bending sensors with high spatial resolution based on series of FBGs with different wavelength inscribed along the multi-core fiber.
Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings
NASA Astrophysics Data System (ADS)
Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques
2015-11-01
In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m-1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m-1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/μɛ.
Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan
2016-02-20
Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.
1995-05-01
Dielectric-multilayer-filter-based, optical-fiber temperature sensors based on differential spectral transmittance/reflectivity were shown experimentally. A resolution of 0.2 C was achieved over a measurement range of 30-120 C. The sensor was shown to possess low immunity to variations in light-source power and fiber-bending loss. A wavelength-division-multiplexed sensing system was also fabricated by cascading three such filters with distinct cutoff wavelengths along a single multimode fiber. A resolution of 0.5 C was achieved over a temperature spectrum of 50-100 C. Furthermore, cross talk between sensors was examined.
NASA Astrophysics Data System (ADS)
Aftah Syukron, Ahmad; Marzuki, Ahmad; Setyawan, Ary
2017-11-01
Road network plays very important role in economic development. Overweight is one of the main factors contributing to road damage. To minimize this factor, road authority has to make sure that all vehicles operate in according to maximum vehicle regulation set by the government. The one solution can use from this problem is Weight in motion (WIM) technology. WIM technology allows measuring vehicle weight quickly. The sensor is one of the important components in the WIM system. This paper presents a model of WIM fiber sensor work based on bend loss. Fiber sensor has made by coiling optical fiber. Coiling optical fiber has managed in the elliptical shape rubber coil. Rubber coil then is planted in the pad of sensor. The principle of this sensor is a detecting of the shift light intensity output of optical fiber when the vehicles a passing through on fiber sensor. Loading was carried out using loaded truck model. Data was carried out with variations of load and load positions in the truck. The results can be concluded that the shift light intensity is greater with the more shift loads. The loader of the truck has also resulted in the greater loss. Loads in the truck distributed on the axles due to the position of loads.
A carbon nanotube based ammonia sensor on cotton textile
NASA Astrophysics Data System (ADS)
Han, Jin-Woo; Kim, Beomseok; Li, Jing; Meyyappan, M.
2013-05-01
A single-wall carbon nanotube (CNT) based ammonia (NH3) sensor was implemented on a cotton yarn. Two types of sensors were fabricated: Au/sensing CNT/Au and conducting/sensing/conducting all CNT structures. Two perpendicular Au wires were designed to contact CNT-cotton yarn for metal-CNT sensor, whereas nanotubes were used for the electrode as well as sensing material for the all CNT sensor. The resistance shift of the CNT network upon NH3 was monitored in a chemiresistor approach. The CNT-cotton yarn sensors exhibited uniformity and repeatability. Furthermore, the sensors displayed good mechanical robustness against bending. The present approach can be utilized for low-cost smart textile applications.
A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding
Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen
2012-01-01
A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-01-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends. The…
Fang, Yu-Lin; Wang, Chen-Tung; Chiang, Chia-Chin
2016-09-09
The study proposes a small U-shaped bending-induced interference optical fiber sensor; this novel sensor is a probe-type sensor manufactured using a mechanical device, a heat source, optical fiber and a packaging module. This probe-type sensor overcomes the shortcomings of conventional optical fibers, including being difficult to repair and a tendency to be influenced by external forces. We manufactured three types of sensors with different curvature radiuses. Specifically, sensors with three radiuses (1.5 mm, 2.0 mm, and 3.0 mm) were used to measure common water and glucose solutions with concentrations of between 6% and 30% (the interval between concentrations was 4%). The results show that the maximal sensitivity was 0.85 dB/% and that the linearly-dependent coefficient was 0.925. The results further show that not only can the small U-shaped bending-induced interference optical fiber sensor achieve high sensitivity in the measurement of glucose solutions, but that it can also achieve great stability and repeatability.
Artificial Hair Cells for Sensing Flows
NASA Technical Reports Server (NTRS)
Chen, Jack
2007-01-01
The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.
Off-axis ultraviolet-written thin-core fiber Bragg grating for directional bending measurements
NASA Astrophysics Data System (ADS)
Zhang, Lisong; Qiao, Xueguang; Liu, Qinpeng; Shao, Min; Jiang, Youhua; Huang, Dong
2018-03-01
A directional bending sensor based on thin-core fiber Bragg grating is proposed and demonstrated experimentally. It is inscribed by off-center technique and exposed by 193 nm ArF excimer laser through a phase mask. A series of cladding modes are excited and their intensities are enhanced to about 10 dB. The formation mechanism of those cladding modes is discussed and analyzed. The intensities of these cladding mode resonances is detected for bending and direction with maximum sensitivity 1.93 dB/m1 at 0° to - 1 . 95 dB/m1 at 180°under the curvature varied from 0 m-1to 2.5 m-1. The sensitivity of surrounding temperature is 11.3pm/°C ranging from 25 °C to 60 °C. This all-fiber structure has a great advantage for fiber orientation identification sensor with more convenient manufacture and needless de-localize FBGs.
Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.
Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2013-02-11
In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.
Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan
2016-01-01
Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290
Design of micro bending deformer for optical fiber weight sensor
NASA Astrophysics Data System (ADS)
Ula, R. K.; Hanto, D.; Waluyo, T. B.; Adinanta, H.; Widiyatmoko, B.
2017-04-01
The road damage due to excessive load is one of the causes of accidents on the road. A device to measure weight of the passing vehicles needs to be planted in the road structure. Thus, a weight sensor for the passing vehicles is required. In this study, we designed a weight sensor for a static load based on a power loss due to a micro bending on the optical fiber flanked on a board. The following main components are used i.e. LED 1310 nm as a light source, a multimode fiber optic as a transmission media and a power meter for measuring power loss. This works focuses on obtaining a suitable deformer design for weight sensor. Experimental results show that deformer design with 1.5 mm single side has level of accuracy as 4.32% while the design with 1.5 mm double side has level of accuracy as 98.77%. Increasing deformer length to 2.5 mm gives 71.18% level of accuracy for single side, and 76.94% level of accuracy for double side. Micro bending design with 1.5 mm double side has a high sensitivity and it is also capable of measuring load up to 100 kg. The sensor designed has been tested for measuring the weight of motor cycle, and it can be upgraded for measuring heavy vehicles.
High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications
Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.
2010-01-01
This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368
Polarization stable plasmonic sensor based on tilted fiber Bragg grating
NASA Astrophysics Data System (ADS)
Tomyshev, Kirill A.; Chamorovskiy, Yuriy K.; Ustimchik, Vasily E.; Butov, Oleg V.
2017-04-01
This paper presents a solution to one of the major problems of plasmonic fiber Bragg grating sensors concerning their high sensitivity to changes in the polarization state of light propagating through optical fiber. For the first time these kind of sensors have been produced using polarization maintaining fibers, thereby stabilization has been achieved using mechanical action and bending the supplied fiber. Comparative experiments have demonstrated that the sensor readings stability is at least an order of magnitude higher relative to other sensors, which record in a standard fiber with an isotropic structure.
NASA Astrophysics Data System (ADS)
Shanmugam, Nandhinee Radha; Muthukumar, Sriram; Prasad, Shalini
2016-09-01
We demonstrate a flexible, mechanically stable, and disposable electrochemical sensor platform for monitoring cardiac troponins through the detection and quantification of cardiac Troponin-T (cTnT). We designed and fabricated nanostructured zinc oxide (ZnO) sensing electrodes on flexible porous polyimide substrates. We demonstrate ultrasensitive detection is capable at very low sample volumes due to the confinement phenomenon of target species within the ZnO nanostructures leading to enhancement of biomolecular binding on the sensor electrode surface. The performance of the ZnO nanostructured sensor electrode was evaluated against gold and nanotextured ZnO electrodes. The electrochemical sensor functions on affinity based immunoassay principles whereby monoclonal antibodies for cTnT were immobilized on the sensor electrodes using thiol based chemistry. Detection of cTnT in phosphate buffered saline (PBS) and human serum (HS) buffers was achieved at low sample volumes of 20 μL using non-faradaic electrochemical impedance spectroscopy (EIS). Limit of detection (LOD) of 1E-4 ng/mL (i.e. 1 pg/mL) at 7% CV (coefficient of variation) for cTnT in HS was demonstrated on nanostructured ZnO electrodes. The mechanical integrity of the flexible biosensor platform was demonstrated with cyclic bending tests. The sensor performed within 12% CV after 100 bending cycles demonstrating the robustness of the nanostructured ZnO electrochemical sensor platform.
NASA Astrophysics Data System (ADS)
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-01
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-08
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.
Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong
2018-06-18
Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.
Method and apparatus for shape and end position determination using an optical fiber
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2010-01-01
A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-01-01
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335
Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.
Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan
2016-07-26
We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles.
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-22
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles
NASA Astrophysics Data System (ADS)
Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang
2018-06-01
Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu
2017-12-01
Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.
Respiratory monitoring system based on fiber optic macro bending
NASA Astrophysics Data System (ADS)
Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry
2018-02-01
We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.
Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao
2018-05-09
Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.
NASA Astrophysics Data System (ADS)
Guo, Xiaohui; Huang, Ying; Zhao, Yunong; Mao, Leidong; Gao, Le; Pan, Weidong; Zhang, Yugang; Liu, Ping
2017-09-01
Flexible, stretchable, and wearable strain sensors have attracted significant attention for their potential applications in human movement detection and recognition. Here, we report a highly stretchable and flexible strain sensor based on a single-walled carbon nanotube (SWCNTs)/carbon black (CB) synergistic conductive network. The fabrication, synergistic conductive mechanism, and characterization of the sandwich-structured strain sensor were investigated. The experimental results show that the device exhibits high stretchability (120%), excellent flexibility, fast response (˜60 ms), temperature independence, and superior stability and reproducibility during ˜1100 stretching/releasing cycles. Furthermore, human activities such as the bending of a finger or elbow and gestures were monitored and recognized based on the strain sensor, indicating that the stretchable strain sensor based on the SWCNTs/CB synergistic conductive network could have promising applications in flexible and wearable devices for human motion monitoring.
Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming
2016-04-01
We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.
Initial Ares I Bending Filter Design
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark
2007-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.
Balloon-like singlemode-tapered multimode-singlemode fiber structure for refractive index sensing
NASA Astrophysics Data System (ADS)
Yang, Biyao; Niu, Yanxiong; Yang, Bowen; Dai, Lingling; Hu, Yanhui; Yin, Yiheng; Ding, Ming
2017-10-01
A novel high sensitivity refractive index sensor based on balloon-like singlemode-tapered multimode-singlemode (STMS) fiber structure has been proposed and experimentally demonstrated. Combining the tapering and bending endows the proposed sensor with large evanescent field, resulting in high sensitivity. Experimental results show that the proposed sensor has an average sensitivity of 1104.75 nm/RIU (RI Unit) in the range of 1.33-1.41 and a maximum sensitivity of 3374.50 nm/RIU at RI of 1.41.
Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo
2011-03-15
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.
Optical-fiber strain sensors with asymmetric etched structures.
Vaziri, M; Chen, C L
1993-11-01
Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.
Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors
Nakamoto, Hiroyuki; Yamaji, Tokiya; Ootaka, Hideo; Bessho, Yusuke; Nakamura, Ryo; Ono, Rei
2017-01-01
Background Body movements, such as trunk flexion and rotation, are risk factors for low back pain in occupational settings, especially in healthcare workers. Wearable motion capture systems are potentially useful to monitor lower back movement in healthcare workers to help avoid the risk factors. In this study, we propose a novel system using sheet stretch sensors and investigate the system validity for estimating lower back movement. Methods Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg) participated in test protocols that involved executing seven types of movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-extension, trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flexion + rotation, flexion + side-bending, side-bending + rotation, and moving around the cranial–caudal axis). Each trial lasted for approximately 30 s. Four stretch sensors were attached to each participant’s lower back. The lumbar motion angles were estimated using simple linear regression analysis based on the stretch sensor outputs and compared with those obtained by the optical motion capture system. Results The estimated lumbar motion angles showed a good correlation with the actual angles, with correlation values of r = 0.68 (SD = 0.35), r = 0.60 (SD = 0.19), and r = 0.72 (SD = 0.18) for the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05). The estimation errors in all three directions were less than 3°. Conclusion The stretch sensors mounted on the back provided reasonable estimates of the lumbar motion angles. The novel motion capture system provided three directional angles without capture space limits. The wearable system possessed great potential to monitor the lower back movement in healthcare workers and helping prevent low back pain. PMID:29020053
Kim, Yeon Hoo; Kim, Sang Jin; Kim, Yong-Jin; Shim, Yeong-Seok; Kim, Soo Young; Hong, Byung Hee; Jang, Ho Won
2015-10-27
Graphene is considered as one of leading candidates for gas sensor applications in the Internet of Things owing to its unique properties such as high sensitivity to gas adsorption, transparency, and flexibility. We present self-activated operation of all graphene gas sensors with high transparency and flexibility. The all-graphene gas sensors which consist of graphene for both sensor electrodes and active sensing area exhibit highly sensitive, selective, and reversible responses to NO2 without external heating. The sensors show reliable operation under high humidity conditions and bending strain. In addition to these remarkable device performances, the significantly facile fabrication process enlarges the potential of the all-graphene gas sensors for use in the Internet of Things and wearable electronics.
Zinc phthalocyanine nanowires based flexible sensor for room temperature Cl2 detection
NASA Astrophysics Data System (ADS)
Devi, Pooja; Saini, Rajan; Singh, Rajinder; Mahajan, A.; Bedi, R. K.; Aswal, D. K.; Debnath, A. K.
2018-04-01
We have fabricated highly sensitive and Cl2 selective flexible sensor by depositing solution processed zinc phthalocyanine nanowires onto the flexible PET substrate and studied its Cl2 sensing characteristics in Cl2 concentration range 5-1500 ppb. The flexible sensor has a minimum detection limit as low as 5 ppb of Cl2 and response as high as 550% within 10 seconds. Interestingly, the sensor exhibited enhanced and faster response kinetics under bending conditions. The gas sensing mechanism of sensor has been discussed on the basis of XPS and Raman spectroscopic studies which revealed that zinc ions were the preferred sites for Cl2 interactions.
Flexible graphene bio-nanosensor for lactate.
Labroo, Pratima; Cui, Yue
2013-03-15
The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.
Flex Sensor Based Biofeedback Monitoring for Post-Stroke Fingers Myopathy Patients
NASA Astrophysics Data System (ADS)
Garda, Y. R.; Caesarendra, W.; Tjahjowidodo, T.; Turnip, A.; Wahyudati, S.; Nurhasanah, L.; Sutopo, D.
2018-04-01
Hands are one of the crucial parts of the human body in carrying out daily activities. Accidents on the hands decreasing in motor skills of the hand so that therapy is necessary to restore motor function of the hand. In addition to accidents, hand disabilities can be caused by certain diseases, e.g. stroke. Stroke is a partial destruction of the brain. It occurs if the arteries that drain blood to the brain are blocked, or if torn or leak. The purpose of this study to make biofeedback monitoring equipment for post-stroke hands myopathy patients. Biofeedback is an alternative method of treatment that involves measuring body functions measured subjects such as skin temperature, sweat activity, blood pressure, heart rate and hand paralysis due to stroke. In this study, the sensor used for biofeedback monitoring tool is flex sensor. Flex sensor is a passive resistive device that changes its resistance as the sensor is bent. Flex sensor converts the magnitude of the bend into electrical resistance, the greater the bend the greater the resistance value. The monitoring used in this biofeedback monitoring tool uses Graphical User Interface (GUI) in C# programming language. The motivation of the study is to monitor and record the progressive improvement of the hand therapy. Patients who experienced post-stroke can see the therapy progress quantitatively.
Monitoring the bending and twist of morphing structures
NASA Astrophysics Data System (ADS)
Smoker, J.; Baz, A.
2008-03-01
This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.
Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring
NASA Technical Reports Server (NTRS)
Wang, A.
2002-01-01
The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.
Development of Bend Sensor for Catheter Tip
NASA Astrophysics Data System (ADS)
Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo
Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.
Mechanical responses of rat vibrissae to airflow
Yu, Yan S. W.; Graff, Matthew M.; Hartmann, Mitra J. Z.
2016-01-01
ABSTRACT The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors – able to sense both airflow and touch – and that they may play a particularly important role in anemotaxis. PMID:27030774
Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui
2018-02-01
A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.
A Self-Referencing Intensity Based Polymer Optical Fiber Sensor for Liquid Detection
Montero, David Sánchez; Vázquez, Carmen; Möllers, Ingo; Arrúe, Jon; Jäger, Dieter
2009-01-01
A novel self-referencing fiber optic intensity sensor based on bending losses of a partially polished polymer optical fiber (POF) coupler is presented. The coupling ratio (K) depends on the external liquid in which the sensor is immersed. It is possible to distinguish between different liquids and to detect their presence. Experimental results for the most usual liquids found in industry, like water and oil, are given. K value increases up to 10% from the nominal value depending on the liquid. Sensor temperature dependence has also been studied for a range from 25 °C (environmental condition) to 50 °C. Any sector requiring liquid level measurements in flammable atmospheres can benefit from this intrinsically safe technology. PMID:22454594
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John
2016-10-01
Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.
Wang, Hong; Wang, Jy-An John
2016-07-20
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
NASA Astrophysics Data System (ADS)
Bao, Weijia; Qiao, Xueguang; Yin, Xunli; Rong, Qiangzhou; Wang, Ruohui; Yang, Hangzhou
2017-12-01
We demonstrate a compact fiber-optic quasi-Michelson interferometer (QMI) for micro-displacement measurement. The sensor comprises a micro-structure of a reflection taper tip containing a refractive index modification (RIM) as a coupling window over the interface between core and cladding of the fiber. Femtosecond laser-based direct inscription technique is used to achieve this window inscription and to induce large refractive index change. The RIM acts as a window for the strong coupling and recoupling of core-to-cladding modes. As the core and cladding modes are reflected at the taper tip and coupled back to lead-in fiber, a well-defined interference spectrum is achieved. The spectral intensity exhibits a high micro-bending sensitivity of 4 . 94 dB / μm because of the sensitivity to bending of recoupled intensity of cladding modes. In contrast, the spectral wavelength is insensitive to bending but linearly responds to temperature. The simultaneous measurements, including power-referenced for displacement and wavelength-referenced for temperature, were achieved by selective interference dip monitoring.
A direction detective asymmetrical twin-core fiber curving sensor
NASA Astrophysics Data System (ADS)
An, Maowei; Geng, Tao; Yang, Wenlei; Zeng, Hongyi; Li, Jian
2015-10-01
Long period fiber gratings (LPFGs), which can couple the core mode to the forward propagating cladding modes of a fiber and have the advantage of small additional loss, no backward reflection, small size, which is widely used in optical fiber sensors and optical communication systems. LPFG has different fabricating methods, in order to write gratings on the twin-core at the same time effectively, we specially choose electric heating fused taper system to fabricate asymmetric dual-core long period fiber grating, because this kind of method can guarantee the similarity of gratings on the twin cores and obtain good geometric parameters of LPFG, such as cycle, cone waist. Then we use bending test platform to conduct bending test for each of the core of twin-core asymmetric long period fiber grating. Experiments show that: the sensitivity of asymmetrical twin-core long period fiber grating's central core under bending is -5.47nm·m, while the sensitivity of asymmetric twin-core long period fiber grating partial core changed with the relative position of screw micrometer. The sensitivity at 0°, 30°, 90° direction is -4.22nm·m, -9.84nm·m, -11.44nm·m respectively. The experiment results strongly demonstrate the properties of rim sensing of asymmetrical twin-core fiber gratings which provides the possibility of simultaneously measuring the bending magnitude and direction and solving the problem of cross sensing when multi-parameter measuring. In other words, we can detect temperature and bend at the same time by this sensor. As our knowledge, it is the first time simultaneously measuring bend and temperature using this structure of fiber sensors.
Piezoresistive effect observed in flexible amorphous carbon films
NASA Astrophysics Data System (ADS)
Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.
2018-05-01
Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.
Curvature measurement with photonic crystal fiber based Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang
2011-05-01
A PCF-based MZI with regular and high-contrast fringe pattern is fabricated by splicing a section of PCF in between two SMFs with a commercial available fusion splicer. Its resonant wavelength is sensitive to external bending with a sensitivity of 3.046nm/m but independent on temperature. To that end, we also propose another kind of bending sensor with higher sensitivity of 5.129nm/m. This device is constructed by combining an LPG and an MZI with zero offset at the second splice. It is anticipated that the high sensitive structures will find applications in robot arms and artificial limbs.
Development of automatic pre-tracking system for fillet weld based on laser trigonometry
NASA Astrophysics Data System (ADS)
Shen, Xiaoqin; Yu, Fusheng
2005-01-01
In this paper, an automatic fillet weld pre-tracking system for welding the work piece of lorry back boards with several bend in haul automobile is developed basing on laser trigonometry. The optical measuring head based on laser-PSD trigonometry is used as position sensor. It is placed in front of the traveling direction of welding wire to get the distances from welding wire to the two side boards of the welding lines, upper board and bottom board of the fillet weld respectively. A chip of AT89S52 is used as the micro controller in this system. The AC servomotors, ball-screws and straight guide rails constitute the sliding table to take welding wire move. The laser-PSD sensors pass through the vertical board, upper board and bottom board of the fillet weld when welding wire moves and then get the distance. The laser-PSD sensors output the analog signals. After A/D conversion, the digital signal is input into AT89S52 and calculated. Then the information of the position and lateral deviation of the welding wire when welding a certain position are gotten to control welding wires. So the weld pre-tracking for welding the work piece with long distance and large bend in haul automobile is realized. The position information is input into EEPROM to be saved for short time after handled by AT89S52. The information is as the welding position information as well as the speed adjusting data of the welding wire when it welds the several bend of the work piece. The practice indicates that this system has high pre-tracking precision, good anti-disturb ability, excellent reliability, easy operating ability and good adaptability to the field of production.
Prabhakar, Amit; Mukherji, Soumyo
2010-12-21
In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Wang, Xian-feng; Zhang, Xian-Min; Liu, Jin-guo
2018-07-01
A novel non-contact vibration measurement method using binocular vision sensors is proposed for piezoelectric flexible hinged plate. Decoupling methods of the bending and torsional low frequency vibration on measurement and driving control are investigated, using binocular vision sensors and piezoelectric actuators. A radial basis function neural network controller (RBFNNC) is designed to suppress both the larger and the smaller amplitude vibrations. To verify the non-contact measurement method and the designed controller, an experimental setup of the flexible hinged plate with binocular vision is constructed. Experiments on vibration measurement and control are conducted by using binocular vision sensors and the designed RBFNNC controllers, compared with the classical proportional and derivative (PD) control algorithm. The experimental measurement results demonstrate that the binocular vision sensors can detect the low-frequency bending and torsional vibration effectively. Furthermore, the designed RBF can suppress the bending vibration more quickly than the designed PD controller owing to the adjustment of the RBF control, especially for the small amplitude residual vibrations.
Photonic crystal fiber long-period gratings for structural monitoring and chemical sensing
NASA Astrophysics Data System (ADS)
Tang, Jaw-Luen; Wang, Jian-Neng
2008-03-01
We present a simple, low-cost, temperature- and strain-insensitive long-period gratings (LPGs) written in photonic crystal fibers (PCFs) that can be used as sensitive chemical solution sensors or bend sensors for a variety of industrial applications, including civil engineering, aircraft, chemistry, food industry, and biosensing. Three different configurations of PCFs have been used for this study, including a polarization maintaining PCF, a large mode area PCF and an endlessly single mode PCF. These LPGs have been characterized for their sensitivity to temperature, strain, bending, and surrounding refractive index. Transmission spectra of the LPGs were found to exhibit negligible temperature and strain sensitivities, whereas possessing usable sensitivity to refractive index and bending. This type of PCF sensor could in principle be designed for optimum sensitivity to desired measurand(s), while minimizing or removing undesirable cross-sensitivities. The unique sensing features of PCFs are particularly suited for a wide variety of applications in smart structures, embedded materials, telecommunications and sensor systems.
Unconstrained pulse pressure monitoring for health management using hetero-core fiber optic sensor.
Nishiyama, Michiko; Sonobe, Masako; Watanabe, Kazuhiro
2016-09-01
In this paper, we present a pulse pressure waveform sensor that does not constrain a wearer's daily activity; the sensor uses hetero-core fiber optics. Hetero-core fiber sensors have been found to be sensitive to moderate bending. To detect minute pulse pressure changes from the radial artery at the wrist, we devised a fiber sensor arrangement using three-point bending supports. We analyzed and evaluated the measurement validity using wavelet transformation, which is well-suited for biological signal processing. It was confirmed that the detected pulse waveform had a fundamental mode frequency of around 1.25 Hz over the time-varying waveform. A band-pass filter with a range of frequencies from 0.85 to 1.7 Hz was used to pick up the fundamental mode. In addition, a high-pass filter with 0.85 Hz frequency eliminated arm motion artifacts; consequently, we achieved high signal-to-noise ratio. For unrestricted daily health management, it is desirable that pulse pressure monitoring can be achieved by simply placing a device on the hand without the sensor being noticed. Two types of arrangements were developed and demonstrated in which the pulse sensors were either embedded in a base, such as an armrest, or in a wearable device. A wearable device without cuff pressure using a sensitivity-enhanced fiber sensor was successfully achieved with a sensitivity of 0.07-0.3 dB with a noise floor lower than 0.01 dB for multiple subjects.
Chandler, John E; Lee, Cameron M; Babchanik, Alexander P; Melville, C David; Saunders, Michael D; Seibel, Eric J
2012-01-01
Purpose Direct visualization of pancreatic ductal tissue is critical for early diagnosis of pancreatic diseases and for guiding therapeutic interventions. A novel, ultrathin (5 Fr) scanning fiber endoscope (SFE) with tip-bending capability has been developed specifically to achieve high resolution imaging as a pancreatoscope during endoscopic retrograde cholangiopancreatography (ERCP). This device has potential to dramatically improve both diagnostic and therapeutic capabilities during ERCP by providing direct video feedback and tool guidance to clinicians. Methods Invasiveness of the new tip-bending SFE was evaluated by a performance comparison to ERCP guide wires, which are routinely inserted into the pancreatic duct during ERCP. An in vitro test model with four force sensors embedded in a synthetic pancreas was designed to detect and compare the insertion forces for 0.89 mm and 0.53 mm diameter guide wires as well as the 1.7 mm diameter SFE. Insertions were performed through the working channel of a therapeutic duodenoscope for the two types of guide wires and using a statistically similar direct insertion method for comparison to the SFE. Results Analysis of the forces detected by the sensors showed the smaller diameter 0.53 mm wire produced significantly less average and maximum forces during insertion than the larger diameter 0.89 mm wire. With the use of tip-bending and optical visualization, the 1.7 mm diameter SFE produced significantly less average force during insertion than the 0.89 mm wire at every sensor, despite its larger size. It was further shown that the use of tip-bending with the SFE significantly reduced the forces at all sensors, compared to insertions when tip-bending was not used. Conclusion Combining high quality video imaging with two-axis tip-bending allows a larger diameter guide wire-style device to be inserted into the pancreatic duct during ERCP with improved capacity to perform diagnostics and therapy. PMID:23166452
Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling
2016-10-03
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Miller, Mark S.; Plante, Angela J.; Gunther, Michael F.; Murphy, Kent A.; Claus, Richard O.
1996-05-01
A self-referencing technique compensating for fiber losses and source fluctuations in reflective air-gap intensity-based optical fiber sensors is described. A dielectric multilayer short-wave-pass filter is fabricated onto or attached to the output end face of the lead-in-lead-out multimode fiber. The incoming broadband light from a white light or a light-emitting diode is partially reflected at the filter. The transmitted light through the filter projects onto a mirror. The light returning from the reflecting mirror is recoupled into the lead-in-lead-out fiber. These two reflections from the filter and the reflecting mirror are spectrally separated at the detector end. The power ratio of these two reflections is insensitive to source fluctuations and fiber-bending loss. However, because the second optical signal depends on the air-gap separation between the end face of the lead-in-lead-out fiber and the reflecting mirror, the ratio provides the information on the air-gap length. A resolution of 0.13 mu m has been obtained over a microdisplacement measurement range of 0-254 mu m. The sensor is shown to be insensitive to both fiber-bending losses and variations in source power. Based on this approach, a fiber-strain sensor was fabricated with a multilayer interference filter directly fabricated on the end face of the fiber. A resolution of 13.4 microstrain was obtained over a measurement range of 0-20,000 microstrain with a gauge length of 10 mm. The split-spectrum method is also incorporated into a diaphragm displacement-based pressure sensor with a demonstrated resolution of 450 Pa over a measurement range of 0-0.8 MPa.
NASA Astrophysics Data System (ADS)
Zheng, Yong; Huang, Da; Zhu, Zheng-Wei
2018-03-01
A novel and simple fiber-optic sensor for measuring a large displacement range in civil engineering has been developed. The sensor incorporates an extremely simple bowknot bending modulation that increases its sensitivity in bending, light source and detector. In this paper, to better understand the working principle and improve the performance of the sensor, the transduction of displacement to light loss is described analytically by using the geometry of sensor and principle of optical fiber loss. Results of the calibration tests show a logarithmic function relationship between light loss and displacement with two calibrated parameters. The sensor has a response over a wide displacement range of 44.7 mm with an initial accuracy of 2.65 mm, while for a small displacement range of 34 mm it shows a more excellent accuracy of 0.98 mm. The direct shear tests for the six models with the same dimensions were conducted to investigate the application of the sensor for warning the shear and sliding failure in civil engineering materials or geo-materials. Results address that the sliding displacement of sliding body can be relatively accurately captured by the theory logarithmic relation between sliding distance and optical loss in a definite structure, having a large dynamic range of 22.32 mm with an accuracy of 0.99 mm, which suggests that the sensor has a promising prospect in monitoring civil engineering, especially for landslides.
NASA Astrophysics Data System (ADS)
Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa
The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.
Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera
NASA Astrophysics Data System (ADS)
Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2015-07-01
Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors
Farvardin, Amirhossein; Grupp, Robert; Murphy, Ryan J.; Taylor, Russell H.; Iordachita, Iulian
2016-01-01
Dexterous continuum manipulators (DCMs) can largely increase the reachable region and steerability for minimally and less invasive surgery. Many such procedures require the DCM to be capable of producing large deflections. The real-time control of the DCM shape requires sensors that accurately detect and report large deflections. We propose a novel, large deflection, shape sensor to track the shape of a 35 mm DCM designed for a less invasive treatment of osteolysis. Two shape sensors, each with three fiber Bragg grating sensing nodes is embedded within the DCM, and the sensors’ distal ends fixed to the DCM. The DCM centerline is computed using the centerlines of each sensor curve. An experimental platform was built and different groups of experiments were carried out, including free bending and three cases of bending with obstacles. For each experiment, the DCM drive cable was pulled with a precise linear slide stage, the DCM centerline was calculated, and a 2D camera image was captured for verification. The reconstructed shape created with the shape sensors is compared with the ground truth generated by executing a 2D–3D registration between the camera image and 3D DCM model. Results show that the distal tip tracking accuracy is 0.40 ± 0.30 mm for the free bending and 0.61 ± 0.15 mm, 0.93 ± 0.05 mm and 0.23 ± 0.10 mm for three cases of bending with obstacles. The data suggest FBG arrays can accurately characterize the shape of large-deflection DCMs. PMID:27761103
Fiber-optic bending sensor for cochlear implantation
NASA Astrophysics Data System (ADS)
Li, Enbang; Yao, Jianquan
2006-09-01
Cochlear implantation has been proved as a great success in treating profound sensorineural deafness in both children and adults. Cochlear electrode array implantation is a complex and delicate surgical process. Surgically induced damage to the inner wall of the scala tympani could happen if the insertion angle of the electrode is incorrect and an excessive insertion force is applied to the electrode. This damage could lead to severe degeneration of the remaining neural elements. It is therefore of vital importance to monitor the shape and position of the electrode during the implantation surgery. In this paper, we report a fiber-optic bending sensor which can be integrated with the electrode and used to guide the implantation process. The sensor consists of a piece of optical fiber. The end of the fiber is coated with aluminum layer to form a mirror. Bending the fiber with the electrode introduces loss to the light transmitting in the fiber. By detecting the power of the reflected light, we can detennine the bending happened to the fiber, and consequently measure the curved shape of the electrode. Experimental results show that the proposed fiber sensor is a promising technique to make in-situ monitoring of the shape and position of the electrode during the implantation process.
NASA Astrophysics Data System (ADS)
Yilmazoglu, O.; Yadav, S.; Cicek, D.; Schneider, J. J.
2016-09-01
A design for a unique artificial-hair-cell-type sensor (AHCTS) based entirely on 3D-structured, vertically aligned carbon nanotube (CNT) bundles is introduced. Standard microfabrication techniques were used for the straightforward micro-nano integration of vertically aligned carbon nanotube arrays composed of low-layer multi-walled CNTs (two to six layers). The mechanical properties of the carbon nanotube bundles were intensively characterized with regard to various substrates and CNT morphology, e.g. bundle height. The CNT bundles display excellent flexibility and mechanical stability for lateral bending, showing high tear resistance. The integrated 3D CNT sensor can detect three-dimensional forces using the deflection or compression of a central CNT bundle which changes the contact resistance to the shorter neighboring bundles. The complete sensor system can be fabricated using a single chemical vapor deposition (CVD) process step. Moreover, sophisticated external contacts to the surroundings are not necessary for signal detection. No additional sensors or external bias for signal detection are required. This simplifies the miniaturization and the integration of these nanostructures for future microsystem set-ups. The new nanostructured sensor system exhibits an average sensitivity of 2100 ppm in the linear regime with the relative resistance change per micron (ppm μm-1) of the individual CNT bundle tip deflection. Furthermore, experiments have shown highly sensitive piezoresistive behavior with an electrical resistance decrease of up to ˜11% at 50 μm mechanical deflection. The detection sensitivity is as low as 1 μm of deflection, and thus highly comparable with the tactile hair sensors of insects, having typical thresholds on the order of 30-50 μm. The AHCTS can easily be adapted and applied as a flow, tactile or acceleration sensor as well as a vibration sensor. Potential applications of the latter might come up in artificial cochlear systems. In particular, the stable mechanical bending of the sensor up to 90° opens up unique application opportunities.
NASA Astrophysics Data System (ADS)
Sugawara, Sumio; Sasaki, Yoshifumi; Kudo, Subaru
2018-07-01
The frequency-change-type two-axis acceleration sensor uses a cross-type vibrator consisting of four bending vibrators. When coupling vibration exists between these four bending vibrators, the resonance frequency of each vibrator cannot be adjusted independently. In this study, methods of reducing the coupling vibration were investigated by finite-element analysis. A method of adjusting the length of the short arm of each vibrator was proposed for reducing the vibration. When piezoelectric ceramics were bonded to the single-sided surface of the vibrator, the method was not sufficient. Thus, the ceramics with the same dimensions were bonded to double-sided surfaces. As a result, a marked reduction was obtained in this case. Also, the linearity of the sensor characteristics was significantly improved in a small acceleration range. Accordingly, it was clarified that considering the symmetry along the thickness direction of the vibrator is very important.
NASA Astrophysics Data System (ADS)
Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald
2009-05-01
A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.
Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.
2017-05-01
A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject’s physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.
Development of a directional sensitive pressure and shear sensor
NASA Astrophysics Data System (ADS)
Wang, Wei-Chih; Dee, Jeffrey; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.
2002-06-01
Diabetes mellitus is a disease that impacts the lives of millions of people around the world. Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. Shear stress is thought to be a major contributing factor to ulcer development, but due in part to technical difficulties with transducing shear stress, there is no widely used shear measurement sensor. As such, we are currently developing a directionally sensitive pressure/shear sensor based on fiber optic technology. The pressure/shear sensor consists of an array of optical fibers lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular fibers. The sensor has been shown to have low noise and responded linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 lbs. (0.4N). The smallest area we have resolved in our mesh sensor is currently ~1 cm2.
Zhao, Yunhe; Wang, Changle; Yin, Guolu; Jiang, Biqiang; Zhou, Kaiming; Mou, Chengbo; Liu, Yunqi; Zhang, Lin; Wang, Tingyun
2018-03-01
We demonstrate a directional curvature sensor based on tilted few-mode fiber Bragg gratings (FM-FBGs) inscribed by a UV laser. The eigenmodes of LP 01 and LP 11 mode groups are simulated along with the fiber bending. The directional curvature sensor is based on the LP 11 mode resonance in the tilted FM-FBG. For curvature from 4.883 to 7.625 m -1 , the curvature sensitivities at direction of 0° and 90° are measured to be -2.67 and 0.128 dB/m -1 , respectively. The temperature variation barely affects the resonance depth of LP 11 mode. The proposed curvature sensor clearly demonstrates the potential to simultaneous directional curvature and temperature measurement with the resolutions of 9.15×10 -4 m -1 and 0.952°C, respectively.
Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition
NASA Astrophysics Data System (ADS)
Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.
2017-03-01
Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.
Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.
Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji
2012-07-02
Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.
Sensor fusion: lane marking detection and autonomous intelligent cruise control system
NASA Astrophysics Data System (ADS)
Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel
1995-12-01
In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.
Distributed optical microsensors for hydrogen leak detection and related applications
NASA Astrophysics Data System (ADS)
Hunter, Scott R.; Patton, James F.; Sepaniak, Michael J.; Datskos, Panos G.; Smith, D. Barton
2010-04-01
Significant advances have recently been made to develop optically interrogated microsensor based chemical sensors with specific application to hydrogen vapor sensing and leak detection in the hydrogen economy. We have developed functionalized polymer-film and palladium/silver alloy coated microcantilever arrays with nanomechanical sensing for this application. The uniqueness of this approach is in the use of independent component analysis (ICA) and the classification techniques of neural networks to analyze the signals produced by an array of microcantilever sensors. This analysis identifies and quantifies the amount of hydrogen and other trace gases physisorbed on the arrays. Selectivity is achieved by using arrays of functionalized sensors with a moderate distribution of specificity among the sensing elements. The device consists of an array of beam-shaped transducers with molecular recognition phases (MRPs) applied to one surface of the transducers. Bending moments on the individual transducers can be detected by illuminating them with a laser or an LED and then reading the reflected light with an optical position sensitive detector (PSD) such as a CCD. Judicious selection of MRPs for the array provides multiple isolated interaction surfaces for sensing the environment. When a particular chemical agent binds to a transducer, the effective surface stresses of its modified and uncoated sides change unequally and the transducer begins to bend. The extent of bending depends upon the specific interactions between the microcantilever's MRP and the analyte. Thus, the readout of a multi-MRP array is a complex multidimensional signal that can be analyzed to deconvolve a multicomponent gas mixture. The use of this sensing and analysis technique in unattended networked arrays of sensors for various monitoring and surveillance applications is discussed.
NASA Astrophysics Data System (ADS)
Chen, Genda; Mu, Huimin; Pommerenke, David; Drewniak, James L.
2003-08-01
This study was aimed at developing and validating a new type of coaxial cable sensors that can be used to detect cracks or measure strains in reinforced concrete (RC) structures. The new sensors were designed based on the change in outer conductor configuration under strain effects in contrast to the geometry-based design in conventional coaxial cable sensors. Both numerical simulations and calibration tests with strain gauges of a specific design of the proposed cables were conducted to study the cables' sensitivity. Four designs of the proposed type of sensors were then respectively mounted near the surface of six 3-foot-long RC beams. They were tested in bending to further validate the cables' sensitivity in concrete members. The calibration test results generally agree with the numerical simulations. They showed that the proposed sensors are over 10~50 times more sensitive than conventional cable sensors. The test results of the beams not only validate the sensitivity of the new sensors but also indicate a good correlation with the measured crack width.
Power modulation based fiber-optic loop-sensor having a dual measurement range
NASA Astrophysics Data System (ADS)
Nguyen, Nguyen Q.; Gupta, Nikhil
2009-08-01
A fiber-optic sensor is investigated in this work for potential applications in structural health monitoring. The sensor, called fiber-loop-sensor, is based on bending an optical fiber beyond a critical radius to obtain intensity losses and calibrating the losses with respect to the applied force or displacement. Additionally, in the present case, the use of single-mode optical fibers allows the appearance of several resonance peaks in the transmitted power-displacement graph. The intensity of one of these resonances can be tracked in a narrow range to obtain high sensitivity. Experimental results show that the resolution of 10-4 N for force and 10-5 m for displacement can be obtained in these sensors. The sensors are calibrated for various loop radii and for various loading rates. They are also tested under loading-unloading conditions for over 104 cycles to observe their fatigue behavior. The sensors show very repeatable response and no degradation in performance under these test conditions. Simple construction and instrumentation, high sensitivity, and low cost are the advantages of these sensors.
Hwang, Dusun; Yoon, Dong-Jin; Kwon, Il-Bum; Seo, Dae-Cheol; Chung, Youngjoo
2010-05-10
A novel method for auto-correction of fiber optic distributed temperature sensor using anti-Stokes Raman back-scattering and its reflected signal is presented. This method processes two parts of measured signal. One part is the normal back scattered anti-Stokes signal and the other part is the reflected signal which eliminate not only the effect of local losses due to the micro-bending or damages on fiber but also the differential attenuation. Because the beams of the same wavelength are used to cancel out the local variance in transmission medium there is no differential attenuation inherently. The auto correction concept was verified by the bending experiment on different bending points. (c) 2010 Optical Society of America.
Ultra-precise micro-motion stage for optical scanning test
NASA Astrophysics Data System (ADS)
Chen, Wen; Zhang, Jianhuan; Jiang, Nan
2009-05-01
This study aims at the application of optical sensing technology in a 2D flexible hinge test stage. Optical fiber sensor which is manufactured taking advantage of the various unique properties of optical fiber, such as good electric insulation properties, resistance of electromagnetic disturbance, sparkless property and availability in flammable and explosive environment, has lots of good properties, such as high accuracy and wide dynamic range, repeatable, etc. and is applied in 2D flexible hinge stage driven by PZT. Several micro-bending structures are designed utilizing the characteristics of the flexible hinge stage. And through experiments, the optimal micro-bending tooth structure and the scope of displacement sensor trip under this optimal micro-bending tooth structure are derived. These experiments demonstrate that the application of optical fiber displacement sensor in 2D flexible hinge stage driven by PZT substantially broadens the dynamic testing range and improves the sensitivity of this apparatus. Driving accuracy and positioning stability are enhanced as well. [1,2
Xu, Tingzhong; Lu, Dejiang; Zhao, Libo; Jiang, Zhuangde; Wang, Hongyan; Guo, Xin; Li, Zhikang; Zhou, Xiangyang; Zhao, Yulong
2017-01-01
The influence of diaphragm bending stiffness distribution on the stress concentration characteristics of a pressure sensing chip had been analyzed and discussed systematically. According to the analysis, a novel peninsula-island-based diaphragm structure was presented and applied to two differenet diaphragm shapes as sensing chips for pressure sensors. By well-designed bending stiffness distribution of the diaphragm, the elastic potential energy induced by diaphragm deformation was concentrated above the gap position, which remarkably increased the sensitivity of the sensing chip. An optimization method and the distribution pattern of the peninsula-island based diaphragm structure were also discussed. Two kinds of sensing chips combined with the peninsula-island structures distributing along the side edge and diagonal directions of rectangular diaphragm were fabricated and analyzed. By bonding the sensing chips with anti-overload glass bases, these two sensing chips were demonstrated by testing to achieve not only high sensitivity, but also good anti-overload ability. The experimental results showed that the proposed structures had the potential to measure ultra-low absolute pressures with high sensitivity and good anti-overload ability in an atmospheric environment. PMID:28846599
Thundat, Thomas G.; Wachter, Eric A.
1998-01-01
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.
Thundat, T.G.; Wachter, E.A.
1998-02-17
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.
Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.
Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia
2016-09-11
An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section.
Wu, Jianfeng; Wang, Huatao; Su, Zhiwei; Zhang, Minghao; Hu, Xiaodong; Wang, Yijie; Wang, Ziao; Zhong, Bo; Zhou, Weiwei; Liu, Junpeng; Xing, Scott Guozhong
2017-11-08
Graphene and nanomaterials based flexible pressure sensors R&D activities are becoming hot topics due to the huge marketing demand on wearable devices and electronic skin (E-Skin) to monitor the human body's actions for dedicated healthcare. Herein, we report a facile and efficient fabrication strategy to construct a new type of highly flexible and sensitive wearable E-Skin based on graphite nanoplates (GNP) and polyurethane (PU) nanocomposite films. The developed GNP/PU E-Skin sensors are highly flexible with good electrical conductivity due to their unique binary microstructures with synergistic interfacial characteristics, which are sensitive to both static and dynamic pressure variation, and can even accurately and quickly detect the pressure as low as 0.005 N/50 Pa and momentum as low as 1.9 mN·s with a gauge factor of 0.9 at the strain variation of up to 30%. Importantly, our GNP/PU E-Skin is also highly sensitive to finger bending and stretching with a linear correlation between the relative resistance change and the corresponding bending angles or elongation percentage. In addition, our E-Skin shows excellent sensitivity to voice vibration when exposed to a volunteer's voice vibration testing. Notably, the entire E-Skin fabrication process is scalable, low cost, and industrially available. Our complementary experiments with comprehensive results demonstrate that the developed GNP/PU E-Skin is impressively promising for practical healthcare applications in wearable devices, and enables us to monitor the real-world force signals in real-time and in-situ mode from pressing, hitting, bending, stretching, and voice vibration.
Flexible organic transistors and circuits with extreme bending stability
NASA Astrophysics Data System (ADS)
Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao
2010-12-01
Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG.
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-11-24
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the "HYSY-981" ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results.
Study and Test of a New Bundle-Structure Riser Stress Monitoring Sensor Based on FBG
Xu, Jian; Yang, Dexing; Qin, Chuan; Jiang, Yajun; Sheng, Leixiang; Jia, Xiangyun; Bai, Yang; Shen, Xiaohong; Wang, Haiyan; Deng, Xin; Xu, Liangbin; Jiang, Shiquan
2015-01-01
To meet the requirements of riser safety monitoring in offshore oil fields, a new Fiber Bragg Grating (FBG)-based bundle-structure riser stress monitoring sensor has been developed. In cooperation with many departments, a 49-day marine test in water depths of 1365 m and 1252 m was completed on the “HYSY-981” ocean oil drilling platform. No welding and pasting were used when the sensor was installed on risers. Therefore, the installation is convenient, reliable and harmless to risers. The continuous, reasonable, time-consistent data obtained indicates that the sensor worked normally under water. In all detailed working conditions, the test results show that the sensor can do well in reflecting stresses and bending moments both in and in magnitude. The measured maximum stress is 132.7 MPa, which is below the allowable stress. In drilling and testing conditions, the average riser stress was 86.6 MPa, which is within the range of the China National Offshore Oil Corporation (CNOOC) mechanical simulation results. PMID:26610517
Sul, Onejae; Lee, Seung-Beck
2017-01-01
In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm−1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree−1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP−1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm. PMID:28878166
Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck
2017-09-06
In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.
Fiber optic level sensor for cryogens
NASA Technical Reports Server (NTRS)
Sharma, M.
1981-01-01
Sensor is useful in cryogenic environments where liquids of very low index of refraction are encountered. It is "yes/no" indication of whether liquid is in contact with sensor. Sharp bends in fiber alter distribution of light among propagation modes. This amplifies change in light output observed when sensor contacts liquid, without requiring long fiber that would increse insertion loss.
Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics.
Jason, Naveen Noah; Shen, Wei; Cheng, Wenlong
2015-08-05
This work tackles the complicated problem of clump formation and entanglement of high aspect ratio copper nanowires, due to which a well dispersed solution for use as a true ink for drawable electronics has not been made until now. Through rheology studies even a hard to use material like copper nanowires was tailored to be made into a highly efficient conductive ink with only 2 vol % or 18.28 wt % loading which is far lower than existing nanoparticle based inks. This versatile ink can be applied onto various substrates such as paper, PET, PDMS and latex. By using the ink in a roller ball pen, a bending sensor device was simply drawn on paper, which demonstrated detection of various degrees of convex bending and was highly durable as shown in the 10,000 bending cycling test. A highly sensitive strain sensor which has a maximum gauge factor of 54.38 was also fabricated by simply painting the ink onto latex rubber strip using a paintbrush. Finally a complex conductive pattern depicting the Sydney Opera House was painted on paper to demonstrate the versatility and robustness of the ink. The use of Cu NWs is highly economical in terms of the conductive filler loading in the ink and the cost of copper itself as compared to other metal NPs, CNT, and graphene-based inks. The demonstrated e-ink, devices, and facile device fabrication methods push the field one step closer to truly creating cheap and highly reliable skin like devices "on the fly".
Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode
NASA Astrophysics Data System (ADS)
Luo, Shi; Yang, Jun; Song, Xuefen; Zhou, Xi; Yu, Leyong; Sun, Tai; Yu, Chongsheng; Huang, Deping; Du, Chunlei; Wei, Dapeng
2018-07-01
Tunable-sensitivity and flexibility are considered as two crucial characteristics for future pressure sensors or electronic skins. By the theoretical calculation model, we simulated the relationship curve between the sensitivity and PDMS pyramids with different spacings, and found that the spacing of pyramids is a main factor to affect the sensitivity of the capacitance pressure sensor. Furthermore, we fabricated the capacitance pressure sensors using graphene electrodes and the PDMS pyramid dielectric layers with different spacings. The measurement data were consistent with the simulation results that the sensitivity increases with the spacing of pyramids. In addition, graphene electrode exhibits prefect flexibility and reliability, while the ITO electrode would be destroyed rapidly after bending. These graphene pressure sensors exhibit the potential in the application in the wearable products for monitoring breath, pulse, and other physiological signals.
Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En
2018-01-08
We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10 -4 × RIU -1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John
We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less
An Optical Actuation System and Curvature Sensor for a MR-compatible Active Needle
Ryu, Seok Chang; Quek, Zhan Fan; Renaud, Pierre; Black, Richard J.; Daniel, Bruce L.; Cutkosky, Mark R.
2015-01-01
A side optical actuation method is presented for a slender MR-compatible active needle. The needle includes an active region with a shape memory alloy (SMA) wire actuator, where the wire generates a contraction force when optically heated by a laser delivered though optical fibers, producing needle tip bending. A prototype, with multiple side heating spots, demonstrates twice as fast an initial response compared to fiber tip heating when 0.8 W of optical power is applied. A single-ended optical sensor with a gold reflector is also presented to measure the curvature as a function of optical transmission loss. Preliminary tests with the sensor prototype demonstrate approximately linear response and a repeatable signal, independent of the bending history. PMID:26509099
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-01
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film.
Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar
2017-08-11
Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS 2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS 2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS 2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS 2 . Furthermore, two kinds of MoS 2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS 2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS 2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.
A novel optical fiber displacement sensor of wider measurement range based on neural network
NASA Astrophysics Data System (ADS)
Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian
2006-02-01
By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.
Fibre optic strain sensor: examples of applications
NASA Astrophysics Data System (ADS)
Kruszewski, J.; Beblowska, M.; Wrzosek, P.
2006-03-01
Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.
Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations
Kim, Dong Hyun; Lee, Sang Wook; Park, Hyung-Soon
2016-01-01
Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freedom (DOF). To properly measure CMC-joint configurations, sensor locations that minimize sensor crosstalk must be identified. This paper presents a novel approach to identifying optimal sensor locations. Three-dimensional hand surface data from ten subjects was collected in multiple thumb postures with varied CMC-joint flexion and abduction angles. For each posture, scanned CMC-joint contours were used to estimate CMC-joint flexion and abduction angles by varying the positions and orientations of two bending sensors. Optimal sensor locations were estimated by the least squares method, which minimized the difference between the true CMC-joint angles and the joint angle estimates. Finally, the resultant optimal sensor locations were experimentally validated. Placing sensors at the optimal locations, CMC-joint angle measurement accuracies improved (flexion, 2.8° ± 1.9°; abduction, 1.9° ± 1.2°). The proposed method for improving the accuracy of the sensing system can be extended to other types of soft wearable measurement devices. PMID:27240364
Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard
2014-06-01
Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.
Lai, WeiJen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro
2016-12-01
We developed a device to evaluate the orthodontic force applied by systems requiring high operability. A life-sized, two-tooth model was designed, and the measurements were performed using a custom-made jointed attachment, referred to as an "action stick", to allow clearance for the oversized six-axis sensors. This tooth-sensor apparatus was accurately calibrated, and the error was limited. Vector analysis and rotating coordinate transformation were required to derive the force and moment at the tooth from the sensor readings. The device was then used to obtain measurements of the force and moment generated by the V-bend system. Our device was effective, providing results that were consistent with those of previous studies. This measurement device can be manufactured with force sensors of any size, and it can also be expanded to models with any number of teeth.
Jun, Jaemoon; Oh, Jungkyun; Shin, Dong Hoon; Kim, Sung Gun; Lee, Jun Seop; Kim, Wooyoung; Jang, Jyongsik
2016-12-07
Due to rapid advances in technology which have contributed to the development of portable equipment, highly sensitive and selective sensor technology is in demand. In particular, many approaches to the modification of wireless sensor systems have been studied. Wireless systems have many advantages, including unobtrusive installation, high nodal densities, low cost, and potential commercial applications. In this study, we fabricated radio frequency identification (RFID)-based wireless sensor systems using carboxyl group functionalized polypyrrole (C-PPy) nanoparticles (NPs). The C-PPy NPs were synthesized via chemical oxidation copolymerization, and then their electrical and chemical properties were characterized by a variety of methods. The sensor system was composed of an RFID reader antenna and a sensor tag made from a commercially available ultrahigh frequency RFID tag coated with C-PPy NPs. The C-PPy NPs were covalently bonded to the tag to form a passive sensor. This type of sensor can be produced at a very low cost and exhibits ultrahigh sensitivity to ammonia, detecting concentrations as low as 0.1 ppm. These sensors operated wirelessly and maintained their sensing performance as they were deformed by bending and twisting. Due to their flexibility, these sensors may be used in wearable technologies for sensing gases.
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu
2015-09-18
Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.
Thermal Property Analysis of Axle Load Sensors for Weighing Vehicles in Weigh-in-Motion System
Burnos, Piotr; Gajda, Janusz
2016-01-01
Systems which permit the weighing of vehicles in motion are called dynamic Weigh-in-Motion scales. In such systems, axle load sensors are embedded in the pavement. Among the influencing factors that negatively affect weighing accuracy is the pavement temperature. This paper presents a detailed analysis of this phenomenon and describes the properties of polymer, quartz and bending plate load sensors. The studies were conducted in two ways: at roadside Weigh-in-Motion sites and at a laboratory using a climate chamber. For accuracy assessment of roadside systems, the reference vehicle method was used. The pavement temperature influence on the weighing error was experimentally investigated as well as a non-uniform temperature distribution along and across the Weigh-in-Motion site. Tests carried out in the climatic chamber allowed the influence of temperature on the sensor intrinsic error to be determined. The results presented clearly show that all kinds of sensors are temperature sensitive. This is a new finding, as up to now the quartz and bending plate sensors were considered insensitive to this factor. PMID:27983704
Method of simultaneous measurement of two direction force and temperature using FBG sensor head.
Kisała, Piotr; Cięszczyk, Sławomir
2015-04-01
This paper presents a method for measuring two components of bending force and temperature using one sensor head. Indirect inference based on the spectra of two fiber Bragg gratings (FBGs) placed on a cantilever beam is used. The method was developed during work on the inverse problem of determining a nonuniform stress distribution based on FBG spectra. A gradient in the FBG stress profile results in a characteristic shape of its reflective spectrum. The simultaneous measurements of force and temperature were possible through the use of an appropriate layout of the sensor head. The spectral characteristics of the sensor's gratings do not retain full symmetry, which is due to the geometry of the sensor's head and the related difference in the distribution of the axial stress of the gratings. In the proposed approach, the change in width of the sum of the normalized transmission spectra was used to determine the value of the applied force. In the presented method, an increase in the sensitivity of this change to the force is obtained relative to the other known systems. A change in the spectral width was observed for an increase in bending forces from 0 to 150 N. The sensitivity coefficient of the spectral width to force, defined as the ratio of the change of the spectral half-width to the change in force was 2.6e-3 nm/N for the first grating and 1.2e-3 nm/N for the second grating. However, the sensitivity of the whole sensor system was 5.8e-3 nm/N, which is greater than the sum of the sensitivities of the individual gratings. For the purpose of this work, a station with a thermal chamber has been designed with a bracket on which fiber optic transducers have been mounted for use in further measurements. The sensor head in this experiment is considered to be a universal device with potential applications in other types of optical sensors, and it can be treated as a module for development through its multiplication on a single optical fiber.
NASA Technical Reports Server (NTRS)
Bekdash, Omar; Norcross, Jason; McFarland, Shane
2015-01-01
Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.
Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat
2013-03-01
Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.
Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating
Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia
2016-01-01
An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427
Shape sensing for torsionally compliant concentric-tube robots
NASA Astrophysics Data System (ADS)
Xu, Ran; Yurkewich, Aaron; Patel, Rajni V.
2016-03-01
Concentric-tube robots (CTR) consist of a series of pre-curved flexible tubes that make up the robot structure and provide the high dexterity required for performing surgical tasks in constrained environments. This special design introduces new challenges in shape sensing as large twisting is experienced by the torsionally compliant structure. In the literature, fiber Bragg grating (FBG) sensors are attached to needle-sized continuum robots for curvature sensing, but they are limited to obtaining bending curvatures since a straight sensor layout is utilized. For a CTR, in addition to bending curvatures, the torsion along the robots shaft should be determined to calculate the shape and pose of the robot accurately. To solve this problem, in our earlier work, we proposed embedding FBG sensors in a helical pattern into the tube wall. The strain readings are converted to bending curvatures and torsion by a strain-curvature model. In this paper, a modified strain-curvature model is proposed that can be used in conjunction with standard shape reconstruction algorithms for shape and pose calculation. This sensing technology is evaluated for its accuracy and resolution using three FBG sensors with 1 mm sensing segments that are bonded into the helical grooves of a pre-curved Nitinol tube. The results show that this sensorized robot can obtain accurate measurements: resolutions of 0.02 rad/m with a 100 Hz sampling rate. Further, the repeatability of the obtained measurements during loading and unloading conditions are presented and analyzed.
Flexible heartbeat sensor for wearable device.
Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu
2017-08-15
We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.
2009-01-01
Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416
Sensored fiber reinforced polymer grate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Michael P.; Mack, Thomas Kimball
Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less
Development of topologically structured membranes of aluminum oxide
NASA Astrophysics Data System (ADS)
Bankova, A.; Videkov, V.; Tzaneva, B.
2014-05-01
In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.
Spatially distributed modal signals of free shallow membrane shell structronic system
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
2008-11-01
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Microfabricated pressure and shear stress sensors
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)
2009-01-01
A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
NASA Astrophysics Data System (ADS)
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-07-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-01-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration. PMID:27465437
Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen
2015-01-01
Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process. PMID:26640124
Performance weight sensor using graded index optical fiber on static test with UTM
NASA Astrophysics Data System (ADS)
Khamimatul Ula, R.; Hanto, Dwi
2017-05-01
Overloading the vehicle on a highway cause the damage to roads, accidents and harm other road users. Required a weight sensor has a high sensitivity, resistant to corrosion and electromagnetic wave interference. Graded index optical fiber is a kind of fiber that has the potential to be used as a deformation sensor. This research aims to optimize the load sensor has been developed previously to detect a load on a ton scale. The weight sensor-based micro bending graded index fiber and LED as a light source capable of detecting a load from 0.7 to 1.93 tons with a standard deviation of 1.18 and 99.45% accuracy level in a static text using UTM. This sensor has been able to be used to detect heavy vehicles such as water truck wheels 6 and fuel trucks. The study will be further developed in order to detect the load to more than 8 tons.
Optical design of endoscopic shape-tracker using quantum dots embedded in fiber bundles
NASA Astrophysics Data System (ADS)
Eisenstein, Jessica; Gavalis, Robb; Wong, Peter Y.; Cao, Caroline G. L.
2009-08-01
Colonoscopy is the current gold standard for colon cancer screening and diagnosis. However, the near-blind navigation process employed during colonoscopy results in endoscopist disorientation and scope looping, leading to missed detection of tumors, incorrect localization, and pain for the patient. A fiber optic bend sensor, which would fit into the working channel of a colonoscope, is developed to aid navigation through the colon during colonoscopy. The bend sensor is comprised of a bundle of seven fibers doped with quantum dots (QDs). Each fiber within the bundle contains a unique region made up of three zones with differently-colored QDs, spaced 120° apart circumferentially on the fiber. During bending at the QD region, light lost from the fiber's core is coupled into one of the QD zones, inducing fluorescence of the corresponding color whose intensity is proportional to the degree of bending. A complementary metal oxide semiconductor camera is used to obtain an image of the fluorescing end faces of the fiber bundle. The location of the fiber within the bundle, the color of fluorescence, and the fluorescence intensity are used to determine the bundle's bending location, direction, and degree of curvature, respectively. Preliminary results obtained using a single fiber with three QD zones and a seven-fiber bundle containing one active fiber with two QDs (180° apart) demonstrate the feasibility of the concept. Further developments on fiber orientation during bundling and the design of a graphical user interface to communicate bending information are also discussed.
Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
NASA Astrophysics Data System (ADS)
Yunus, Muhammad; Arifin, A.
2018-03-01
A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.
2014-01-01
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training. PMID:24942483
NASA Astrophysics Data System (ADS)
Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.
2017-11-01
Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
Fabrication of directional sound sensor by silicon micromachining
NASA Astrophysics Data System (ADS)
Touse, Michael; Catterlin, Jeffrey; Sinibaldi, Jose; Karunasiri, Gamani
2009-03-01
A directional sound sensor based on the operational principle of the Ormia ochracea fly's hearing organism [1] was fabricated using micro-electromechanical system (MEMS) technology. The fly uses coupled bars hinged at the center to achieve directional sound sensing by monitoring the difference in their vibration amplitudes. The MEMS design employed in this work consisted of a 1x2 square millimeter polysilicon membrane hinged at the center and positioned about 1 micrometer above the substrate using a sacrificial silicon dioxide layer. Finite element analysis of the device shows two primary vibrational mode frequencies, one corresponding to a rocking mode which is highly dependent on angle of incidence, and the other to a bending motion which remains constant through all angles. Using a laser vibrometer to measure response, rocking and bending modes were observed at driving frequencies of 3.0 and 11.4 kHz, respectively, and angular dependence was in close agreement with modeling. [1] R.N. Miles, R. Robert, and R. R. Hoy, ``Mechanically coupled ears for directional hearing in the parasitoid fly Ormia ochracea,'' J. Acoust. Soc. Am., 98 (6), Dec. 1995
Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin.
Guo, Huayang; Lan, Changyong; Zhou, Zhifei; Sun, Peihua; Wei, Dapeng; Li, Chun
2017-05-18
Skin-mountable chemical sensors using flexible chemically sensitive nanomaterials are of great interest for electronic skin (e-skin) application. To build these sensors, the emerging atomically thin two-dimensional (2D) layered semiconductors could be a good material candidate. Herein, we show that a large-area WS 2 film synthesized by sulfurization of a tungsten film exhibits high humidity sensing performance both in natural flat and high mechanical flexible states (bending curvature down to 5 mm). The conductivity of as-synthesized WS 2 increases sensitively over a wide relative humidity range (up to 90%) with fast response and recovery times in a few seconds. By using graphene as electrodes and thin polydimethylsiloxane (PDMS) as substrate, a transparent, flexible, and stretchable humidity sensor was fabricated. This senor can be well laminated onto skin and shows stable water moisture sensing behaviors in the undeformed relaxed state as well as under compressive and tensile loadings. Furthermore, its high sensing performance enables real-time monitoring of human breath, indicating a potential mask-free breath monitoring for healthcare application. We believe that such a skin-activity compatible WS 2 humidity sensor may shed light on developing low power consumption wearable chemical sensors based on 2D semiconductors.
ERIC Educational Resources Information Center
Digilov, Rafael M.
2008-01-01
We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…
Optimization of sensor introduction into laminated composite materials
NASA Astrophysics Data System (ADS)
Schaaf, Kristin; Nemat-Nasser, Sia
2008-03-01
This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.
NASA Astrophysics Data System (ADS)
Adu, Stephen Aboagye
Laminated carbon fiber-reinforced polymer composites (CFRPs) possess very high specific strength and stiffness and this has accounted for their wide use in structural applications, most especially in the aerospace industry, where the trade-off between weight and strength is critical. Even though they possess much larger strength ratio as compared to metals like aluminum and lithium, damage in the metals mentioned is rather localized. However, CFRPs generate complex damage zones at stress concentration, with damage progression in the form of matrix cracking, delamination and fiber fracture or fiber/matrix de-bonding. This thesis is aimed at performing; stiffness degradation analysis on composite coupons, containing embedded delamination using the Four-Point Bend Test. The Lamb wave-based approach as a structural health monitoring (SHM) technique is used for damage detection in the composite coupons. Tests were carried-out on unidirectional composite coupons, obtained from panels manufactured with pre-existing defect in the form of embedded delamination in a laminate of stacking sequence [06/904/0 6]T. Composite coupons were obtained from panels, fabricated using vacuum assisted resin transfer molding (VARTM), a liquid composite molding (LCM) process. The discontinuity in the laminate structure due to the de-bonding of the middle plies caused by the insertion of a 0.3 mm thick wax, in-between the middle four (4) ninety degree (90°) plies, is detected using lamb waves generated by surface mounted piezoelectric (PZT) actuators. From the surface mounted piezoelectric sensors, response for both undamaged (coupon with no defect) and damaged (delaminated coupon) is obtained. A numerical study of the embedded crack propagation in the composite coupon under four-point and three-point bending was carried out using FEM. Model validation was then carried out comparing the numerical results with the experimental. Here, surface-to-surface contact property was used to model the composite coupon under simply supported boundary conditions. Theoretically calculated bending stiffness's and maximum deflection were compared with that of the experimental case and the numerical. After the FEA model was properly benchmarked with test data and exact solution, data obtained from the FEM model were used for sensor placement optimization.
Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester
NASA Astrophysics Data System (ADS)
Abdal, A. M.; Leong, K. S.
2017-06-01
This paper experimentally demonstrates and evaluates a piezoelectric power generator bending mechanism based on pre-stressed condition whereby the piezoelectric transducer being bended and remained in the stressed condition before applying a force on the piezoelectric bending structure, which increase the stress on the piezoelectric surface and hence increase the generated electrical charges. An impact force is being exerted onto bending the piezoelectric beam and hence generating electrical power across an external resistive load. The proposed bending mechanism prototype has been manufactured by employing 3D printer technology in order to conduct the evaluation. A free fall test has been conducted as the evaluation method with varying force using a series of different masses and different fall heights. A rectangular piezoelectric harvester beam with the size of 32mm in width, 70mm in length, and 0.55mm in thickness is used to demonstrate the experiment. It can be seen from the experiment that the instantaneous peak to peak AC volt output measured at open-circuit is increasing and saturated at about of 70V when an impact force of about 80N is being applied. It is also found that a maximum power of about 53mW is generated at an impact force of 50N when it is connected to an external resistive load of 0.7KΩ. The reported mechanism is a promising candidate in the application of energy harvesting for powering various wireless sensor nodes (WSN) which is the core of Internet of Things (IoT).
A dual modality optical fiber sensor
NASA Astrophysics Data System (ADS)
Herrera-Piad, Luis A.; Haus, Joseph W.; Jauregui-Vazquez, Daniel; Lopez-Dieguez, Yanelis; Estudillo-Ayala, Julian M.; Sierra-Hernandez, Juan M.; Hernandez-Garcia, Juan C.; Rojas-Laguna, Roberto
2018-02-01
We propose and demonstrate a fibre optic system based on bi-tapered silica fibre that can simultaneously measure strain and fibre curvature. Both modalities on the signal can be extracted with no measurable crosstalk between them. The experimental signal has a pure phase modulation when strain is applied to the tapered fibre optic section of the sensor and the signal shows only intensity modulation when an un-tapered fibre section is bent. High sensitivity is achieved from the experimental results for strain and bending losses and the estimation of measurement errors is 0.2 and 0.1%, respectively. This system offers low-cost, compactness and it can be adapted for structural health monitoring.
Flexible strain sensor based on carbon nanotube rubber composites
NASA Astrophysics Data System (ADS)
Kim, Jin-Ho; Kim, Young-Ju; Baek, Woon Kyung; Lim, Kwon Taek; Kang, Inpil
2010-04-01
Electrically conducting rubber composites (CRC) with carbon nanotubes (CNTs) filler have received much attention as potential materials for sensors. In this work, Ethylene propylene diene M-class rubber (EPDM)/CNT composites as a novel nano sensory material were prepared to develop flexible strain sensors that can measure large deformation of flexible structures. The EPDM/CNT composites were prepared by using a Brabender mixer with multi-walled CNTs and organo-clay. A strain sensor made of EPDM/CNT composite was attached to the surface of a flexible beam and change of resistance of the strain sensor was measured with respect to the beam deflection. Resistance of the sensor was change quite linearly under the bending and compressive large beam deflection. Upon external forces, CRC deformation takes place with the micro scale change of inter-electrical condition in rubber matrix due to the change of contact resistance, and CRC reveals macro scale piezoresistivity. It is anticipated that the CNT/EPDM fibrous strain sensor can be eligible to develop a biomimetic artificial neuron that can continuously sense deformation, pressure and shear force.
Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.
Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar
2016-12-14
We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.
Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors
Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao
2017-01-01
Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results. PMID:28481266
Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors.
Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao
2017-05-06
Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model based on improved Levy-type solution is established to estimate the overall deflection distribution from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution are adopted to obtain the analytical model that can converge quickly through simplifying an infinite series. The truncation error of this model is further analyzed. Simulation and experiments are carried out. They show that the proposed model is in reasonable agreement with the experimental results.
Wearable carbon nanotube based dry-electrodes for electrophysiological sensors
NASA Astrophysics Data System (ADS)
Kang, Byeong-Cheol; Ha, Tae-Jun
2018-05-01
In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.
Bio-Inspired Micromechanical Directional Acoustic Sensor
NASA Astrophysics Data System (ADS)
Swan, William; Alves, Fabio; Karunasiri, Gamani
Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.
An investigation into the kinematics of 2 cervical manipulation techniques.
Williams, Jonathan M; Cuesta-Vargas, Antonio I
2013-01-01
The purpose of this study was to quantify the kinematics of the premanipulative position, the angular displacement, and velocity of thrust of 2 commonly used cervical spine manipulative procedures using inertial sensor technology. Thirteen asymptomatic subjects (7 females; mean age, 25.3 years; mean height, 170.9 cm; mean weight, 65.3 kg) received a right-handed and left-handed downslope and upslope manipulation, aimed at C4/5 while cervical kinematics were measured using an inertial sensor mounted on the forehead of the subject. One therapist used the upslope, and another therapist, the downslope, as was their preferred method. t tests were used to compare techniques and handiness. The results demonstrated differences in the kinematics between the 2 techniques. The downslope manipulation was associated with a mean premanipulative position of 24.8° side bending and 2.7° rotation, thrust displacement magnitude comprising of 4.5° side bending and 5.4° rotation with thrust velocity comprising, on average, of 57.5°/s side bending and 74.8°/s rotation. Upslope premanipulation was on average comprised of 30.1° side bending and 8.4° rotation, thrust displacement comprised of 4.5° side bending and 12.7° rotation with thrust velocity comprising of 75.9°/s side bending and 194.7°/s rotation. The results of this study demonstrate that there are different kinematic patterns for these 2 manipulative techniques. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
The Homogeneity of Optimal Sensor Placement Across Multiple Winged Insect Species
NASA Astrophysics Data System (ADS)
Jenkins, Abigail L.
Taking inspiration from biology, control algorithms can be implemented to imitate the naturally occurring control systems present in nature. This research is primarily concerned with insect flight and optimal wing sensor placement. Many winged insects with halteres are equipped with mechanoreceptors termed campaniform sensilla. Although the exact information these receptors provide to the insect's nervous system is unknown, it is thought to have the capability of measuring inertial rotation forces. During flight, when the wing bends, the information measured by the campaniform sensilla is received by the central nervous system, and provides the insect necessary data to control flight. This research compares three insect species - the hawkmoth Manduca sexta, the honeybee Apis mellifera, and the fruit fly Drosophila melanogaster. Using an observability-based sensor placement algorithm, the optimal sensor placement for these three species is determined. Simulations resolve if this optimal sensor placement corresponds to the insect's campaniform sensilla, as well as if placement is homogeneous across species.
Low-voltage organic strain sensor on plastic using polymer/high- K inorganic hybrid gate dielectrics
NASA Astrophysics Data System (ADS)
Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.
2007-12-01
In this paper, gate-induced pentacene semiconductor strain sensors based on hybrid-gate dielectrics using poly-vinylphenol (PVP) and high-K inorganic, Ta IIO 5 are fabricated on flexible substrates, polyethylene naphthalate (PEN). The Ta IIO 5 gate dielectric layer is combined with a thin PVP layer to obtain very smooth and hydrophobic surfaces which improve the molecular structures of pentacene films. The PVP-Ta IIO 5 hybrid-gate dielectric films exhibit a high dielectric capacitance and low leakage current. The sensors adopting thin film transistor (TFT)-like structures show a significantly reduced operating voltage (~6V), and good device characteristics with a field-effect mobility of 1.89 cm2/V•s, a threshold voltage of -0.5 V, and an on/off ratio of 10 3. The strain sensor, one of the practical applications in large-area organic electronics, was characterized with different bending radii of 50, 40, 30, and 20 mm. The sensor output signals were significantly improved with low-operating voltages.
Flexible circuits with integrated switches for robotic shape sensing
NASA Astrophysics Data System (ADS)
Harnett, C. K.
2016-05-01
Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.
NASA Astrophysics Data System (ADS)
Arms, Steven W.; Guzik, David C.; Townsend, Christopher P.
1998-07-01
Critical civil and military structures require 'smart' sensors in order to report their strain histories; this can help to insure safe operation after exposure to potentially damaging loads. A passive resetable peak strain detector was developed by modifying the mechanics of a differential variable reluctance transducer. The peak strain detector was attached to an aluminum test beam along with a bonded resistance strain gauge and a standard DVRT. Strain measurements were recorded during cyclic beam deflections. DVRT output was compared to the bonded resistance strain gauge output, yielding correlation coefficients ranging from 0.9989 to 0.9998 for al teste, including re-attachment of the DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT and this was compared to the peak bending strains as measured by the bonded strain gauge. The peak detect DVRT demonstrated an accuracy of approximately +/- 5 percent over a peak range of 2000 to 2800 microstrain.
Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors
NASA Technical Reports Server (NTRS)
Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.
2005-01-01
In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
Error analysis on spinal motion measurement using skin mounted sensors.
Yang, Zhengyi; Ma, Heather Ting; Wang, Deming; Lee, Raymond
2008-01-01
Measurement errors of skin-mounted sensors in measuring forward bending movement of the lumbar spines are investigated. In this investigation, radiographic images capturing the entire lumbar spines' positions were acquired and used as a 'gold' standard. Seventeen young male volunteers (21 (SD 1) years old) agreed to participate in the study. Light-weight miniature sensors of the electromagnetic tracking systems-Fastrak were attached to the skin overlying the spinous processes of the lumbar spine. With the sensors attached, the subjects were requested to take lateral radiographs in two postures: neutral upright and full flexion. The ranges of motions of lumbar spine were calculated from two sets of digitized data: the bony markers of vertebral bodies and the sensors and compared. The differences between the two sets of results were then analyzed. The relative movement between sensor and vertebrae was decomposed into sensor sliding and titling, from which sliding error and titling error were introduced. Gross motion range of forward bending of lumbar spine measured from bony markers of vertebrae is 67.8 degrees (SD 10.6 degrees ) and that from sensors is 62.8 degrees (SD 12.8 degrees ). The error and absolute error for gross motion range were 5.0 degrees (SD 7.2 degrees ) and 7.7 degrees (SD 3.9 degrees ). The contributions of sensors placed on S1 and L1 to the absolute error were 3.9 degrees (SD 2.9 degrees ) and 4.4 degrees (SD 2.8 degrees ), respectively.
Microphotonic devices for compact planar lightwave circuits and sensor systems
NASA Astrophysics Data System (ADS)
Cardenas Gonzalez, Jaime
2005-07-01
Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are presented.
A platform-based foot pressure/shear sensor
NASA Astrophysics Data System (ADS)
Chang, Chun-Te; Liu, Chao Shih; Soetanto, William; Wang, Wei-Chih
2012-04-01
The proposed research is aimed at developing, fabricating and implementing a flexible fiber optic bend loss sensor for the measurement of plantar pressure and shear stress for diabetic patients. The successful development of the sensor will greatly impact the study of diabetic foot ulcers by allowing clinicians to measure a parameter (namely, shear stress) that has been implicated in ulceration, but heretofore, has not been routinely quantified on high risk patients. A full-scale foot pressure/shear sensor involves a tactile sensor array using intersecting optical waveguides is presented. The basic configuration of the optical sensor systems incorporates a mesh that is comprised of two sets of parallel optical waveguide planes; the planes are configured so the parallel rows of waveguides of the top and bottom planes are perpendicular to each other. The planes are sandwiched together creating one sensing sheet. Two-dimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution. The shifting of the layers relative to each other allows determination of the shear stress in the plane of the sensor. This paper presents latest development and improvement in the sensors design. Fabrication and results from the latest tests will be described.
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
United States Air Force Research Laboratory (AFRL) ground tests at the NASA Transonic Dynamics Tunnel (TDT) and NASA flight tests provide a basis and methodology for in-flight characterization of the aeroelastic performance through the monitoring of the fluid-structure interaction using surface flow sensors. NASA NF-15B flight tests provided a unique opportunity to test the correlation of aerodynamic loads with sectional flow attachment/detachment points, also known as flow bifurcation points (FBPs), as observed in previous wind tunnel tests. The NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. These data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in root-bending strains and hot-film sensor signals near the stagnation region that were highly correlated. For the TDT tests, a flexible wing section developed under the AFRL SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at multiple span stations. The TDT tests provided data showing a gradual phase change between the FBP and the structural mode occurred during a resonant condition as the wings structural modes were excited by the tunnel-generated gusts.
Nanomechanical membrane-type surface stress sensor.
Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich
2011-03-09
Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.
Wajahat, Muhammad; Lee, Sanghyeon; Kim, Jung Hyun; Chang, Won Suk; Pyo, Jaeyeon; Cho, Sung Ho; Seol, Seung Kwon
2018-06-13
Printed strain sensors have promising potential as a human-machine interface (HMI) for health-monitoring systems, human-friendly wearable interactive systems, and smart robotics. Herein, flexible strain sensors based on carbon nanotube (CNT)-polymer composites were fabricated by meniscus-guided printing using a CNT ink formulated from multiwall nanotubes (MWNTs) and polyvinylpyrrolidone (PVP); the ink was suitable for micropatterning on nonflat (or curved) substrates and even three-dimensional structures. The printed strain sensors exhibit a reproducible response to applied tensile and compressive strains, having gauge factors of 13.07 under tensile strain and 12.87 under compressive strain; they also exhibit high stability during ∼1500 bending cycles. Applied strains induce a contact rearrangement of the MWNTs and a change in the tunneling distance between them, resulting in a change in the resistance (Δ R/ R 0 ) of the sensor. Printed MWNT-PVP sensors were used in gloves for finger movement detection; these can be applied to human motion detection and remote control of robotic equipment. Our results demonstrate that meniscus-guided printing using CNT inks can produce highly flexible, sensitive, and inexpensive HMI devices.
Roopa Manjunatha, G; Rajanna, K; Mahapatra, D Roy; Nayak, M M; Krishnaswamy, Uma Maheswari; Srinivasa, R
2013-12-01
Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 ± 4.1) and the RIP (19.57 ± 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.
Nauman, Saad; Cristian, Irina; Koncar, Vladan
2011-01-01
This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor. PMID:22163707
Nauman, Saad; Cristian, Irina; Koncar, Vladan
2011-01-01
This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor.
Research of distributed-fiber-optic pressure sensor
NASA Astrophysics Data System (ADS)
Lu, Xiao Ming; Ren, Xin; Chen, Yu-bao; Che, Rensheng
1991-08-01
The paper discribed the principle and method of distributed fiber optic pressure sensor utilizing OTDR technique. The relativity of the microbend loss and bend radius of the multimode optical fiber is discussed ,and its experimental curve is given. In this paper ,a new type of OTDR measuring system using single-chip microcomputer is introduced as well
NASA Technical Reports Server (NTRS)
Buehler, M.; Ryan, M.
1995-01-01
A new test chip is being developed to characterize conducting polymers used in gas sensors. The chip, a seven-layer cofired alumina substrate with gold electrodes, contains 11 comb and U- bend test structures. These structures are designed to measure the sheet resistance, conduction anisotropy, and peripheral conduction of spin-coated films that are not subsequently patterned.
An Architecture for Measuring Joint Angles Using a Long Period Fiber Grating-Based Sensor
Perez-Ramirez, Carlos A.; Almanza-Ojeda, Dora L.; Guerrero-Tavares, Jesus N.; Mendoza-Galindo, Francisco J.; Estudillo-Ayala, Julian M.; Ibarra-Manzano, Mario A.
2014-01-01
The implementation of signal filters in a real-time form requires a tradeoff between computation resources and the system performance. Therefore, taking advantage of low lag response and the reduced consumption of resources, in this article, the Recursive Least Square (RLS) algorithm is used to filter a signal acquired from a fiber-optics-based sensor. In particular, a Long-Period Fiber Grating (LPFG) sensor is used to measure the bending movement of a finger. After that, the Gaussian Mixture Model (GMM) technique allows us to classify the corresponding finger position along the motion range. For these measures to help in the development of an autonomous robotic hand, the proposed technique can be straightforwardly implemented on real time platforms such as Field Programmable Gate Array (FPGA) or Digital Signal Processors (DSP). Different angle measurements of the finger's motion are carried out by the prototype and a detailed analysis of the system performance is presented. PMID:25536002
Huet, Lucie A; Rudnicki, John W; Hartmann, Mitra J Z
2017-06-01
Almost all mammals use their mystacial vibrissae (whiskers) as important tactile sensors. There are no sensors along the length of a whisker: all sensing is performed by mechanoreceptors at the whisker base. To use artificial whiskers as a sensing tool in robotics, it is essential to be able to determine the three-dimensional (3D) location at which a whisker has made contact with an object. With the assumption of quasistatic, frictionless, single-point contact, previous work demonstrated that the 3D contact point can be uniquely determined if all six components of force and moment are measured at the whisker base, but these measurements require a six-axis load cell. Here, we perform simulations to investigate the extent to which each of the 20 possible "triplet" combinations of the six mechanical signals at the whisker base uniquely determine 3D contact point location. We perform this analysis for four different whisker profiles (shapes): tapered with and without intrinsic curvature, and cylindrical with and without intrinsic curvature. We show that whisker profile has a strong influence on the particular triplet(s) of signals that uniquely map to the 3D contact point. The triplet of bending moment, bending moment direction, and axial force produces unique mappings for tapered whiskers. Four different mappings are unique for a cylindrical whisker without intrinsic curvature, but only when large deflections are excluded. These results inform the neuroscience of vibrissotactile sensing and represent an important step toward the development of artificial whiskers for robotic applications.
The influence of tip shape on bending force during needle insertion
van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.
2017-01-01
Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939
A flexible and miniaturized hair dye based photodetector via chemiluminescence pathway.
Lin, Ching-Chang; Sun, Da-Shiuan; Lin, Ya-Lin; Tsai, Tsung-Tso; Cheng, Chieh; Sun, Wen-Hsien; Ko, Fu-Hsiang
2017-04-15
A flexible and miniaturized metal semiconductor metal (MSM) biomolecular photodetector was developed as the core photocurrent system through chemiluminescence for hydrogen peroxide sensing. The flexible photocurrent sensing system was manufactured on a 30-µm-thick crystalline silicon chip by chemical etching process, which produced a flexible silicon chip. A surface texturization design on the flexible device enhanced the light-trapping effect and minimized reflectivity losses from the incident light. The model protein streptavidin bound to horseradish peroxidase (HRP) was successfully immobilized onto the sensor surface through high-affinity conjugation with biotin. The luminescence reaction occurred with luminol, hydrogen peroxide and HRP enzyme, and the emission of light from the catalytic reaction was detected by underlying flexible photodetector. The chemiluminescence in the miniaturized photocurrent sensing system was successfully used to determine the hydrogen peroxide concentration in real-time analyses. The hydrogen peroxide detection limit of the flexible MSM photodetector was 2.47mM. The performance of the flexible MSM photodetector maintained high stability under bending at various bending radii. Moreover, for concave bending, a significant improvement in detection signal intensity (14.5% enhancement compared with a flat configuration) was observed because of the increased photocurrent, which was attributed to enhancement of light trapping. Additionally, this detector was used to detect hydrogen peroxide concentrations in commercial hair dye products, which is a significant issue in the healthcare field. The development of this novel, flexible and miniaturized MSM biomolecular photodetector with excellent mechanical flexibility and high sensitivity demonstrates the applicability of this approach to future wearable sensor development efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Measurement of Kirchhoff's stress intensity factors in bending plates
NASA Astrophysics Data System (ADS)
Bäcker, D.; Kuna, M.; Häusler, C.
2014-03-01
A measurement method of the stress intensity factors defined by KIRCHHOFF's theory for a crack in a bending plate is shown. For this purpose, a thin piezoelectric polyvinylidene fluoride film (PVDF) is attached to the surface of the cracked plate. The measured electrical voltages are coupled with the load type and the crack tip position relative to the sensor film. Stress intensity factors and the crack tip position can be determined by solving the non-linear inverse problem based on the measured signals. To guarantee solvability of the problem, more measuring electrodes on the film have to be taken in to account. To the developed sensor concept the KIRCHHOFF's plate theory has been applied. In order to connect the electrical signals and the stress intensity factors the stresses near the crack tip have to be written in eigenfunctions (see WILLIAMS [1]). The presented method was verified by means of the example of a straight crack of the length 2a in an infinite isotropic plate under all- side bending. It was found that the positioning of the electrodes is delimited by two radii. On one hand, the measurement points should not be too close to the crack tip. In this area, the Kirchhoff's plate theory cannot be used effectively. On the other hand, the measuring electrodes should be placed at a smaller distance to each other and not too far from the crack tip regarding the convergence radius of the WILLIAMS series expansion. Test calculations on a straight crack in an infinite isotropic plate showed the general applicability of the measurement method.
De Jonckheere, J; Narbonneau, F; Jeanne, M; Kinet, D; Witt, J; Krebber, K; Paquet, B; Depre, A; Logier, R
2009-01-01
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to abdominal and thoracic motions during breathing. We demonstrate that the two sensors can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient.
Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors
Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny
2015-01-01
The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648
NASA Astrophysics Data System (ADS)
Chehura, Edmon; Dell'Anno, Giuseppe; Huet, Tristan; Staines, Stephen; James, Stephen W.; Partridge, Ivana K.; Tatam, Ralph P.
2014-07-01
Dynamic loadings induced on a tufting needle during the tufting of dry carbon fibre preform via a commercial robot-controlled tufting head were investigated in situ and in real-time using optical fibre Bragg grating (FBG) sensors bonded to the needle shaft. The sensors were configured such that the axial strain and bending moments experienced by the needle could be measured. A study of the influence of thread and thread type on the strain imparted to the needle revealed axial strain profiles which had equivalent trends but different magnitudes. The mean of the maximum axial compression strains measured during the tufting of a 4-ply quasi-isotropic carbon fibre dry preform were - 499 ± 79 μɛ, - 463 ± 51 μɛ and - 431 ± 59 μɛ for a needle without thread, with metal wire and with Kevlar® thread, respectively. The needle similarly exhibited bending moments of different magnitude when the different needle feeding configurations were used.
Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber
NASA Astrophysics Data System (ADS)
Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang
2017-01-01
This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.
Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.
You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong
2017-07-29
A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.
Damage sensing and mechanical characteristics of CFRP strengthened steel plate
NASA Astrophysics Data System (ADS)
Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro
2017-10-01
In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.
Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.
Alici, Gursel; Spinks, Geoffrey; Huynh, Nam N; Sarmadi, Laleh; Minato, Rick
2007-06-01
We propose to use bending type tri-layer polymer actuators as propulsion fins for a biomimetic device consisting of a rigid body, like a box fish having a carapace, and paired fins running through the rigid body, like a fish having pectoral fins. The fins or polymer bending actuators can be considered as individually controlled flexible membranes. Each fin is activated with sinusoidal inputs such that there is a phase lag between the movements of successive fins to create enough thrust force for propulsion. Eight fins with 0.125 aspect ratio have been used along both sides of the rigid body to move the device in the direction perpendicular to the longitudinal axis of the body. The designed device with the paired fins was successfully tested, moving in an organic solution consisting of solvent, propylene carbonate (PC), and electrolyte. The design procedure outlined in this study is offered as a guide to making functional devices based on polymer actuators and sensors.
Cho, Tae-Sik; Choi, Ki-Sun; Seo, Dae-Cheol; Kwon, Il-Bum; Lee, Jung-Ryul
2012-01-01
The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.
Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
Shekhawat, Gajendra S; Ramachandran, Srinivasan; Jiryaei Sharahi, Hossein; Sarkar, Souravi; Hujsak, Karl; Li, Yuan; Hagglund, Karl; Kim, Seonghwan; Aden, Gary; Chand, Ami; Dravid, Vinayak P
2018-02-27
The lateral resolution of scanning thermal microscopy (SThM) has hitherto never approached that of mainstream atomic force microscopy, mainly due to poor performance of the thermal sensor. Herein, we report a nanomechanical system-based thermal sensor (thermocouple) that enables high lateral resolution that is often required in nanoscale thermal characterization in a wide range of applications. This thermocouple-based probe technology delivers excellent lateral resolution (∼20 nm), extended high-temperature measurements >700 °C without cantilever bending, and thermal sensitivity (∼0.04 °C). The origin of significantly improved figures-of-merit lies in the probe design that consists of a hollow silicon tip integrated with a vertically oriented thermocouple sensor at the apex (low thermal mass) which interacts with the sample through a metallic nanowire (50 nm diameter), thereby achieving high lateral resolution. The efficacy of this approach to SThM is demonstrated by imaging embedded metallic nanostructures in silica core-shell, metal nanostructures coated with polymer films, and metal-polymer interconnect structures. The nanoscale pitch and extremely small thermal mass of the probe promise significant improvements over existing methods and wide range of applications in several fields including semiconductor industry, biomedical imaging, and data storage.
An advanced selective liquid-metal plating technique for stretchable biosensor applications.
Li, Guangyong; Lee, Dong-Weon
2017-10-11
This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.
NASA Astrophysics Data System (ADS)
Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei
2017-10-01
Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In2Se3) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C2H2) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C2H2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In2Se3 as a new candidate for future application in monitoring C2H2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.
Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei
2017-10-13
Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In 2 Se 3 ) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C 2 H 2 ) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C 2 H 2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In 2 Se 3 as a new candidate for future application in monitoring C 2 H 2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.
Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.
Cao, Xuan; Cao, Yu; Zhou, Chongwu
2016-01-26
Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.
Microelectromechanical systems contact stress sensor
Kotovsky, Jack
2007-12-25
A microelectromechanical systems stress sensor comprising a microelectromechanical systems silicon body. A recess is formed in the silicon body. A silicon element extends into the recess. The silicon element has limited freedom of movement within the recess. An electrical circuit in the silicon element includes a piezoresistor material that allows for sensing changes in resistance that is proportional to bending of the silicon element.
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility ofmore » the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.« less
NASA Technical Reports Server (NTRS)
Rogge, Matthew D. (Inventor); Moore, Jason P. (Inventor)
2014-01-01
Shape of a multi-core optical fiber is determined by positioning the fiber in an arbitrary initial shape and measuring strain over the fiber's length using strain sensors. A three-coordinate p-vector is defined for each core as a function of the distance of the corresponding cores from a center point of the fiber and a bending angle of the cores. The method includes calculating, via a controller, an applied strain value of the fiber using the p-vector and the measured strain for each core, and calculating strain due to bending as a function of the measured and the applied strain values. Additionally, an apparent local curvature vector is defined for each core as a function of the calculated strain due to bending. Curvature and bend direction are calculated using the apparent local curvature vector, and fiber shape is determined via the controller using the calculated curvature and bend direction.
Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992
NASA Technical Reports Server (NTRS)
Udd, Eric (Editor); Depaula, Ramon P. (Editor)
1993-01-01
Topics addressed include acoustic and pressure sensors; fiber optic gyros; electric and magnetic field sensors; bend, strain, and temperature sensors; industrial applications of sensors; and processing techniques. Particular attention is given to fiber optic interferometric acoustic sensors for wind tunnel applications, polished coupler and resonator fabrication, second-harmonic detection for rotation sensing in fiber optic gyros, simplified control theory in closed-loop fiber optic gyroscopes, and a Fabry-Perot sensor with digital signal processing for the measurement of magnetostriction. Also discussed are a Bragg fiber laser sensor, commercialization of fiber optic strain gauge systems, thermal ignition in hazardous environments due to stray light from optical fibers, a system for absolute measurements by interferometric sensors, and high-performance interferometric demodulation techniques.
NASA Astrophysics Data System (ADS)
Otsuka, Yudai; Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2016-03-01
Gait in daily activity affects human health because it may cause physical problems such as asymmetric pelvis, flat foot and bowlegs. Monitoring natural weight shift and foot rolling on plantar has been employed in order for researchers to analyze gait characteristics. Conventional gait monitoring systems have been developed using camera, acceleration sensor, gyro sensor and electrical load sensors. They have some problems such as limited measurement place, temperature dependence and electric leakage. On the other hand, a hetero-core optical fiber sensor has many advantages such as high sensitivity for macro-bending, light weight sensor element, independency on temperature fluctuations, and no electric contact. This paper describes extraction of natural weight shift and foot rolling for gait evaluation by using a sensitive shoe, in the insole of which hetero-core optical load sensors are embedded for detecting plantar pressure. Plantar pressure of three subjects who wear the sensitive shoe and walk on the treadmill was monitored. As a result, weight shift and foot rolling for three subjects were extracted using the proposed sensitive shoe in terms of centroid movement and positions. Additionally, these extracted data are compared to that of electric load sensor to ensure consistency. For these results, it was successfully demonstrated that hetero-core optical fiber load sensor performed in unconstraint gait monitoring as well as electric load sensor.
Soft Sensors and Actuators based on Nanomaterials
NASA Astrophysics Data System (ADS)
Yao, Shanshan
The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible AgNW based heaters, which exhibited a fast heating rate of 18°C/s and stable heating performance under large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm-1) at a very low actuation voltage (0.2 V sq-1 or 4.5 V) among all types of bimorph actuators that have been reported. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects. In another application towards wearable drug delivery, a wearable, tensile strain-triggered drug delivery device consisting of a stretchable elastomer and microgel depots containing drug loaded nanoparticles is described. By applying a tensile strain to the elastomer film, the release of drug from the micro-depot is promoted. Correspondingly, both sustained drug release by daily body motions and pulsatile release by intentional administration can be conveniently achieved. The work demonstrated that the tensile strain, applied to the stretchable device, facilitated release of therapeutics from micro-depots for anticancer and antibacterial treatments, respectively. Moreover, polymeric microneedles were further integrated with the stretch-responsive device for transcutaneous delivery of insulin and regulation of blood glucose levels of chemically-induced type 1 diabetic mice.
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel
1998-06-01
Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.
Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements
NASA Astrophysics Data System (ADS)
Chen, Peter C.; Chopra, Inderjit
1994-05-01
The objective of this research is to develop a dynamically scaled (Froude scale) helicopter rotor blade with embedded piezoceramic elements as sensors and actuators to control blade vibrations. A 6-ft-diameter two-bladed bearingless rotor model was built, where each blade is embedded with banks of piezoelectric actuators at +/- 45-degree angles with respect to the beam axis on the top and bottom surfaces. A twist distribution along the blade span is achieved through in-phase excitation of the top and bottom actuators at equal potentials, while a bending distribution is achieved through out-of-phase excitation. In order to fix design variables and to optimize blade performance, a uniform strain beam theory is formulated to analytically predict the static bending and torsional response of composite rectangular beams with embedded piezoelectric actuators. Parameters such as bond thicknesses, actuator skew angle, and actuator spacing are investigated by experiments and then validated by theory. The static bending and torsional response of the rotor blades is experimentally measured and correlated with theory. Dynamic torsional and bending responses are experimentally determined for frequencies from 2-120 HZ to assess the viability of a vibration reduction system based on piezoactuation of blade twist. Although the magnitudes of blade twist attained in this experiment were small, it is expected that future models can be built with improved performance.
Surface-agnostic highly stretchable and bendable conductive MXene multilayers
An, Hyosung; Habib, Touseef; Shah, Smit; Gao, Huili; Radovic, Miladin; Green, Micah J.; Lutkenhaus, Jodie L.
2018-01-01
Stretchable, bendable, and foldable conductive coatings are crucial for wearable electronics and biometric sensors. These coatings should maintain functionality while simultaneously interfacing with different types of surfaces undergoing mechanical deformation. MXene sheets as conductive two-dimensional nanomaterials are promising for this purpose, but it is still extremely difficult to form surface-agnostic MXene coatings that can withstand extreme mechanical deformation. We report on conductive and conformal MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a conductivity as high as 2000 S/m. MXene multilayers are successfully deposited onto flexible polymer sheets, stretchable poly(dimethylsiloxane), nylon fiber, glass, and silicon. The coating shows a recoverable resistance response to bending (up to 2.5-mm bending radius) and stretching (up to 40% tensile strain), which was leveraged for detecting human motion and topographical scanning. We anticipate that this discovery will allow for the implementation of MXene-based coatings onto mechanically deformable objects. PMID:29536044
NASA Astrophysics Data System (ADS)
Wang, Ashu; Zeng, Lingyan; Wang, Wen; Calle, Fernando
2018-03-01
Due to the piezoelectricity, the density of 2DEG (NS) formed in the AlGaN/GaN heterostructure can be altered when it is deformed externally, which may be exploited to develop pressure sensors and to enhance the performance of power devices by stress engineering based on the heterostructure. In this paper, a 3D electro-mechanical simulation is presented to study how the induced strains and NS for the AlGaN/GaN wafer under bending exerted uniaxial stress are influenced by the edges caused by processing: the fabrication of the mesa used for isolation, the ohmic contact metal, the gate metal, and the passivation. Results show that the influences are dependent on distance between the edges, depth of the edges, and direction of the exerted uniaxial stress.
Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.
Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan
2016-08-03
We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.
Detection of feline coronavirus using microcantilever sensors
NASA Astrophysics Data System (ADS)
Velanki, Sreepriya; Ji, Hai-Feng
2006-11-01
This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2010-01-01
The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-11-15
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio
2013-02-15
A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signalmore » proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.« less
Ares-I Bending Filter Design using a Constrained Optimization Approach
NASA Technical Reports Server (NTRS)
Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth
2008-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.
Nanoporous carbon-based electrodes for high strain ionomeric bending actuators
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Kruusmaa, Maarja; Aabloo, Alvo
2009-09-01
Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to>2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.
Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin
2015-09-22
The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.
CSM docked DAP/orbital assembly bending interaction-axial case
NASA Technical Reports Server (NTRS)
Turnbull, J. F.; Jones, J. E.
1972-01-01
A digital autopilot which can provide attitude control for the entire Skylab orbital assembly using the service module reaction control jets is described. An important consideration is the potential interaction of the control system with the bending modes of the orbital assembly. Two aspects of this potential interaction were considered. The first was the possibility that bending induced rotations feeding back through the attitude sensor into the control system could produce an instability or self-sustained oscillation. The second was whether the jet activity commanded by the control system could produce excessive loads at any of the critical load points of the orbital assembly. Both aspects were studied by using analytic techniques and by running simulations on the all-digital simulator.
Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film
You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong
2017-01-01
A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency. PMID:28758933
A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
NASA Astrophysics Data System (ADS)
Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong
2014-02-01
Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-01-01
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-11-24
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties
Kim, Kyung Su; Ahn, Cheol Hyoun; Kang, Won Jun; Cho, Sung Woon; Jung, Sung Hyeon; Yoon, Dae Ho; Cho, Hyung Koun
2017-01-01
We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO) electrodes, especially for the application of imperceptible amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs) in humidity sensors. The imperceptible a-IGZO TFT with 50-nm ITO electrodes deposited at Ar:O2 = 29:0.3 exhibited good electrical performances with Vth of −0.23 V, SS of 0.34 V/dec, µFE of 7.86 cm2/V∙s, on/off ratio of 8.8 × 107, and has no degradation for bending stress up to a 3.5-mm curvature. The imperceptible oxide TFT sensors showed the highest sensitivity for the low and wide gate bias of −1~2 V under a wide range of relative humidity (40–90%) at drain voltage 1 V, resulting in low power consumption by the sensors. Exposure to water vapor led to a negative shift in the threshold voltage (or current enhancement), and an increase in relative humidity induced continuous threshold voltage shift. In particular, compared to conventional resistor-type sensors, the imperceptible oxide TFT sensors exhibited extremely high sensitivity from a current amplification of >103. PMID:28772888
An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties.
Kim, Kyung Su; Ahn, Cheol Hyoun; Kang, Won Jun; Cho, Sung Woon; Jung, Sung Hyeon; Yoon, Dae Ho; Cho, Hyung Koun
2017-05-13
We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO) electrodes, especially for the application of imperceptible amorphous-InGaZnO ( a -IGZO) thin-film transistors (TFTs) in humidity sensors. The imperceptible a -IGZO TFT with 50-nm ITO electrodes deposited at Ar:O₂ = 29:0.3 exhibited good electrical performances with V th of -0.23 V, SS of 0.34 V/dec, µ FE of 7.86 cm²/V∙s, on/off ratio of 8.8 × 10⁷, and has no degradation for bending stress up to a 3.5-mm curvature. The imperceptible oxide TFT sensors showed the highest sensitivity for the low and wide gate bias of -1~2 V under a wide range of relative humidity (40-90%) at drain voltage 1 V, resulting in low power consumption by the sensors. Exposure to water vapor led to a negative shift in the threshold voltage (or current enhancement), and an increase in relative humidity induced continuous threshold voltage shift. In particular, compared to conventional resistor-type sensors, the imperceptible oxide TFT sensors exhibited extremely high sensitivity from a current amplification of >10³.
Analysis of LPFG sensor systems for aircraft wing drag optimization
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Ishihara, Abe
2014-09-01
In normal fiber, the refractive indices of the core and cladding do not change along the length of the fiber; however, by inducing a periodic modulation of refractive index along the length in the core of the optical fiber, the optical fiber grating is produced. This exhibits very interesting spectral properties and for this reason we propose to develop and integrate a distributed sensor network based on long period fiber gratings (LPFGs) technology which has grating periods on the order of 100 μm to 1 mm to be embedded in the wing section of aircraft to measure bending and torsion in real-time in order to measure wing deformation of commercial airplanes resulting in extensive benefits such as reduced structural weight, mitigation of induced drag and lower fuel consumption which is fifty percent of total cost of operation for airline industry. Fiber optic sensors measurement capabilities are as vital as they are for other sensing technologies, but optical measurements differ in important ways. In this paper we focus on the testing and aviation requirements for LPFG sensors. We discuss the bases of aviation standards for fiber optic sensor measurements, and the quantities that are measured. Our main objective is to optimize the design for material, mechanical, optical and environmental requirements. We discuss the analysis and evaluation of extensive testing of LPFG sensor systems such as attenuation, environmental, humidity, fluid immersion, temperature cycling, aging, smoke, flammability, impact resistance, flexure endurance, tensile, vitiation and shock.
RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions
NASA Astrophysics Data System (ADS)
Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin
2018-01-01
In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.
Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications
Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger
2018-01-01
Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600
NASA Astrophysics Data System (ADS)
Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang
2015-03-01
An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.
NASA Astrophysics Data System (ADS)
Javdanitehran, M.; Hoffmann, R.; Groh, J.; Vossiek, M.; Ziegmann, G.
2016-06-01
The embedding of dielectric chipless sensors for cure monitoring into fiber-reinforced thermosets allows for monitoring and controlling the curing process and consequently higher quality in production. The embedded sensors remain after the processing in the structure. This affects the integrity of the composite structure locally. In order to investigate these effects on the mechanical behavior of the glass fiber-reinforced polymer (GFRP), sensors made on special low loss substrates are integrated into laminates with different lay-ups and thicknesses using vacuum assisted resin transfer molding (VARTM) method. In a parametric study the size of the sensor is varied to observe its influence on the strength and the stiffness of the laminates according to its lay-up and thickness. The size and orientation of the resin rich areas near sensors as well as the distortion in load bearing area as the consequences of the introduction of the sensors are investigated in conjunction with the strength of the structure. An empirical model is proposed by the authors which involves the previously mentioned factors and is used as a rapid tool for the prediction of the changes in bending and tensile strength of simple structures with embedded sensors. The methodology for model’s calibration as well as the validation of the model against the experimental data of different laminates with distinct lay-ups and thicknesses are presented in this work. Mechanical tests under tensile and bending loading indicate that the reduction of the structure’s strength due to sensor integration can be attributed to the size and the orientation of rich resin zones and depends over and above on the size of distorted load bearing area. Depending on the sensor’s elastic modulus the stiffness of the structure may vary through the introduction of a sensor.
NASA Astrophysics Data System (ADS)
Wang, Wei-Chih; Panergo, Reynold R.; Galvanin, Christopher M.; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.
2003-07-01
Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. While it is known from force plate analyses that there are medial/lateral and anterior/posterior shear components of the ground reaction force, there is little known about the actual distribution of this force during daily activities, nor about the role that shear plays in causing plantar ulceration. Furthermore, one critical reason why these data have not been obtained previously is the lack of a validated, widely used, commercially available shear sensor, in part because of the various technical issues associated with shear measurement. Here we have developed novel means of tranducing plantar shear and pressure stress via a new microfabricated optical system. The pressure/shear sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular optical waveguides. The uniqueness of the sensor is in its batch fabrication process, which involves injection molding and embossing techniques with Polydimethylsiloxane (PDMS) as the optical medium. Here we present the preliminary results of the prototype. The sensor has been shown to have low noise and responds linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 N. The smallest area we have resolved in our mesh sensor is currently 950x950μm2
Static characterization of a soft elastomeric capacitor for non destructive evaluation applications
NASA Astrophysics Data System (ADS)
Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna
2014-02-01
A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.
Inductive displacement sensors with a notch filter for an active magnetic bearing system.
Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum
2014-07-15
Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.
A flexible tactile sensitive sheet using a hetero-core fiber optic sensor
NASA Astrophysics Data System (ADS)
Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.
2014-05-01
In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.
Mechanical properties of sol–gel derived SiO2 nanotubes
Antsov, Mikk; Vlassov, Sergei; Dorogin, Leonid M; Vahtrus, Mikk; Zabels, Roberts; Lange, Sven; Lõhmus, Rünno
2014-01-01
Summary The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values from the nanoindentation data. Finally, the Young’s moduli of SiO2 NTs measured by different methods were compared and discussed. PMID:25383292
A Low-Cost Hand Trainer Device Based On Microcontroller Platform
NASA Astrophysics Data System (ADS)
Sabor, Muhammad Akmal Mohammad; Thamrin, Norashikin M.
2018-03-01
Conventionally, the rehabilitation equipment used in the hospital or recovery center to treat and train the muscle of the stroke patient is implementing the pneumatic or compressed air machine. The main problem caused by this equipment is that the arrangement of the machine is quite complex and the position of it has been locked and fixed, which can cause uncomfortable feeling to the patients throughout the recovery session. Furthermore, the harsh movement from the machine could harm the patient as it does not allow flexibility movement and the use of pneumatic actuator has increased the gripping force towards the patient which could hurt them. Therefore, the main aim of this paper is to propose the development of the Bionic Hand Trainer based on Arduino platform, for a low-cost solution for rehabilitation machine as well as allows flexibility and smooth hand movement for the patients during the healing process. The scope of this work is to replicate the structure of the hand only at the fingers structure that is the phalanges part, which inclusive the proximal, intermediate and distal of the fingers. In order to do this, a hand glove is designed by equipping with flex sensors at every finger and connected them to the Arduino platform. The movement of the hand will motorize the movement of the dummy hand that has been controlled by the servo motors, which have been equipped along the phalanges part. As a result, the bending flex sensors due to the movement of the fingers has doubled up the rotation of the servo motors to mimic this movement at the dummy hand. The voltage output from the bending sensors are ranging from 0 volt to 5 volts, which are suitable for low-cost hand trainer device implementation. Through this system, the patient will have the power to control their gripping operation slowly without having a painful force from the external actuators throughout the rehabilitation process.
Acoustic emission signatures of damage modes in concrete
NASA Astrophysics Data System (ADS)
Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.
2014-03-01
The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.
Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test
NASA Technical Reports Server (NTRS)
Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.
2018-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors.
Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph
2009-01-01
The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861
[A fluoride-sensor for kink structure in DNA condensation process].
Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin
2014-01-01
Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.
Bavi, Omid; Cox, Charles D.; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef; Martinac, Boris
2016-01-01
Mechanosensitive (MS) channels are ubiquitous molecular force sensors that respond to a number of different mechanical stimuli including tensile, compressive and shear stress. MS channels are also proposed to be molecular curvature sensors gating in response to bending in their local environment. One of the main mechanisms to functionally study these channels is the patch clamp technique. However, the patch of membrane surveyed using this methodology is far from physiological. Here we use continuum mechanics to probe the question of how curvature, in a standard patch clamp experiment, at different length scales (global and local) affects a model MS channel. Firstly, to increase the accuracy of the Laplace’s equation in tension estimation in a patch membrane and to be able to more precisely describe the transient phenomena happening during patch clamping, we propose a modified Laplace’s equation. Most importantly, we unambiguously show that the global curvature of a patch, which is visible under the microscope during patch clamp experiments, is of negligible energetic consequence for activation of an MS channel in a model membrane. However, the local curvature (RL < 50) and the direction of bending are able to cause considerable changes in the stress distribution through the thickness of the membrane. Not only does local bending, in the order of physiologically relevant curvatures, cause a substantial change in the pressure profile but it also significantly modifies the stress distribution in response to force application. Understanding these stress variations in regions of high local bending is essential for a complete understanding of the effects of curvature on MS channels. PMID:26861405
Differential surface stress sensor for detection of chemical and biological species
NASA Astrophysics Data System (ADS)
Kang, K.; Nilsen-Hamilton, M.; Shrotriya, P.
2008-10-01
We report a sensor consisting of two micromachined cantilevers (a sensing/reference pair) that is suitable for detection of chemical and biological species. The sensing strategy involves coating the sensing cantilever with receptors that have high affinities for the analyte. The presence of analyte is detected by determining the differential surface stress associated with its adsorption/absorption to the sensing cantilever. An interferometric technique is utilized to measure the differential bending of the sensing cantilever with respect to reference. Surface stress associated with hybridization of single stranded DNA is measured to demonstrate the unique advantages of the sensor.
Wu, Chang-Mou; Chou, Min-Hui; Zeng, Wun-Yuan
2018-06-10
Polyvinylidene fluoride (PVDF) shows piezoelectricity related to its β-phase content and mechanical and electrical properties influenced by its morphology and crystallinity. Electrospinning (ES) can produce ultrafine and well-aligned PVDF nanofibers. In this study, the effects of the presence of carbon nanotubes (CNT) and optimized ES parameters on the crystal structures and piezoelectric properties of aligned PVDF/CNT nanofibrous membranes were examined. The optimal β content and piezoelectric coefficient (d 33 ) of the aligned electrospun PVDF reached 88% and 27.4 pC/N; CNT addition increased the β-phase content to 89% and d 33 to 31.3 pC/N. The output voltages of piezoelectric units with aligned electrospun PVDF/CNT membranes increased linearly with applied loading and showed good stability during cyclic dynamic compression and tension. The sensitivities of the piezoelectric units with the membranes under dynamic compression and tension were 2.26 mV/N and 4.29 mV/%, respectively. In bending tests, the output voltage increased nonlinearly with bending angle because complicated forces were involved. The output of the aligned membrane-based piezoelectric unit with CNT was 1.89 V at the bending angle of 100°. The high electric outputs indicate that the aligned electrospun PVDF/CNT membranes are potentially effective for flexible wearable sensor application with high sensitivity.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission
NASA Astrophysics Data System (ADS)
Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.
2017-10-01
Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.
Method using photo-induced and thermal bending of MEMS sensors
Datskos, Panagiotis G.
2001-01-01
A method for measuring chemical analytes and physical forces by measuring changes in the deflection of a microelectromechanical cantilever structure while it is being irradiated by a light having an energy above the band gap of the structure.
Power assist EVA glove development
NASA Technical Reports Server (NTRS)
Main, John A.; Peterson, Steven W.; Strauss, Alvin M.
1992-01-01
Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.
NASA Astrophysics Data System (ADS)
Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia
2016-04-01
Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.
Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate
NASA Astrophysics Data System (ADS)
Todorović, D. M.; Cretin, B.; Vairac, P.; Song, Y. Q.; Rabasović, M. D.; Markushev, D. D.
2013-09-01
Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.
Biosensors based on cantilevers.
Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M
2009-01-01
Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.
A non-differential elastomer curvature sensor for softer-than-skin electronics
NASA Astrophysics Data System (ADS)
Majidi, C.; Kramer, R.; Wood, R. J.
2011-10-01
We extend soft lithography microfabrication and design methods to introduce curvature sensors that are elastically soft (modulus 0.1-1 MPa) and stretchable (100-1000% strain). In contrast to existing curvature sensors that measure differential strain, sensors in this new class measure curvature directly and allow for arbitrary gauge factor and film thickness. Moreover, each sensor is composed entirely of a soft elastomer (PDMS (polydimethylsiloxane) or Ecoflex®) and conductive liquid (eutectic gallium indium, eGaIn) and thus remains functional even when stretched to several times its natural length. The electrical resistance in the embedded eGaIn microchannel is measured as a function of the bending curvature for a variety of sensor designs. In all cases, the experimental measurements are in reasonable agreement with closed-form algebraic approximations derived from elastic plate theory and Ohm's law.
Low power gas sensor array on flexible acetate substrate
NASA Astrophysics Data System (ADS)
Benedict, Samatha; Basu, Palash Kumar; Bhat, Navakanta
2017-07-01
In this paper, we present a novel approach of fabricating a low-cost and low power gas sensor array on flexible acetate sheets for sensing CO, SO2, H2 and NO2 gases. The array has four sensor elements with an integrated microheater which can be individually controlled enabling the monitoring of four gases. The thermal properties of the microheater characterized by IR imaging are presented. The microheater with an active area of 15 µm × 5 µm reaches a temperature of 300 °C, consuming 2 mW power, the lowest reported on flexible substrates. A sensing electrode is patterned on top of the microheater, and a nanogap (100 nm) is created by an electromigration process. This nanogap is bridged by four sensing materials doped with platinum, deposited using a solution dispensing technique. The sensing material characterization is completed using energy dispersive x-ray analysis. The sensing characteristics of ZnO for CO, V2O5 for SO2, SnO2 for H2 and WO3 for NO2 gases are studied at different microheater voltages. The sensing characteristics of ZnO at different bending angles is also studied, which shows that the microheater and the sensing material are intact without any breaking upto a bending angle of 20°. The ZnO CO sensor shows sensitivity of 146.2% at 1 ppm with good selectivity.
Brokaw, Charles J
2002-10-01
Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Sturesson, P.; Khaji, Z.; Knaust, S.; Sundqvist, J.; Klintberg, L.; Thornell, G.
2013-12-01
This paper reports on the design, manufacturing and evaluation of a small, wirelessly powered and read resonating antenna circuit with an integrated pressure sensor. The work aims at developing miniature devices suitable for harsh environments, where high temperature prevents the use of conventional, silicon-based microdevices. Here, the device is made of alumina with platinum as conducting material. Ceramic green tapes were structured using high-precision milling, metallized using screen printing, and subsequently laminated to form stacks before they were sintered. The device's frequency shift as a function of temperature was studied up to 900°C. The contributions to the shift both from the thermomechanical deformation of the device at large, and from the integrated and, so far, self-pressurized sensor were sorted out. A total frequency shift of 3200 ppm was observed for the pressure sensor for heating over the whole range. Negligible levels of thermally induced radius of curvature were observed. With three-point bending, a frequency shift of 180 ppm was possible to induce with a curvature of radius of 220 m at a 10 N load. The results indicate that a robust pressure sensor node, which can register pressure changes of a few bars at 900°C and wirelessly transmit the signal, is viable.
Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae
2018-04-03
We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.
Quantifying the bending of bilayer temperature-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Dong, Chenling; Chen, Bin
2017-04-01
Stimuli-responsive hydrogels can serve as manipulators, including grippers, sensors, etc., where structures can undergo significant bending. Here, a finite-deformation theory is developed to quantify the evolution of the curvature of bilayer temperature-sensitive hydrogels when subjected to a temperature change. Analysis of the theory indicates that there is an optimal thickness ratio to acquire the largest curvature in the bilayer and also suggests that the sign or the magnitude of the curvature can be significantly affected by pre-stretches or small pores in the bilayer. This study may provide important guidelines in fabricating temperature-responsive bilayers with desirable mechanical performance.
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.
New generation of wearable goniometers for motion capture systems
2014-01-01
Background Monitoring joint angles through wearable systems enables human posture and gesture to be reconstructed as a support for physical rehabilitation both in clinics and at the patient’s home. A new generation of wearable goniometers based on knitted piezoresistive fabric (KPF) technology is presented. Methods KPF single-and double-layer devices were designed and characterized under stretching and bending to work as strain sensors and goniometers. The theoretical working principle and the derived electromechanical model, previously proved for carbon elastomer sensors, were generalized to KPF. The devices were used to correlate angles and piezoresistive fabric behaviour, to highlight the differences in terms of performance between the single layer and the double layer sensors. A fast calibration procedure is also proposed. Results The proposed device was tested both in static and dynamic conditions in comparison with standard electrogoniometers and inertial measurement units respectively. KPF goniometer capabilities in angle detection were experimentally proved and a discussion of the device measurement errors of is provided. The paper concludes with an analysis of sensor accuracy and hysteresis reduction in particular configurations. Conclusions Double layer KPF goniometers showed a promising performance in terms of angle measurements both in quasi-static and dynamic working mode for velocities typical of human movement. A further approach consisting of a combination of multiple sensors to increase accuracy via sensor fusion technique has been presented. PMID:24725669
NASA Astrophysics Data System (ADS)
Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin
2018-05-01
Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.
Chemical sensor with oscillating cantilevered probe
Adams, Jesse D
2013-02-05
The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.
Gao, Fengli; Li, Xide
2018-01-01
Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing. PMID:29364847
Sensor-integrated polymer actuators for closed-loop drug delivery system
NASA Astrophysics Data System (ADS)
Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc
2006-03-01
This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.
Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements
NASA Astrophysics Data System (ADS)
Chen, Peter C.; Chopra, Inderjit
1996-02-01
The objective of this research is to develop a dynamically-scaled (Froude scale) helicopter rotor blade with embedded piezoceramic elements as sensors and actuators to control blade vibrations. A 6 ft diameter 2-bladed bearingless rotor model was built where each blade is embedded with banks of piezoelectric actuators at 0964-1726/5/1/005/img1 degree angles with respect to the beam axis on the top and bottom surfaces. A twist distribution along the blade span is achieved through in-phase excitation of the top and bottom actuators at equal potentials, while a bending distribution is achieved through out-of-phase excitation. In order to fix design variables and to optimize blade performance, a uniform strain beam theory is formulated to analytically predict the static bending and torsional response of composite rectangular beams with embedded piezoelectric actuators. Parameters such as bond thicknesses, actuator skew angle and actuator spacing are investigated by experiments and then validated by theory. The static bending and torsional response of the rotor blades is experimentally measured and correlated with theory. Dynamic torsional and bending responses are experimentally determined for frequencies from 2 - 120 Hz to assess the viability of a vibration reduction system based on piezo-actuation of blade twist. To assess the performance of the piezo-actuators in rotation, hover tests were conducted where accelerometers embedded in the blades were used to resolve the tip twist amplitudes. Although the magnitudes of blade twist attained in this experiment were small, it is expected that future models can be built with improved performance.
FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Wang, Hong
This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting platesmore » of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX) (10 tests) SNF samples. These CIRFT tests were completed in FY14 and FY15. Specifically, the data sets obtained from measurement and monitoring were processed and analyzed. The fatigue life of rods has been characterized in terms of moment, curvature, and equivalent stress and strain..« less
An etched fiber optic vibration sensor to monitor the simply supported beam
NASA Astrophysics Data System (ADS)
Putha, Kishore; Dinakar, Dantala; Rao, Pachava V.; Sengupta, Dipankar; Srimannarayana, K.; Sai Shankar, M.
2012-04-01
A single mode fiber optic vibration senor is designed and demonstrated to monitor the vibration of a simply supported beam. A rectangular beam (length 30.8 cm, width 2.5cm and thickness 0.5mm) made of spring-steel is arranged as simply supported beam and is made to vibrate periodically. To sense the vibrations a telecommunication fiber is chemically etched such that its diameter reaches 50μm and is glued using an epoxy at the centre of the beam. A broadband light (1550nm) is launched into Fiber Bragg Grating (FBG) through a circulator. The light reflected by the FBG (1540.32nm) is coupled into the centre etched fibre through the circulator and is detected by photodiode connected to a transimpedance amplifier. The electrical signal is logged into the computer through NI-6016 DAQ. The sensor works on transmission power loss due to the mode volume mismatch and flexural strain (field strength) of the fiber due to the bending in the fiber with respect to the bending of the spring-steel beam. The beam is made to vibrate and the corresponding intensity of light is recorded. Fast Fourier transform (FFT) technique is used to measure the frequencies of vibration. The results show that this sensor can sense vibration of low frequency accurately and repeatability is high. The sensor has high linear response to axial displacement of about 0.8 mm with sensitivity of 32mV/10μm strain. This lowcost sensor may find a place in industry to monitor the vibrations of the beam structures and bridges.
Katabira, Kenichi; Yoshida, Yu; Masuda, Atsuji; Watanabe, Akihito; Narita, Fumio
2018-01-01
The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe–Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe–Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe–Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe–Co fiber and the bias magnetic field. The magnetic flux density change of Fe–Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles. PMID:29522455
Lipid decorated liquid crystal pressure sensors
NASA Astrophysics Data System (ADS)
Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's Group Collaboration; Jakli's Group Collaboration
Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
Integrating soft sensor systems using conductive thread
NASA Astrophysics Data System (ADS)
Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.
2018-05-01
We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable technologies like virtual reality, or in soft-medical devices such as exoskeletal rehabilitation robots.
Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology.
Jin, Liangmin; Tao, Juan; Bao, Rongrong; Sun, Li; Pan, Caofeng
2017-09-05
The triboelectric nanogenerator (TENG) has great potential in the field of self-powered sensor fabrication. Recently, smart electronic devices and movement monitoring sensors have attracted the attention of scientists because of their application in the field of artificial intelligence. In this article, a TENG finger movement monitoring, self-powered sensor has been designed and analysed. Under finger movements, the TENG realizes the contact and separation to convert the mechanical energy into electrical signal. A pulse output current of 7.8 μA is generated by the bending and straightening motions of the artificial finger. The optimal output power can be realized when the external resistance is approximately 30 MΩ. The random motions of the finger are detected by the system with multiple TENG sensors in series. This type of flexible and self-powered sensor has potential applications in artificial intelligence and robot manufacturing.
Flow-through Fourier transform infrared sensor for total hydrocarbons determination in water.
Pérez-Palacios, David; Armenta, Sergio; Lendl, Bernhard
2009-09-01
A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18 non-polar sorbent is placed inside the sensor and is able to retain hydrocarbons from water samples. The system does not require the use of chlorinated solvents, reducing the environmental impact, and the minimal sample handling stages serve to ensure sample integrity whilst reducing exposure of the analyst to any toxic hydrocarbons present within the samples. Fourier transform infrared (FT-IR) spectra were recorded by co-adding 32 scans at a resolution of 4 cm(-1) and the band located at 1462 cm(-1) due to the CH(2) bending was integrated from 1475 to 1450 cm(-1) using a baseline correction established between 1485 and 1440 cm(-1) using the areas as analytical signal. The technique, which provides a limit of detection (LOD) of 22 mg L(-1) and a precision expressed as relative standard deviation (RSD) lower than 5%, is considerably rapid and allows for a high level of automation.
Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.
Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan
2011-10-23
Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids
Rossiter, Jonathan
2018-01-01
Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.
Helps, Tim; Rossiter, Jonathan
2018-04-01
Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Lu, Ji-Yun; Liang, Da-Kai; Zhang, Xiao-Li; Zhu, Zhu
2009-12-01
Spectrum of fiber bragg grating (FBG) sensor modulated by double long period grating (LPFG) is proposed in the paper. Double LPFG consists of two LPFGS whose center wavelengths are the same and reflection spectrum of FBG sensor is located in linear range of double LPFG transmission spectrum. Based on spectral analysis of FBG and double LPFG, reflection spectrum of FBG modulated by double LPFG is obtained and studied by use of band-hider filter characteristics for double LPFG. An FBG sensor is attached on the surface of thin steel beam, which is strained by bending, and the center wavelength of FBG sensor will shift. The spectral peak of FBG sensor modulated by double LPFG is changed correspondingly, and the spectral change will lead to variation in exit light intensity from double LPFG. Experiment demonstrates that the relation of filtering light intensity from double LPFG monitored by optical power meter to center wavelength change of FBG sensor is linear and the minimum strain of material (steel beam) detected by the modulation and demodulation system is 1.05 microepsilon. This solution is used in impact monitoring of optical fibre smart structure, and FBG sensor is applied for impulse response signal monitoring induced by low-velocity impact, when impact pendulum is loaded to carbon fiber-reinforced plastics (CFP). The acquired impact response signal and fast Fourier transform of the signal detected by FBG sensor agree with the measurement results of eddy current displacement meter attached to the FBG sensor. From the results, the present method using FBG sensor is found to be effective for monitoring the impact. The research provides a practical reference in dynamic monitoring of optical fiber smart structure field.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin
2013-05-01
The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).
NASA Astrophysics Data System (ADS)
Erturk, Alper; Delporte, Ghislain
2011-12-01
Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.
Piezoresistive pressure sensor array for robotic skin
NASA Astrophysics Data System (ADS)
Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.
2016-05-01
Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.
Feasibility study on a strain based deflection monitoring system for wind turbine blades
NASA Astrophysics Data System (ADS)
Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki
2017-01-01
The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.
Acurex Parabolic Dish Concentrator (PDC-2)
NASA Technical Reports Server (NTRS)
Overly, P.; Bedard, R.
1982-01-01
The design approach, rationale for the selected configuration, and the development status of a cost effective point-focus solar concentrator are discussed. The low-cost concentrator reflective surface design is based on the use of a thin, backsilvered mirror glass reflector bonded to a molded structural plastic substrate. The foundation, support, and drive subassembles are described. A hybrid, two-axis, Sun tracking control system based on microprocessor technology was selected. Coarse synthetic tracking is achieved through a microcomputer-based control system to calculate Sun position for transient periods of cloud cover as well as sundown and sunrise positioning. Accurate active tracking is achieved by two-axis optical sensors. Results of the reflective panel demonstration tests investigating slope error, hail impact survivability, temperature/humidity cycling, longitudinal strength/bending stiffness, and torsional stiffness are discussed.
Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes.
Nie, Bangbang; Li, Xiangming; Shao, Jinyou; Li, Xin; Tian, Hongmiao; Wang, Duorui; Zhang, Qiang; Lu, Bingheng
2017-11-22
Strain sensors combining high sensitivity with good transparency and flexibility would be of great usefulness in smart wearable/flexible electronics. However, the fabrication of such strain sensors is still challenging. In this study, new strain sensors with embedded multiwalled carbon nanotubes (MWCNTs) meshes in polydimethylsiloxane (PDMS) films were designed and tested. The strain sensors showed elevated optical transparency of up to 87% and high sensitivity with a gauge factor of 1140 at a small strain of 8.75%. The gauge factors of the sensors were also found relatively stable since they did not obviously change after 2000 stretching/releasing cycles. The sensors were tested to detect motion in the human body, such as wrist bending, eye blinking, mouth phonation, and pulse, and the results were shown to be satisfactory. Furthermore, the fabrication of the strain sensor consisting of mechanically blading MWCNTs aqueous dispersions into microtrenches of prestructured PDMS films was straightforward, was low cost, and resulted in high yield. All these features testify to the great potential of these sensors in future real applications.
NASA Astrophysics Data System (ADS)
Halkare, Pallavi; Punjabi, Nirmal; Wangchuk, Jigme; Kondabagil, Kiran; Mukherji, Soumyo
2016-04-01
Hollow gold nanostructures (HGNS) have been used in variety of optical biosensors due to their inherent advantage of operating at near infra red (NIR) wavelength, large extinction coefficient and high dielectric sensitivity. The absorption wavelength of these nanostructures can be modulated by changing the ratio of hollow region to the core shell thickness. The aim of the present study is to incorporate the properties of HGNS, to develop LSPR based U-bent fiber optic sensor for detection of pathogens. The detection was carried out using an experimental set up consisting of a white light source, 200 μm diameter optical fiber having bend diameter of 1.6 mm +/- 0. 2 mm and a spectrometer. The HGNS were immobilized on the decladded portion of the fiber optic probe by chemisorptions. The effective plasmon penetration depth of the HGNS immobilized fiber optic sensor was approximated by using alternating layers of positively and negatively charged polyelectrolytes. The HGNS immobilized U-bent fiber optic sensor was used for detection of E.coli B40 strain using bacteriophage T4. The preliminary experiments were carried out with 104 cfu/ml of E.coli B40 and the change in absorbance obtained was approx. 0.042 +/- 0.0045 abs. units (n = 3). The response of this sensor was found to be better than spherical gold nanoparticle immobilized sensing platforms.
Fibre optic sensor for the detection of adulterant traces in coconut oil
NASA Astrophysics Data System (ADS)
Sheeba, M.; Rajesh, M.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Radhakrishnan, P.
2005-11-01
The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10-3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.
Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino
2018-01-01
This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155
Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino
2018-04-17
This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.
Sensing Device with Whisker Elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2013-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Sensing device with whisker elements
NASA Technical Reports Server (NTRS)
Hartmann, Mitra J. (Inventor); Solomon, Joseph H. (Inventor)
2010-01-01
A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip.
Kim, Dae-Hyeong; Lu, Nanshu; Ma, Rui; Kim, Yun-Soung; Kim, Rak-Hwan; Wang, Shuodao; Wu, Jian; Won, Sang Min; Tao, Hu; Islam, Ahmad; Yu, Ki Jun; Kim, Tae-il; Chowdhury, Raeed; Ying, Ming; Xu, Lizhi; Li, Ming; Chung, Hyun-Joong; Keum, Hohyun; McCormick, Martin; Liu, Ping; Zhang, Yong-Wei; Omenetto, Fiorenzo G; Huang, Yonggang; Coleman, Todd; Rogers, John A
2011-08-12
We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Lu, Nanshu; Ma, Rui; Kim, Yun-Soung; Kim, Rak-Hwan; Wang, Shuodao; Wu, Jian; Won, Sang Min; Tao, Hu; Islam, Ahmad; Yu, Ki Jun; Kim, Tae-il; Chowdhury, Raeed; Ying, Ming; Xu, Lizhi; Li, Ming; Chung, Hyun-Joong; Keum, Hohyun; McCormick, Martin; Liu, Ping; Zhang, Yong-Wei; Omenetto, Fiorenzo G.; Huang, Yonggang; Coleman, Todd; Rogers, John A.
2011-08-01
We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.
A new approach for vibration control in large space structures
NASA Technical Reports Server (NTRS)
Kumar, K.; Cochran, J. E., Jr.
1987-01-01
An approach for augmenting vibration damping characteristics in space structures with large panels is presented. It is based on generation of bending moments rather than forces. The moments are generated using bimetallic strips, suitably mounted at selected stations on both sides of the large panels, under the influence of differential solar heating, giving rise to thermal gradients and stresses. The collocated angular velocity sensors are utilized in conjunction with mini-servos to regulate the control moments by flipping the bimetallic strips. A simple computation of the rate of dissipation of vibrational energy is undertaken to assess the effectiveness of the proposed approach.
Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Lopatin, Craig
2001-01-01
A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.
Attitude error response of structures to actuator/sensor noise
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.
Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors
NASA Astrophysics Data System (ADS)
Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.
2014-12-01
This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.
Flexible strain sensors with high performance based on metallic glass thin film
NASA Astrophysics Data System (ADS)
Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.
2017-09-01
Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.
Back pain is associated with changes in loading pattern throughout forward and backward bending.
Shum, Gary L K; Crosbie, Jack; Lee, Raymond Y W
2010-12-01
Experimental study to determine the kinetics of the lumbar spine (LS) and hips during forward and backward bending. To investigate the effects of back pain, with and without a positive straight leg raise (SLR) sign, on the loading patterns in the LS and hip during forward and backward bending. Forward and backward bending are important components of many functional activities and are part of routine clinical examination. However, there is a little information about the loading patterns during forward and backward bending in people with back pain with or without a positive SLR sign. Twenty asymptomatic participants, 20 back pain participants, and 20 participants with back pain and a positive SLR sign performed 3 continuous cycles of forward and backward bending. Electromagnetic sensors were attached to body segments to measure their kinematics while 2 nonconductive force plates gathered ground reaction force data. A biomechanical model was used to determine the loading pattern in LS and hips. Although the loading on the LS at the end of the range decreased significantly, the loading at the early and middle ranges of forward bending actually increased significantly in people with back pain, especially in those with positive SLR sign. This suggests that resistance to movement is significantly increased in people with back pain during this movement. This study suggested that it is not sufficient to study the spine at the end of range only, but a complete description of the loading patterns throughout the range is required. Although the maximum range of motion of the spine is reduced in people with back pain, there is a significant increase in the moment acting through the range, particularly in those with a positive SLR sign.
Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng
2007-04-20
This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.
Polyelectrolyte gels as bending actuators: modeling and numerical simulation
NASA Astrophysics Data System (ADS)
Wallmersperger, Thomas; Keller, Karsten; Attaran, Abdolhamid
2013-04-01
Polyelectrolyte gels are ionic electroactivematerials. They have the ability to react as both, sensors and actuators. As actuators they can be used e.g. as artificial muscles or drug delivery control; as sensors they may be used for measuring e.g. pressure, pH or other ion concentrations in the solution. In this research both, anionic and cationic polyelectrolyte gels placed in aqueous solution with mobile anions and cations are investigated. Due to external stimuli the polyelectrolyte gels can swell or shrink enormously by the uptake or delivery of solvent. In the present research a coupled multi-field problem within a continuum mechanics framework is proposed. The modeling approach introduces a set of equations governing multiple fields of the problem, including the chemical field of the ionic species, the electrical field and the mechanical field. The numerical simulation is performed by using the Finite Element Method. Within the study some test cases will be carried out to validate our model. In the works by Gülch et al., the application of combined anionic-cationic gels as grippers was shown. In the present research for an applied electric field, the change of the concentrations and the electric potential in the complete polymer is simulated by the given formulation. These changes lead to variations in the osmotic pressure resulting in a bending of different polyelectrolyte gels. In the present research it is shown that our model is capable of describing the bending behavior of anionic or cationic gels towards the different electrodes (cathode or anode).
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Micro-patterned graphene-based sensing skins for human physiological monitoring
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik
2018-03-01
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.
Wagner, Stefan; Yim, Chanyoung; McEvoy, Niall; Kataria, Satender; Yokaribas, Volkan; Kuc, Agnieszka; Pindl, Stephan; Fritzen, Claus-Peter; Heine, Thomas; Duesberg, Georg S; Lemme, Max C
2018-05-23
Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe 2 ), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe 2 films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe 2 films grown by thermally assisted conversion of platinum at a complementary metal-oxide-semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to -85 obtained experimentally from PtSe 2 strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe 2 membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe 2 as a very promising candidate for future NEMS applications, including integration into CMOS production lines.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew
2016-06-17
In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.
Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew
2016-01-01
In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276
Deflection of cross-ply composite laminates induced by piezoelectric actuators.
Her, Shiuh-Chuan; Lin, Chi-Sheng
2010-01-01
The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.
Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-01-01
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251
Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio
2016-09-22
Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.
Comparative Study of Vibration Condition Indicators for Detecting Cracks in Spur Gears
NASA Technical Reports Server (NTRS)
Nanadic, Nenad; Ardis, Paul; Hood, Adrian; Thurston, Michael; Ghoshal, Anindya; Lewicki, David
2013-01-01
This paper reports the results of an empirical study on the tooth breakage failure mode in spur gears. Of four dominant gear failure modes (breakage, wear, pitting, and scoring), tooth breakage is the most precipitous and often leads to catastrophic failures. The cracks were initiated using a fatigue tester and a custom-designed single-tooth bending fixture to simulate over-load conditions, instead of traditional notching using wire electrical discharge machining (EDM). The cracks were then propagated on a dynamometer. The ground truth of damage level during crack propagation was monitored with crack-propagation sensors. Ten crack propagations have been performed to compare the existing condition indicators (CIs) with respect to their: ability to detect a crack, ability to assess the damage, and sensitivity to sensor placement. Of more than thirty computed CIs, this paper compares five commonly used: raw RMS, FM0, NA4, raw kurtosis, and NP4. The performance of combined CIs was also investigated, using linear, logistic, and boosted regression trees based feature fusion.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
van den Bosch, Edith E.M.; de Bont, Nik H.M.; Qiu, Jun; Gelling, Onko-Jan
2013-01-01
Background Continuous glucose monitors (CGMs) measure glucose in real time, making it possible to improve glycemic control. A promising technique involves glucose sensors implanted in subcutaneous tissue measuring glucose concentration in interstitial fluid. A major drawback of this technique is sensor bioinstability, which can lead to unpredictable drift and reproducibility. The bioinstability is partly due to sensor design but is also affected by naturally occurring subcutaneous inflammations. Applying a nonbiofouling coating to the sensor membrane could be a means to enhancing sensocompatibility. Methods This study evaluates the suitability of a polyethylene-glycol-based coating on sensors in CGMs. Methods used include cross hatch, wet paper rub, paper double rub, bending, hydrophilicity, protein adsorption, bio-compatibility, hemocompatibility, and glucose/oxygen permeability testing. Results Results demonstrate that coating homogeneity, adhesion, integrity, and scratch resistance are good. The coating repels lysozyme and bovine serum albumin, and only a low level of fibrin and blood platelet adsorption to the coating was recorded when testing in whole human blood. Cytotoxicity, irritation, sensitization, and hemolysis were assessed, and levels suggested good biocompatibility of the coating in subcutaneous tissue. Finally, it was shown that the coating can be applied to cellulose acetate membranes of different porosity without changing their permeability for glucose and oxygen. Conclusions These results suggest that the mechanical properties of the coating are sufficient for the given application, that the coating is effective in preventing protein adsorption and blood clot formation on the sensor surface, and that the coating can be applied to membranes without hindering their glucose and oxygen transport. PMID:23567005
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3377-000] Horseshoe Bend Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Bend Wind, LLC's application for market-based rate authority, with an accompanying rate tariff, noting...
Leonard, D A; Rajaram, N; Kerppola, T K
1997-05-13
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.
A Wearable Mobile Sensor Platform to Assist Fruit Grading
Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.
2013-01-01
Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafa, Salwa; Lee, Ida; Islam, Syed K
2011-01-01
In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/more » L.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-06-06
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-01-01
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304
NASA Astrophysics Data System (ADS)
Bell, Caroline; Nammari, Abdullah; Uttamchandani, Pranay; Rai, Amit; Shah, Pujan; Moore, Arden L.
2017-06-01
Diabetic individuals need simple, accurate, and cost effective means by which to independently assess their glucose levels in a non-invasive way. In this work, a sensor based on randomly oriented CuO nanowire networks supported by a polyethylene terephthalate thin film is evaluated as a flexible, transparent, non-enzymatic glucose sensing system analogous to those envisioned for future wearable diagnostic devices. The amperometric sensing characteristics of this type of device architecture are evaluated both before and after bending, with the system’s glucose response, sensitivity, lower limit of detection, and effect of applied bias being experimentally determined. The obtained data shows that the sensor is capable of measuring changes in glucose levels within a physiologically relevant range (0-12 mM glucose) and at lower limits of detection (0.05 mM glucose at +0.6 V bias) consistent with patient tears and saliva. Unlike existing studies utilizing a conductive backing layer or macroscopic electrode setup, this sensor demonstrates a percolation network-like trend of current versus glucose concentration. In this implementation, controlling the architectural details of the CuO nanowire network could conceivably allow the sensor’s sensitivity and optimal sensing range to be tuned. Overall, this work shows that integrating CuO nanowires into a sensor architecture compatible with transparent, flexible electronics is a promising avenue to realizing next generation wearable non-enzymatic glucose diagnostic devices.
Experimental investigation on mass flow rate measurements using fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Thekkethil, S. R.; Thomas, R. J.; Neumann, H.; Ramalingam, R.
2017-02-01
Flow measurement and control of cryogens is one of the major requirements of systems such as superconductor magnets for fusion reactors, MRI magnets etc. They can act as an early diagnostic tool for detection of any faults and ensure correct distribution of cooling load while also accessing thermal performance of the devices. Fibre Bragg Grating (FBG) sensors provide compact and accurate measurement systems which have added advantages such as immunity towards electrical and magnetic interference, low attenuation losses and remote sensing. This paper summarizes the initial experimental investigations and calibration of a novel FBG based mass flow meter. This design utilizes the viscous drag due to the flow to induce a bending strain on the fibre. The strain experienced by the fibre will be proportional to the flowrate and can be measured in terms of Bragg wavelength shift. The flowmeter is initially tested at atmospheric conditions using helium. The results are summarized and the performance parameters of the sensor are estimated. The results were also compared to a numerical model and further results for liquid helium is also reported. An overall sensitivity of 29 pm.(g.s-1)-1 was obtained for a helium flow, with a resolution of 0.2 g.s-1. A hysteresis error of 8 pm was also observed during load-unload cycles. The sensor is suitable for further tests using cryogens.
NASA Astrophysics Data System (ADS)
Harashima, Takuya; Morikawa, Takumi; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2017-04-01
A Si neural probe is one of the most important tools for neurophysiology and brain science because of its various functions such as optical stimulation and drug delivery. However, the Si neural probe is not robust compared with a metal tetrode, and could be broken by mechanical stress caused by insertion to the brain. Therefore, the Si neural probe becomes more useful if it has a stress sensor that can measure mechanical forces applied to the probe so as not to be broken. In this paper, we proposed and fabricated the Si neural probe with a piezoresistive force sensor for minimally invasive and precise monitoring of insertion forces. The fabricated piezoresistive force sensor accurately measured forces and successfully detected insertion events without buckling or bending in the shank of the Si neural probe. This Si neural probe with a piezoresistive force sensor has become one of the most versatile tools for neurophysiology and brain science.
Waveguide bends from nanometric silica wires
NASA Astrophysics Data System (ADS)
Tong, Limin; Lou, Jingyi; Mazur, Eric
2005-02-01
We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.
Kloppe, A; Hoeland, K; Müller, S; Hexamer, M; Nowack, G; Mügge, A; Werner, J
2004-10-01
In order to obtain a better physiological performance and a closer restoration of the regular rhythm of failing hearts, a new fiber optical sensor system for the measurement of cardiac contraction has been developed. It consists of an opto-electrical unit and a sensing fiber which has to be positioned in the heart. The objective of this new fiber optic sensor system is to use the inotropic information to adjust a stimulation algorithm in single or multichamber pacing or to detect arrhythmia in insufficient heart function. In this study, the mechanical and optical characteristics of different fibers are investigated. The relationship between the attenuation (with an achieved numerical maximum of 0.3 dB), the bending diameter and the angle of bending is determined in a range of 20-160 mm. The most suitable fiber for the application in cardiological problems is determined (WT8 fiber), for which the sensitivity is analyzed. Additionally, power spectra are calculated from WT8 fiber signals obtained from pig hearts, working under physiological conditions. The maximal frequency response was 23 Hz. It is concluded that the fiber optical measurement of cardiac contraction is not only feasible and reproducible, but the WT8 fiber also shows optimal behavior in the range of parameters occurring in the heart chambers. Nevertheless, in order to restrict the measured signal reliably to bending processes within the chambers only, it is concluded that a special combined fiber has to be constructed with a high sensitivity only at its terminal section within the heart.
NASA Astrophysics Data System (ADS)
Hosoki, Ai; Nishiyama, Michiko; Choi, Yongwoon; Watanabe, Kazuhiro
2011-05-01
In this paper, we propose discrimination method between a moving human and object by means of a hetero-core fiber smart mat sensor which induces the optical loss change in time. In addition to several advantages such as flexibility, thin size and resistance to electro-magnetic interference for a fiber optic sensor, a hetero-core fiber optic sensor is sensitive to bending action of the sensor portion and independent of temperature fluctuations. Therefore, the hetero-core fiber thin mat sensor can have a fewer sensing portions than the conventional floor pressure sensors, furthermore, can detect the wide area covering the length of strides. The experimental results for human walking tests showed that the mat sensors were reproducibly working in real-time under limiting locations the foot passed in the mat sensor. Focusing on the temporal peak numbers in the optical loss, human walking and wheeled platform moving action induced the peak numbers in the range of 1 - 3 and 5 - 7, respectively, for the 10 persons including 9 male and 1 female. As a result, we conclude that the hetero-core fiber mat sensor is capable of discriminating between the moving human and object such as a wheeled platform focusing on the peak numbers in the temporal optical loss.
NASA Astrophysics Data System (ADS)
Jun, Sungwoo; Kim, Youngmin; Ju, Byeong-Kwon; Kim, Jong-Woong
2018-01-01
A multifunctional alternate current electroluminescent device (ACEL) was achieved by compositing ZnS:Cu particles in polyvinyl butyral (PVB) with two layers of percolated silver nanowire (AgNW) electrodes. The strong hydrogen bonding interactions and entanglement of PVB chains considerably strengthened the PVB, and thus, the cured mixture of ZnS:Cu particles and freestanding PVB required no additional support. The device was fabricated by embedding AgNWs on both sides of the ZnS:Cu-PVB composite film using an inverted layer process and intense-pulsed-light treatment. The strong affinity of PVB to the polyvinyl pyrrolidone (PVP) layer, which capped the AgNWs, mechanically stabilized the device to such an extent that it could resist 10,000 bending cycles under a curvature radius of 500 μm. Using AgNW networks in both the top and bottom electrodes made a double-sided light-emitting device that could be applied to wearable lightings or flexible digital signage. The capacitance formed in the device sensitively varied with the applied bending and unfolding, thus demonstrating that the device can also be used as a deformation sensor.
Resistive flex sensors: a survey
NASA Astrophysics Data System (ADS)
Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita
2016-01-01
Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses.
NASA Astrophysics Data System (ADS)
Palmer, Matthew E.; Slusher, David; Fielder, Robert S.
2006-01-01
In this paper, recent work on the performance of optical fiber, fiber optic sensors, and fiber optic connectors under the influence of a high-energy electron beam is presented. Electron beam irradiation is relevant for the Jupiter Icy Moons Orbiter (JIMO) mission due to the high electron radiation environment surrounding Jupiter. As an initial feasibility test, selected optical fiber components were exposed to dose levels relevant to the Jupiter environment. Three separate fiber types were used: one series consisted of pure silica core fiber, two other series consisted of different levels of Germania-doped fiber. Additionally, a series of fused silica Extrinsic Fabry-Perot Interferometer (EFPI)-based fiber optic sensors and two different types of fiber optic connectors were tested. Two types of fiber coatings were evaluated: acrylate and polyimide. All samples were exposed to three different dose levels: 2 MRad, 20 MRad, and 50 MRad. Optical loss measurements were made on the optical fiber spools as a function of wavelength between 750 and 1750nm at periodic intervals up to 75 hrs after exposure. Attenuation is minimal and wavelength-dependent. Fiber optic sensors were evaluated using a standard EFPI sensor readout and diagnostic system. Optical connectors and optical fiber coatings were visually inspected for degradation. Additionally, tensile testing and minimum bend radius testing was conducted on the fibers. Initial loss measurements indicate a low-level of induced optical attenuation in the fiber which recovers with time. The fiber optic sensors exhibited no observable degradation after exposure. The optical fiber connectors and coatings also showed no observable degradation. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation.
Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Eudell, A. H.; Patt, F. S.
1990-01-01
The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.
All-Printed Differential Temperature Sensor for the Compensation of Bending Effects.
Ali, Shawkat; Hassan, Arshad; Bae, Jinho; Lee, Chong Hyun; Kim, Juho
2016-11-08
Because printed resistance temperature detectors (RTDs) are affected by tension and compression of metallic patterns on flexible or curved surfaces, a significant temperature-sensing error occurs in general. Hence, we propose a differential temperature sensor (DTS) to compensate the bending effect of the printed RTDs, which is composed of two serially connected similar meander patterns fabricated back-to-back on a polyimide polyethylene terephthalate substrate through a Dimatix DMP-3000 inkjet printer using silver nanoparticles. Under mechanical deformation, the resistance of the proposed DTS is not varied significantly under the same temperature environment because its patterns vary differentially as one side experiences tension while the opposite side experiences compression. A single meander pattern of the proposed DTS has a total length of 75 mm and device dimensions of 7 × 7 mm 2 . The total resistance variation is observed to be 15.5 Ω against the temperature variation from 0 to 100 °C, and the temperature coefficient of resistance is 1.076 × 10 -3 °C -1 . The proposed DTS exhibits no significant resistance change on bendability testing down to 2 mm diameter because of mechanical deformation. In addition, it is also used to detect the curvature of a body shape down to 2 mm diameter because its resistance changes by ±8.22% using a single meander pattern of DTS. The proposed sensor can be applied on a curved or flexible surface to measure relatively accurate temperature when compared to a single meander pattern.
Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.
Takei, Kuniharu; Takahashi, Toshitake; Ho, Johnny C; Ko, Hyunhyub; Gillies, Andrew G; Leu, Paul W; Fearing, Ronald S; Javey, Ali
2010-10-01
Large-scale integration of high-performance electronic components on mechanically flexible substrates may enable new applications in electronics, sensing and energy. Over the past several years, tremendous progress in the printing and transfer of single-crystalline, inorganic micro- and nanostructures on plastic substrates has been achieved through various process schemes. For instance, contact printing of parallel arrays of semiconductor nanowires (NWs) has been explored as a versatile route to enable fabrication of high-performance, bendable transistors and sensors. However, truly macroscale integration of ordered NW circuitry has not yet been demonstrated, with the largest-scale active systems being of the order of 1 cm(2) (refs 11,15). This limitation is in part due to assembly- and processing-related obstacles, although larger-scale integration has been demonstrated for randomly oriented NWs (ref. 16). Driven by this challenge, here we demonstrate macroscale (7×7 cm(2)) integration of parallel NW arrays as the active-matrix backplane of a flexible pressure-sensor array (18×19 pixels). The integrated sensor array effectively functions as an artificial electronic skin, capable of monitoring applied pressure profiles with high spatial resolution. The active-matrix circuitry operates at a low operating voltage of less than 5 V and exhibits superb mechanical robustness and reliability, without performance degradation on bending to small radii of curvature (2.5 mm) for over 2,000 bending cycles. This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.
Discovery Channel Telescope active optics system early integration and test
NASA Astrophysics Data System (ADS)
Venetiou, Alexander J.; Bida, Thomas A.
2012-09-01
The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.
NASA Astrophysics Data System (ADS)
Haroglu, Derya
The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor characteristics: reproducibility, accuracy, selectivity, aging, and resolution. Artificial neural network (ANN), a mathematical model formed by mimicking the human nervous system, was used to predict the sensor response. Qwiknet (version 2.23) software was used to develop ANNs and according to the results of Qwiknet the prediction performances for training and testing data sets were 75%, and 83.33% respectively. In this dissertation, Chapter 1 describes the worldwide plastic optical fiber (POF) and fiber optic sensor markets, and the existing textile structures used in fiber optic sensing design particularly for the applications of biomedical and structural health monitoring (SHM). Chapter 2 provides a literature review in detail on polymer optical fibers, fiber optic sensors, and occupancy sensing in the passenger seats of automobiles. Chapter 3 includes the research objectives. Chapter 4 presents the response of POF to tensile loading, bending, and cyclic tensile loading with discussion parts. Chapter 5 includes an e-mail based survey to prioritize customer needs in a Quality Function Deployment (QFD) format utilizing Analytic Hierarchy Process (AHP) and survey results. Chapter 6 describes the POF sensor design and the behavior of it under pressure. Chapter 7 provides a data analysis based on the experimental results of Chapter 6. Chapter 8 presents the summary of this study and recommendations for future work.
Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Wada, Masahiro
2013-01-01
This study evaluated how the contact height between the magnetic attachment and denture base influences stability and bending strain. An implant modified with strain gauges and a magnetic attachment mounted in an acrylic resin block were used to characterize systems with varying degrees or heights of contact with the abutment. Bending strain under lateral loading increased significantly as the contact height decreased. In the no contact and resilient contact groups, magnetic assemblies separated at reduced bending strain in all loading conditions. The contact height of the magnetic attachment influenced the stability and the amount of bending strain on the implant.
Micromechanical antibody sensor
Thundat, Thomas G.; Jacobson, K. Bruce; Doktycz, Mitchel J.; Kennel, Stephen J.; Warmack, Robert J.
2001-01-01
A sensor apparatus is provided using a microcantilevered spring element having a coating of a detector molecule such as an antibody or antigen. A sample containing a target molecule or substrate is provided to the coating. The spring element bends in response to the stress induced by the binding which occurs between the detector and target molecules. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers.
Cellulose Electro-Active Paper: From Discovery to Technology Applications
NASA Astrophysics Data System (ADS)
Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung
2014-09-01
Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.
Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data
NASA Technical Reports Server (NTRS)
Grauer, Jared A; Heeg, Jennifer; Morelli, Eugene A
2012-01-01
A new method is presented for estimating frequency responses and their uncertainties from wind-tunnel data in real time. The method uses orthogonal phase-optimized multi- sine excitation inputs and a recursive Fourier transform with a least-squares estimator. The method was first demonstrated with an F-16 nonlinear flight simulation and results showed that accurate short period frequency responses were obtained within 10 seconds. The method was then applied to wind-tunnel data from a previous aeroelastic test of the Joined- Wing SensorCraft. Frequency responses describing bending strains from simultaneous control surface excitations were estimated in a time-efficient manner.
Yang, Seung-Cheol; Qian, Xiaoping
2013-09-17
A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.
NASA Technical Reports Server (NTRS)
Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.; Smith, J.
1998-01-01
This paper presents an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them. It further discusses a number of recent findings in connection with ion-exchange polymer-metal composites (IPMCS) as biomimetic sensors and actuators. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these IPMCs as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMCS. When the applied signal frequency varies, so does the displacement up to a critical frequency called the resonant frequency where maximum deformation is observed, beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Also the load characterizations of the IPMCs were measured and it was shown that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally reported are the cryogenic properties of these muscles for potential utilization in an outer space environment of a few Torrs and temperatures of the order of - 140 degrees Celsius. These muscles are shown to work quite well in such harsh cryogenic environments and thus present a great potential as sensors and actuators that can operate at cryogenic temperatures.
Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.
Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji
2016-03-31
Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.
NASA Astrophysics Data System (ADS)
Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco
2015-06-01
Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.
Development of a high-sensitivity strain measurement system based on a SH SAW sensor
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik
2012-02-01
A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.
An extensometer for global measurement of bone strain suitable for use in vivo in humans
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Davis, B. L.; Sferra, J. J.; Courtney, A. C.; D'Andrea, S. E.
2001-01-01
An axial extensometer able to measure global bone strain magnitudes and rates encountered during physiological activity, and suitable for use in vivo in human subjects, is described. The extensometer uses paired capacitive sensors mounted to intraosseus pins and allows measurement of strain due to bending in the plane of the extensometer as well as uniaxial compression or tension. Data are presented for validation of the device against a surface-mounted strain gage in an acrylic specimen under dynamic four-point bending, with square wave and sinusoidal loading inputs up to 1500 mu epsilon and 20 Hz, representative of physiological strain magnitudes and frequencies. Pearson's correlation coefficient (r) between extensometer and strain gage ranged from 0.960 to 0.999. Mean differences between extensometer and strain gage ranged up to 15.3 mu epsilon. Errors in the extensometer output were directly proportional to the degree of bending that occurs in the specimen, however, these errors were predictable and less than 1 mu epsilon for the loading regime studied. The device is capable of tracking strain rates in excess of 90,000 mu epsilon/s.
Analysis and design of planar waveguide elements for use in filters and sensors
NASA Astrophysics Data System (ADS)
Chen, Guangzhou
In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.
Lang, Hans Peter; Loizeau, Frédéric; Hiou-Feige, Agnès; Rivals, Jean-Paul; Romero, Pedro; Akiyama, Terunobu; Gerber, Christoph; Meyer, Ernst
2016-01-01
For many diseases, where a particular organ is affected, chemical by-products can be found in the patient’s exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients’ exhaled breath samples by an electronic nose technique based on an array of nanomechanical membrane sensors. Each membrane is coated with a different thin polymer layer. By pumping the exhaled breath into a measurement chamber, volatile organic compounds present in patients’ breath diffuse into the polymer layers and deform the membranes by changes in surface stress. The bending of the membranes is measured piezoresistively and the signals are converted into voltages. The sensor deflection pattern allows one to characterize the condition of the patient. In a clinical pilot study, we investigated breath samples from head and neck cancer patients and healthy control persons. Evaluation using principal component analysis (PCA) allowed a clear distinction between the two groups. As head and neck cancer can be completely removed by surgery, the breath of cured patients was investigated after surgery again and the results were similar to those of the healthy control group, indicating that surgery was successful. PMID:27455276
Uncoated microcantilevers as chemical sensors
Thundat, Thomas G.
2001-01-01
A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.
Strain gauge ambiguity sensor for segmented mirror active optical system
NASA Technical Reports Server (NTRS)
Wyman, C. L.; Howe, T. L. (Inventor)
1974-01-01
A system is described to measure alignment between interfacing edges of mirror segments positioned to form a segmented mirror surface. It serves as a gauge having a bending beam with four piezoresistive elements coupled across the interfaces of the edges of adjacent mirror segments. The bending beam has a first position corresponding to alignment of the edges of adjacent mirror segments, and it is bendable from the first position in a direction and to a degree dependent upon the relative misalignment between the edges of adjacent mirror segments to correspondingly vary the resistance of the strain guage. A source of power and an amplifier are connected in circuit with the strain gauge whereby the output of the amplifier varies according to the misalignment of the edges of adjacent mirror segments.
Sensory prediction on a whiskered robot: a tactile analogy to “optical flow”
Schroeder, Christopher L.; Hartmann, Mitra J. Z.
2012-01-01
When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the “optical flow” equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that “flows” over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip. PMID:23097641
Sensory prediction on a whiskered robot: a tactile analogy to "optical flow".
Schroeder, Christopher L; Hartmann, Mitra J Z
2012-01-01
When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the "optical flow" equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that "flows" over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.
ERIC Educational Resources Information Center
Buche, Fred; Cox, Charles
A competency-based automotive mechanics curriculum was developed at Big Bend Community College (Washington) in order to provide the basis for an advanced placement procedure for high school graduates and experienced adults through a competency assessment. In order to create the curriculum, Big Bend Community College automotive mechanics…
Discrete microfluidics: Reorganizing droplet arrays at a bend
NASA Astrophysics Data System (ADS)
Surenjav, Enkhtuul; Herminghaus, Stephan; Priest, Craig; Seemann, Ralf
2009-10-01
Microfluidic manipulation of densely packed droplet arrangements (i.e., gel emulsions) using sharp microchannel bends was studied as a function of bend angle, droplet volume fraction, droplet size, and flow velocity. Emulsion reorganization was found to be specifically dependent on the pathlength that the droplets are forced to travel as they navigate the bend under spatial confinement. We describe how bend-induced droplet displacements might be exploited in complex, droplet-based microfluidics.
Electromagnetic Component Research
2009-12-01
capacitor was designed so that the four capacitance states are approximately equally spaced. Fig. 8 shows a photomicrograph of the varactor and the...dimensional Millimeter-wave Coaxial Line with Coplanar Transition for Probing (b) 60 CI·lz Branch Line Coupler, Measured S-paramclers Agree with Design C urves... designed for compatibi lity with optical fiber installations and can be attached to structures to measure their bending strains. The sensors can be
NASA Astrophysics Data System (ADS)
Ravikumar, Nakul; Rogalski, Melissa M.; Benza, Donny; Lake, Joshua; Urban, Matthew; Pelham, Hunter; Anker, Jeffrey N.; DesJardins, John D.
2017-03-01
An orthopaedic screw was designed with an optical tension-indicator to non-invasively quantify screw tension and monitor the load sharing between the bone and the implant. The screw both applies load to the bone, and measures this load by reporting the strain on the screw. The screw contains a colorimetric optical encoder that converts axial strain into colorimetric changes visible through the head of the screw, or luminescent spectral changes that are detected through tissue. Screws were tested under cyclic mechanical loading to mimic in-vivo conditions to verify the sensitivity, repeatability, and reproducibility of the sensor. In the absence to tissue, color was measured using a digital camera as a function of axial load on a stainless steel cannulated (hollow) orthopedic screw, modified by adding a passive colorimetric strain gauge through the central hole. The sensor was able to quantify clinically-relevant bone healing strains. The sensor exhibited good repeatability and reproducibility but also displayed hysteresis due to the internal mechanics of the screw. The strain indicator was also modified for measurement through tissue by replacing the reflective colorimetric sensor with a low-background X-ray excited optical luminescence signal. Luminescent spectra were acquired through 6 mm of chicken breast tissue. Overall, this research shows feasibility for a unique device which quantifies the strain on an orthopedic screw. Future research will involve reducing hysteresis by changing the mechanism of strain transduction in the screw, miniaturizing the luminescent strain gauge, monitoring bending as well as tension, using alternative luminescent spectral rulers based upon near infrared fluorescence or upconversion luminescence, and application to monitoring changes in pretension and load sharing during bone healing.
Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor.
Wu, Yao; Lai, Rebecca Y
2017-09-19
We report the first electrochemical cisplatin sensor fabricated with a thiolated and methylene blue (MB)-modified oligo-adenine (A)-guanine (G) DNA probe. Depending on the probe coverage, the sensor can behave as a signal-off or signal-on sensor. For the high-coverage sensor, formation of intrastrand Pt(II)-AG adducts rigidifies the oligo-AG probe, resulting in a concentration-dependent decrease in the MB signal. For the low-coverage sensor, the increase in probe-to-probe spacing enables binding of cisplatin via the intrastrand GNG motif (N = A), generating a bend in the probe which results in an increase in the MB current. Although both high-coverage signal-off and low-coverage signal-on sensors are capable of detecting cisplatin, the signal-on sensing mechanism is better suited for real time analysis of cisplatin. The low-coverage sensor has a lower limit of detection, wider optimal AC frequency range, and faster response time. It has high specificity for cisplatin and potentially other Pt(II) drugs and does not cross-react with satraplatin, a Pt(IV) prodrug. It is also selective enough to be employed directly in 50% saliva and 50% urine. This detection strategy may offer a new approach for sensitive and real time analysis of cisplatin in clinical samples.
Song, Young Seop; Yang, Kyung Yong; Youn, Kibum; Yoon, Chiyul; Yeom, Jiwoon; Hwang, Hyeoncheol; Lee, Jehee; Kim, Keewon
2016-08-01
To compare optical motion capture system (MoCap), attitude and heading reference system (AHRS) sensor, and Microsoft Kinect for the continuous measurement of cervical range of motion (ROM). Fifteen healthy adult subjects were asked to sit in front of the Kinect camera with optical markers and AHRS sensors attached to the body in a room equipped with optical motion capture camera. Subjects were instructed to independently perform axial rotation followed by flexion/extension and lateral bending. Each movement was repeated 5 times while being measured simultaneously with 3 devices. Using the MoCap system as the gold standard, the validity of AHRS and Kinect for measurement of cervical ROM was assessed by calculating correlation coefficient and Bland-Altman plot with 95% limits of agreement (LoA). MoCap and ARHS showed fair agreement (95% LoA<10°), while MoCap and Kinect showed less favorable agreement (95% LoA>10°) for measuring ROM in all directions. Intraclass correlation coefficient (ICC) values between MoCap and AHRS in -40° to 40° range were excellent for flexion/extension and lateral bending (ICC>0.9). ICC values were also fair for axial rotation (ICC>0.8). ICC values between MoCap and Kinect system in -40° to 40° range were fair for all motions. Our study showed feasibility of using AHRS to measure cervical ROM during continuous motion with an acceptable range of error. AHRS and Kinect system can also be used for continuous monitoring of flexion/extension and lateral bending in ordinary range.
NASA Astrophysics Data System (ADS)
Cui, Jianxun; Adams, John G. M.; Zhu, Yong
2018-05-01
Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.
Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír
2015-01-01
Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702
Flutter suppression and gust alleviation using active controls
NASA Technical Reports Server (NTRS)
Nissim, E.
1974-01-01
The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.
Rapid cable tension estimation using dynamic and mechanical properties
NASA Astrophysics Data System (ADS)
Martínez-Castro, Rosana E.; Jang, Shinae; Christenson, Richard E.
2016-04-01
Main tension elements are critical to the overall stability of cable-supported bridges. A dependable and rapid determination of cable tension is desired to assess the state of a cable-supported bridge and evaluate its operability. A portable smart sensor setup is presented to reduce post-processing time and deployment complexity while reliably determining cable tension using dynamic characteristics extracted from spectral analysis. A self-recording accelerometer is coupled with a single-board microcomputer that communicates wirelessly with a remote host computer. The portable smart sensing device is designed such that additional algorithms, sensors and controlling devices for various monitoring applications can be installed and operated for additional structural assessment. The tension-estimating algorithms are based on taut string theory and expand to consider bending stiffness. The successful combination of cable properties allows the use of a cable's dynamic behavior to determine tension force. The tension-estimating algorithms are experimentally validated on a through-arch steel bridge subject to ambient vibration induced by passing traffic. The tension estimation is determined in well agreement with previously determined tension values for the structure.
Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.
Jeon, Jun-Young; Ha, Tae-Jun
2016-02-03
We demonstrate high-performance wearable electronic-bandage (E-bandage) based on carbon nanotube (CNT)/silver nanoparticle (AgNP) composites covered with flexible media of fluoropolymer-coated polydimethylsiloxane (PDMS) films. The E-bandage can be used for motion-related sensors by directly attaching them to human skin, which achieves a fast and accurate electric response with high sensitivity according to the bending and stretching movements that induce changes in the conductivity. This advance in the E-bandage is realized as a result of the sensitivity that can be achieved by controlling the concentration of AgNPs in CNT pastes and by modifying the device architecture. The fluoropolymer encapsulation with hydrophobic surface characteristics allows for the E-bandage to operate in water and protects it from physical and chemical contact with the daily life conditions of the human skin. The reliability and scalability of the E-bandage as well as the compatibility with conventional microfabrication allow new possibilities to integrate flexible human-interactive nanoelectronics into mobile health-care monitoring systems combined with Internet of things (IoTs).
Micro-mechanics of ionic electroactive polymer actuators
NASA Astrophysics Data System (ADS)
Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo
2015-04-01
Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.
Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.
Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Jeiranikhameneh, Ali; Beirne, Stephen; Wallace, Gordon G
2015-09-30
A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.
NASA Technical Reports Server (NTRS)
Hadley, A. T., III; Conkin, J.; Waligora, J. M.; Horrigan, D. J., Jr.
1984-01-01
Doppler, or ultrasonic, monitoring for pain manifestations of decompression sickness (the bends) is accomplished by placing a sensor on the chest over the pulmonary artery and listening for bubbles. Difficulties have arisen because the technician notes that the pulmonary artery seems to move with subject movement in a one-g field and because the sensor output is influenced by only slight degrees of sensor movement. This study used two subjects and mapped the position of the pulmonary artery in one-g, microgravity, and two-g environments using ultrasound. The results showed that the pulmonary artery is fixed in location in microgravity and not affected by subject position change. The optimal position corresponded to where the Doppler signal is best heard with the subject in a supine position in a one-g environment. The impact of this result is that a proposed multiple sensor array on the chest proposed for microgravity use may not be necessary to monitor an astronaut during extravehicular activities. Instead, a single sensor of approximately 1 inch diameter and mounted in the position described above may suffice.
Luo, Ming; Skorina, Erik H; Tao, Weijia; Chen, Fuchen; Ozel, Selim; Sun, Yinan; Onal, Cagdas D
2017-06-01
Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules. We present integrated custom magnetic curvature sensors embedded in the neutral axis of bidirectional bending actuators. We describe our recent advances in the design and fabrication of these modules to improve the reliability of proprioceptive curvature feedback over our prior work. In particular, we study the effect of dimensional parameters on improving the linearity of curvature measurements. In addition, we present a sliding-mode controller formulation that drives the binary solenoid valve states directly, giving the control system the ability to hold the actuator steady without continuous pressurization and depressurization. In comparison to other methods, this control approach does not rely on pulse width modulation and hence offers superior dynamic performance (i.e., faster response rates). Our experimental results indicate that the proposed soft robotic modules offer a large range of bending angles with monotonic and more linear embedded curvature measurements, and that the direct sliding-mode control system exhibits improved bandwidth and a notable reduction in binary valve actuation operations compared to our earlier iterative sliding-mode controller.
Superconductivity Devices: Commercial Use of Space
NASA Technical Reports Server (NTRS)
Haertling, Gene (Principal Investigator); Furman, Eugene; Li, Guang
1996-01-01
The work described in this report covers various aspects of the Rainbow solid-state actuator and sensor technologies. It is presented in five parts dealing with sensor applications, nonlinear properties, stress-optic and electrooptic properties, stacks and arrays, and publications. The Rainbow actuator technology is a relatively new materials development which had its inception in 1992. It involves a new processing technique for preparing pre-stressed, high lead containing piezoelectric and electrostrictive ceramic materials. Ceramics fabricated by this method produce bending-mode actuator devices which possess several times more displacement and load bearing capacity than present-day benders. Since they can also be used in sensor applications, Rainbows are part of the family of materials known as smart ceramics. During this period, PLZT Rainbow ceramics were characterized with respect to their piezoelectric properties for potential use in stress sensor applications. Studies of the nonlinear and stress-optic/electrooptic birefringent properties were also initiated during this period. Various means for increasing the utility of stress-enhanced Rainbow actuators are presently under investigation.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2005-01-01
An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.
Sánchez-Durán, José A; Hidalgo-López, José A; Castellanos-Ramos, Julián; Oballe-Peinado, Óscar; Vidal-Verdú, Fernando
2015-08-19
Tactile sensors suffer from many types of interference and errors like crosstalk, non-linearity, drift or hysteresis, therefore calibration should be carried out to compensate for these deviations. However, this procedure is difficult in sensors mounted on artificial hands for robots or prosthetics for instance, where the sensor usually bends to cover a curved surface. Moreover, the calibration procedure should be repeated often because the correction parameters are easily altered by time and surrounding conditions. Furthermore, this intensive and complex calibration could be less determinant, or at least simpler. This is because manipulation algorithms do not commonly use the whole data set from the tactile image, but only a few parameters such as the moments of the tactile image. These parameters could be changed less by common errors and interferences, or at least their variations could be in the order of those caused by accepted limitations, like reduced spatial resolution. This paper shows results from experiments to support this idea. The experiments are carried out with a high performance commercial sensor as well as with a low-cost error-prone sensor built with a common procedure in robotics.
A design of optical measurement laboratory for space-based illumination condition emulation
NASA Astrophysics Data System (ADS)
Xu, Rong; Zhao, Fei; Yang, Xin
2015-10-01
Space Objects Identification(SOI) and related technology have aroused wide attention from spacefaring nations due to the increasingly severe space environment. Multiple ground-based assets have been employed to acquire statistical survey data, detect faint debris, acquire photometric and spectroscopic data. Great efforts have been made to characterize different space objects using the statistical data acquired by telescopes. Furthermore, detailed laboratory data are needed to optimize the characterization of orbital debris and satellites via material composition and potential rotation axes, which calls for a high-precision and flexible optical measurement system. A typical method of taking optical measurements of a space object(or model) is to move light source and sensors through every possible orientation around it and keep the target still. However, moving equipments to accurate orientations in the air is difficult, especially for those large precise instruments sensitive to vibrations. Here, a rotation structure of "3+1" axes, with a three-axis turntable manipulating attitudes of the target and the sensor revolving around a single axis, is utilized to emulate every possible illumination condition in space, which can also avoid the inconvenience of moving large aparatus. Firstly, the source-target-sensor orientation of a real satellite was analyzed with vectors and coordinate systems built to illustrate their spatial relationship. By bending the Reference Coordinate Frame to the Phase Angle plane, the sensor only need to revolve around a single axis while the other three degrees of freedom(DOF) are associated with the Euler's angles of the satellite. Then according to practical engineering requirements, an integrated rotation system of four-axis structure is brought forward. Schemetic diagrams of the three-axis turntable and other equipments show an overview of the future laboratory layout. Finally, proposals on evironment arrangements, light source precautions and sensor selections are provided. Comparing to current methods, this design shows better effects on device simplication, automatic control and high-precision measurement.
The processing and heterostructuring of silk with light
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Kumar, Bhupesh; Singh, Kamal P.
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
The processing and heterostructuring of silk with light.
Sidhu, Mehra S; Kumar, Bhupesh; Singh, Kamal P
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
Chen, Yipeng; Sheng, Chengmin; Dang, Baokang; Qian, Temeng; Jin, Chunde; Sun, Qingfeng
2018-02-28
Although widely used in nanocomposites, the effect of embedding graphene in carbonized nanolignocellulose substrates is less clear. We added graphene to a carbonized nanolignocellulose to change its mechanical and electromechanical properties. Here, the laminated carbonized nanolignocellulose/graphene composites were fabricated by carbonizing the nanolignocellulose/graphene composites prepared through mechanochemistry and flow-directed assembly process. The resulting composites exhibit excellent mechanical property with the ultimate bending strength of 25.6 ± 4.2 MPa. It is observed reversible electrical resistance change in these composites with strain, which is associated with the tunneling conduction model. This type of high-strength conductive composite has great potential applications in load-bearing electromechanical sensors.
Mechanical and Electronic Approaches to Improve the Sensitivity of Microcantilever Sensors
Mutyala, Madhu Santosh Ku; Bandhanadham, Deepika; Pan, Liu; Pendyala, Vijaya Rohini; Ji, Hai-Feng
2010-01-01
Advances in the field of Micro Electro Mechanical Systems (MEMS) and their uses now offer unique opportunities in the design of ultrasensitive analytical tools. The analytical community continues to search for cost-effective, reliable, and even portable analytical techniques that can give reliable and fast response results for a variety of chemicals and biomolecules. Microcantilevers (MCLs) have emerged as a unique platform for label-free biosensor or bioassay. Several electronic designs, including piezoresistive, piezoelectric, and capacitive approaches, have been applied to measure the bending or frequency change of the MCLs upon exposure to chemicals. This review summarizes mechanical, fabrication, and electronics approaches to increase the sensitivity of microcantilever (MCL) sensors. PMID:20975987
Analysis of the rectangular resonator with butterfly MMI coupler using SOI
NASA Astrophysics Data System (ADS)
Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan
2018-02-01
We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.
Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.
Effect of controlled spanwise bending on the stability of the leading-edge vortex
NASA Astrophysics Data System (ADS)
Bhattacharya, Samik; Scofield, Tyler
2017-11-01
When an airfoil is accelerated from rest at a high angle of attack, a leading-edge vortex (LEV) forms, which soon gets destabilized and convects downstream. In this work, we control the spanwise bending of a flat plate wing to actively influence the vorticity transfer from the LEV. Our aim is to investigate the effect of spanwise curvature variation on the geometry, growth, and stability of the LEV during the acceleration phase. A 3D printed flat-plate with a chord of 5 cm and span of 15 cm is towed in a small fish tank at different angles of attack greater than 15°. The plate starts from rest and reaches a Reynolds number of 5000 after travelling different multiples and submultiples of chord-length. We carry out dye-flow visualization and measure the circulation build up and the convection velocity of the LEV with the help of particle image velocimetry (PIV). The unsteady loads coming on to the wing is measured with a force sensor. An analytical scheme for computing the load from the measured displacement of the plate is presented and compared with the force sensor data. Preliminary results indicate that controlled curvature variation can influence the formation and stability of an LEV.
Ultrathin flexible piezoelectric sensors for monitoring eye fatigue
NASA Astrophysics Data System (ADS)
Lü, Chaofeng; Wu, Shuang; Lu, Bingwei; Zhang, Yangyang; Du, Yangkun; Feng, Xue
2018-02-01
Eye fatigue is a symptom induced by long-term work of both eyes and brains. Without proper treatment, eye fatigue may incur serious problems. Current studies on detecting eye fatigue mainly focus on computer vision detect technology which can be very unreliable due to occasional bad visual conditions. As a solution, we proposed a wearable conformal in vivo eye fatigue monitoring sensor that contains an array of piezoelectric nanoribbons integrated on an ultrathin flexible substrate. By detecting strains on the skin of eyelid, the sensors may collect information about eye blinking, and, therefore, reveal human’s fatigue state. We first report the design and fabrication of the piezoelectric sensor and experimental characterization of voltage responses of the piezoelectric sensors. Under bending stress, the output voltage curves yield key information about the motion of human eyelid. We also develop a theoretical model to reveal the underlying mechanism of detecting eyelid motion. Both mechanical load test and in vivo test are conducted to convince the working performance of the sensors. With satisfied durability and high sensitivity, this sensor may efficiently detect abnormal eyelid motions, such as overlong closure, high blinking frequency, low closing speed and weak gazing strength, and may hopefully provide feedback for assessing eye fatigue in time so that unexpected situations can be prevented.
NASA Astrophysics Data System (ADS)
Chrysochoidis, N. A.; Gutiérrez, E.
2015-02-01
It has been claimed that embedding piezoceramic devices as structural diagnostic systems in advanced composite structures may introduce mechanical impedance mismatches that favor the formation of intralaminar defects. This and other factors, such as cost and their high strain sensitivity, have motivated the use of thin-film piezopolymer sensors. In this paper, we examine the performance of sandwich composite panels fitted with embedded piezopolymer sensors. Our experiments examine both how such thin-film sensors perform within a structure and how the inclusion of sensor films affects structural performance. Strain-controlled tests on sandwich panels subjected to three-point bending under wide-ranging static and dynamic strains lead us to conclude that embedding thin piezopolymer films has no marked reduction on the tensile strength for a wide range of strain loading paths and magnitudes, and that the resilience of the embedded sensor is itself satisfactory, even up to the point of structural failure. Comparing baseline data obtained from standard surface-mounted sensors and foil gauges, we note that whereas it is possible to match experimental and theoretical strain sensitivities, key properties—especially the pronounced orthotropic electromechanical factor of such films—must be duly considered before an effective calibration can take place.
A novel imaging technique for measuring kinematics of light-weight flexible structures.
Zakaria, Mohamed Y; Eliethy, Ahmed S; Canfield, Robert A; Hajj, Muhammad R
2016-07-01
A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillation amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.
A novel imaging technique for measuring kinematics of light-weight flexible structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Mohamed Y., E-mail: zakaria@vt.edu; Eliethy, Ahmed S.; Canfield, Robert A.
2016-07-15
A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillationmore » amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.« less
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaikwad, AM; Chu, HN; Qeraj, R
2013-02-10
Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3more » mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.« less
Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory
NASA Technical Reports Server (NTRS)
Marraffa, Andrew M.; Mckillip, R. M., Jr.
1989-01-01
In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Liang; Dong, Dongdong; Qiao, Keke
Wearable and sensitive photodetectors (PDs) have been demonstrated based on a blend film of PbS quantum dots (QDs) and QDs modified multiwalled carbon nanotubes (MWCNTs). Owing to the synergetic effect from high light sensitivity of PbS QDs and excellent conductive and mechanical properties of MWCNTs, the blend PDs show high sensitivity and flexibility performance: device responsivity and detectivity reach 583 mA/W and 3.25 × 10{sup 12 }Jones, respectively, and could stand large number (at least 10 000 cycles) and wide angle (up to 80°) bending. Furthermore, the wearable and sensitive PDs have been applied to measure the heart rate in both red and near infraredmore » (NIR) ranges. The presented PDs are expected to work as sensor candidates in integrated electronic skin.« less
NASA Technical Reports Server (NTRS)
Nissim, E.; Caspi, A.; Lottati, I.
1976-01-01
The effects of active controls on flutter suppression and gust alleviation of the Arava twin turboprop STOL transport and the Westwind twinjet business transport are investigated. The active control surfaces are introduced in pairs which include, in any chosen wing strip, a 20-percent chord leading-edge control and a 20-percent chord trailing-edge control. Each control surface is driven by a combined linear-rotational sensor system located on the activated strip. The control law is based on the concept of aerodynamic energy and utilizes previously optimized control law parameters based on two-dimensional aerodynamic theory. The best locations of the activated system along the span of the wing are determined for bending-moment alleviation, reduction in fuselage accelerations, and flutter suppression. The effectiveness of the activated system over a wide range of maximum control deflections is also determined. Two control laws are investigated. The first control law utilizes both rigid-body and elastic contributions of the motion. The second control law employs primarily the elastic contribution of the wing and leads to large increases in the activated control effectiveness as compared with the basic control law. The results indicate that flutter speed can be significantly increased (over 70 percent increase) and that the bending moment due to gust loading can be almost totally eliminated by a control system of about 10 to 20 percent span with reasonable control-surface rotations.
Mechanical behavior of a novel non-fusion scoliosis correction device.
Wessels, M; Hekman, E E G; Verkerke, G J
2013-11-01
We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' implants were developed for generating torsion and lateral bending in a porcine model was tested for force delivery. An in vitro experiment was set up to describe the mechanical behavior of both implants. Narrow and wide ('inverse') versions of the XS TOR and XS LAT were mounted on an apparatus that was able to simulate different spinal geometries. The implants were anchored to three artificial vertebrae with integrated 6D force sensors, after which the vertebrae were rotated and translated towards the demanded position. The reaction forces and moments were recorded in all configurations. The maximal (lateral) bending moment, which occurred at the middle vertebra, was determined and, similarly, torque applied at the center of rotation of the middle vertebra was calculated. As expected, the wide and the small versions of the XS TOR generate a torque that increases during the growth of the system. Similarly, the XS LAT generates a bending moment that slightly increases during the growth of the system. The produced moments approximate the theoretically predicted ones. The contribution to the spinal stiffness ranges between 0.01Nm/° and 0.04Nm/° in bending and between 0.03Nm/° and 0.08Nm/° in torsion. The XS TOR and the XS LAT are able to generate a torque and a bending moment that remain (fairly) constant during spinal growth when a shape change due to the generated moment/torque is achieved. The stiffness of the implants is extremely low, being only a fraction of the stiffness of conventional, spinal fusion constructs. Current fusion systems, such as non-segmental spinal constructs generally, have 11 times higher stiffness in torsion and 6 times higher stiffness in lateral bending. Implantation of the XS LATOR adds 9% stiffness in axial rotation and 17% stiffness in lateral bending (to the original spinal stiffness). By preserving the flexibility of the spine after implantation, fusion of the vertebrae in the instrumented region is likely to be prevented. © 2013 Elsevier Ltd. All rights reserved.
Evaluation of bending modulus of lipid bilayers using undulation and orientation analysis
NASA Astrophysics Data System (ADS)
Chaurasia, Adarsh K.; Rukangu, Andrew M.; Philen, Michael K.; Seidel, Gary D.; Freeman, Eric C.
2018-03-01
In the current paper, phospholipid bilayers are modeled using coarse-grained molecular dynamics simulations with the MARTINI force field. The extracted molecular trajectories are analyzed using Fourier analysis of the undulations and orientation vectors to establish the differences between the two approaches for evaluating the bending modulus. The current work evaluates and extends the implementation of the Fourier analysis for molecular trajectories using a weighted horizon-based averaging approach. The effect of numerical parameters in the analysis of these trajectories is explored by conducting parametric studies. Computational modeling results are validated against experimentally characterized bending modulus of lipid membranes using a shape fluctuation analysis. The computational framework is then used to estimate the bending moduli for different types of lipids (phosphocholine, phosphoethanolamine, and phosphoglycerol). This work provides greater insight into the numerical aspects of evaluating the bilayer bending modulus, provides validation for the orientation analysis technique, and explores differences in bending moduli based on differences in the lipid nanostructures.
Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application
NASA Astrophysics Data System (ADS)
Panda, S. K.; Bandopadhya, D.
2018-02-01
Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.
Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton.
Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Kato, Takehide; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko
2015-03-23
Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light(1,2). After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism(3) and autostraightening(4) and modelled as proprioception(5). However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin-myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin-myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system.
Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.
A Quadruped Micro-Robot Based on Piezoelectric Driving
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-01-01
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964
A Quadruped Micro-Robot Based on Piezoelectric Driving.
Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng
2018-03-07
Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.
Low-loss curved subwavelength grating waveguide based on index engineering
NASA Astrophysics Data System (ADS)
Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.
2016-03-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.
Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin
2017-04-25
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Effects of repeated bending load at room temperature for composite Nb3Sn wires
NASA Astrophysics Data System (ADS)
Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune
2003-09-01
In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.
A wave-bending structure at Ka-band using 3D-printed metamaterial
NASA Astrophysics Data System (ADS)
Wu, Junqiang; Liang, Min; Xin, Hao
2018-03-01
Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.
Inflight dynamics testing of the Apollo spacecraft
NASA Technical Reports Server (NTRS)
Peters, W. H.; Marchantel, B.
1972-01-01
Response of the Apollo command module, service and lunar module airframe while in a docked configuration in the flight environment was measured in a frequency band encompassing the first two bending modes. Transfer characteristics from thrust-application point to control-system sensor were examined. The frequency and the stability margins of the first two predominant structural resonances were verified by the test. This report describes the flight test that was performed and the postflight data analysis.
Composite material embedded fiber-optic Fabry-Perot strain rosette
NASA Astrophysics Data System (ADS)
Valis, Thomas; Hogg, Dayle; Measures, Raymond M.
1990-12-01
A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.
Piezoresistance of flexible tunneling-percolation networks
NASA Astrophysics Data System (ADS)
Taylor-Harrod, Isaac; Nogaret, Alain
2017-07-01
We model changes in the conductivity of flexible composite films stressed by bending. By treating stress as a perturbation of the effective medium conductivity, we obtain an expression of the piezoresistance as a function of four material parameters. The model correctly predicts resistance spikes and their recovery under the action of viscoelastic forces, in good agreement with experimental observations over stress cycles. The theory may be used to design composite materials for high-sensitivity touch sensors.
Roland Hernandez; Jerrold E. Winandy
2005-01-01
A quantitative model is presented for evaluating the effects of incising on the bending strength and stiffness of structural dimension lumber. This model is based on the premise that bending strength and stiffness are reduced when lumber is incised, and the extent of this reduction is related to the reduction in moment of inertia of the bending members. Measurements of...
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2004-01-01
A membrane structure includes at least one electroactive bending actuator fixed to a supporting base. Each electroactive bending actuator is operatively connected to the membrane for controlling membrane position. Any displacement of each electroactive bending actuator effects displacement of the membrane. More specifically, the operative connection is provided by a guiding wheel assembly and a track, wherein displacement of the bending actuator effects translation of the wheel assembly along the track, thereby imparting movement to the membrane.
NASA Astrophysics Data System (ADS)
Frohn, Peter; Engel, Bernd; Groth, Sebastian
2018-05-01
Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.
Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling
2018-03-27
Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.
Fatigue life prediction in bending from axial fatigue information
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.
1982-01-01
Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.
Gaidhani, Apoorva; Moon, Kee S.; Ozturk, Yusuf; Lee, Sung Q.; Youm, Woosub
2017-01-01
Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit) can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data. PMID:29258214
Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors
NASA Technical Reports Server (NTRS)
Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.
2015-01-01
This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.
Integrated optics interferometer for high precision displacement measurement
NASA Astrophysics Data System (ADS)
Persegol, Dominique; Collomb, Virginie; Minier, Vincent
2017-11-01
We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.
Acoustic emission characterization of steel fibre reinforced concrete during bending
NASA Astrophysics Data System (ADS)
Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.
2010-04-01
The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.
Design of an Optically Controlled MR-Compatible Active Needle
Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.
2015-01-01
An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231
NASA Astrophysics Data System (ADS)
Khalili, N.; Asif, H.; Naguib, H. E.
2018-05-01
Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.
An ultra-lightweight design for imperceptible plastic electronics.
Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao
2013-07-25
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
Estimation of rail wear limits based on rail strength investigations
DOT National Transportation Integrated Search
1998-12-01
This report describes analyses performed to estimate limits on rail wear based on strength investigations. Two different failure modes are considered in this report: (1) permanent plastic bending, and (2) rail fracture. Rail bending stresses are calc...
Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.
Niazmand, H; Rajabi Jaghargh, E
2010-09-01
The purpose of this study is to investigate the effects of the Reynolds number and the bend sweep angle on the blood flow patterns of S-shaped bends. The numerical simulations of steady flows in S-shaped bends with sweep angles of 45 degrees , 90 degrees , and 135 degrees are performed at Reynolds numbers of 125, 500, and 960. Hemodynamic characteristics such as secondary flows, vorticity, and axial velocity profiles are analyzed in detail. Flow patterns in S-shaped bends are strongly dependent on both Reynolds number and bend sweep angle, which can be categorized into three groups based on the first bend secondary flow effects on the transverse flow of the second bend. For low Reynolds numbers and any sweep angles, secondary flows in the second bend eliminate the first bend effects in the early sections of the second bend and therefore the axial velocity profile is consistent with the bend curvature, while for high Reynolds numbers depending on the bend sweep angles the secondary vortex pattern of the first bend may persist partially or totally throughout the second bend leading to a four-vortex secondary structure. Moreover, an interesting flow feature observed at the Reynolds number of 960 is that the secondary flow asymmetrical behavior occurred around the second bend exit and along the outflow straight section. This symmetry-breaking phenomenon which has not been reported in the previous studies is shown to be more pronounced in the 90 degrees S-shaped bend as compared to other models considered here. The probability of flow separation as one of the important flow features contributing to the onset and development of arterial wall diseases is also studied. It is observed that the second bend outer wall of gentle bends with sweep angles from 20 degrees to 30 degrees at high enough Reynolds numbers are prone to flow separation.
Strain evaluation of strengthened concrete structures using FBG sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau Kintak; Zhou Limin; Ye Lin
1999-12-02
Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less
Active control of flexural vibrations in beams
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.
1987-01-01
The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.
NASA Astrophysics Data System (ADS)
Novak, Joseph
Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.
Piezoelectric micromotor based on the structure of serial bending arms.
Tong, Jianhua; Cui, Tianhong; Shao, Peige; Wang, Liding
2003-09-01
This paper presents a new piezoelectric micromotor based on the structure of serial bending arms. Serial bending arms are composed of two piezoelectric bimorphs with one end fixed and the other end free, driven by two signals of a biased square wave with a phase difference of pi/2. The free end of a cantilever arm will move along an elliptic orbit so that the cantilever is used to drive a cylinder rotor. The rotor's end surface contacts the free end of the cantilever, resulting in the rotor's rotation. There are six serial bending arms anchored on the base. The driving mechanism of the micromotor is proposed and analyzed. A new micromotor prototype, 5 mm in diameter, has been fabricated and characterized. The maximum rotational speed reaches 325 rpm, and the output torque is about 36.5 microNm.
The contribution of phosphate–phosphate repulsions to the free energy of DNA bending
Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.
2005-01-01
DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179
High-sensitivity bend angle measurements using optical fiber gratings.
Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang
2013-07-20
We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.
Creative wire bending--the force system from step and V bends.
Burstone, C J; Koenig, H A
1988-01-01
The force system produced by wires with steps and V bends was studied analytically by means of a small deflection mathematic analysis. Characteristic force relationships were found in both the step and the V bend. Step bands centrally placed between adjacent brackets produce unidirectional couples that are equal in magnitude. Along with these couples, vertical or horizontal forces are produced depending upon the plane of activation. Mesiodistal placement of step bends is not critical because very little alteration in force system occurs if a step is centered or positioned off center. V bends, on the other hand, are very sensitive to the positioning mesiodistally of the apex of the V. If the apex of the V bend is placed on center, equal and opposite couples are produced. As the V-bend apex is moved off center, predictable combinations of moments and forces are created. A method for determination of the relative force system is described that allows for simple interpretation and prediction of the force system from a V bend. The clinical applications of these data and a rational basis for wire bending are presented based on the producing of a desired force system.
View north of tube bending shop in boilermakers department located ...
View north of tube bending shop in boilermakers department located in southeast corner of the structural shop building (building 57). The computer controlled tube bender can be programmed to bend boiler tubing to nearly any required configuration - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
NASA Astrophysics Data System (ADS)
Xia, Z. M.; Wang, C. G.; Tan, H. F.
2018-04-01
A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.
Tang, Yongsheng; Ren, Zhongdao
2017-01-01
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated. PMID:28230747
NASA Tech Briefs, January 2004
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.
NASA Astrophysics Data System (ADS)
White, Joseph D.; Swint, Pamela
2014-01-01
Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.
Smart CFRP systems for the controlled retrofitting of reinforced concrete members
NASA Astrophysics Data System (ADS)
Schaller, M.-B.; Käseberg, S.; Kuhne, M.
2010-09-01
During the last ten years an increasing amount of Carbon Fiber Reinforced Polymer (CFRP) applications to rehabilitate damaged concrete elements was observed. Thereby some important disadvantages of the brittle materials must be considered, for example the low ductility of the bond between CFRP and concrete and brittle failure of FRP. With embedded sensor systems it is possible to measure crack propagation and strains. In this paper a sensor based CFRP system will be presented, that can be used for strengthening and measuring. The used optical fibers with Fiber Bragg Gratings (FBG) have a large number of advantages in opposite to electrical measuring methods. Examples are small dimensions, low weight as well as high static and dynamic resolution of measured values. The main problem during the investigations was the fixing of the glass fiber and the small FBG at the designated position. In this paper the possibility of setting the glass fiber with embroidery at the reinforcing fiber material will be presented. On the basis of four point bending tests on beams (dimensions of 700 x 150 x 150 mm) and tests on wrapped columns the potential of the Smart CFRP system is introduced.
Tang, Yongsheng; Ren, Zhongdao
2017-02-20
The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; ...
2016-05-05
Here, subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantlymore » reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.« less
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T.
2016-01-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices. PMID:27145872
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei; Wang, Yaguo; Subbaraman, Harish; Chen, Ray T
2016-05-05
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to the extra degree of freedom it offers in tuning a few important waveguide properties, such as dispersion and refractive index. Devices based on SWG waveguides have demonstrated impressive performances compared to conventional waveguides. However, the high loss of SWG waveguide bends jeopardizes their applications in integrated photonic circuits. In this work, we propose a geometrical tuning art, which realizes a pre-distorted refractive index profile in SWG waveguide bends. The pre-distorted refractive index profile can effectively reduce the mode mismatch and radiation loss simultaneously, thus significantly reduce the bend loss. This geometry tuning art has been numerically optimized and experimentally demonstrated in present study. Through such tuning, the average insertion loss of a 5 μm SWG waveguide bend is reduced drastically from 5.43 dB to 1.10 dB per 90° bend for quasi-TE polarization. In the future, the proposed scheme will be utilized to enhance performance of a wide range of SWG waveguide based photonics devices.
Micromechanical calorimetric sensor
Thundat, Thomas G.; Doktycz, Mitchel J.
2000-01-01
A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Tiwari, Rashi; Kim, Kwang J.
2008-03-01
In this paper we are reporting a newely developed IPMC fabrication method, "IPMC Paint", which can be directly sprayed onto any complex surface. In order to fabricate the IPMC paint, liquid Nafion TM was used for the ionic conducting polymer instead of the typical film/sheet type Nafion TM. The viscosity of liquid Nafion TM was adjusted by adding Polyvinylpyrrolidone (PVP) to perform spray painting. Modified Nafion was sprayed onto the conducting substrate, Polyfoil TM which acts as base electrode layer. After three times spraying, ionic polymer layer has 45 μm thickness and 10 μm of surface roughness. Sensing tests show that IPMC paint sensor has more sensitivity (+/- 0.06 of producing voltage) than that of the typical IPMC (+/- 0.005 of producing voltage) when dynamic bending with 10 Hz frequency and 1.3 cm of displacement is applied to.
NASA Astrophysics Data System (ADS)
Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham
2018-01-01
Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a 99% of confidence.
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-01-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987
NASA Astrophysics Data System (ADS)
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-12-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael
2004-08-01
Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.
Husser, Edgar; Bargmann, Swantje
2017-01-01
The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657
An experimental investigation of bending wave instability modes in a generic four-vortex wake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babie, Brian M.; Nelson, Robert C.
2010-07-15
An experimental study of a planar wake consisting of four vortices that simulate the trailing vortex wakes generated by transport airplanes in either takeoff or landing configurations is presented. The objective of this study was to examine naturally occurring wake instabilities. Specifically, the focus of the study was centered on bending wave instabilities of which the Crow instability represents a particular case. A unique method of generating a four-vortex wake was developed for this study. The four-vortex wake generating device permitted direct variation of the spacing between vortices as well as control over the vortex circulation strength. Two quantitative flowmore » visualization experiments were instrumental in identifying wake configurations that were conducive to the rapid growth of bending wave modes and in the identification of the long-wavelength mode. Detailed experiments were also conducted to examine the flow structure in the near-field or roll-up region using a four sensor, hot-wire probe that could measure all three velocity components in the wake simultaneously. The results of both the flow visualization and hot-wire experiments indicate that the long-wavelength mode and the first short-wavelength mode likely dominate the far-field wake physics and may potentially be utilized in a wake control strategy.« less
Matsubara, Noriaki; Miyachi, Shigeru; Izumi, Takashi; Yamada, Hiroyuki; Marui, Naoki; Ota, Keisuke; Tajima, Hayato; Shintai, Kazunori; Ito, Masashi; Imai, Tasuku; Nishihori, Masahiro; Wakabayashi, Toshihiko
2017-09-01
In endovascular embolization for intracranial aneurysms, it is important to properly control the coil insertion force. However, the force can only be subjectively detected by the subtle feedback experienced by neurointerventionists at their fingertips. The authors envisioned a system that would objectively sense and quantify that force. In this article, coil insertion force was measured in cases of intracranial aneurysm using this sensor, and its actual clinical application was investigated. The sensor consists of a hemostatic valve (Y-connector). A little flexure was intentionally added in the device, and it creates a bend in the delivery wire. The sensor measures the change in the position of the bent wire depending on the insertion force and translates it into a force value. Using this, embolization was performed for 10 unruptured intracranial aneurysms. The sensor adequately recorded the force, and it reflected the operators' usual clinical experience. The presence of the sensor did not affect the procedures. The sensor enabled the operators to objectively note and evaluate the insertion force and better cooperative handling was possible. Additionally, other members of the intervention team shared the information. Force records demonstrated the characteristic patterns according to every stage of coiling (framing, filling, and finishing). The force sensor system adequately measured coil insertion force in intracranial aneurysm coil embolization procedures. The safety of this sensor was demonstrated in clinical application for the limited number of patients. This system is useful adjunct for assisting during coil embolization for an intracranial aneurysm. Copyright © 2017 Elsevier Inc. All rights reserved.
Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli
2018-03-01
In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.
Development of a Crashworthy Seat for Commuter Aircraft
1990-09-01
the seat base frame by pivot arms at rollers, the seat pan moves downward. The force each side of the front of the pan. A wire bending to maintain the... wire bending action is constant FA device linked the rear corners of the seat pan and may be altered by the type and size of wires to the base frame...wires In ence with sh-xi’lar devices provided a rational the wire bending mechanism. (c) the angle of the basis with which to evaluate these devices
Transverse Tension Fatigue Life Characterization Through Flexure Testing of Composite Materials
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Chawan, Arun D.; Krueger, Ronald; Paris, Isabelle
2001-01-01
The transverse tension fatigue life of S2/8552 glass-epoxy and IM7/8552 carbon-epoxy was characterized using flexure tests of 90-degree laminates loaded in 3-point and 4-point bending. The influence of specimen polishing and specimen configuration on transverse tension fatigue life was examined using the glass-epoxy laminates. Results showed that 90-degree bend specimens with polished machined edges and polished tension-side surfaces, where bending failures where observed, had lower fatigue lives than unpolished specimens when cyclically loaded at equal stress levels. The influence of specimen thickness and the utility of a Weibull scaling law was examined using the carbon-epoxy laminates. The influence of test frequency on fatigue results was also documented for the 4-point bending configuration. A Weibull scaling law was used to predict the 4-point bending fatigue lives from the 3-point bending curve fit and vice-versa. Scaling was performed based on maximum cyclic stress level as well as fatigue life. The scaling laws based on stress level shifted the curve fit S-N characterizations in the desired direction, however, the magnitude of the shift was not adequate to accurately predict the fatigue lives. Furthermore, the scaling law based on fatigue life shifted the curve fit S-N characterizations in the opposite direction from measured values. Therefore, these scaling laws were not adequate for obtaining accurate predictions of the transverse tension fatigue lives.
Wu, J S; Huang, Y K; Wu, F L; Lin, D Y
2012-08-01
We present a simple but versatile piezoelectric coefficient measurement system, which can measure the longitudinal and transverse piezoelectric coefficients in the pressing and bending modes, respectively, at different applied forces and a wide range of frequencies. The functionality of this measurement system has been demonstrated on three samples, including a PbZr(0.52)Ti(0.48)O(3) (PZT) piezoelectric ceramic bulk, a ZnO thin film, and a laminated piezoelectric film sensor. The static longitudinal piezoelectric coefficients of the PZT bulk and the ZnO film are estimated to be around 210 and 8.1 pC/N, respectively. The static transverse piezoelectric coefficients of the ZnO film and the piezoelectric film sensor are determined to be, respectively, -0.284 and -0.031 C/m(2).
Appendage mountable electronic devices conformable to surfaces
Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu
2017-01-24
Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
Bending strength model for internal spur gear teeth
NASA Technical Reports Server (NTRS)
Savage, Michael; Rubadeux, K. L.; Coe, H. H.
1995-01-01
Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.
NASA Astrophysics Data System (ADS)
Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi
2015-07-01
Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.
Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-05-29
The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters
NASA Astrophysics Data System (ADS)
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-01
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.
Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun
2016-07-08
We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.
Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.
Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou
2014-12-01
An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance.
NASA Astrophysics Data System (ADS)
Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James
2017-04-01
Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.
Characterization of Bending Magnetostriction in Iron-Gallium Alloys for Nanowire Sensor Applications
2008-01-01
presence of an applied voltage. The pores that self assemble in a typical commercial batch of anodized alu- minum oxide ( AAO ) have only short range order...Moskovits. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size. J. Appl. Phys., 70:4421–4425, 1991. [96...The process begins by anodizing aluminum [92, 82] to produce porous tem- plates into which the nanowires can be grown. There are many recipes for the
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kosten, Susan E.
1994-01-01
Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.
Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
Bose, Dipan; Bhalla, Kavi S; Untaroiu, Costin D; Ivarsson, B Johan; Crandall, Jeff R; Hurwitz, Shepard
2008-06-01
Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear displacement was determined by performing regression analysis on the experimental data. The threshold values of the bending angle (16.2 deg) and shear displacement (25.2 mm) estimated from the injury threshold function were in agreement with previously published knee injury threshold data. The continuous knee injury function expressed in terms of bending angle and shear displacement enabled injury prediction for combined loading conditions such as those observed in pedestrian-car collisions.
Chalcogenide glass sensors for bio-molecule detection
NASA Astrophysics Data System (ADS)
Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong
2017-02-01
Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.
Augmented reality guidance system for peripheral nerve blocks
NASA Astrophysics Data System (ADS)
Wedlake, Chris; Moore, John; Rachinsky, Maxim; Bainbridge, Daniel; Wiles, Andrew D.; Peters, Terry M.
2010-02-01
Peripheral nerve block treatments are ubiquitous in hospitals and pain clinics worldwide. State of the art techniques use ultrasound (US) guidance and/or electrical stimulation to verify needle tip location. However, problems such as needle-US beam alignment, poor echogenicity of block needles and US beam thickness can make it difficult for the anesthetist to know the exact needle tip location. Inaccurate therapy delivery raises obvious safety and efficacy issues. We have developed and evaluated a needle guidance system that makes use of a magnetic tracking system (MTS) to provide an augmented reality (AR) guidance platform to accurately localize the needle tip as well as its projected trajectory. Five anesthetists and five novices performed simulated nerve block deliveries in a polyvinyl alcohol phantom to compare needle guidance under US alone to US placed in our AR environment. Our phantom study demonstrated a decrease in targeting attempts, decrease in contacting of critical structures, and an increase in accuracy of 0.68 mm compared to 1.34mm RMS in US guidance alone. Currently, the MTS uses 18 and 21 gauge hypodermic needles with a 5 degree of freedom sensor located at the needle tip. These needles can only be sterilized using an ethylene oxide process. In the interest of providing clinicians with a simple and efficient guidance system, we also evaluated attaching the sensor at the needle hub as a simple clip-on device. To do this, we simultaneously performed a needle bending study to assess the reliability of a hub-based sensor.
Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties
NASA Astrophysics Data System (ADS)
Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.
2018-03-01
Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.
Dynamic investigation of DNA bending and wrapping by type II topoisomerases
NASA Astrophysics Data System (ADS)
Shao, Qing; Finzi, Laura; Dunlap, David
2009-11-01
Type II topoisomerases catalyze DNA decatenation and unwinding which is crucial for cell division, and therefore type II topoisomerases are some of the main targets of anti-cancer drugs. A recent crystal structure shows that, during the catalytic cycle, a yeast type II topoimerase can bend a 10 base pair DNA segment by up to 150 degrees. Bacterial gyrase, another type II topoisomerase, can wrap DNA into a tight 180 degree turn. Bending a stiff polymer like DNA requires considerable energy and could represent the rate limiting step in the catalytic (topological) cycle. Using modified deoxyribonucleotides in PCR reactions, stiffer DNA fragments have been produced and used as substrates for topoisomerase II-mediated relaxation of plectonemes introduced in single molecules using magnetic tweezers. The wrapping ability of gyrase decreases for diamino-purine-substituted DNA in which every base pair has three hydrogen-bonds. The overall rate of relaxation of plectonemes by recombinant human topoisomerase II alpha also decreases. These results reveal the dynamic properties of DNA bending and wrapping by type II topisomerases and suggest that A:T base pair melting is a rate determining step for bending and wrapping.
Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting
2018-01-01
This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki
2015-02-21
The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.
Lensless magneto-optic speed sensor
Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.
1998-02-17
Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.
Lensless Magneto-optic speed sensor
Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.
1998-01-01
Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.
Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
Tang, Zhenhua; Jia, Shuhai; Wang, Fei; Bian, Changsheng; Chen, Yuyu; Wang, Yonglin; Li, Bo
2018-02-21
Lightweight, stretchable, and wearable strain sensors have recently been widely studied for the development of health monitoring systems, human-machine interfaces, and wearable devices. Herein, highly stretchable polymer elastomer-wrapped carbon nanocomposite piezoresistive core-sheath fibers are successfully prepared using a facile and scalable one-step coaxial wet-spinning assembly approach. The carbon nanotube-polymeric composite core of the stretchable fiber is surrounded by an insulating sheath, similar to conventional cables, and shows excellent electrical conductivity with a low percolation threshold (0.74 vol %). The core-sheath elastic fibers are used as wearable strain sensors, exhibiting ultra-high stretchability (above 300%), excellent stability (>10 000 cycles), fast response, low hysteresis, and good washability. Furthermore, the piezoresistive core-sheath fiber possesses bending-insensitiveness and negligible torsion-sensitive properties, and the strain sensing performance of piezoresistive fibers maintains a high degree of stability under harsh conditions. On the basis of this high level of performance, the fiber-shaped strain sensor can accurately detect both subtle and large-scale human movements by embedding it in gloves and garments or by directly attaching it to the skin. The current results indicate that the proposed stretchable strain sensor has many potential applications in health monitoring, human-machine interfaces, soft robotics, and wearable electronics.
Algorithms for Determining Physical Responses of Structures Under Load
NASA Technical Reports Server (NTRS)
Richards, W. Lance; Ko, William L.
2012-01-01
Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.
Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring
NASA Astrophysics Data System (ADS)
Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.
2009-08-01
The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.
NASA Astrophysics Data System (ADS)
Li, H; Yang, H; Zhan, M
2009-04-01
Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.
The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083
2015-09-01
of stainless steel 4-point bending rig used to apply elastic stress to aluminum plate samples. (Bottom) Stress- strain data based on displacement and...ASTM-G39, from [25]. ..........................20 Figure 13. Photograph of stainless steel 4-point bending rig used to apply elastic stress to...aluminum plate samples, from [8]. ....................................................20 Figure 14. Photograph of stainless steel 4-point bending rig
Yielding in colloidal gels due to nonlinear microstructure bending mechanics.
Furst, Eric M; Pantina, John P
2007-05-01
We report measurements of the nonlinear micromechanics of strongly flocculated model colloidal aggregates. Linear aggregates directly assembled using laser tweezers are subjected to bending loads until a critical bending moment is reached, which is identified by a stictionlike rearrangement of a single colloidal bond. This nanoscale phenomenon provides a quantitative basis for understanding the macroscopic shear yield stresses of strongly flocculated polystyrene latex gels, based on the maximum bending moment exceeding the critical moment of the constituent colloidal bonds of the gel microstructure. These mechanics are consistent with the local bending moment overcoming the static friction force between neighboring adhesive particles. This results in a direct relationship between the rheology of these gels and the boundary friction between Brownian particles.
Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery.
Sepúlveda, Alfonso; Speulmanns, Jan; Vereecken, Philippe M
2018-01-01
The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li 4 Ti 5 O 12 , LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime.
Oil pipeline geohazard monitoring using optical fiber FBG strain sensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Salazar-Ferro, Andres; Mendez, Alexis
2016-04-01
Pipelines are naturally vulnerable to operational, environmental and man-made effects such as internal erosion and corrosion; mechanical deformation due to geophysical risks and ground movements; leaks from neglect and vandalism; as well as encroachments from nearby excavations or illegal intrusions. The actual detection and localization of incipient and advanced faults in pipelines is a very difficult, expensive and inexact task. Anything that operators can do to mitigate the effects of these faults will provide increased reliability, reduced downtime and maintenance costs, as well as increased revenues. This talk will review the on-line monitoring of an extensive network of oil pipelines in service in Colombia using optical fiber Bragg grating (FBG) strain sensors for the measurement of strains and bending caused by geohazard risks such as soil movements, landslides, settlements, flooding and seismic activity. The FBG sensors were mounted on the outside of the pipelines at discrete locations where geohazard risk was expected. The system has been in service for the past 3 years with over 1,000 strain sensors mounted. The technique has been reliable and effective in giving advanced warning of accumulated pipeline strains as well as possible ruptures.
Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang
2016-01-01
Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
Finite element analysis on the bending condition of truck frame before and after opening
NASA Astrophysics Data System (ADS)
Cai, Kaiwu; Cheng, Wei; Lu, Jifu
2018-05-01
Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.
A piezoelectric bone-conduction bending hearing actuator.
Adamson, R B A; Bance, M; Brown, J A
2010-10-01
A prototype of a novel bone-conduction hearing actuator based on a piezoelectric bending actuator is presented. The device lies flat against the skull which would allow it to form the basis of a subcutaneous bone-anchored hearing aid. The actuator excites bending in bone through a local bending moment rather than the application of a point force as with conventional bone-anchored hearing aids. Through measurements of the cochlear velocity created by the actuator in embalmed human heads, the device is shown to exhibit high efficiency, making it a possible alternative to present-day electromagnetic bone-vibration actuators.
NASA Astrophysics Data System (ADS)
Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong
2016-05-01
This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.
Hydrogels for engineering: normalization of swelling due to arbitrary stimulus
NASA Astrophysics Data System (ADS)
Ehrenhofer, Adrian; Wallmersperger, Thomas
2017-04-01
In engineering, materials are chosen from databases: Engineers orient on specific parameters such as Young's modulus, yield stress or thermal expansion coefficients for a desired application. For hydrogels, the choice of materials is rather tedious since no generalized material parameters are currently available to quantify the swelling behavior. The normalization of swelling, which we present in the current work, allows an easy comparison of different hydrogel materials. Thus, for a specific application like a sensor or an actuator, an adequate material can be chosen. In the current work, we present the process of normalization and provide a course of action for the data analysis. Special challenges for hydrogels like hysteresis, conditional multi-sensitivity and anisotropic swelling are addressed. Then, the Temperature Expansion Model is shortly described and applied. Using the derived normalized swelling curves, a nonlinear expansion coefficient ß(F) is derived. The derived material behavior is used in an analytical model to predict the bending behavior of a beam made of thermo-responsive hydrogel material under an anisotropic temperature load. A bending behavior of the beam can be observed and the impact of other geometry and material parameters can be investigated. To overcome the limitations of the one-dimensional beam theory, the material behavior and geometry can be implemented in Finite Element analysis tools. Thus, novel applications for hydrogels in various fields can be envisioned, designed and tested. This can lead to a wider use of smart materials in sensor or actuator devices even by engineers without chemical background.