Science.gov

Sample records for bending stress

  1. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  2. The effect of bending on the stresses in adhesive joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The problem of stress distribution in adhesive joints where two orthotropic plates are bonded through a flexible adhesive layer is analyzed. It is shown that the effect of bending of the adherends on the stresses in the adhesive layer is very significant. The transverse shear deformations of the adherends appear to have little influence on the adhesive layer stresses. The maximum transverse normal stress in the adhesive is shown to be larger than the maximum longitudinal shear stress. The method of solution is applied to several examples of specific joint geometries and material combinations, and is proven to be applicable to other related problems.

  3. Stress analysis of a secondary-bending specimen

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Heller, M.

    1993-11-01

    This note describes a two-dimensional finite-element elastic analysis of a uniaxially-loaded bolted secondary-bending specimen which was conducted to provide information relevant to a recent ARL fatigue testing program. Three different approaches were employed to model the bolt/plate interface and the results are compared with thermoelastic stress measurements.

  4. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  5. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  6. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  7. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  8. An investigation of the behavior of the clamp-induced bending stresses

    NASA Astrophysics Data System (ADS)

    Huang, S. N.

    1991-12-01

    The Fast Flux Test Facility is a demonstration and test facility for the sodium cooled fast breeder reactor. Insulated pipe clamps are used in the heat transport and safety related systems. This investigation determines whether the clamp induced pipe stresses should be classified as primary or secondary stresses. Three finite element models were developed using the ANSYS computer program. Inelastic analyses were performed to investigate the behavior of meridional bending stress and hoop bending stress. The double exponential creep law of 316 stainless steel was used in the creep analysis. Results indicate that pipe bending stresses do not completely relax with time. Therefore, a portion of the meridional bending stress and the hoop bending stress should be classified as primary stress.

  9. Finite element simulation of laser tube bending: Effect of scanning schemes on bending angle, distortions and stress distribution

    NASA Astrophysics Data System (ADS)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.; Zhu Liu

    2007-09-01

    Laser forming has received considerable attention in recent years. Within laser forming, tube bending is an important industrial activity, with applications in critical engineering systems like micro-machines, heat exchangers, hydraulic systems, boilers, etc. Laser tube bending utilizes the thermal stresses generated during laser scanning to achieve the desired bends. The parameters to control the process are usually laser power, beam diameter, scanning velocity and number of scans. Recently axial scanning has been used for tube bending instead of commonly used circumferential scans. However the comparison between the scanning schemes has involved dissimilar laser beam geometries with circular beam used for circumferential scanning and a rectangular beam for the axial scan. Thermal stresses generated during laser scanning are strongly dependent upon laser beam geometry and scanning direction and hence it is difficult to isolate the contribution made by these two variables. It has recently been established at the Corrosion and Protection Centre, University of Manchester, that corrosion properties of material during laser forming are affected by the number of laser passes. Depending on the material, the corrosion behaviour is either adversely or favourably affected by number of passes. Thus it is of great importance to know how different scanning schemes would affect laser tube bending. Moreover, any scanning scheme which results in greater bending angle would eliminate the need for higher number of passes, making the process faster. However, it is not only the bending angle which is critical, distortions in other planes are also extremely important. Depending on the use of the final product, unwanted distortions may be the final selection criteria. This paper investigates the effect of scanning direction on laser tube bending. Finite-element modelling has been used for the study of the process with some results also validated by experiments.

  10. Channel width dependence of electrical characteristics of a-Si:H TFTs under bending stresses

    NASA Astrophysics Data System (ADS)

    Oh, Hyungon; Cho, Kyoungah; Kim, Sangsig

    2017-04-01

    In this study, we investigate the electrical characteristics of bendable a-Si:H thin-film transistors (TFTs) with various channel widths as a function of bending stress. Compared with a narrower channel TFT, a wider channel TFT exhibits a stable performance even at a bending strain of 1.3%. Our stress and strain distribution analysis reveals an inverse relationship between the channel width and the channel stress. As the channel width widens from 8 to 50 μm, the stress experienced by the middle channel region decreases from 545 to 277 MPa. Moreover, a 50 μm-channel-width TFT operates stably even after a 15 000 bending cycle while the 8 μm-channel-width TFT fails to operate after a 2000 bending cycle.

  11. The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors

    PubMed Central

    Nabias, Julie; Asfour, Aktham; Yonnet, Jean-Paul

    2017-01-01

    The flexibility of amorphous Giant Magneto-Impedance (GMI) micro wires makes them easy to use in several magnetic field sensing applications, such as electrical current sensing, where they need to be deformed in order to be aligned with the measured field. The present paper deals with the bending impact, as a parameter of influence of the sensor, on the GMI effect in 100 µm Co-rich amorphous wires. Changes in the values of key parameters associated with the GMI effect have been investigated under bending stress. These parameters included the GMI ratio, the intrinsic sensitivity, and the offset at a given bias field. The experimental results have shown that bending the wire resulted in a reduction of GMI ratio and sensitivity. The bending also induced a net change in the offset for the considered bending curvature and the set of used excitation parameters (1 MHz, 1 mA). Furthermore, the field of the maximum impedance, which is generally related to the anisotropy field of the wire, was increased. The reversibility and the repeatability of the bending effect were also evaluated by applying repetitive bending stresses. The observations have actually shown that the behavior of the wire under the bending stress was roughly reversible and repetitive. PMID:28335542

  12. Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bibel, George D.

    1999-01-01

    An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.

  13. Laser bending of pre-stressed thin-walled nickel micro-tubes

    NASA Astrophysics Data System (ADS)

    Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.

    2015-10-01

    Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.

  14. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    SciTech Connect

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  15. Displacements and stresses in bending of circular perforated plate

    NASA Astrophysics Data System (ADS)

    Atanasiu, C.; Sorohan, St.

    2016-08-01

    The flat plates, perforated by a large number of holes are widely used in the engineering, especially in the component of the process equipment. Strength calculations and experimental methods used in the actual literature for study perforated plates, do not present the problem in all its complexity for stress distribution and displacements. Research and doctoral theses in last decades, with methods characteristic of the respective periods were engaged either perforated plates considered infinite and requested the median plane or rarely, plate loaded normal to the median plane, with a small number of holes. In this work the stress distribution and displacement is presented for a circular plate perforated by 96 holes arranged in a grid of squares, simply supported on the outline and loaded through a central concentrated force or by uniformly distributed load. It conducted a numerical analysis by finite element method (FEM) with a proper meshing of the plate and an experimental study by holographic interferometry. Holographic interferometry method permits to measure, with high accuracy, extremely small displacements and comparing the results with those obtained by FEM becomes sustainable. Supplementary, an analysis of a non-perforated plate with the same dimensions and stiffness, similar loaded, was performed, determining the coefficient of stress concentration for a particular arrangement of holes.

  16. Plane-stress fracture of compact and notch-bend specimens

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1974-01-01

    Thin-gaged or high toughness materials containing cracks usually fail in a ductile manner with nominal failure stresses approaching the ultimate strength of the material. For such materials, a two-parameter fracture criterion was developed. An equation which related the linear elastic stress-intensity factor, elastic nominal stress, and two material parameters was previously derived and has been used as a fracture criterion for surface- and through-cracked specimens under tensile loading. This two-parameter fracture criterion was rederived in a more general form and was extended to compact and notch-bend fracture specimens. A close correlation was found between experimental and predicted failure stresses.

  17. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  18. Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches

    NASA Astrophysics Data System (ADS)

    Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.

    2016-04-01

    Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.

  19. An Experimental Study of Fatigue Crack Growth in Aluminum Sheet Subjected to Combined Bending and Membrane Stresses

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1997-01-01

    An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.

  20. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  1. Interpretation of bend strength increase of graphite by the couple-stress theory. [HTGR

    SciTech Connect

    Tang, P.Y.

    1981-05-01

    This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite.

  2. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    DOE PAGES

    Hempel, Nico; Bunn, Jeffrey R.; Nitschke-Pagel, Thomas; ...

    2017-02-02

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that notmore » only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.« less

  3. A two-dimensional stress analysis of single lap joints subjected to external bending moments

    SciTech Connect

    Sawa, Toshiyuki; Nakano, Katsuyuki; Toratani, Hiroshi

    1995-11-01

    The stress distribution of single lap adhesive joints subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity. In the analysis, two similar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of the ratio of Young;s modulus of adherends to that of adhesive and the adhesive thickness on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity causes at the edges of the interfaces and the peel stress at the edges of the interface increases with a decrease of Young`s modulus of the adherends. In addition, photoelastic experiments are carried out. A fairly good agreement is seen between the analytical and the experimental results.

  4. Plane-stress fracture of compact and notch-bend specimens

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1976-01-01

    Thin-gaged or high toughness materials containing cracks usually fail in a ductile manner with nominal failure stresses approaching the ultimate strength of the material. For such materials, a two-parameter fracture criterion was developed. An equation which related the linear elastic stress-intensity factor, elastic nominal stress, and two material parameters has previously been derived and has been used as a fracture criterion for surface- and through-cracked specimens under tensile loading. In the present paper the two-parameter fracture criterion was rederived in a more general form and was extended to compact and notch-bend fracture specimens. A close correlation was found between experimental and calculated failure stresses.

  5. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  6. Measuring permeability and stress relaxation of young cement paste by beam bending

    SciTech Connect

    Vichit-Vadakan, W.; Scherer, George W

    2003-12-01

    When a saturated rod of a porous material is deflected in three-point bending, two types of time-dependent relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body, and viscoelastic (VE) relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability from the hydrodynamic relaxation function, in addition to the VE stress relaxation function of the sample. We report the early-age evolution of permeability, elastic modulus, and stress relaxation function for Type III Portland cement paste with water-cement (w/c) ratios of 0.45, 0.50, and 0.55. The stress relaxation function is shown to preserve its shape during aging; that function is numerically transformed into the creep function.

  7. Minimizing tooth bending stress in spur gears with simplified shapes of fillet and tool shape determination

    NASA Astrophysics Data System (ADS)

    Pedersen, N. L.

    2015-06-01

    The strength of a gear is typically defined relative to durability (pitting) and load capacity (tooth-breakage). Tooth-breakage is controlled by the root shape and this gear part can be designed because there is no contact between gear pairs here. The shape of gears is generally defined by different standards, with the ISO standard probably being the most common one. Gears are manufactured using two principally different tools: rack tools and gear tools. In this work, the bending stress of involute teeth is minimized by shape optimization made directly on the final gear. This optimized shape is then used to find the cutting tool (the gear envelope) that can create this optimized gear shape. A simple but sufficiently flexible root parameterization is applied and emphasis is put on the importance of separating the shape parameterization from the finite element analysis of stresses. Large improvements in the stress level are found.

  8. Deformation effect on plastic and elastic stress components in grains with different bending

    NASA Astrophysics Data System (ADS)

    Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina

    2016-11-01

    The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.

  9. Electron microscopic investigation of crystal lattice bending-torsion and internal stresses in deformed polycrystalline alloys

    SciTech Connect

    Koneva, N. A. Kozlov, E. V.

    2016-01-15

    Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.

  10. Stress intensity and displacement coefficients for radially cracked ring segments subject to three-point bending

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1983-01-01

    The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.

  11. Experimental analysis of the effect of vegetation on flow and bed shear stress distribution in high-curvature bends

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2016-12-01

    The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.

  12. Irradiation Creep of Chemically Vapor Deposited Silicon Carbide as Estimated by Bend Stress Relaxation Method

    SciTech Connect

    Katoh, Yutai; Snead, Lance Lewis; Hinoki, Tatsuya; Kondo, Sosuke; Kohyama, Akira

    2007-01-01

    The bend stress relaxation technique was applied for an irradiation creep study of high purity, chemically vapor-deposited beta-phase silicon carbide (CVD SiC) ceramic. A constant bend strain was applied to thin strip samples during neutron irradiation to fluences 0.2-4.2 dpa at various temperatures in the range {approx}400 to {approx}1080 C. Irradiation creep strain at <0.7 dpa exhibited only a weak dependence on irradiation temperature. However, the creep strain dependence on fluence was non-linear due to the early domination of the initial transient creep, and a transition in creep behavior was found between 950 and 1080 C. Steady-state irradiation creep compliances of polycrystalline CVD SiC at doses >0.7 dpa were estimated to be 2.7({+-}2.6) x 10{sup -7} and 1.5({+-}0.8) x 10{sup -6} (MPa dpa){sup -1} at {approx}600 to {approx}950 C and {approx}1080 C, respectively, whereas linear-averaged creep compliances of 1-2 x 10{sup -6} (MPa dpa){sup -1} were obtained for doses of 0.6-0.7 dpa at all temperatures. Monocrystalline 3C SiC samples exhibited significantly smaller transient creep strain and greater subsequent deformation when loaded along <0 1 1> direction.

  13. Modeling the Effect of Carburization and Quenching on the Development of Residual Stresses and Bending Fatigue Resistance of Steel Gears

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Freborg, Andrew M.; Hansen, Bruce D.; Srivatsan, T. S.

    2013-03-01

    Most steel gears are carburized and quenched prior to service to obtain the desired specific strength (σ/ρ) and hardness requirements. Use of carburization and quenching of steel gears creates a compressive residual stress on the carburized surface, which is beneficial for improving both bending and contact fatigue performance. Also, higher carbon content in the carburized surface decreases the starting temperature for formation of the martensitic phase and delaying the martensitic transformation at the part surface during the quenching hardening process. During the martensite phase formation, the material volume expands. The delayed martensitic transformation, coupled with the associated delayed volume expansion, induces residual compressive stress on the surface of the quenched part. The carburized case depth and distribution of carbon affect both the magnitude and the depth of the resulting residual compressive stress. In this article, the effect of carbon distribution on the residual stress in a spur gear is presented and discussed using finite element modeling to understand the intrinsic material mechanics contributing to the presence of internal stress. Influence of the joint on thermal gradient and the influence of phase transformation on the development of internal stresses are discussed using results obtained from modeling. The residual stress arising due to heat treatment is imported into single-tooth bending and dynamic contact stress analysis models to investigate the intrinsic interplay among carbon case depth, residual stress, bending load, and torsional load on potential fatigue life. Three carburization processes, followed by oil quenching, are examined. A method for designing minimum case depth so as to achieve beneficial residual stresses in gears subjected to bending and contact stresses is suggested.

  14. Biomechanical Properties of Insect Wings: The Stress Stiffening Effects on the Asymmetric Bending of the Allomyrina dichotoma Beetle's Hind Wing

    PubMed Central

    Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol

    2013-01-01

    Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle's hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings. PMID:24339878

  15. Biomechanical properties of insect wings: the stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle's hind wing.

    PubMed

    Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol

    2013-01-01

    Although the asymmetry in the upward and downward bending of insect wings is well known, the structural origin of this asymmetry is not yet clearly understood. Some researchers have suggested that based on experimental results, the bending asymmetry of insect wings appears to be a consequence of the camber inherent in the wings. Although an experimental approach can reveal this phenomenon, another method is required to reveal the underlying theory behind the experimental results. The finite element method (FEM) is a powerful tool for evaluating experimental measurements and is useful for studying the bending asymmetry of insect wings. Therefore, in this study, the asymmetric bending of the Allomyrina dichotoma beetle's hind wing was investigated through FEM analyses rather than through an experimental approach. The results demonstrated that both the stressed stiffening of the membrane and the camber of the wing affect the bending asymmetry of insect wings. In particular, the chordwise camber increased the rigidity of the wing when a load was applied to the ventral side, while the spanwise camber increased the rigidity of the wing when a load was applied to the dorsal side. These results provide an appropriate explanation of the mechanical behavior of cambered insect wings, including the bending asymmetry behavior, and suggest an appropriate approach for analyzing the structural behavior of insect wings.

  16. Measuring permeability, Young's modulus, and stress relaxation by the beam-bending technique

    NASA Astrophysics Data System (ADS)

    Vichit-Vadakan, Wilasa

    Recent interest in the permeability of cement paste, mortars, and concrete lies in the need to gain further understanding of mechanisms affecting the durability of these materials. Conventional techniques for measuring permeability are cumbersome and often take days to complete just one measurement. This thesis proposes a new technique for measuring the permeability. The advantage of this technique is that the results are obtained in a few minutes to a few hours; moreover, there is no problem with leaks or need for high pressures. The method is particularly well suited for examining the changes in permeability and viscoelastic properties of young cement paste samples. When a saturated rod of a porous material is instantaneously deflected under three-point bending, two types of relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body to restore ambient pressure, and viscoelastic relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability and Young's modulus from the hydrodynamic relaxation function, in addition to the stress relaxation function of the sample. The exact viscoelastic solution is developed and the total relaxation is shown to be very closely approximated as the product of the hydrodynamic and stress relaxation functions. The analytical results are verified on porous VycorRTM glass saturated in various solvents, including normal alcohols, water, and glycerol. The results show excellent agreement with the theory. Consistent with observations of previous workers, the permeability is found to be influenced by the size of the solvent molecule; by assuming that the pore surfaces are covered with a monolayer of immobile solvent, the observed variation can be explained. The evolution of the permeability, Young's modulus, and stress relaxation function are reported for Type III Portland cement paste with

  17. Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1984-01-01

    Stress intensity factor equations are presented for an embedded elliptical crack, a semielliptical surface crack, a quarter elliptical corner crack, a semielliptical surface crack along the bore of a circular hole, and a quarter elliptical corner crack at the edge of a circular hole in finite plates. The plates were subjected to either remote tension or bending loads. The stress intensity factors used to develop these equations were obtained from previous three dimensional finite element analyses of these crack configurations. The equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and, where applicable, hole radius. The ratio of crack depth to plate thickness ranged from 0 to 1, the ratio of crack depth to crack length ranged from 0.2 to 2, and the ratio of hole radius to plate thickness ranged from 0.5 to 2. The effects of plate width on stress intensity variation along the crack front were also included.

  18. Residual Stress Development in CU Thin Films with and Without AlN Passivation by Cyclic Plane Bending

    NASA Astrophysics Data System (ADS)

    Shinohara, Mitsuhiko; Hanabusa, Takao; Kusaka, Kazuya

    Since the thin film technology is applied to micro-machines, MEMS (micro electro-mechanical system), optical devices and others, the evaluation of mechanical properties in thin films becomes to be important. On the other hand, there are differences in mechanical properties between bulk materials and thin films, but studies in this field have not yet been made enough. The present paper reports on the evaluation of the mechanical properties of Cu thin films with and without AlN passivation layer. Specimens with different thickness of Cu film were subjected to cyclic plane bending fatigue test. Residual stresses developed in the Cu films were measured in a sequence of bending cycles using X-ray diffraction method in order to understand the effect of film thickness and passivation layer on mechanical properties of Cu thin films.

  19. Stress concentrations for straight-shank and countersunk holes in plates subjected to tension, bending, and pin loading

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1992-01-01

    A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.

  20. Bending and shear stresses developed by the instantaneous arrest of the root of a cantilever beam rotating with constant angular velocity about a transverse axis through the root

    NASA Technical Reports Server (NTRS)

    Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.

  1. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  2. Analysis of residual stress and hardness in regions of pre-manufactured and manual bends in fixation plates for maxillary advancement.

    PubMed

    Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes

    2015-12-01

    The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.

  3. Induction of optical vortex in the crystals subjected to bending stresses.

    PubMed

    Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav

    2012-08-20

    We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex.

  4. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  5. The bending stress distribution in bilayered and graded zirconia-based dental ceramics

    PubMed Central

    Fabris, Douglas; Souza, Júlio C.M.; Silva, Filipe S.; Fredel, Márcio; Mesquita-Guimarães, Joana; Zhang, Yu; Henriques, Bruno

    2016-01-01

    The purpose of this study was to evaluate the biaxial flexural stresses in classic bilayered and in graded zirconia-feldspathic porcelain composites. A finite element method and an analytical model were used to simulate the piston-on-ring test and to predict the biaxial stress distributions across the thickness of the bilayer and graded zirconia-feldspathic porcelain discs. An axisymmetric model and a flexure formula of Hsueh et al. were used in the FEM and analytical analysis, respectively. Four porcelain thicknesses were tested in the bilayered discs. In graded discs, continuous and stepwise transitions from the bottom zirconia layer to the top porcelain layer were studied. The resulting stresses across the thickness, measured along the central axis of the disc, for the bilayered and graded discs were compared. In bilayered discs, the maximum tensile stress decreased while the stress mismatch (at the interface) increased with the porcelain layer thickness. The optimized balance between both variables is achieved for a porcelain thickness ratio in the range of 0.30–0.35. In graded discs, the highest tensile stresses were registered for porcelain rich interlayers (p=0.25) whereas the zirconia rich ones (p=8) yield the lowest tensile stresses. In addition, the maximum stresses in a graded structure can be tailored by altering compositional gradients. A decrease in maximum stresses with increasing values of p (a scaling exponent in the power law function) was observed. Our findings showed a good agreement between the analytical and simulated models, particularly in the tensile region of the disc. Graded zirconia-feldspathic porcelain composites exhibited a more favourable stress distribution relative to conventional bilayered systems. This fact can significantly impact the clinical performance of zirconia-feldspathic porcelain prostheses, namely reducing the fracture incidence of zirconia and the chipping and delamination of porcelain. PMID:28104926

  6. Effects of magnetomechanical vibrations and bending stresses on three-phase three-leg transformers with amorphous cores

    NASA Astrophysics Data System (ADS)

    Hsu, Chang-Hung; Chang, Yeong-Hwa; Lee, Chun-Yao; Yao, Chia-Shiang; He, Yan-Lou; Chu, Huei-Lung; Chang, Chia-Wen; Chan, Wei-Shou

    2012-04-01

    This paper explores the influence of bending stresses on the magnetic characteristics of three-phase transformers with amorphous cores. Different types of core structures, including C-cores and toroidal cores, and their magnetic properties are compared using VSM and XRD. The losses in the magnetic core of the three-phase transformer are analyzed using the finite element analysis for both design and measurement. In addition, experimental results indicated that amorphous-core transformers with rectangular corners had higher audible noise and vibration intensities. This is because the condensed distribution of magnetic flux lines in the corners of the core may create high magnetic inductions associated with high magnetostriction. Finally, experiments with three-phase amorphous-core transformers were performed to study the effects of magnetism and magnetostriction on their performance in terms of core loss, vibration, and audible noise.

  7. A finite-difference program for stresses in anisotropic, layered plates in bending

    NASA Technical Reports Server (NTRS)

    Salamon, N. J.

    1975-01-01

    The interlaminar stresses induced in a layered laminate that is bent into a cylindrical surface are studied. The laminate is modeled as a continuum, and the resulting elasticity equations are solved using the finite difference method. The report sets forth the mathematical framework, presents some preliminary results, and provides a listing and explanation of the computer program. Significant among the results are apparent symmetry relationships that will reduce the numerical size of certain problems and an interlaminar stress behavior having a sharp rise at the free edges.

  8. Shallow Flaws Under Biaxial Loading Conditions, Part II: Application of a Weibull Stress Analysis of the Cruciform Bend Specimen Using a Hydrostatic Stress Criterion

    SciTech Connect

    Bass, B.R.; McAfee, W.J.; Williams, P.T.

    1999-08-01

    Cruciform beam fracture mechanics specimensl have been developed in the Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far- field, out-of-plane biaxird bending stress component in the test section that approximates the nonlinear biaxial stresses resulting from pressurized-thernxd-shock or pressure-temperature loading of a nuclear reactor pressure vessel (RPV). Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shtdlow, surface flaws. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Two and three- parameter Weibull models have been calibrated using a new scheme (developed at the University of Illinois) that maps toughness data from test specimens with distinctly different levels of crack-tip constraint to a small scale yielding (SSY) Weibull stress space. These models, using the new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the OW integral definition, have been shown to correlate the experimentally observed biaxiaI effect in cruciform specimens, thereby providing a scaling mechanism between uniaxial and biaxial loading states.

  9. Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears

    DTIC Science & Technology

    1999-02-01

    location. These stress values were found for the output torque on the gear equaling 1073 N*m (9500 in*lb). B - Experimental Results. Testing was... 1073 N*m (9500 in*lb) of gear shaft torque. Note that the results are the same with respect to relative magnitudes between the regions of the fillet as...torque equal to 1073 N*m (9500 in*lb) at a pinion rotational speed equal to 14400 RPM. The analytical results were taken for the mid-face results from

  10. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    USGS Publications Warehouse

    Fitzenz, D.D.; Miller, S.A.

    2004-01-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  11. Regularities of the effect of the value of initial bending stresses on their relaxation under the annealing of amorphous magnetically soft alloys of various classes

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2017-02-01

    It has been shown that, in some amorphous alloys, the value of initial bending stresses σm can influence the development of the relaxation of these stresses during the annealing of the alloys. These alloys include Co69Fe3.7Cr3.8Si12.5B11, with a nearly zero saturation magnetostriction (λs < 10-7) and the Fe78Ni1Si8B13 alloy with λs = 25 × 10-6. In the iron-based Fe81Si4B13C2 and Fe57Co31Si2.9B9.1 alloys, no effect of the initial bending stresses on their relaxation has been observed. No this effect has also been observed in the metalloid-free alloys Co80Mo10Zr10 and Co80Mo8Ni2Zr10 with a nearly zero saturation magnetostriction λs. When this effect manifests itself, the activation energy U of the given process becomes a function of two factors; i.e., this energy depends on both the composition of the alloy (that is, interatomic forces) and the value of the initial bending stresses. In this case, the activation energy U cannot be considered to be characteristic of the material.

  12. Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)

    SciTech Connect

    Chatterjee, K.; Venkataraman, A.; Garbaciak, T.; Rotella, J.; Sangid, M. D.; Beaudoin, A. J.; Kenesei, P.; Park, J-S.; Pilchak, A. L.

    2016-09-01

    In-situ high energy diffraction microscopy (HEDM) experiments are carried out to analyze the state of combined bending and tension in a Ti-7Al alloy under room temperature creep. Grain-level elastic strain tensors are evaluated from HEDM data. Atomistic calculations are used to predict elastic constants of Ti-7Al, to be used in determination of stress from strain. The stress gradient and residual stresses are successfully determined, which allows the demarcation between macro-/micro-level residual stresses. A cluster of three neighboring grains are identified that highlight the variation of mean and effective stress between grains. Crystallographic orientations and slip characteristics are analyzed for the selected grains. It is inferred that the interfaces between loaded grains with markedly different stress triaxiality and slip tendency are potential spots for material damage.

  13. Combined bending-torsion fatigue reliability of AISI 4340 steel shafting with K sub t = 2.34. [stress concentration factor

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Chester, L. B.; Dodge, T. M.

    1974-01-01

    Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. Six-inch long, AISI 4340 steel, grooved specimens with a stress concentration factor of 2.34 and R sub C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effect of the groove and of the various combined bending-torsion loads on the S-N and Goodman diagrams are determined. Three design applications are presented. The third one illustrates the weight savings that may be achieved by designing for reliability.

  14. Effect of bending stresses on the high-frequency magnetic properties and their time stability in a cobalt-based amorphous alloy with an extremely low magnetostriction

    NASA Astrophysics Data System (ADS)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2015-12-01

    An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f < 1 kHz), and permeability μ5 ( H = 5 mOe), in contrast, is independent of D at high frequencies and is dependent on D at low frequencies. The samples subjected to high-temperature (390°C) annealing followed by water quenching exhibit "anomalous" dependences: permeability μ5 increases with decreasing toroidal sample radius, i.e., with increasing bending stresses. The detected dependences are related to the fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.

  15. Equal-Stressed Reinforcement of Metal-Composite Plates in Transverse Bending at Steady-State Creep with Account of Weakened Resistance to In-Plane Shears

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-03-01

    Within the hypotheses of Tymoshenko and Timoshenko-Reissner theories, problems on the equal-stressed reinforcement (ER) are formulated for metal-composite plates in transverse bending at steady-state creep. The plates are reinforced with fibers of constant cross section. A qualitative analysis is performed for the corresponding systems of resolving equations and boundary conditions. The method of secant modulus is used. It is shown that, at each iteration, the systems of resolving equations are systems of quasi-linear equations of mixed-compound type with nonlinear static boundary conditions. From these conditions follows the possibility of existence of several alternative solutions which can be controlled by varying the densities of reinforcement on the edge of plates. It is revealed that the trajectories of reinforcement are the actual characteristics of the system of resolving equations. Within the framework of the Timoshenko-Reissner theory, model ER problems on the cylindrical bending of elongated rectangular plates in the cases where one of the longitudinal edges is subjected to different loadings, but the others are rigidly fixed, are considered. By particular examples, the possibility of existence of two alternative solutions to the ER problem, one regular and the other singular, is shown. The emergence of edge effects deeply penetrating into the plate is revealed in the presence of torque applied to the edge, which has a significant effect not only on the stress-strain state of the binder material, but also on the structure of reinforcement.

  16. The effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  17. Effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  18. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting

  19. Numerical procedures for the calculation of the stresses in monocoques III : calculation of the bending moments in fuselage frames

    NASA Technical Reports Server (NTRS)

    Hoff, N J; Libby, Paul A; Klein, Bertran

    1946-01-01

    This report deals with the calculation of the bending moments in and the distortions of fuselage rings upon which known concentrated and distributed loads are acting. In the procedure suggested, the ring is divided into a number of beams each having a constant radius of curvature. The forces and moments caused in the end sections of the beams by individual unit displacements of the end sections are listed in a table designated as the operations table in conformity with Southwell's nomenclature. The operations table and the external loads are equivalent to a set of linear equations. For their solution the following three procedures are presented: 1) Southwell's method of systematic relaxations. This is a step-by-step approximation procedure guided by the physical interpretation of the changes in the values of the unknown. 2) The growing unit procedure in which the individual beams are combined successively into beams of increasing length until finally the entire ring becomes a single beam. In each step of the procedure a set of not more than three simultaneous linear equations is solved. 3) Solution of the entire set of simultaneous equations by the methods of the matrix calculus. In order to demonstrate the manner in which the calculations may be carried out, the following numerical examples are worked out: 1) Curved beam with both its end sections rigidly fixed. The load is a concentrated force. 2) Egg-shape ring with symmetric concentrated loads. 3) Circular ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 4) Same with V-braces incorporated in the ring. 5) Egg-shape ring with antisymmetric concentrated loads and shear flow (torsion of the fuselage). 6) Same with V-braces incorporated in the ring. The results of these calculations are checked, whenever possible, by calculations carried out according to known methods of analysis. The agreement is found to be good. The amount of work necessary for the solution of ring problems by

  20. Characterization of the Seismic Stress/Strain Fields Around the Bend of the Western/Central Alps

    NASA Astrophysics Data System (ADS)

    Sue, C.; Delacou, B.; Champagnac, J.; Allanic, C.; Burkhard, M.

    2004-12-01

    The western Alps tectonic regime is characterized by ongoing widespread extension in the highest zones of the belt and transpressive/compressive tectonics at the external limits of the belt [Sue et al., 1999, Delacou et al, 2004]. This contrasted tectonics is examined using a global synthesis of 389 reliable focal mechanisms covering the whole belt. In term of deformation state, an original method of regionalization allowed us to precisely map the different tectonic modes in the belt. Extension appears as the main feature of the current activity in the western Alps, and affects their inner areas as a whole, following the arcuate geometry of the chain. Shortening is limited to local areas at the outer limits of the chain. Strike-slip is observed in the whole alpine realm. In term of stress analysis, we inverted the whole database of focal mechanisms in homogeneous areas determined using our regionalization analysis. The stress state is confirmed to be radial both concerning s3 in the inner extensional zones, and s1 in the outer transcurrent/tranpressional zones. Extensional areas are correlated with the part of the belt which presents the thickest crust, as shown by the comparison with the Bouguer anomaly map and the smoothed topography of the belt. The overall geodetic strain corresponds also to a radial extension across the western Alps [Calais et al., 2002]. Indeed, there is a quite good qualitative coherency between seismotectonic and geodetic approaches. To compare the seismic strain with the overall geodetic strain, we attempted to quantify the seismic part of the deformation. We used the regionalization of the seismic deformation to determine sub-areas of tectonically homogeneous seismic strain. In each sub-area, we computed the total seismic moment tensor, and the associated yearly seismic strain rate. This rate allows to compare different areas of the belt, in which the seismic catalogue may cover various range of time. Thus we can estimate the seismic

  1. Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Sayir, Haluk

    1995-01-01

    The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.

  2. Reversal bending fatigue testing

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  3. A study on springback of bending linear flow split profiles

    NASA Astrophysics Data System (ADS)

    Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.

    2016-11-01

    The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.

  4. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  5. The evaluation of fatigue caused by plane-bending stress on stainless steel using the stacked-coil type magnetic sensor

    NASA Astrophysics Data System (ADS)

    Oka, Mohachiro; Yakushiji, Terutoshi; Enokizono, Masato

    2017-02-01

    To prevent injury from metal degradation of structural metallic material such as stainless steel, we have previously proposed fatigue evaluation methods such as the remnant magnetization method and the inductance method. These fatigue evaluation methods showed a positive correlation between the magnetic sensor output signal and the amount of the plane-bending fatigue damage in stainless steel. In this study, a stacked-coil type magnetic sensor was used to evaluate the accuracy of the plane-bending fatigue damage of austenite stainless steel such as SUS304 (ANSI304). The principle of the stacked-coil type magnetic sensor is based on an eddy-current test method. This magnetic sensor was composed of a pick-up coil, an excitation coil, and a Mn-Zn ferrite core. The pick-up coil was composed of two bobbin type coils that were connected differentially. Moreover, the amplitude and the phase angle of the output voltage of the pick-up coil were used to evaluate the amount of the plane-bending fatigue damage of SUS304. Results demonstrated a close correlation between the amplitude and the phase angle of the stacked-coil type magnetic sensor output voltage and the plane-bending fatigue damage of SUS304.

  6. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  7. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  8. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  9. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  10. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  11. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  12. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2015-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  13. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2016-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  14. Plastic properties of matrix composites in bending

    NASA Astrophysics Data System (ADS)

    Novikov, V. V.; Papkovskaya, O. B.

    1997-11-01

    Using the methods of integrated cross-sections and elastic solutions, we solve an elastico-plastic problem of bending of a Kirchhoff inhomogeneous square plate. The elastico-plastic properties and the effective yield stress of the inhomogeneous plate are calculated on an electronic computer. The computational results form the basis for a qualitative analysis and for the conclusions made.

  15. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  16. Probing the elastic limit of DNA bending.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼ 60 bp to ∼ 100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.

  17. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  18. Bending the Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's rings appear strangely warped in this view of the rings seen through the upper Saturn atmosphere.

    The atmosphere acts like a lens in refracting (bending) the light reflected from the rings. As the rings pass behind the overexposed limb (edge) of Saturn as seen from Cassini, the ring structure appears to curve downward due to the bending of the light as it passes through the upper atmosphere.

    This image was obtained using a near-infrared filter. The filter samples a wavelength where methane gas does not absorb light, thus making the far-off rings visible through the upper atmosphere.

    By comparing this image to similar ones taken using filters where methane gas does absorb, scientists can estimate the vertical profile of haze and the abundance of methane in Saturn's high atmosphere.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 938 nanometers and at a distance of approximately 197,000 kilometers (123,000 miles) from Saturn. The image scale is 820 meters (2,680 feet) per pixel.

  19. Damage Analysis of Rectangular Section Composite Beam under Pure Bending

    NASA Astrophysics Data System (ADS)

    Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining

    2013-02-01

    Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.

  20. Light bending in radiation background

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2014-01-01

    We consider the velocity shift of light in presence of radiation emitted by a black body. Within geometric optics formalism we calculate the bending angle of a light ray when there is a gradient in the energy density. We model the bending for two simplified cases. The bending angle is proportional to the inverse square power of the impact parameter (∝1/b{sup 2}) when the dilution of energy density is spherically symmetric. The bending angle is inversely proportional to the impact parameter (∝1/b) when the energy density dilutes cylindrically. Assuming that a neutron star is an isothermal black body, we estimate the order of magnitude for such bending angle and compare it with the bending angle by magnetic field.

  1. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  2. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  3. Beam bending via plasmonic lenses.

    PubMed

    Zhao, Yanhui; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Kiraly, Brian; Hao, Qingzhen; Liu, Yanjun; Huang, Tony Jun

    2010-10-25

    We have designed and characterized three different types of plasmonic lenses that cannot only focus, but can also bend electromagnetic (EM) waves. The bending effect is achieved by constructing an asymmetric phase front caused by varying phase retardations in EM waves as they pass through a plasmonic lens. With an incident wave normal to the lens surface, light bends up to 8° off the axial direction. The optical wave propagation was numerically investigated using the finite-difference time-domain (FDTD) method. Simulation results show that the proposed plasmonic lenses allow effective beam bending under both normal and tilted incidence. With their relatively large bending range and capability to perform in the far field, the plamsonic lenses described in this article could be valuable in applications such as photonic communication and plasmonic circuits.

  4. A closed form large deformation solution of plate bending with surface effects.

    PubMed

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  5. What determines the bending strength of compact bone?

    PubMed

    Currey, J D

    1999-09-01

    The bending strength of a wide variety of bony types is shown to be nearly linearly proportional to Young's modulus of elasticity/100. A somewhat closer and more satisfactory fit is obtained if account is taken of the variation of yield strain with Young's modulus. This finding strongly suggests that bending strength is determined by the yield strain. The yield stress in tension, which might be expected to predict the bending strength, underestimates the true bending strength by approximately 40 %. This may be explained by two phenomena. (1) The post-yield deformation of the bone material allows a greater bending moment to be exerted after the yield point has been reached, thereby increasing the strength as calculated from beam formulae. (2) Loading in bending results in a much smaller proportion of the volume of the specimens being raised to high stresses than is the case in tension, and this reduces the likelihood of a weak part of the specimen being loaded to failure.

  6. Sheet Bending using Soft Tools

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  7. Mixed-Mode-Bending Delamination Apparatus

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Reeder, James R.

    1991-01-01

    Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.

  8. Analytical model for a polymer optical fiber under dynamic bending

    NASA Astrophysics Data System (ADS)

    Leal Junior, Arnaldo G.; Frizera, Anselmo; Pontes, Maria José

    2017-08-01

    Advantages such as sensibility in bending, high fracture toughness, and high sensibility in strain enable the application of polymer optical fibers as sensors for strain, temperature, level, and for angle measurements. In order to enhance the sensor design, this paper presents an analytical model for a side polished polymer optical fiber under dynamic bending. Differently from analytical models that use only the geometrical optics approach with no correction for the stress-optical effects, here the refractive index is corrected at every bending angle to consider the stress-optical effects observed polymer optical fibers. Furthermore, the viscoelastic response of the polymer is also considered. The model is validated in quasi-static and dynamic tests for a polymer optical fiber curvature sensor. Results show good agreement between the model and the experiments.

  9. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  10. Bending equation for a quasianisotropic plate

    NASA Astrophysics Data System (ADS)

    Shachnev, V. A.

    2010-10-01

    In the framework of the linear theory of elasticity, an exact bending equation is obtained for the median plane of a plate whose material is a monoclinic system with the axis of symmetry perpendicular to the plate plane. As an example, the equation of the median plane of an isotropic plate is considered; the operator of this equation coincides with the operator of Sophie Germain's approximate equation. As the plate thickness tends to zero, the right-hand side of the equation is asymptotically equivalent to the right-hand side of the approximate equation. In addition, equations relating the median plane transverse stresses and the total stresses in the plate boundary planes to the median plane deflexions are obtained.

  11. Reducing stem bending increases the height growth of tall pines.

    PubMed

    Meng, Shawn X; Lieffers, Victor J; Reid, Douglas E B; Rudnicki, Mark; Silins, Uldis; Jin, Ming

    2006-01-01

    The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.

  12. Polymorphism in acesulfame sweetener: structure-property and stability relationships of bending and brittle crystals.

    PubMed

    Velaga, Sitaram P; Vangala, Venu R; Basavoju, Srinivas; Boström, Dan

    2010-05-28

    Acesulfame is found to exist in two crystalline forms of which Form I (needles) shows bending upon mechanical stress. Crystal structures explain their mechanical response. This is the first case of aliphatic organic compounds featuring a bending phenomenon. Form I is physically more stable than Form II in ambient conditions.

  13. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  14. Bending rules for animal propulsion.

    PubMed

    Lucas, Kelsey N; Johnson, Nathan; Beaulieu, Wesley T; Cathcart, Eric; Tirrell, Gregory; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Costello, John H

    2014-01-01

    Animal propulsors such as wings and fins bend during motion and these bending patterns are believed to contribute to the high efficiency of animal movements compared with those of man-made designs. However, efforts to implement flexible designs have been met with contradictory performance results. Consequently, there is no clear understanding of the role played by propulsor flexibility or, more fundamentally, how flexible propulsors should be designed for optimal performance. Here we demonstrate that during steady-state motion by a wide range of animals, from fruit flies to humpback whales, operating in either air or water, natural propulsors bend in similar ways within a highly predictable range of characteristic motions. By providing empirical design criteria derived from natural propulsors that have convergently arrived at a limited design space, these results provide a new framework from which to understand and design flexible propulsors.

  15. Origin of bending in uncoated microcantilever - Surface topography?

    SciTech Connect

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S. Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  16. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  17. Bending Rules in Graphene Kirigami

    NASA Astrophysics Data System (ADS)

    Grosso, Bastien F.; Mele, E. J.

    2015-11-01

    The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments are selectively removed from a graphene sheet, and the structure is allowed to close by relaxing in the third dimension. The surface relaxation is limited by a nonzero bending modulus which produces a smoothly modulated landscape instead of the ridge-and-plateau motif found in macroscopic lattice kirigami. The resulting surface shapes and their interactions are well described by a new set of microscopic kirigami rules that resolve the competition between bending and stretching energies.

  18. Bending Rules in Graphene Kirigami.

    PubMed

    Grosso, Bastien F; Mele, E J

    2015-11-06

    The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments are selectively removed from a graphene sheet, and the structure is allowed to close by relaxing in the third dimension. The surface relaxation is limited by a nonzero bending modulus which produces a smoothly modulated landscape instead of the ridge-and-plateau motif found in macroscopic lattice kirigami. The resulting surface shapes and their interactions are well described by a new set of microscopic kirigami rules that resolve the competition between bending and stretching energies.

  19. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  20. Contact and Bending Durability Calculation for Spiral-Bevel Gears

    NASA Technical Reports Server (NTRS)

    Vijayakar, Sandeep

    2016-01-01

    The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.

  1. Experimentation and numerical modeling of forging induced bending (FIB) process

    NASA Astrophysics Data System (ADS)

    Naseem, S.; van den Boogaard, A. H.

    2016-10-01

    Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.

  2. Bending-induced symmetry breaking of lithiation in germanium nanowires.

    PubMed

    Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min

    2014-08-13

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  3. Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires

    SciTech Connect

    Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.

    2014-08-01

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  4. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  5. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  6. Springback Analysis of U-bending with Bottoming

    NASA Astrophysics Data System (ADS)

    Ogawa, Takayuki; Yoshida, Fusahito

    2011-08-01

    The effect of bottoming on the reduction of springback was investigated by performing U-shaped bending experiments and corresponding 3D FE simulation on 590 MPa level high strength steel sheet. From experiments using three punch-die sets, each have different gaps between punch and die (0, 5 and 10% less than the sheet thickness) at punch corner, it was clarified that springback decreases with increasing bottoming load to some extent but a certain amount of springback remains even under a higher load. From 3D FE simulation of the bottoming on U-shaped bending, it was found that bending stresses at punch R-corner are much reduced by bottoming, but these stresses around the end of R-corner cannot be eliminated. This is a reason why complete elimination of springback by bottoming on U-bending is so difficult. Therefore, it would be recommended in actual press forming operations to apply a certain amount of bottoming load, but it should not be too large, for reduction of springback. Another important conclusion, found in the present study, is that an appropriate choice of material model is essential for accurate FE simulation of bottoming. Furthermore, deformation of punch/die slightly affects the springback. The best combination is the use of Yoshida-Uemori kinematic hardening law for material model and 3D deformable solid model for tools.

  7. Bending loss of terahertz pipe waveguides.

    PubMed

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  8. Acoustic characteristics of circular bends in pipes

    NASA Astrophysics Data System (ADS)

    Firth, D.; Fahy, F. J.

    1984-11-01

    The acoustic properties of circular bends in pipework systems are investigated by calculation of the mode shapes and propagation constants of the acoustic modes of the bend, the torus modes, and by evaluation of the transmission and reflection coefficients at a bend in an otherwise infinite straight pipe. The coefficients for the first three cylinder and torus modes are plotted against frequency for the case of a plane wave incident upon a 90° bend. The pipe walls are assumed to be rigid.

  9. FFAG lattice without opposite bends

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Courant, Ernest D.; Garren, Al

    2000-08-01

    A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  10. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...

  11. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...

  12. Interaction between bending and tension forces in bilayer membranes.

    PubMed Central

    Secomb, T W

    1988-01-01

    A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154

  13. Propagation path length variations due to bending of optical fibers

    NASA Technical Reports Server (NTRS)

    Lau, K. Y.

    1981-01-01

    The geometric effect and material stress effects are included. Calculations are shown that put an upper limit on the expected phase shift in single mode fibers. The fractional change in propagation constant is presented. Moding effects in multimode fibers cause extraneous phase shifts of unusually high magnitude. This does not occur in single mode fibers, rendering them very insensitive to bending with a theoretical limit given by the above relation.

  14. Bending strength model for internal spur gear teeth

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, K. L.; Coe, H. H.

    1995-01-01

    Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.

  15. Experimental and analytical investigation of a monocoque wing model loaded in bending

    NASA Technical Reports Server (NTRS)

    Schapitz, E; Feller, H; Koller, H

    1939-01-01

    Bending tests with transverse loads and with pure bending were undertaken on a double-web monocoque wing model in order to establish the relation between the state of stress and the results from the elementary bending theory. The longitudinal stresses in the stiffeners were measured with tensiometers and the shear stresses in the sheet were calculated from them. The measurements were made at both moderate loads with no buckles in the covering and at loads with which the critical stress in the individual panels was exceeded. For the comparison, the wing skin was considered as stiffened sheet according to the shear panel scheme. In this way, the statistically indeterminate calculation was confirmed by the test results.

  16. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  17. Protein-induced bending and DNA cyclization.

    PubMed

    Kahn, J D; Crothers, D M

    1992-07-15

    We have applied T4 ligase-mediated DNA cyclization kinetics to protein-induced bending in DNA. The presence and direction of a static bend can be inferred from J factors for cyclization of 150- to 160-base-pair minicircles, which include a catabolite activator protein binding site phased against a sequence-directed bend. We demonstrate a quasi-thermodynamic linkage between cyclization and protein binding; we find that properly phased DNAs bind catabolite activator protein approximately 200-fold more tightly as circles than as linear molecules. The results unambiguously distinguish DNA bends from isotropically flexible sites and can explain cooperative binding by proteins that need not contact each other.

  18. How two-dimensional bending can extraordinarily stiffen thin sheets

    NASA Astrophysics Data System (ADS)

    Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.

    2016-07-01

    Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.

  19. How two-dimensional bending can extraordinarily stiffen thin sheets.

    PubMed

    Pini, V; Ruz, J J; Kosaka, P M; Malvar, O; Calleja, M; Tamayo, J

    2016-07-11

    Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.

  20. How two-dimensional bending can extraordinarily stiffen thin sheets

    PubMed Central

    Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.

    2016-01-01

    Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability. PMID:27403938

  1. Bending Gold Nanorods with Light.

    PubMed

    Babynina, Anastasia; Fedoruk, Michael; Kühler, Paul; Meledin, Alexander; Döblinger, Markus; Lohmüller, Theobald

    2016-10-12

    V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.

  2. Stress

    MedlinePlus

    ... flu shot, are less effective for them. Some people cope with stress more effectively than others. It's important to know your limits when it comes to stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  3. Photo-Origami -- Using Light to Bend, Fold, and Buckle

    NASA Astrophysics Data System (ADS)

    Ryu, Jennie; D'Amato, Matteo; Long, Kevin; Cui, Xiaodong; Qi, H. Jerry; Dunn, Martin

    2012-02-01

    We describe photo-origami, a method to program spatially- and temporally-variable mechanical, chemical, and optical fields into a polymer that enable controllable, sequenced, macroscopic bending and folding to create three-dimensional structures. We combine mechanical and optical stimuli to locally rearrange the polymer's network topology which allows us to program a residual stress state into the film; upon release of mechanical constraints, we realize a wide variety of desired shapes. We demonstrate, through a combination of theory, simulation-based design, synthesis, and experiment, the operative phenomena and capabilities of photo-origami. We demonstrate architectures that rely on bending, folding, instabilities, and post-buckling behavior to achieve their three-dimensional form, starting from a flat sheet. We also describe a theory that couples the hereditary nature of photophysics, chemistry, and large-deformation mechanics and enables simulations of the fabricated structures that are in good agreement with the experiments.

  4. Tension, compression, and bending of superelastic shape memory alloy tubes

    NASA Astrophysics Data System (ADS)

    Reedlunn, Benjamin; Churchill, Christopher B.; Nelson, Emily E.; Shaw, John A.; Daly, Samantha H.

    2014-02-01

    While many uniaxial tension experiments of shape memory alloys (SMAs) have been published in the literature, relatively few experimental studies address their behavior in compression or bending, despite the prevalence of this latter deformation mode in applications. In this study, superelastic NiTi tubes from a single lot of material were characterized in tension, compression, and pure bending, which allowed us to make direct comparisons between the deformation modes for the first time. Custom built fixtures were used to overcome some long-standing experimental difficulties with performing well-controlled loading and accurate measurements during uniaxial compression (avoiding buckling) and large-rotation bending. In all experiments, the isothermal, global, mechanical responses were measured, and stereo digital image correlation (DIC) was used to measure the evolution of the strain fields on the tube's outer surface.As is characteristic of textured NiTi, our tubes exhibited significant tension-compression asymmetry in their uniaxial responses. Stress-induced transformations in tension exhibited flat force plateaus accompanied by strain localization and propagation. No such localization, however, was observed in compression, and the stress "plateaus" during compression always maintained a positive tangent modulus. While our uniaxial results are similar to the observations of previous researchers, the DIC strain measurements provided details of localized strain behavior with more clarity and allowed more quantitative measurements to be made. Consistent with the tension-compression asymmetry, our bending experiments showed a significant shift of the neutral axis towards the compression side. Furthermore, the tube exhibited strain localization on the tension side, but no localization on the compression side during bending. This is a new observation that has not been explored before. Detailed analysis of the strain distribution across the tube diameter revealed that the

  5. DNA bending induced by cruciform formation.

    PubMed

    Gough, G W; Lilley, D M

    Cruciform structures in DNA are of considerable interest, both as extreme examples of sequence-dependent structural heterogeneity and as models for four-way junctions such as the Holliday junction of homologous genetic recombination. Cruciforms are of lower thermodynamic stability than regular duplex DNA, and have been observed only in negatively supercoiled molecules, where the unfavourable free energy of formation is offset by the topological relaxation of the torsionally stressed molecule. From an experimental viewpoint this can be a disadvantage, as cruciform structures can be studied only in relatively large supercoiled DNA circles, and are destabilized when a break is introduced at any point. We therefore set out to construct a pseudo-cruciform junction--by generating hereroduplex formation between two inverted repeat sequences. Stereochemically, this should closely resemble a true cruciform but remain stable in a linear DNA fragment. We have now created such a junction and find that it has the expected sensitivities to endonucleases. These DNA fragments exhibit extremely anomalous gel electrophoretic mobility, the extent of which depends on the relative position of the pseudo-cruciform along the length of the molecule. Our results are very similar to those obtained by Wu and Crothers using kinetoplast DNA, and we conclude that the pseudo-cruciform junction introduces a bend in the linear DNA molecule.

  6. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result in a bend surface free of cracks, as determined by a method of inspection specified in the...

  7. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result in a bend surface free of cracks, as determined by a method of inspection specified in the...

  8. Restorying the Self: Bending toward Textual Justice

    ERIC Educational Resources Information Center

    Thomas, Ebony Elizabeth; Stornaiuolo, Amy

    2016-01-01

    In this essay, Ebony Elizabeth Thomas and Amy Stornaiuolo explore new trends in reader response for a digital age, particularly the phenomenon of bending texts using social media. They argue that bending is one form of "restorying," a process by which people reshape narratives to represent a diversity of perspectives and experiences that…

  9. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite.

  10. Bending of light in conformal Weyl gravity

    SciTech Connect

    Sultana, Joseph; Kazanas, Demosthenes

    2010-06-15

    We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term {gamma}r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.

  11. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  12. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  13. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  14. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  15. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  16. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  17. Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.

    PubMed

    Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon

    2014-10-01

    In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree.

  18. Elastoplastic dynamic analysis of strike-slip faults with bends using finite element method

    NASA Astrophysics Data System (ADS)

    Duan, B.; Day, S. M.

    2006-12-01

    Nonelastic off-fault response may play a role in rupture dynamics on geometrically complex faults, particularly in the vicinity of bends or other points of stress concentration. In this study, we have performed nonelastic dynamic analysis of strike-slip faults with bends by using a finite element method. The Coulomb yield criterion has been implemented in the code to model off-fault nonelastic response. We find that a smooth scheme (such as viscoplasticity) is required to regularize the numerical calculation of plastic yielding near a fault bend. The method is extensible to other material rheologies (e.g., damage mechanics models, tensile failure, etc), and amenable to parallel implementation. Compared with those from a calculation with elastic off-fault response, results from a calculation with nonelastic off-fault response show that (1) bends are locations of large plastic deformation; (2) stress near a bend is less heterogeneous; (3) less radiation is generated from a bend; (4) lower strong ground motion is produced.

  19. Bending Fatigue of Carburized Steel at Very Long Lives

    NASA Astrophysics Data System (ADS)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  20. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  1. Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels

    NASA Astrophysics Data System (ADS)

    Arendt, Cory; Sun, C. T.

    1994-09-01

    The bending effects of unsymmetrically bonded composite repairs on cracked aluminum panels were quantified using a plate linear finite element model. Stress intensity factors and strain energy release rates were obtained from the model twice, once with out-of-plane displacement suppressed and another time without these restrictions. Several configurations were examined, crack growth stability was identified, and the effect of a debond was considered. The maximum stress intensity factor was also analyzed. Previous work by other authors was found to underpredict the bending effect.

  2. Failure analysis of composite laminated plates with circular holes under bending

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. D.; Pang, S. S.

    The purpose of this study is to investigate the failure of composite laminated plates with centrally located circular holes under bending. The stress state at any point in an orthotropic lamina with a circular hole was developed in terms of a stress concentration factor matrix multiplied by the stress vector at a point far from the hole. Classical lamination theory was applied to determine the ply-level stresses under bending. By applying the Tsai-Wu failure criterion to each ply at the hole edge, the crack modes were determined for various plate configurations. Knowledge of the crack direction and the stress concentration factor matrix led to a failure criterion based upon the ply-level hoop stress at some distance away from the hole. Point stress and average stress criteria were developed to determine the failure loading for any hole size, based on an experimental data point. Both criteria predicted the average failure load for other experimental points within 3 percent, but the point stress criteria was the more accurate of the two. The material used was a T650-42 graphite fiber with EYMYD polyimide resin system. Three stacking sequences were studied under four-point bending. In each case, three hole sizes were analyzed.

  3. How a short double-stranded DNA bends

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung

    2015-04-01

    A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.

  4. Side cracked plated subject to combined direct and bending forces

    NASA Technical Reports Server (NTRS)

    Srawley, J. E.; Gross, B.

    1975-01-01

    The opening mode stress intensity factor and the associated crack mouth displacement are comprehensively treated using planar boundary collocation results supplemented by end point values from the literature. Data are expressed in terms of dimensionless coefficients of convenient form which are each functions of two dimensionless parameters, the relative crack length, and a load combination parameter which uniquely characterizes all possible combinations of tension or compression with bending or counterbending. Accurate interpolation expressions are provided which cover the entire ranges of both parameters. Application is limited to specimens with ratios of effective half-height to width not less than unity.

  5. Analyzing refractive index changes and differential bending in microcantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph

    2008-08-01

    A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.

  6. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  7. Bending instability in electrospinning of nanofibers

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Koombhongse, S.; Reneker, D. H.

    2001-03-01

    A localized approximation was developed to calculate the bending electric force acting on an electrified polymer jet, which is a key element of the electrospinning process for manufacturing of nanofibers. Using this force, a far reaching analogy between the electrically driven bending instability and the aerodynamically driven instability was established. Continuous, quasi-one-dimensional, partial differential equations were derived and used to predict the growth rate of small electrically driven bending perturbations of a liquid column. A discretized form of these equations, that accounts for solvent evaporation and polymer solidification, was used to calculate the jet paths during the course of nonlinear bending instability leading to formation of large loops and resulting in nanofibers. The results of the calculations are compared to the experimental data acquired in the present work. Agreement of theory and experiment is discussed.

  8. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  9. Bending artificial muscle from nylon filaments

    NASA Astrophysics Data System (ADS)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2016-04-01

    Highly oriented nylon and polyethylene fibers shrink in length and expand in diameter when heated. Using this property, in this work, for the first time we are introducing a type of bending artificial muscle from nylon filaments such as fishing line. Reversible radius of curvature of 0.23 mm-1 was achieved with maximum reversible bending amplitude of 115 mm for the nylon bending actuator. Peak force of up to 2040 mN was measured with a catch-state force of up to 40% of the active force. A 3 dB roll-off frequency of around 0.7 Hz was observed in the frequency response of the bending actuator in water.

  10. Minimal Bending Energies of Bilayer Polyhedra

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Phillips, Rob

    2010-11-01

    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra.

  11. Tool bending in New Caledonian crows

    PubMed Central

    Sugasawa, Shoko; van der Wal, Jessica E. M.; Klump, Barbara C.; St Clair, James J. H.

    2016-01-01

    ‘Betty’ the New Caledonian crow astonished the world when she ‘spontaneously’ bent straight pieces of garden wire into hooked foraging tools. Recent field experiments have revealed that tool bending is part of the species' natural behavioural repertoire, providing important context for interpreting Betty's iconic wire-bending feat. More generally, this discovery provides a compelling illustration of how natural history observations can inform laboratory-based research into the cognitive capacities of non-human animals. PMID:27853622

  12. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  13. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  14. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    SciTech Connect

    Cao, Shuying Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei

    2015-05-07

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.

  15. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei

    2015-05-01

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.

  16. Kic size effect study on two high-strength steels using notched bend specimens

    NASA Technical Reports Server (NTRS)

    Stonesifer, F. R.

    1974-01-01

    Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.

  17. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    SciTech Connect

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K.; Choi, H. Y.; Kim, G. H.

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.

  18. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.

    PubMed

    Wilson, Megan P; Espinoza, Nora R; Shah, Sagar R; Blob, Richard W

    2009-07-01

    When compared with most vertebrates, frogs use a novel style of jumping locomotion powered by the hindlimbs. Hindlimb bones of frogs must withstand the potentially erratic loads associated with such saltatory locomotion. To evaluate the load bearing capacity of anuran limb bones, we used three-point bending, torsion, and hardness tests to measure the mechanical properties of the femur and tibiofibula from adults of two species that use different jumping styles: explosively jumping bullfrogs (Rana (Lithobates) catesbeiana) and cyclically hopping cane toads (Bufo (Chaunus) marinus). Yield stress and strain values for R. catesbeiana and B. marinus hindlimb bones are within the range of values previously reported for other vertebrates. However, anuran hindlimb bones generally stand out as having higher yield stresses in bending than those of closely related, nonsaltatory salamanders, highlighting the importance of considering phylogenetic context in comparisons of bone functional capacity and adaptation. Stiffness values for both frog species tested were also high, which may facilitate efficient transmission of muscular forces while jumping. Elevated stiffness may also contribute to some discrepancies between determinations of bone properties via hardness versus bending tests. In comparisons between species, B. marinus bones showed significantly higher bending yield stresses than R. catesbeiana, whereas R. catesbeiana bones showed significantly higher torsional yield stresses than B. marinus. These differences may correlate with differences in jumping style and limb anatomy between ranid and bufonid frogs, suggesting that evolutionary changes in bone mechanical properties may help to accommodate new functional demands that emerge in lineages.

  19. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for... ferritic-alloy pipe in nominal pipe sizes of 4 inches and larger, or one-half-inch wall thickness or heavier, will require a stress-relieving treatment. (d) Cold bending of carbon-steel and...

  20. 46 CFR 56.80-15 - Heat treatment of bends and formed components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... forming requires no subsequent heat treatment. (b) Ferritic alloy steel piping which has been heated for... ferritic-alloy pipe in nominal pipe sizes of 4 inches and larger, or one-half-inch wall thickness or heavier, will require a stress-relieving treatment. (d) Cold bending of carbon-steel and...

  1. Autogenic Scour and Channel Widening in Sharp Bends of the River Mahakam

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Vermeulen, B.; van Berkum, S.; Hidayat, H.; Labeur, R. J.

    2014-12-01

    Field evidence of the River Mahakam reveals autogenic scour and channel widening in a series of sharp bends. An integral analysis of a 300 km reach of the river is presented, including a comprehensive survey of the river banks, delineation of the river corridor from radar observations, Large Eddy Simulations of observed flow patterns, and a geometric analysis of planform and depth information. Scour depths strongly exceed what can be expected based on existing understanding of sharp bends, and are highly correlated with curvature. Histograms of the occurrence of erosive, stable, advancing, and bar-type banks as a function of curvature quantify the switch from a mildly curved bend regime to a sharp bend regime. In mild bends, outer banks erode and inner banks advance. In sharp bends the erosion pattern inverts. Outer banks stabilize or advance, while inner banks erode. In sharply curved river bends, bars occur near the outer banks that become less erosive for higher curvatures. Inner banks become more erosive for higher curvatures, but nevertheless accommodate the larger portion of exposed bars. Soil processes may play a crucial role in the formation of sharp bends, which is inferred from iron and manganese concretions observed in the riverbanks, indicating ferric horizons and early stages of the formation of plinthic horizons. Historical topographic maps show the planform activity of the river is low, which may relate to the scours slowing down planimetric development. The occurrence of exceptionally deep scours is attributed to downflow near the scour exceeding 12 cm/s, increasing the bed shear stress. The downflow, in turn, is explained from the cross-sectional area increase, which is shown to be important in generating adverse surface gradients driving flow recirculation in the Large Eddy Simulations. Strong secondary flow distorts the vertical pressure distribution that is no longer hydrostatic. The downflow advects longitudinal momentum, moving the core of the

  2. Accumulated Bending Energy Elicits Neutral Sphingomyelinase Activity in Human Red Blood Cells

    PubMed Central

    López, David J.; Egido-Gabas, Meritxell; López-Montero, Iván; Busto, Jon V.; Casas, Josefina; Garnier, Marie; Monroy, Francisco; Larijani, Banafshé; Goñi, Félix M.; Alonso, Alicia

    2012-01-01

    We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A2. The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A2 activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis. PMID:22824271

  3. Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; He, ChunFeng; Zhao, YiXi

    2016-03-01

    Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.

  4. Accumulated bending energy elicits neutral sphingomyelinase activity in human red blood cells.

    PubMed

    López, David J; Egido-Gabas, Meritxell; López-Montero, Iván; Busto, Jon V; Casas, Josefina; Garnier, Marie; Monroy, Francisco; Larijani, Banafshé; Goñi, Félix M; Alonso, Alicia

    2012-05-02

    We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A(2). The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A(2) activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis.

  5. Bend-insensitive optical fibers for FTTH applications

    NASA Astrophysics Data System (ADS)

    Li, Ming-Jun

    2009-01-01

    This paper reviews recent development in bend-insensitive fibers for fiber-to-the-home (FTTH) applications. First, requirements for bend-insensitive fibers are discussed. Then different design approaches for reducing fiber bending loss are described and compared. A new bend-insensitive fiber using the nano-engineered ring design is presented in detail.

  6. On the relation between the energy of a distorted crystal lattice and the bending modulus of strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lederer, M.; Khatibi, G.

    2017-01-01

    It is a well known fact that linear elastic fracture mechanics (LEFM) predicts stress singularities at the tips of sharp cracks, at sharp edges, at corners and at the surface of material transitions. However, from the viewpoint of the strengths of atomic bonds it is clear that only finite forces may be present at the tip of a stable crack. Therefore, theories of strain gradient elasticity were developed which reduce the values of stress concentrations. Within these theories a bending modulus is postulated which introduces an increased stiffness of the crystal lattice against bending. In the present study, the value of this bending modulus is evaluated on the basis of the electrostatic energy of a bent crystal lattice. This is done for the face centred cubic structure of NaCl. In fact, results for the bending modulus could be obtained although they depend on the crystal size.

  7. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  8. FLUCTUATING MOTOR FORCES BEND GROWING MICROTUBULES

    PubMed Central

    Shekhar, Nandini; Neelam, Srujana; Wu, Jun; Ladd, Anthony JC; Dickinson, Richard B.; Lele, Tanmay P.

    2013-01-01

    Despite their rigidity, microtubules in living cells bend significantly during polymerization resulting in greater curvature than can be explained by thermal forces alone. However, the source of the non-thermal forces that bend growing microtubules remains obscure. We analyzed the motion of microtubule tips in NIH-3T3 fibroblasts expressing EGFP-EB1, a fluorescent +TIP protein that specifically binds to the growing ends of microtubules. We found that dynein inhibition significantly reduced the deviation of the growing tip from its initial trajectory. Inhibiting myosin modestly reduced tip fluctuations, while simultaneous myosin and dynein inhibition caused no further decrease in fluctuations compared to dynein inhibition alone. Our results can be interpreted with a model in which dynein linkages play a key role in generating and transmitting fluctuating forces that bend growing microtubules. PMID:24039637

  9. Bending sound in graphene: Origin and manifestation

    NASA Astrophysics Data System (ADS)

    Adamyan, V. M.; Bondarev, V. N.; Zavalniuk, V. V.

    2016-11-01

    It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  10. Critical bending torque of DNA is a materials parameter independent of local base sequence

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qu, Hao; Zocchi, Giovanni

    2013-09-01

    Short double-stranded DNA molecules exhibit a softening transition under large bending which is quantitatively described by a critical bending torque τc at which the molecule develops a kink. Through equilibrium measurements of the elastic energy of short (˜10 nm), highly stressed DNA molecules with a nick at the center we determine τc for different sequences around the nick. We find that τc is a robust materials parameter essentially independent of sequence. The measurements also show that, at least for nicked DNA, the local structure at the origin of the softening transition is not a single-stranded “bubble.”

  11. Band bending in conjugated polymer layers.

    PubMed

    Lange, Ilja; Blakesley, James C; Frisch, Johannes; Vollmer, Antje; Koch, Norbert; Neher, Dieter

    2011-05-27

    We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers.

  12. Minimal Bending Energies of Bilayer Polyhedra

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra. PMID:21231425

  13. Robotic Arm Comprising Two Bending Segments

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to

  14. Effect of cyclic outer and inner bending on the fatigue behavior of a multi-layer metal film on a polymer substrate

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang

    2016-06-01

    The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.

  15. Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films

    SciTech Connect

    Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.

    2012-07-01

    Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

  16. Single molecule FRET shows uniformity in TBP-induced DNA bending and heterogeneity in bending kinetics†

    PubMed Central

    Blair, Rebecca H.; Goodrich, James A.; Kugel, Jennifer F.

    2012-01-01

    TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II (Pol II) transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule FRET (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP/DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP/DNA complexes exist, however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations lead to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA. PMID:22934924

  17. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

    PubMed

    Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N

    2009-06-01

    Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability

  18. Cracking and Spalling Behavior of HVOF Thermally Sprayed WC-Co-Cr Coating in Bend and Axial Fatigue Tests

    NASA Astrophysics Data System (ADS)

    Gui, M.; Eybel, R.; Asselin, B.; Monerie-Moulin, F.

    2015-03-01

    In this work, WC-10Co-4Cr coating was sprayed by high-velocity oxygen fuel (HVOF) process on Almen strip and axial fatigue coupon. Three-point bend test was used to bend Almen strip coating specimens with tensile and compressive stress applied to the coating. Axial fatigue coating specimens were tested at a load stress of 1250 MPa and a stress ratio of R = -1. Process condition of Thermal spraying was found to have an effect on spalling performance of the coating in the fatigue test. The mechanism of cracking and spalling process in the coating was studied in bend and fatigue conditions. Based on deformation difference between the coating and the substrate, the factors, especially coating thickness, to impact the coating spalling behavior in axial fatigue test are discussed. HVOF-sprayed WC-10Co-4Cr coating matches the deformation of base substrate by cracking when tensile stress is applied in bend and fatigue tests because the coating has very limit deformation capability. In axial fatigue test of WC-10Co-4Cr coating specimen, the substrate works in a stress-to-strain manner; however the coating works in a strain-to-stress manner and is stressed due to the substrate deformation.

  19. The surface crack problem in an orthotropic plate under bending and tension

    NASA Technical Reports Server (NTRS)

    Wu, Bing-Hua; Erdogan, F.

    1987-01-01

    The elasticity problem for an infinite orthotropic flat plate containing a series of through and part through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three-dimensional material orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants were used. The effects of material orthotropy on the stress intensity factors was determined, the interaction between two asymmetrically arranged collinear cracks was investigated, and extensive numerical results regarding the stress intensity factors are provided. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.

  20. The surface crack problem in an orthotropic plate under bending and tension

    NASA Technical Reports Server (NTRS)

    Wu, B. H.; Erdogan, F.

    1986-01-01

    The elasticity problem for an infinite orthotropic flat plate containing a series of through and part-through cracks and subjected to bending and tension loads is considered. The problem is formulated by using Reissner's plate bending theory and considering three dimensional materials orthotropy. The Line-spring model developed by Rice and Levy is used to formulate the surface crack problem in which a total of nine material constants has been used. The main purpose of this study is to determine the effect of material orthotropy on the stress intensity factors, to investigate the interaction between two asymmetrically arranged collinear cracks, and to provide extensive numerical results regarding the stress intensity factors. The problem is reduced to a system of singular integral equations which is solved by using the Gauss-Chebyshev quadrature formulas. The calculated results show that the material orthotropy does have a significant effect on the stress intensity factor.

  1. Simulation of thick-walled submarine pipeline collapse under bending and hydrostatic pressure

    SciTech Connect

    Al-Sharif, A.M.; Preston, R.

    1996-12-31

    The problem of submarine pipeline buckling or collapse as a result of bending and external pressure is investigated by numerical modeling using finite element analysis. The model takes into account the initial variability of material properties, the effect of cold-work on the pipe material properties and initial geometric imperfections. It is capable of simulating the nonlinear behavior, and structural instability due to the combined effects of bending and pressure. The solution algorithm and verification against experimental results are presented. In addition, a deterministic model for collapse under combined pressure and bending based on measured stress-strain behavior and pipe geometry is derived. Results from both finite element and deterministic models for different parameter sensitivities are examined.

  2. Damage states in laminated composite three-point bend specimens: An experimental-analytical correlation study

    NASA Technical Reports Server (NTRS)

    Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.

    1990-01-01

    Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.

  3. Monitoring the Bending Stiffness of DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden

    2007-03-01

    In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.

  4. Interdisciplinary Invitations: Exploring Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Whitin, Phyllis; Whitin, David

    2012-01-01

    Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…

  5. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  6. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  7. Bending rate damping in elastic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, Y.; Fabiano, R. H.

    1989-01-01

    Preliminary results of an investigation of the bending rate damping model for elastic structures are presented. A model for which the internal damping term is physically plausible and which can accomodate cantilevered boundary conditions is discussed. The model formulation and mathematical foundations are given, and numerical results are discussed.

  8. The first ANDES elements: 9-DOF plate bending triangles

    NASA Technical Reports Server (NTRS)

    Militello, Carmelo; Felippa, Carlos A.

    1991-01-01

    New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.

  9. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets

    NASA Astrophysics Data System (ADS)

    Han, Tao; Reneker, Darrell H.

    2007-03-01

    The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993

  10. Oceanic Plate Bending Along the Manila Trench

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Zhan, W.

    2014-12-01

    We quantify along-trench variations in plate flexural bending along the Manila trench in the South China Sea. A 3-D interpreted flexural deformation surface of the subducting South China Sea Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 21 across-trench profile sections along the Manila trench and then calculated five best-fitting tectonic and plate parameters that control the flexural bending for each of the across-trench profile sections. Results of analysis revealed significant along-trench variations: The trench relief of the Manila trench varies from 0.8 to 2.2 km, trench-axis vertical loading (-V0) from -0.4x1012 to 1.21x1012 N/m, and axial bending moment (-M0) from 0.005x1017 to 0.6x1017 N. The effective elastic plate thickness seaward of the Manila outer-rise region (TeM) ranges from 30 to 40 km, while that trench-ward of the outer-rise (Tem) ranges from 11 to 30 km. This corresponds to a reduction in Te of 26-63% for the Manila trench. The transition from TeM to Tem occurs at a breaking distance of 50-120 km from the Manila trench axis. The axial vertical loading, bending moment, and the effective elastic thickness of the Manila trench are much smaller than the Mariana trench (Zhang et al., 2014). The contrast in the flexural bending between the Mariana and Manila trenches might be related to the difference in the ages of the subducting plates and other tectonic variables. Zhang, F., Lin, J., Zhan, W., 2014. Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett. 401, 206-214. doi: 10.1016/j.epsl.2014.05.032

  11. Bending effects on lasing action of semiconductor nanowires.

    PubMed

    Yang, Weisong; Ma, Yaoguang; Wang, Yipei; Meng, Chao; Wu, Xiaoqin; Ye, Yu; Dai, Lun; Tong, Limin; Liu, Xu; Yang, Qing

    2013-01-28

    High flexibility has been one of advantages for one-dimensional semiconductor nanowires (NWs) in wide application of nanoscale integrated circuits. We investigate the bending effects on lasing action of CdSe NWs. Threshold increases and differential efficiency decreases gradually when we decrease the bending radius step by step. Red shift and mode reduction in the output spectra are also observed. The bending loss of laser oscillation is considerably larger than that of photoluminescence (PL), and both show the exponential relationship with the bending radius. Diameter and mode dependent bending losses are investigated. Furthermore, the polarizations of output can be modulated linearly by bending the NWs into different angles continuously.

  12. Experimental Characterization of Stretch-Bending Formability of AHSS Sheets

    NASA Astrophysics Data System (ADS)

    Kitting, Daniela; Ofenheimer, Aldo; Pauli, Heinrich; Till, Edwin T.

    2011-05-01

    Deformation conditions of combined stretching and bending are known to enhance material formability compared to forming conditions without bending (e.g. in-plane stretching). These phenomena can be observed for most conventional steel grades but is even more pronounced for Advanced High Strength Steel (AHSS) sheets. Consequently, there is an urgent need in industry to quantify the phenomena of enhanced material formability due to bending effects. In this work new stretch-bend test setups are presented which can be used in addition to the conventional Angular Stretch Bend Test to systematically investigate the influence of various stretch-bending deformation conditions on the formability of AHSS sheets.

  13. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  14. Degradation of bimorph piezoelectric bending beams in energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Xiao, B. L.; Shashoua, N.; Gramling, H. M.; Yeatman, E. M.; Wright, P. K.

    2017-03-01

    Piezoelectric energy harvesting is an attractive alternative to battery powering for wireless sensor networks. However, in order for it to be a viable long term solution the fatigue life needs to be assessed. Many vibration harvesting devices employ bimorph piezoelectric bending beams as transduction elements to convert mechanical to electrical energy. This paper introduces two degradation studies performed under symmetrical and asymmetrical sinusoidal loading. It is shown that besides a loss in output power, the most dramatic effect of degradation is a shift in resonance frequency which is highly detrimental to resonant harvester designs. In addition, micro-cracking was shown to occur predominantly in piezoelectric layers under tensile stress. This opens the opportunity for increased life time through compressive operation or pre-loading of piezoceramic layers.

  15. Implementing residual bend in a tubing forces model

    SciTech Connect

    Bhalla, K.

    1994-12-31

    Coiled Tubing (CT) is being used increasingly to service highly deviated wells. Among the mechanical problems encountered in running coiled tubing into a highly deviated well is helical buckling of the tubing which leads to lockup. Furthermore, contact between the CT and casing can restrict the weight that can be applied to a downhole tool, thereby limiting the placement of tools in deviated sections. A tubing forces model has been developed that calculates the resulting stresses and deformation of the coiled tubing as the coiled tubing is run into and pulled out of the well, the points at which helical buckling occurs and an indication of whether lockup has occurred. An inconsistency in current tubing forces models is that they utilize two differing coefficients of friction for running in hole and pulling out of hole. This criterion suggests some technical deficiency in the formulation of the models. Results from the tubing forces model presented in this paper account for the residual bend due to coiled tubing being wound on the reel and gooseneck. A consequence of this is that it is unnecessary to use two differing friction coefficients for running in hole and pulling out of hole. Results are presented in the form of the surface weight indicator and compared to field data. It is observed that the surface weight indicator predictions are in good agreement with field data. This work suggests that accounting for residual bend, the tubing forces model accurately provides the state of stress, operating forces and deformations during coiled tubing placement. This allows for accurate job design prior to running the tubing in the hole at the well site.

  16. Sensitivity analysis of channel-bend hydraulics influenced by vegetation

    NASA Astrophysics Data System (ADS)

    Bywater-Reyes, S.; Manners, R.; McDonald, R.; Wilcox, A. C.

    2015-12-01

    Alternating bars influence hydraulics by changing the force balance of channels as part of a morphodynamic feedback loop that dictates channel geometry. Pioneer woody riparian trees recruit on river bars and may steer flow, alter cross-stream and downstream force balances, and ultimately change channel morphology. Quantifying the influence of vegetation on stream hydraulics is difficult, and researchers increasingly rely on two-dimensional hydraulic models. In many cases, channel characteristics (channel drag and lateral eddy viscosity) and vegetation characteristics (density, frontal area, and drag coefficient) are uncertain. This study uses a beta version of FaSTMECH that models vegetation explicitly as a drag force to test the sensitivity of channel-bend hydraulics to riparian vegetation. We use a simplified, scale model of a meandering river with bars and conduct a global sensitivity analysis that ranks the influence of specified channel characteristics (channel drag and lateral eddy viscosity) against vegetation characteristics (density, frontal area, and drag coefficient) on cross-stream hydraulics. The primary influence on cross-stream velocity and shear stress is channel drag (i.e., bed roughness), followed by the near-equal influence of all vegetation parameters and lateral eddy viscosity. To test the implication of the sensitivity indices on bend hydraulics, we hold calibrated channel characteristics constant for a wandering gravel-bed river with bars (Bitterroot River, MT), and vary vegetation parameters on a bar. For a dense vegetation scenario, we find flow to be steered away from the bar, and velocity and shear stress to be reduced within the thalweg. This provides insight into how the morphodynamic evolution of vegetated bars differs from unvegetated bars.

  17. Study of interface influence on bending performance of CFRP with embedded optical fibers

    NASA Astrophysics Data System (ADS)

    Liu, Rong-mei; Liang, Da-kai

    2008-11-01

    Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.

  18. Finite element modeling of bending failure at HPFRC plates using 2-dimensional isoparametric element

    NASA Astrophysics Data System (ADS)

    Krisnamurti, Soehardjono, Agoes; Zacoeb, Achfas; Wibowo, Ari

    2017-03-01

    This paper presents finite element modeling of the bending failure on High-Performance Fiber-Reinforced Concrete (HPFRC) plate subjected to monotonic loading. Plate analysis is commonly used approach to plate bending theory. The results are sometimes less in accordance with laboratory tests. The aim of this study is to analyze the behavior of bending until failure which occurred at HPFRC plate, and load-displacement relation caused by variations of plate depth. Analysis carried out by 2-D isoparametric finite element method, with the approach of plane strain condition. The analysis was done by decreasing the stiffness of plate elements layer gradually in accordance with the development of maximum stress in the element due to workload. The rigidity of plate elements layer will be close to zero when maximum stress reaches a maximum tensile strength of HPFRC. Validation testing program conducted on plate specimen with a span length of 600 mm, width 300 mm and thickness variation of 40 mm, 50 mm and 60 mm. HPFRC compressive strength is 93.045 MPa, and splitting tensile strength is 6.018 MPa. Test performed with four points bending pattern at a distance of 1/3 span length. Comparison between the calculation by the finite element method and laboratory testing showed very consistent results.

  19. Biomechanical Factors in Tibial Stress Fractures

    DTIC Science & Technology

    2005-08-01

    that greater tibial varum would be associated with stress fractures (especially tibial) secondary to the increased bending moment on the leg. 26 9 8 -35...increased at the post- injury visit. These shear loading rates indicate the magnitude of bending loads that the lower extremity is subject to, in addition to...the compressive loading that occurs during initial weight acceptance in stance. It has been shown that anterior-posterior bending strength is related

  20. Command splay-bend switching in an optically-compensated bend cell with polymerized liquid crystal photoalignment layers

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Han; Zhang, Cary; Song, Shanshan; Chien, Liang-Chy

    2017-03-01

    We demonstrate a fast-switching optically compensated bend (OCB) mode with polymerized liquid crystal photoalignment (PAL). The polymerized liquid crystal PAL is achieved by spin coating a mixture of reactive mesogens and a photoinitiator and polymerizing it with ultraviolet (UV) light on top of the PAL material, which is illuminated with linear-polarized ultraviolet light to introduce anisotropy and a pretilt angle for liquid crystal alignment. The experimental results show the dependency of the electro-optical properties of OCB cells on the morphology-modulated surface anchoring of polymerized liquid crystal PAL. Furthermore, the polymerized liquid crystal PAL exhibits superior stability against UV exposure and thermal stress, which makes PAL applicable in spatial light modulator application.

  1. Design of cold-formed HSS channels for bending and eccentric compression: Bending in the plane of symmetry

    NASA Astrophysics Data System (ADS)

    Talja, Asko

    1992-10-01

    Open channel sections manufactured from High Strength Steels (HSS) were tested. The sections were bent in the plane of symmetry of the cross sections. The roll formed test profiles, one double U, two C and two hat profiles with yield stress of 560 to 670 N/sq mm and material thickness of 4 to 6 mm were taken from normal production. The buckling of plates or edge stiffeners was observed in some profiles. Tests for bending, eccentric compression and concentrated load were made. The test results together with other tests results from literature are compared with the design resistances determined according to the proposed design method. The method is satisfactory for normal design, but in some cases it was found to be too conservative. Comparisons with the other test results confirmed that the accuracy of the design rules do not depend on the yield strength or wall thickness.

  2. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  3. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  4. Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius.

    PubMed

    Verma, Bhupesh; Mishra, Tarun Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-03-01

    The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0,2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0,2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves.

  5. Environmental Analysis of the Air Bending Process

    NASA Astrophysics Data System (ADS)

    Kellens, Karel; Dewulf, Wim; Duflou, Joost R.

    2011-05-01

    This paper presents the results of a data collection effort, allowing to assess the overall environmental impact of the air bending process using the CO2PE!-Methodology. First the different modes of the air bending process are investigated, including both productive and non-productive modes. In particular consumption of electric power is recorded for the different modes. Subsequently, time studies allow determining the importance of productive and nonproductive modes of the involved process. The study demonstrates that the influence of standby losses can be substantial. In addition to life cycle analysis, in depth process analysis also provides insight in achievable environmental impact reducing measures towards machine tool builders and eco-design recommendations for product developers. The energy consumption of three different machine tool architectures are analysed and compared within this paper.

  6. Holey fibers for low bend loss

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi

    2013-12-01

    Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.

  7. Effect of confinements: Bending in Paramecium

    NASA Astrophysics Data System (ADS)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  8. Monitoring thermoplastic composites under cyclic bending tests

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro

    2016-05-01

    This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.

  9. Development of Bend Sensor for Catheter Tip

    NASA Astrophysics Data System (ADS)

    Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo

    Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.

  10. Vortex breakdown in simple pipe bends

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  11. Monoclinal bending of strata over laccolithic intrusions

    USGS Publications Warehouse

    Koch, F.G.; Johnson, A.M.; Pollard, D.D.

    1981-01-01

    Sedimentary strata on top of some laccolithic intrusions are nearly horizontal and little deformed, but are bent into steeply dipping monoclinal flexures over the peripheries of these intrusions. This form of bending is not explained by previous theories of laccolithic intrusion, which predict either horizontal undeformed strata over the center and faulted strata around the periphery, or strata bent continuously into a dome. However, a slight generalization of these theories accomodates the observed form and contains the previous forms as special cases. A critical assumption is that the strength of contacts within a multilayered overburden is overcome locally by layer-parallel shear. If this strength is less than the strength of the layers themselves, then layers over the center remain bonded together and display negligible bending, whereas layers over the periphery slip over one another and are readily bent into a monoclinal flexure. ?? 1981.

  12. DNA Bending Stiffness on Small Length Scales

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Chen, Huimin; Lou, Xiong Wen; Archer, Lynden A.

    2008-01-01

    Bending properties of short (15 90 bp), double-stranded DNA fragments are quantified using fluorescence resonance energy transfer and small angle x-ray scattering. Results from both types of measurements indicate that short double-stranded DNA fragments exhibit surprisingly high flexibility. These observations are discussed in terms of base-pair-level length fluctuations originating from dynamic features of Watson-Crick base pairs.

  13. Big Bend National Park, TX, USA, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Sierra del Carmen of Mexico, across the Rio Grande River from Big Bend National Park, TX, (28.5N, 104.0W) is centered in this photo. The Rio Grande River bisects the scene; Mexico to the east, USA to the west. The thousand ft. Boquillas limestone cliff on the Mexican side of the river changes colors from white to pink to lavender at sunset. This severely eroded sedimentary landscape was once an ancient seabed later overlaid with volcanic activity.

  14. Forming and Bending of Metal Foams

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  15. Laser beam bending of metallic foils

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Meyer-Pittroff, Frank

    2002-02-01

    The increasing miniaturization, especially in mass production of electronic and mechatronic devices demands for new technologies for forming, handling and assembly of micro components. Contactless laser beam forming without application of any exterior forces may be such a means. Potential applications for laser forming of micro parts can be found where the introduction of exterior forces or bending moments into the component causes a problem due to its small geometric dimensions, where further handling after the forming process may damage the component or, where a forming step is not required until after the assembly. Contactless laser forming may serve as a solution for high precision manipulation of functional electronic or optical devices or for tuning forces as in relays-springs. Desired changes in position may be in the sub-micrometer range. Due to its extremely short pulse duration, the excimer laser is suited for applying a temperature gradient over the cross section of even very thin metals plates, thus leading to their bending. However, beside thermal mechanisms also non- thermal mechanical effects are responsible for laser beam bending of very thin metal plates by excimer laser irradiation, when irradiating with fluences above the ablation threshold.

  16. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0... Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant... (RCOL) application for UniStar's Calvert Cliffs Nuclear Power Plant, Unit 3 (CCNPP3). The......

  17. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County, Pennsylvania. The BBNPP COL application incorporates by...

  18. Analysis of three-point-bend test for materials with unequal tension and compression properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.

  19. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    NASA Astrophysics Data System (ADS)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  20. Tunable waveguide bends with graphene-based anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  1. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications.

    PubMed

    Anton, Steven R; Erturk, Alper; Inman, Daniel

    2012-06-01

    The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads.

  2. Characterization of bending loss in hollow flexible terahertz waveguides.

    PubMed

    Doradla, Pallavi; Joseph, Cecil S; Kumar, Jayant; Giles, Robert H

    2012-08-13

    Attenuation characteristics of hollow, flexible, metal and metal/dielectric coated polycarbonate waveguides were investigated using an optically pumped far infrared (FIR) laser at 215 µm. The bending loss of silver coated polycarbonate waveguides were measured as a function of various bending angles, bending radii, and bore diameters. Minimal propagation losses of 1.77, 0.96 dB/m were achieved by coupling the lowest loss TE11 mode into the silver or gold coated waveguide, and HE11 mode into the silver/polystyrene coated waveguides respectively. The maximal bending loss was found to be less than 1 dB/m for waveguides of 2 to 4.1 mm bore diameters, with a 6.4 cm bend radius, and up to 150° bending angle. The investigation shows the preservation of single laser mode in smaller bore waveguides even at greater bending angles.

  3. Cricket antennae shorten when bending (Acheta domesticus L.)

    PubMed Central

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W.

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to “unfold” and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head. PMID:25018734

  4. Evolving efficiency of restraining bends within wet kaolin analog experiments

    NASA Astrophysics Data System (ADS)

    Hatem, Alexandra E.; Cooke, Michele L.; Madden, Elizabeth H.

    2015-03-01

    Restraining bends along strike-slip fault systems evolve by both propagation of new faults and abandonment of fault segments. Scaled analog modeling using wet kaolin allows for qualitative and quantitative observations of this evolution. To explore how bend geometry affects evolution, we model bends with a variety of initial angles, θ, from θ = 0° for a straight fault to θ = 30°. High-angle restraining bends (θ ≥ 20°) overcome initial inefficiencies by abandoning unfavorably oriented restraining segments and propagating multiple new, inwardly dipping, oblique-slip faults that are well oriented to accommodate convergence within the bend. Restraining bends with 0° < θ ≤ 15° maintain activity along the restraining bend segment and grow a single new oblique slip fault on one side of the bend. In all restraining bends, the first new fault propagates at ~5 mm of accumulated convergence. Particle Image Velocimetry analysis provides a complete velocity field throughout the experiments. From these data, we quantify the strike-slip efficiency of the system as the percentage of applied plate-parallel velocity accommodated as slip in the direction of plate motion along faults within the restraining bend. Bends with small θ initially have higher strike-slip efficiency compared to bends with large θ. Although they have different fault geometries, all systems with a 5 cm bend width reach a steady strike-slip efficiency of 80% after 50 mm of applied plate displacement. These experimental restraining bends resemble crustal faults in their asymmetric fault growth, asymmetric topographic gradient, and strike-slip efficiency.

  5. Cricket antennae shorten when bending (Acheta domesticus L.).

    PubMed

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to "unfold" and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.

  6. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  7. Determination of dynamic fracture-initiation toughness using a novel impact bend test procedure

    SciTech Connect

    Yokoyama, T. . Faculty of Engineering Okayama Univ. of Science . Dept. of Mechanical Engineering)

    1993-11-01

    A novel impact bend test procedure is described for determining the dynamic fracture-initiation toughness, K[sub Id], at a loading rate (stress intensity factor rate), K[sub I], of the order of 10[sup 6] MPa [radical]m/s. A special arrangement of the split Hopkinson pressure bar is adopted to measure accurately dynamic loads applied to a fatigue-precracked bend specimen. The dynamic stress intensity factor history for the bend specimen is evaluated by means of a dynamic finite element technique. The onset of crack initiation is detected using a string gage attached on the side of the specimen near a crack tip. The value of K[sub Id] is determined from the critical dynamic stress intensity factor at crack initiation. A series of dynamic fracture tests is carried out on a 7075-T6 aluminum alloy, a Ti-6246 alloy and an AISI 4340 steel. The K[sub Id] values obtained for the three structural materials are compared with the corresponding values obtained under quasi-static loading conditions.

  8. The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle

    PubMed Central

    Mandle, Richard J.; Archbold, Craig T.; Sarju, Julia P.; Andrews, Jessica L.; Goodby, John W.

    2016-01-01

    We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D 1H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models. PMID:27819300

  9. COMPARISON OF DOUBLE BEND AND TRIPLE BEND ACHROMATIC LATTICE STRUCTURES AND NSLS-II.

    SciTech Connect

    KRAMER, S.L.; KRINSKY, S.; BENGTSSON, J.

    2006-06-26

    The Double Bend Achromatic (DBA) and the Triple Bend Achromatic (TBA) lattice have been studied rather extensively for use for the NSLS-II storage ring. The advantage of the TBA compared to the DBA in terms of emittance per period is well known. However, the DBA has the advantage of greater number of ID straight sections for the users and maybe easier to tune the dispersive section for reduced chromatic sextupole strength. We present a comparison of these lattices based on optimization of the non-linear driving terms using high order achromatic cancellation of driving terms of the nonlinear lattice.

  10. A theory for the fracture of thin plates subjected to bending and twisting moments

    NASA Technical Reports Server (NTRS)

    Hui, C. Y.; Zehnder, Alan T.

    1993-01-01

    Stress fields near the tip of a through crack in an elastic plate under bending and twisting moments are reviewed assuming both Kirchhoff and Reissner plate theories. The crack tip displacement and rotation fields based on the Reissner theory are calculated. These results are used to calculate the J-integral (energy release rate) for both Kirchhoff and Reissner plate theories. Invoking Simmonds and Duva's (1981) result that the value of the J-integral based on either theory is the same for thin plates, a universal relationship between the Kirchhoff theory stress intensity factors and the Reissner theory stress intensity factors is obtained for thin plates. Calculation of Kirchhoff theory stress intensity factors from finite elements based on energy release rate is illustrated. It is proposed that, for thin plates, fracture toughness and crack growth rates be correlated with the Kirchhoff theory stress intensity factors.

  11. Investigation of load effect on macro-bend losses for an SMS fiber structure with a small bend radius

    NASA Astrophysics Data System (ADS)

    Rahmah, Fitri; Sekartedjo, Sekartedjo; Hatta, Agus Muhamad

    2016-11-01

    Modelling of load effect on macro-bend losses for a singlemode-multimode-singlemode (SMS) fiber structure with small bend radius is presented. Load effect on macro-bend losses for the SMS fiber structure placed between two high-density polyethylene (HDPE) boards are investigated theoretically and experimentally. A model on macro-bend losses for SMS fiber structure is constructed by using the light transmission formula in a straight SMS fiber structure and taking into account the effective number of guided modes due to the macrobending. In the experimental, a mandrel with a diameter of 0.8 mm is used to induce the bend. When the loads are applied on the system, the mandrel will affect the bend losses for the SMS fiber structure. It is shown numerically and experimentally that the bend-loss of SMS fiber structure strongly depends on the applied loads and the multimode fiber (MMF) lengths.

  12. Big Bend sees big environmental push

    SciTech Connect

    Blankinship, S.

    2007-10-15

    The 1800 MW Big Bend Power Station is a coal-fired facility in Tampa Bay, Florida, USA owned by Tampa Electric. It has four pulverized coal- fired steam units equipped with FGD scrubbers and electrostatic precipitators. Currently the addition of selective catalytic reduction (SCR) systems is under consideration. The Unit 4 SCR retrofit was completed in June 2007; the remaining three systems are scheduled for completion by 2010. Boiler draft systems will be modified to a balance draft design to accommodate the increased pressure drop of the new systems. 3-D computer models were developed to determine constructability due to the tight clearance at the site. 1 photo.

  13. Thermoelastic bending of locally heated orthotropic shells

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. P.; Gol'tsev, A. S.

    2007-03-01

    The thermoelastic bending of locally heated orthotropic shells is studied using the classical theory of thermoelasticity of thin shallow orthotropic shells and the method of fundamental solutions. Linear distribution of temperature over thickness and the Newton's law of cooling are assumed. Numerical analysis is carried out for orthotropic shells of arbitrary Gaussian curvature made of a strongly anisotropic material. The behavior of thermal forces and moments near the zone of local heating is studied for two areas of thermal effect: along a coordinate axis and along a circle of unit radius. Generalized conclusions are drawn

  14. Broadband light bending with plasmonic nanoantennas.

    PubMed

    Ni, Xingjie; Emani, Naresh K; Kildishev, Alexander V; Boltasseva, Alexandra; Shalaev, Vladimir M

    2012-01-27

    The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished by using an extremely thin plasmonic layer (~λ/50) consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface. Anomalous light-bending phenomena, including negative angles of refraction and reflection, are observed in the operational wavelength range.

  15. Light-bending tests of Lorentz invariance

    SciTech Connect

    Tso, Rhondale; Bailey, Quentin G.

    2011-10-15

    Classical light-bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are discussed.

  16. Self-bending symmetric cusp beams

    SciTech Connect

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  17. Bending of light in quantum gravity.

    PubMed

    Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre

    2015-02-13

    We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle.

  18. Great Bend tornadoes of August 30, 1974

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.; Fujita, T. T.; Dundas, R.

    1977-01-01

    Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.

  19. Anomalous bending effect in photonic crystal fibers.

    PubMed

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  20. Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory

    NASA Astrophysics Data System (ADS)

    Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.

    2015-12-01

    In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.

  1. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis.

    PubMed

    Zhang, Zhen; Jackson, Meyer B

    2010-06-02

    A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca(2+)-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca(2+)-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca(2+)-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.

  2. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  3. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  4. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  5. The mechanics of gravitropic bending in leafy dicot stems

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Mueller, W. J.; Blotter, P. T.; Harris, C. S.; White, R. G.; Gillespie, L. S.; Sliwinski, J. E.

    1982-01-01

    The mechanism of the gravitropic bending in stems of the cocklebur and castor bean are investigated. The results of these experiments demonstrate the quick stopping of growth and the increased tensions on the upper layer of a horizontal stem. It is suggested that bending apparently occurs as the resistance of the upper surface layers is extended to the inner cells below. A model of stem bending is developed which can explain the asymmetry of the stem-cell response.

  6. Transient Pinning and Pulling: A Mechanism for Bending Microtubules

    PubMed Central

    Kent, Ian A.; Rane, Parag S.; Dickinson, Richard B.; Ladd, Anthony J. C.; Lele, Tanmay P.

    2016-01-01

    Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points. PMID:26974838

  7. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  8. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  9. High-efficiency beam bending using graded photonic crystals.

    PubMed

    Oner, B B; Turduev, M; Kurt, H

    2013-05-15

    We explore beam-bending properties of graded index (GRIN) waveguide with hyperbolic secant profile. The transmission efficiency and bandwidth features are extracted for GRIN photonic crystal (PC) media composed of dielectric rods. Light guiding performance of the GRIN PC medium is analyzed for 90° and 180° waveguide bends. The finite-difference time-domain method is deployed to investigate the performance of the designed GRIN waveguides. By the help of proposed photonic configuration, bending of light is achieved with a high efficiency within a broad bandwidth, which promotes the use of GRIN PC structures for efficient light-bending purposes.

  10. Hot bending with a fiber coupled solid state laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Schumi, T.; Schuöcker, D.

    2010-09-01

    For bending of brittle materials it is necessary to heat up the forming zone. This can be done with a fiber coupled solid state laser, whose beam is evenly distributed on the bending line with a beam splitter installed in the lower tool (die) of a bending press. With polarization optics the laser beam is divided there into partial beams that are evenly distributed on the bending line with lenses and prisms. A setup for a bending length of 200mm heated by a fiber-coupled 3kW Nd:YAG-laser shows the feasibility of the concept. Successful operation was shown for the Mg-alloy AZ31, which breaks during forming at room temperature, but can be well formed at temperatures in the range of 200-300°C. Other materials benefiting from this method are Ti-alloys, high-strength-Al-alloys, and high-strength-steels. Typical heating times are in the range of up to 5s and much of the heat input is generated during the bending operation where the laser continues to work. Laser Assisted Bending with a fiber coupled solid state laser is a straightforward way to perform the bending of brittle materials in a process as simple as cold bending.

  11. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-12-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  12. Bending-induced extension in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Pan, Douxing; Li, Yao; Wang, Tzu-Chiang; Guo, Wanlin

    2017-02-01

    We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of 2 nm^{-1} but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.

  13. Electrostatic effects in DNA bending by GCN4 mutants.

    PubMed

    Strauss-Soukup, J K; Maher, L J

    1998-01-27

    DNA architecture has been shown to be important for cellular processes such as activation of transcription, recombination, and replication. Many proteins reconfigure the shape of duplex DNA upon binding. Previous experiments have shown that some members of the eukaryotic bZIP family of DNA binding proteins appear to bend DNA, while others do not. We are exploring the role of electrostatic effects in DNA bending by bZIP proteins. The yeast bZIP transcription factor GCN4 does not induce DNA bending in vitro. Previously we substituted basic residues for three neutral amino acids in GCN4 to produce a GCN4 derivative that bends DNA by approximately 15 degrees. This result is consistent with a model of induced DNA bending wherein excess positive charge in proximity to one face of the double helix neutralizes local phosphate diester anions resulting in a laterally-asymmetric charge distribution along the DNA. Such an unbalanced charge distribution can result in collapse of the DNA toward the neutralized surface. We now present a more comprehensive analysis of electrostatic effects in DNA bending by GCN4 derivatives. It is shown that the direction and extent of DNA bending by these derivatives are a linear function of the charges of the amino acids adjacent to the basic domain of the protein. This relation holds over the charge range +6 (16 degrees bend toward the minor groove) to -6 (25 degrees bend toward the major groove).

  14. Modified Numerical Simulation Model of Blood Flow in Bend

    PubMed Central

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-01-01

    ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727

  15. SRI CAT Section 1 bending magnet beamline description

    SciTech Connect

    Srajer, G.; Rodricks, B.; Assoufid, L.; Mills, D.M.

    1994-03-10

    This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule.

  16. Interfacial strength analyses of Al/Mg compounds using bending tests

    NASA Astrophysics Data System (ADS)

    Lehmann, T.; Kirbach, C.; Müller, J.; Stockmann, M.; Ihlemann, J.

    2017-03-01

    In the Collaborative Research Center 692, subproject B3 Al/Mg compounds are investigated. The hydrostatic co-extruded compounds presented in this paper were further manufactured by the forging process Rising. To continue the first investigations of Rising specimens regarding interface strength, a bending test developed in a previous project period was used. The specific load case and the bending specimen geometry considers the requirements concerning the special geometry of the Rising specimen. Based on experimentally determined failure forces (maximum forces), the stress state for the investigation of the interface strength was calculated by means of the elementary bending theory extended with a numerical determined correction factor. The numerical analyses were based on a parametric FE model of the load case. Crack initiation was caused by the maximum interlaminar interfacial tension stress. In the demonstrated investigations co-extruded compounds with different ratio of core material (Mg) in the transversal cross sectional area of the initial billet were analyzed. A particular feature of the investigations is the interfacial strength analysis of a subset of Rising specimens in different areas of the transversal cross section. This was enabled by using compounds with larger sleeve thickness due to a lower Mg ratio. Thus, in this case a more extensive characterization could be performed. The results show higher strength values for Rising specimens with the largest sleeve thickness compared to the other investigated configurations.

  17. Notch effects on room temperature tensile and bend properties of Ni3Al and Ni3Al+B

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Rigney, J. D.; Lewandowski, J. J.; Vedula, K.

    1989-01-01

    The notched mechanical properties of Ni3Al and Ni3Al+B prepared by powder metallurgy techniques have been determined in both tension and bending at room temperature. Tensile tests performed using double-notched specimens containing relatively blunt notches produced intergranular fracture in both Ni3Al and Ni3Al+B, with evidence of fracture initiating in an intergranular manner ahead of the blunt notch in both cases. Estimates of notched fracture toughness from bend tests and of local grain boundary fracture stress from the notched tensile tests suggest an increase in these values with boron addition.

  18. Bending of Light in Ellis Wormhole Geometry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amrita; Potapov, Alexander A.

    A recent work by Dey and Sen derived the approximate light deflection angle α by an Ellis wormhole in terms of proper radial distance ℓ that covers the entire spacetime. On the other hand, Bodenner and Will calculated the expressions for light bending in Schwarzschild geometry using various coordinates and showed that they all reduce to a single formula when re-expressed in the coordinate independent language of "circumferential radius" rC identified with the standard radial coordinate rS. We shall argue that the coordinate invariant language for two-way wormholes should be ℓ rather than rS. Hence here we find the exact deflection α in Ellis wormhole geometry first in terms of ℓ and then in terms of rS. We confirm the latter expression using three different methods. We argue that the practical measurement scheme does not necessarily single out either ℓ or rS. Some errors in the literature are corrected.

  19. Separation of blood in microchannel bends

    NASA Astrophysics Data System (ADS)

    Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang

    2004-01-01

    Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.

  20. Separation of blood in microchannel bends

    NASA Astrophysics Data System (ADS)

    Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang

    2003-12-01

    Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.

  1. Bend-insensitive fiber based vibration sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-05-01

    We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.

  2. Light bending in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2016-05-01

    In the framework of f(T) gravity, we focus on a weak-field and spherically symmetric solution for the Lagrangian f(T) = T + αT2, where α is a small constant which parametrizes the departure from general relativity (GR). In particular, we study the propagation of light and obtain the correction to the general relativistic bending angle. Moreover, we discuss the impact of this correction on some gravitational lensing observables, and evaluate the possibility of constraining the theory parameter α by means of observations. In particular, on taking into account the astrometric accuracy in the Solar System, we obtain that |α|≤ 1.85 × 105m2; this bound is looser than those deriving from the analysis of Solar System dynamics, e.g. |α|≤ 5 × 10-1m2 [L. Iorio, N. Radicella and M. L. Ruggiero, J. Cosmol. Astropart. Phys. 1508 (2015) 021, arXiv:1505.06996 [gr-qc].], |α|≤ 1.8 × 104m2 [L. Iorio and E. N. Saridakis, Mon. Not. R. Astron. Soc. 427 (2012) 1555, arXiv:1203.5781 [gr-qc].] or |α|≤ 1.2 × 102m2 [Y. Xie and X. M. Deng, Mon. Not. R. Astron. Soc. 433 (2013) 3584, arXiv:1312.4103 [gr-qc].]. However, we suggest that, since the effect only depends on the impact parameter, better constraints could be obtained by studying light bending from planetary objects.

  3. Analysis of damage in composite laminates under bending

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sunil

    The focus of this research was damage formation in composite laminates subjected to bending. Matrix cracking and internal delamination are common damage modes before final failure for a composite laminate under thermo-mechanical loading. Two configurations of cross-ply laminates, namely [0m/90 n]s and [90m/0n]s, were considered for the study. Approximate analytical solutions for the stress states in the two laminates subjected to constant bending moment, with matrix cracks in the 90° layers, were derived using a variational approach. The evolution of matrix cracking under monotonically increasing load was studied for a number of composite materials. The analytical predictions showed an initial stage of rapid matrix crack multiplication followed by a slowing down in the crack multiplication. In the case of [0m/90n] s laminate, 0° ply failure in tension or compression was found to be likely even at the initial stages of matrix cracking for laminates with thin 90° layer. The 0° ply failure is delayed for laminates with thicker 90° layer. The analytical model for the stress state in the [90m/0 n]s laminate was extended to include delamination from the matrix crack-tip along the 0/90 interface. The bending moment required to initiate crack-tip delamination was computed as a function of the crack density. By comparing this result with matrix crack evolution, the relative dominance of the two modes of damage could be determined. The critical crack density beyond which delamination dominates matrix cracking is obtained from the analysis. The critical crack density is interpreted as the stage beyond which growth of delamination rather than matrix cracking is likely to occur. Parametric studies conducted by varying the laminate configuration showed that the critical crack density for delamination onset strongly depends on the thickness of the 90° layer and the distance of the 90° layer from the laminate mid-plane. Quasi-static growth of delamination under monotonic

  4. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  5. Developments of a force image algorithm for micromachined optical bend loss sensor

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Liu, Chao-Shih; Panergo, Reynold; Huang, Cheng-Sheng; Wang, Wei-Chih

    2005-05-01

    A flexible high-resolution sensor capable of measuring the distribution of both shear and pressure at the plantar interface are needed to study the actual distribution of this force during daily activities, and the role that shear plays in causing plantar ulceration. We have previously developed a novel means of transducing plantar shear and pressure stress via a new microfabricated optical system. However, a force image algorithm is needed to handle the complexity of construction of two-dimensional planar pressure and shear images. Here we have developed a force image algorithm for a micromachined optical bend loss sensor. A neural network is introduced to help identify different load shapes. According to the experimental result, we can conclude that once the neural network has been well trained, it can correctly identify the loading shape. With the neural network, our micromachined optical bend loss Sensor is able to construction the two-dimensional planar force images.

  6. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  7. Optical and mechanical characterization of microfabricated optical bend loss sensor for distributive pressure measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Huang, Chu-Yu; Chiang, Te-Kuang; Reinhall, Per G.

    2007-04-01

    The paper describes the development of a mesh waveguide sensor capable of measuring pressure force at the plantar interface. The uniqueness of the system is in its batch fabrication process, which involves a microfabrication molding technique with poly(dimethylsiloxane)(PDMS) as the optical medium. The pressure sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of normal stress was constructed based on observed macro bending which causes intensity attenuation from the physical deformation of two adjacent perpendicular waveguides. In this paper, optical and mechanical analysis of the bend loss will be presented. We will also present the results using a two-layer neural network system for force and image construction of fourteen different shape patterns and its corresponding four different applied forces.

  8. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals.

    PubMed

    Shamid, Shaikh M; Dhakal, Subas; Selinger, Jonathan V

    2013-05-01

    We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations. To test the predictions of Landau theory, we perform Monte Carlo simulations to find the director and polarization configurations as functions of temperature, applied electric field, and interaction parameters.

  9. Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils

    NASA Astrophysics Data System (ADS)

    Pourazarm, Pariya; Modarres-Sadeghi, Yahya

    2016-11-01

    We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.

  10. Reconnaissance Observations of Newly Identified Active Faults and Their Relationship to Evolution of the Mount McKinley Restraining Bend, Denali National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Bemis, S. P.; Benowitz, J.

    2012-12-01

    The processes of restraining bend formation and evolution along strike-slip faults remain poorly understood. Although connections between exhumation, fault displacement, and structural geometry are difficult to establish, long-lived active faults contribute to rock uplift, partition strain, and provide insight into the crustal stresses that result from the complex geometry of a restraining bend. The highest topography in North America, Mount McKinley (also known as Denali), is closely associated with an ~17 degree bend in the Denali fault and the region exhibits structural, geomorphic, and thermochronologic constraints on the late Cenozoic evolution of the Mount McKinley restraining bend. As a component of our investigation into the initiation and growth of this restraining bend, we are mapping the bedrock and surficial geology along the north side of the restraining bend to document evidence for Quaternary-active faults. Previous workers only document one active fault, the East Fork fault, north of the Denali fault. The lack of active faults is surprising due to the high rate of regional seismicity. Our initial studies recognize several previously undocumented faults that offset late Pleistocene glacial moraines and fluvial/alluvial surfaces, indicating active deformation is more widely spread than previously recognized and illustrating distinct patterns of strain accommodation. The East Fork fault and nearby structures occur east of the apex of the restraining bend and are sub-vertical with characteristically south-side-down displacements. Faults occurring adjacent to, and west of, the restraining bend apex are all south-side-up thrust faults and appear to have accommodated a significant component of the modern topographic development on the north side of the Denali fault. Future work will target the structural geometry and slip rates of these faults in order to determine how this restraining bend has evolved to the present configuration, and these results will

  11. BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, two elevations, sections, and details. Alben Froberg, Architect, Oakland, California. Sheet no. 1 of 1. Various scales. December 15, 1941. pencil on tracing paper - United Engineering Company Shipyard, Bending Shop & Oven, 2900 Main Street, Alameda, Alameda County, CA

  12. Studies reveal effects of pipe bends on fluid flow cavitation

    NASA Technical Reports Server (NTRS)

    Stonemetz, R. E.

    1966-01-01

    Incipient cavitation in liquids flowing in pipes curved in one plane are affected by the pipe bend radii and pipe diameters, but little by pipe bend angles ranging from 60 to 120 degrees. Critical cavitation indices decrease with higher Reynolds number and pressure ratio. Bulk liquid temperature increase lowers the mean critical velocity at which cavitation occurs.

  13. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  14. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  15. Flexible DNA bending in HU-DNA cocrystal structures.

    PubMed

    Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A

    2003-07-15

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.

  16. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  17. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  18. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  19. View north of tube bending shop in boilermakers department located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of tube bending shop in boilermakers department located in southeast corner of the structural shop building (building 57). The computer controlled tube bender can be programmed to bend boiler tubing to nearly any required configuration - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  20. Quasi-static characterization and modeling of the bending behavior of single crystal galfenol for magnetostrictive sensors and actuators

    NASA Astrophysics Data System (ADS)

    Datta, Supratik

    2009-12-01

    Iron-gallium alloys (Galfenol) are structural magnetostrictive materials that exhibit high free-strain at low magnetic fields, high stress-sensitivity and useful thermo-mechanical properties. Galfenol, like smart materials in general, is attractive for use as a dynamic actuator and/or sensor material and can hence find use in active shape and vibration control, real-time structural health monitoring and energy harvesting applications. Galfenol possesses significantly higher yield strength and greater ductility than most smart materials, which are generally limited to use under compressive loads. The unique structural attributes of Galfenol introduce opportunities for use of a smart material in applications that involve tension, bending, shear or torsion. A principal motivation for the research presented in this dissertation is that bending and shear loads lead to development of non-uniform stress and magnetic fields in Galfenol which introduce significantly more complexity to the considerations to be modeled, compared to modeling of purely axial loads. This dissertation investigates the magnetostrictive response of Galfenol under different stress and magnetic field conditions which is essential for understanding and modeling Galfenol's behavior under bending, shear or torsion. Experimental data are used to calculate actuator and sensor figures of merit which can aid in design of adaptive structures. The research focuses on the bending behavior of Galfenol alloys as well as of laminated composites having Galfenol attached to other structural materials. A four-point bending test under magnetic field is designed, built and conducted on a Galfenol beam to understand its performance as a bending sensor. An extensive experimental study is conducted on Galfenol-Aluminum laminated composites to evaluate the effect of magnetic field, bending moment and Galfenol-Aluminum thickness ratio on actuation and sensing performance. A generalized recursive algorithm is presented for

  1. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  2. Bending and buckling of viscoplastic threads

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Balmforth, Neil

    2012-11-01

    We use a slender body theory to describe the dynamics of a thin viscoplastic thread undergoing extrusion, such as occurs when squeezing toothpaste from a tube. The theory adopts the Bingham model for a yield stress fluid, together with an asymptotic approximation for the stress and strain-rate profiles across the narrow width of the thread, which imply that the thread must either be rigid or fully yielded across its entire width. A compact description of the resultant longitudinal stress and moment acting on the thread allows these yielded and unyielded regions to be identified for given external forces. The theory is applied to extrusion flows; the yield stress prevents any deformation until a critical length of extrusion is reached, after which the dynamically evolving yielded regions mediate a distinctive drooping of a horizontal beam, or a catastrophic collapse of an upright beam.

  3. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  4. Bending properties of nickel electrodes for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries which fail prematurely by electrical shorting. This is believed to be a result of a blistering problem in the nickel electrodes. This study investigates the bending properties of nickel electrodes in an attempt to correlate the bending properties with the propensity of the electrode to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. Effects of specimen curvature and position within the electrode on the bending strength were studied and within-electrode and batch-to-batch variation were addressed. Two color imaging techniques were employed which allowed differentiation of phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hydroxide surface loading on each electrode, relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  5. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.

    2016-10-01

    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  6. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  7. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  8. Bending fluidic actuator for smart structures

    NASA Astrophysics Data System (ADS)

    Che-Ming Chang, Benjamin; Berring, John; Venkataram, Manu; Menon, Carlo; Parameswaran, M.

    2011-03-01

    This paper presents a novel silicone-based, millimeter-scale, bending fluidic actuator (BFA). Its unique parallel micro-channel design enables, for the first time, operation at low working pressure while at the same time having a very limited thickness expansion during pressurization. It also enables the actuator to have the highest ratios of angular displacement over length and torque over volume among previously proposed BFAs. In this work, this parallel micro-channel design is implemented by embedding the BFA with an innovative single winding conduit, which yields a simple, single-component configuration suitable for low-cost production and reliable performance. The BFA design can be easily scaled down to smaller dimensions and can be adapted to applications in restricted space, particularly minimally invasive surgery. In this work, the actuator is manufactured in TC-silicone through poly(methyl methacrylate) molds obtained by using laser cutting technology. Repeated angular displacement measurements on multiple prototypes having different stiffness are carried out. The experimental results are compared with an analytical model, which accurately predicts the performance of the device.

  9. 2014 land cover land use horseshoe bend

    USGS Publications Warehouse

    Hanson, Jenny L.; Hoy, Erin E.; Robinson, Larry R.

    2016-01-01

    This collection of conservation areas consists of the floodplain of the combined streams of the Iowa River and the Cedar River. The study area begins just southeast of Wapello, IA, and continues southeast until the Horseshoe Bend Division, Port Louisa NWR. The area is currently managed to maintain meadow or grassland habitat which requires intensive management due to vegetative succession. In addition, this floodplain area contains a high proportion of managed lands and private lands in the Wetland Reserve Program and is a high priority area for cooperative conservation actions. This project provides a late-summer baseline vegetation inventory to assess future management actions in an adaptive process. Changes in levees, in addition to increased water flows and flood events due to climate change and land use practices, make restoration of floodplain processes more complex. Predictive models could help determine more efficient and effective restoration and management techniques. Successful GIS tools developed for this project would be applicable to other floodplain refuges and conservation areas.

  10. Bending strength of delaminated aerospace composites.

    PubMed

    Kinawy, Moustafa; Butler, Richard; Hunt, Giles W

    2012-04-28

    Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.

  11. A photoelastic investigation of asymmetric four point bend shear test for composite materials

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Sawyer, W.

    1986-01-01

    The shear stress fringe value of orthotropic birefringent model materials is presently used in an asymmetric four-point bend test that employs a notched specimen and is a modification of the Iosipescu test (1967). While in the case of a unidirectionally reinforced glass-polyester model material, shear stress fringe values obtained from 90- and 120-deg (sharp and radiused) notches are reasonably close to the values obtained for an off-axis tensile specimen, no conclusions can be drawn on the influence of the notch parameters, due to the peculiarities of the photoelastic response of the inhomogeneous orthotropic model material. The failure modes nevertheless indicate that a notch radius, and the 120-deg notch angle, reduce the stress concentration. Comparisons are made with finite element results.

  12. A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.

    1997-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.

  13. The use of experimental bending tests to more accurate numerical description of TBC damage process

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Golewski, P.

    2016-04-01

    Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.

  14. Assumed strain formulation for the four-node quadrilateral with improved in-plane bending behaviour

    NASA Astrophysics Data System (ADS)

    Stolarski, Henryk K.; Chen, Yung-I.

    1995-04-01

    A new assumed strain quadrilateral element with highly accurate in-plane bending behavior is presented for plane stress and plane strain analysis. The basic idea of the formulation consists in identification of various modes of deformation and then in proper modification of the strain field in some of these modes. In particular, the strain operator corresponding to the in-plane bending modes is modified to simulate the strain field resulting from the assumptions usually made in structural mechanics. The modification of the strain field leads to the assumed strain operator on the element level. As a result, the so-called shear and membrane locking phenomena are alleviated. The element exhibits remarkable success in bending-dominated problems even when severely distorted and high aspect ratio meshes are used. Another advantage of the present assumed strain element is that locking for nearly incompressible materials is also mitigated. While this assumed strain element passes the patch test only for the parallelogram shapes, the element provides convergent solutions as long as the initially general form of the element approaches a parallelogram shape with the refinement of the mesh.

  15. Assessment of Local Wall Thinned Pipeline Under Combined Bending and Pressure

    NASA Astrophysics Data System (ADS)

    Shim, D. J.; Choi, J. B.; Kim, Y. J.; Kim, J. W.; Park, C. Y.

    Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G are still useful for assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress (σu,t) were obtain from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

  16. Development of a finite element based delamination analysis for laminates subject to extension, bending, and torsion

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1989-01-01

    Delamination is a common failure mode of laminated composite materials. This type of failure frequently occurs at the free edges of laminates where singular interlaminar stresses are developed due to the difference in Poisson's ratios between adjacent plies. Typically the delaminations develop between 90 degree plies and adjacent angle plies. Edge delamination has been studied by several investigators using a variety of techniques. Recently, Chan and Ochoa applied the quasi-three-dimensional finite element model to the analysis of a laminate subject to bending, extension, and torsion. This problem is of particular significance relative to the structural integrity of composite helicopter rotors. The task undertaken was to incorporate Chan and Ochoa's formulation into a Raju Q3DG program. The resulting program is capable of modeling extension, bending, and torsional mechanical loadings as well as thermal and hygroscopic loadings. The addition of the torsional and bending loading capability will provide the capability to perform a delamination analysis of a general unsymmetric laminate containing four cracks, each of a different length. The solutions obtained using this program are evaluated by comparing them with solutions from a full three-dimensional finite element solution. This comparison facilitates the assessment of three dimensional affects such as the warping constraint imposed by the load frame grips. It wlso facilitates the evaluation of the external load representation employed in the Q3D formulation. Finally, strain energy release rates computed from the three-dimensional results are compared with those predicted using the quasi-three-dimensional formulation.

  17. Dancing Discs: Bending and Twisting of Soft Materials by Anisotropic Swelling

    NASA Astrophysics Data System (ADS)

    Holmes, Douglas; Roché, Matthieu; Sinha, Tarun; Stone, Howard

    2011-03-01

    Soft materials, e.g. biological tissues and gels, undergo morphological changes, motion, and instabilities when subjected to external stimuli. Tissues can exhibit residual internal stresses induced by growth, and generate elastic deformations to move in response to light or touch, curl articular cartilage, aid in seed dispersal, and actuate hygromorphs, such as pine cones. Understanding the dynamics of such osmotically driven movements, in the influence of geometry and boundary conditions, is crucial to the controlled deformation of soft materials. We examine how thin elastic plates undergo rapid bending and buckling instabilities after anisotropic exposure to a favorable solvent that swells the network. An unconstrained beam bends along its length, while a circular disc bends and buckles with multiple curvatures. In the case of a disc, a large-amplitude transverse travelling wave rotates azimuthally around the disc. Theoretical interpretations inspired by the complementary thermal expansion problem of transient shape changes triggered by time-dependent heating are presented and allow collapse of time-dependent data on universal curves. Understanding the dynamics of strain-driven shape changes provides new insight into natural systems and control of advanced functional materials.

  18. Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lundgren, Eric

    2006-01-01

    A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.

  19. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  20. Effect of materials and manufacturing on the bending stiffness of vaulting poles

    NASA Astrophysics Data System (ADS)

    Davis, C. L.; Kukureka, S. N.

    2012-09-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP) composites. The lighter GFRP pole enabled the athletes to have a faster run-up, resulting in a greater take-off speed, giving them more kinetic energy to convert into potential energy and hence height. GFRP poles also have a much higher failure stress than bamboo, so the poles were engineered to bend under the load of the athlete, thereby storing elastic strain energy that can be released as the pole straightens, resulting in greater energy efficiency. The bending also allowed athletes to change their vaulting technique from a style that involved the body remaining almost upright during the vault to one where the athlete goes over the bar with their feet upwards. Modern vaulting poles can be made from GFRP and/or carbon fibre reinforced polymer (CFRP) composites. The addition of carbon fibres maintains the mechanical properties of the pole, but allows a reduction in the weight. The number and arrangement of the fibres determines the mechanical properties, in particular the bending stiffness. Vaulting poles are also designed for an individual athlete to take into account each athlete’s ability and physical characteristics. The poles are rated by ‘weight’ to allow athletes to select an appropriate pole for their ability. This paper will review the development of vaulting poles and the requirements to maximize performance. The properties (bending stiffness and pre-bend) and microstructure (fibre volume fraction and lay-up) of typical vaulting poles will be discussed. Originally published as Davis C L and Kukureka S N (2004) Effect of materials and manufacturing on the bending stiffness of vaulting poles The Engineering of

  1. Reworking of structural inheritance at strike-slip restraining-bends: templates from sandbox analogue models

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio

    2016-04-01

    Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the

  2. Is the Hawaiian-Emperor Bend Coeval for all Pacific Seamount Trails?

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Staudigel, H.

    2004-12-01

    By far the largest number of hotspots can be found in the South Pacific Thermal and Isotopic Anomaly (SOPITA). Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the West Pacific Seamount Province (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the hotspots in the South Pacific mantle. Most importantly, it may also answer the question whether the Hawaiian-Emperor Bend (HEB) is coeval for all Pacific Seamount trails at 47 Ma? Fixed hotspots should be expressed in volcanic trails on the lithospheric plates revealing absolute rates of motion from their age progressions and the direction of motion based on their azimuths. By definition, bends in these hotspot trails thus should give an indication of changing plate motion happening simultaneously across individual lithospheric plates. Based on the morphology of seamounts in the Pacific, the Hawaiian-Emperor, Louisville, Gilbert Ridge and Tokelau seamount trails may be identified as the only hotspot trails to exhibit a clear HEB-type bend (Kroenke et al. 2004). Of these, the Louisville seamount trail only displays a faint bend that may be coeval with the sharp 60 degree bend in the Hawaiian-Emperor trail (Koppers et al. 2004) at 47 Ma. However, new 40Ar/39Ar analyses indicate that the HEB-type bends in the Gilberts Ridge and Tokelau seamount trails are asynchronous around 67 Ma and 57 Ma, respectively. We argue, therefore, that plate motion alone cannot explain these age systematics, but that both hotspot motion and changing lithospheric stress regimes may play an important role in their creation. The simple and elegant hotspot model that

  3. Competition between in-plane buckling and bending collapses in nanohoneycombs

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Pugno, Nicola M.

    2012-04-01

    The classical hexagonal honeycomb theory for the uniaxial loading case, developed by Gibson and Ashby, considers buckling of the cell walls parallel to one symmetry axis. In general, buckling may also occur in the cell walls inclined with respect to the two symmetry axes. Therefore, in this letter, under the uniaxial loading conditions, we derive the critical stresses of buckling and bending collapses of nanohoneycombs, for which the surface effect is included. Furthermore, the competition between the two failure modes is studied. The present theory could be used to design new nanoporous materials, e.g., scaffolds for the regenerative medicine or energy-absorption materials.

  4. Buffers affect the bending rigidity of model lipid membranes.

    PubMed

    Bouvrais, Hélène; Duelund, Lars; Ipsen, John H

    2014-01-14

    In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.

  5. Cast-stone sectors for lining bends in pipework

    SciTech Connect

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  6. Optimum design of ninety degree bends

    NASA Technical Reports Server (NTRS)

    Modi, Vijay; Cabuk, Hayri; Huan, Jian-Chun; Quadracci, Richard

    1992-01-01

    An algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.

  7. Lithospheric bending at subduction zones based on depth soundings and satellite gravity

    NASA Technical Reports Server (NTRS)

    Levitt, Daniel A.; Sandwell, David T.

    1995-01-01

    A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.

  8. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    SciTech Connect

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  9. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  10. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets.

    PubMed

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-23

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 microm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO(2) trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C(33) value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  11. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-01

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  12. A soft stretchable bending sensor and data glove applications.

    PubMed

    Shen, Zhong; Yi, Juan; Li, Xiaodong; Lo, Mark Hin Pei; Chen, Michael Z Q; Hu, Yong; Wang, Zheng

    2016-01-01

    Soft sensors are required to accommodate the flexible and deformable natures of the human body in wearable device applications. They are also suitable for integration with soft robotic devices to monitor the performance status and provide references for feedback control. However, the choices for bending sensors are still highly limited. In this paper, a soft bending sensor is presented. By careful design with a blend of sensitive and insensitive regions, the sensor could be stretchable while being insensitive to stretching. An analytical study was presented on how to design the sensor with the named bending/stretching feature. This feature enables the sensor to be implemented in measuring human motions where a large amount of skin stretch is involved. Two sensor gloves were designed and fabricated based on the proposed soft bending sensor, aiming for different application scenarios. Both the sensor and the gloves were evaluated using a dedicated evaluation platform with experimental results compared against each other.

  13. Bending of multiwalled carbon nanotubes over gold lines

    NASA Astrophysics Data System (ADS)

    Walkeajärvi, T.; Lievonen, J.; Ahlskog, M.; Åström, J.; Koshio, A.; Yudasaka, M.; Iijima, S.

    2005-11-01

    We have investigated an experimentally moderate bending of multiwalled carbon nanotubes (MWNTs) in the perpendicular direction from flat substrates. The tubes were in the diameter range of 3-13nm and deposited over lithographically fabricated gold lines whose height determined the total bending. In our model for the bending profile we take into account the van der Waals attraction between the substrate and the MWNT and the opposing elastic bending force. With reasonable parameters for the competing forces we obtain an agreement between the model and the experimental data for the critical distance between two adjacent lines when the van der Waals attraction can no longer prevent elastic forces from straightening the tube to a suspended position between the lines. However, for the smallest nanotubes a simple classical model is clearly insufficient.

  14. Plastic optical fibre sensor for spine bending monitoring

    NASA Astrophysics Data System (ADS)

    Zawawi, M. A.; O'Keeffe, S.; Lewis, E.

    2013-06-01

    This paper presents a study on the application of plastic optical fibre for spine bending monitoring based on an intensity modulation. The bending angle is measured as the angle between the emitting and receiving fibres is changed. The measured light attenuation is compared with a theoretical evaluation and the differences between these values are discussed. It was found that the light attenuation for the light intensity agreed well (margin of error < 15%) with the theoretical value for the range between 180° (representing no bend) and 200° and it was significantly increased for the bending angle beyond that value due to the effect of fibre gap increment which resulted in a less reliable experimental estimation.

  15. VIEW OF NORTHWEST BEND IN BIRCH CIRCLE. VIEW FACING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHWEST BEND IN BIRCH CIRCLE. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  16. Magnetostrictive bending micro-actuator using iron gallium-alloy

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki; Higuchi, Toshiro

    2007-04-01

    We investigate a micro bending actuator based on unimorph, lamination of Galfenol (Iron-gallium alloy) and non-magnetic material. Galfenol C-shape yoke bonded with stainless plates (lamination) is wound coils, and is composed close magnetic loop with connected an iron plate. The magnetostriction in longitude direction is constrained by the stainless, thus, the laminations yield bending deformation with the current flowing. The advantage of the actuator is simple, compact and ease of assembling including winding coil, and high tolerance against bending, tensile and impact. We machined the yoke from a plate of 1mm thickness of polycrystalline Galfenol (Fe 81.4Ga 18.6 Research grade) using ultra high precision cutting technique. The prototype, thickness of 1mm and length of 10mm, was observed the displacement 13μm and 1st resonance at 1.6 kHz, and the high bending (tensile) tolerance withstanding suspended weight of 500g.

  17. The Stabilizing Effect of Bending-Under-Tension

    SciTech Connect

    Emmens, W. C.; Boogaard, A. H. van den

    2011-05-04

    A well know effect is that work hardening can stabilize tension processes, as can be shown by the so-called maximum force condition. It is not well known that bending-under-tension can have a similar effect, namely that it can create a situation where the tension force increases with elongation therefore stabilizing the process. This happens in situations where the bending is so severe that the fibers at the inner side are in compression. This mechanism is explained. In cases where the bending radius is constant, for example determined by a tool, the created stable elongation is proportional to the thickness of the material. In cases where the radius is not constant but results from an equilibrium between pulling force and bending moment the situation is more complex. The situations are analyzed by a simple model and successfully verified with experimental results.

  18. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  19. Research on wood bending in a macrosonic field

    NASA Technical Reports Server (NTRS)

    Filipovici, J.; Mihai, D.; Mihai, S.; Dragan, O.; Ciovica, S.

    1974-01-01

    Woodworking often requires the wood to be bent into different shapes. In view of the fact that macrosonic waves compress and expand the medium through which they are being propagated we assumed that wood subjected to the action of these waves during the bending process would have enhanced plasticity as a result of the loosening-up that takes place in it, as well as of the reduction in effort. To this effect, the bending of wood plasticized in a macrosonic field was studied. This bending took place under good conditions, and structural analyses conducted with the aid of an electron microscope proved initial premises to be corrent. Applied on an industrial scale, this procedure would contribute to improving the technology of wood bending as well as to eliminating factory spoilage.

  20. 9. NORTH SIDE, FROM A BOAT. THE TWO BENDING SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NORTH SIDE, FROM A BOAT. THE TWO BENDING SHOP AND OVEN BUILDINGS ARE VISIBLE AT THE RIGHT. - United Engineering Company Shipyard, Engineering Building, 2900 Main Street, Alameda, Alameda County, CA

  1. Stress Analysis and Fracture in Nanolaminate Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.

  2. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    PubMed

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees.

  3. Bending strength studies on hot-pressed silicon carbide

    NASA Technical Reports Server (NTRS)

    Kriegesmann, J.

    1984-01-01

    The 4-point bending strength of 4 grades of hot-pressed SiC was determined at different temperatures. With a transgranular mode of fracture the values for bending strength are retained up to high temperatures. For intergranular fracture the decrease of strength is governed by subcritical crack growth. The intergranular fracture is caused by a high content of silicate glassy phase at the grain boundaries of hot-pressed SiC.

  4. Bending effect on fiber acousto-optic mode coupling.

    PubMed

    Zhao, Jianhui; Liu, Xiaoming; Wang, Yan; Luo, Ye

    2005-08-20

    The acousto-optic effect in a bent fiber is studied experimentally and numerically by using the scalar finite-element method. The resulting transmission spectra show that new mode-coupling peaks appear due to the breaking of the mode spatial symmetry. The strength of new peaks increases as the fiber-bending curvature increases with a redshift or blueshift in wavelength, strongly depending on the orientation of fiber bending with respect to the acoustic-wave vibration direction.

  5. Theory of bending waves with applications to disk galaxies

    SciTech Connect

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  6. Fatigue strength of tubular structural elements at bending vibrations. Communication 2: TSE fatigue strength at programmed load variation

    NASA Astrophysics Data System (ADS)

    Gerasimchuk, O. N.; Gorodetskij, S. S.; Gryaznov, B. A.; Nalimov, Yu. S.

    1994-04-01

    Programs of a block loading with a prescribed and random alternation of stress amplitudes, simulating service load spectra, are presented. The results of fatigue testing of straight and bent tubular structural elements are given. A conclusion is drawn that low fatigue strength of VNS25 steel bent TSEs is due to an unfavorable technological inheritance of the tube bending and deplanation of the section during the test.

  7. Deformation and strength of silica fibers in three-point bending in consideration of nonlinear elasticity of glass

    NASA Astrophysics Data System (ADS)

    Baikova, L. G.; Pesina, T. I.; Mansyrev, E. I.; Kireenko, M. F.; Tikhonova, L. V.

    2017-01-01

    We consider the problem of asymmetric strain and stress distribution in silica fiber under threepoint bending. The parameters of nonlinear elasticity of silica glass under tension and compression are estimated using available data from the literature. It has been found that consideration of the nonlinear elasticity of silica glass leads to a slight increase in the calculated values of strength compared to the data obtained from estimates based on the linear theory of elasticity.

  8. Tectonic stress - Models and magnitudes

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Bergman, E. A.; Richardson, R. M.

    1980-01-01

    It is shown that global data on directions of principal stresses in plate interiors can serve as a test of possible plate tectonic force models. Such tests performed to date favor force models in which ridge pushing forces play a significant role. For such models the general magnitude of regional deviatoric stresses is comparable to the 200-300 bar compressive stress exerted by spreading ridges. An alternative approach to estimating magnitudes of regional deviatoric stresses from stress orientations is to seek regions of local stress either demonstrably smaller than or larger than the regional stresses. The regional stresses in oceanic intraplate regions are larger than the 100-bar compression exerted by the Ninetyeast Ridge and less than the bending stresses (not less than 1 kbar) beneath Hawaii.

  9. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  10. Bending of Light in Modified Gravity at Large Distances

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-01-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric

  11. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  12. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  13. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  14. Microelectromechanical systems contact stress sensor

    DOEpatents

    Kotovsky, Jack

    2007-12-25

    A microelectromechanical systems stress sensor comprising a microelectromechanical systems silicon body. A recess is formed in the silicon body. A silicon element extends into the recess. The silicon element has limited freedom of movement within the recess. An electrical circuit in the silicon element includes a piezoresistor material that allows for sensing changes in resistance that is proportional to bending of the silicon element.

  15. Stress Analysis of Circular Frames

    NASA Technical Reports Server (NTRS)

    Fahlbusch, H; Wegner, W

    1941-01-01

    The stresses in circular frames of constant bending stiffnesses, as encountered in thin-wall shells, are investigated from the point of view of finite depth of sectional area of frame. The solution is carried out for four fundamental load conditions. The method is illustrated on a worked out example.

  16. Gila Bend AAF, Gila Bend, Arizona, Revised Uniform Summary of Surface Weather Observations (RUSSWO).

    DTIC Science & Technology

    1975-12-23

    following summaries are included for this statin : PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN...CONDITIONS 03148 GILA BEND AAF ARILFINA b9-70,72-75 APR STATIN STATION NAME YEARS PERCENTAGE FREQUENCY O1 UCCURRENCF OF WEATH4ER CUNDITIONS FRUM HOURLY...00.0 000 00.0 O 0.000.0 00.0 .00~ 0 00. 00.0r oooou .00.0 00.,0 00.0) 9ou h 9908--99,90010 00o.o .00 .00.3 00.010* .00.0 10 1ioio~ co - 00.0 Poll.001

  17. Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kaza, K. R. V.

    1976-01-01

    The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.

  18. An analytical and experimental investigation of edge delamination in laminates subjected to tension, bending, and torsion

    NASA Technical Reports Server (NTRS)

    Chan, Wen S.

    1989-01-01

    An integrated two-dimensional finite element was developed to calculate interlaminar stresses and strain energy release rates for the study of delamination in composite laminates subjected to uniaxial tension, bending, and torsion loads. Addressed are the formulation, implementation, and verification of the model. Parametric studies were conducted on the effect of Poisson's ratio mismatch between plies and the stacking sequence on interlaminar stress, and on the effect of delamination opening height and delamination length, due to bending, on strain energy release rate for various laminates. A comparison of strain energy release rates in all-graphite and graphite/glass hybrid laminates is included. The preliminary results of laminates subjected to torsion are also included. Fatigue tension tests were conducted on Mode 1 and mixed mode edge-delamination coupons to establish the relationship between fatigue load vs. onset of delamination cycle. The effect on the fatigue delamination onset of different frequencies (1 and 5 Hz) was investigated for glass, graphite,and their hybrid laminates. Although a 20 percent increase in the static onset-of-delamination strength and a 10 percent increase in ultimate strength resulted from hybridizing the all-graphite laminate with a 90 deg glass ply, the fatigue onset is lower in the hybrid laminate than in the all-graphite laminate.

  19. Resistance of three-layered structures to static and cyclic bending

    NASA Astrophysics Data System (ADS)

    Bareishis, I. P.; Mikul'skas, A. V.; Paulauskas, V. V.

    1987-09-01

    The above studies of two types of three-layer structural elements showed that the types have different resistances to static deformation in bending. Regardless of the materials, the use of structures which are symmetrical in regard to stiffness makes it possible to obtain a stiffness and strength for the structure which are 10-15% lower than the stiffness and strength of the external plates if the thickness of the latter does not account for more than 25% of the thickness of the structure. This finding, in turn, permits a substantial reduction in the weight of the structure by the use of a lower-density material for the internal layer. Resistance to static bending is determined mainly by the resistance of the structure to shear stresses. The mechanism of fatigue fracture differs appreciably from the fracture mechanism in static deformation. Regardless of the thickness of the structural elements, fatigue fracture for both types of structure occurs as a result of the acting normal compressive stresses. The endurance limit of the hybrid structure is determined by the fatigue resistance of the external layers, and its value is nearly equal to the resistance of the "pure" materials.

  20. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-09-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  1. Large-displacement structural durability analyses of simple bend specimen emulating rocket nozzle liners

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    1994-06-01

    Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.

  2. Molecular Mechanics of the α-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior

    PubMed Central

    Golji, Javad; Collins, Robert; Mofrad, Mohammad R. K.

    2009-01-01

    α-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, α-actinin can retain conformation, function, and strength. α-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the α-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the α-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the α-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the α-actinin rod domain. PMID:19436721

  3. Self-crumpling elastomers: bending motion induced by a drying stimulus

    NASA Astrophysics Data System (ADS)

    Boulogne, François; Stone, Howard A.

    2014-11-01

    Capillary forces exerted by a liquid drop can bend elastic slender structures such as fibers or sheets. However, to successfully achieve capillary origami with sheets, it is important to make sure that the adhesion of the elastomer with the surface is low. We report an experimental study of the drying-induced peeling of a bilayer consisting of an elastomeric disk coated with a suspension of nanoparticles. We show that where capillary forces associated with the scale of the droplet can not compete with the adhesion of the elastomer on a surface, nevertheless large tensile stress developed in the coating, which resulted in a moment bending the bilayer. We attribute this stress to the nano-menisci in the pores of the colloidal material and we propose a model that describes successfully the early stage curvature of the bilayer. Thus, we show that the peeling can be conveniently controlled by the particle size and the coating thickness. We believe that such systems can be employed in various situations where delicate surfaces are involved such as in applications with optical and electronic components or in restoration of photographies, painting, wallpaper, fragile collectibles from contamination by dust, pollen, dirt, etc. The research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement 623541.

  4. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  5. Self-crumpling elastomers: Bending induced by the drying stimulus of a nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Boulogne, F.; Stone, H. A.

    2014-10-01

    We report an experimental study of the drying-induced peeling of a bilayer, consisting of an elastomeric disk coated with a suspension of nanoparticles. We show that although capillary forces associated with the scale of the droplet cannot compete with the adhesion of the elastomer on a surface, large tensile stresses develop in the coating, which results in a moment bending the bilayer. We attribute this stress to the nano-menisci in the pores of the colloidal material and we propose a model that describes successfully the early-stage curvature of the bilayer. Thus, we show that the peeling can be conveniently controlled by the particle size and the coating thickness.

  6. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.

    PubMed

    Kim, Jihye; You, Jae Bem; Nam, Sung Min; Seo, Sumin; Im, Sung Gap; Lee, Wonhee

    2017-03-29

    Flexible microfluidic system is an essential component of wearable biosensors to handle body fluids. A parylene-based, thin-film microfluidic system is developed to achieve flexible microfluidics with microscale bending radius. A new molding and bonding technique is developed for parylene microchannel fabrication. Bonding with nanoadhesive layers deposited by initiated chemical vapor deposition (iCVD) enables the construction of microfluidic channels with short fabrication time and high bonding strength. The high mechanical strength of parylene allows less channel deformation from the internal pressure for the thin-film parylene channel than bulk PDMS channel. At the same time, negligible channel sagging or collapse is observed during channel bending down to a few hundreds of micrometers due to stress relaxation by prestretch structure. The flexible parylene channels are also developed into a rollable microfluidic system. In a rollable microfluidics format, 2D parylene channels can be rolled around a capillary tubing working as inlets to minimize the device footprint. In addition, we show that creating reconfigurable 3D channel geometry with microscale bending radius can lead to tunable device function: tunable Dean-flow mixer is demonstrated using reconfigurable microscale 3D curved channel. Flexible parylene microfluidics with microscale bending radius is expected to provide an important breakthrough for many fields including wearable biosensors and tunable 3D microfluidics.

  7. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  8. Model for photoinduced bending of slender molecular crystals.

    PubMed

    Nath, Naba K; Pejov, Ljupčo; Nichols, Shane M; Hu, Chunhua; Saleh, Na'il; Kahr, Bart; Naumov, Panče

    2014-02-19

    The growing realization that photoinduced bending of slender photoreactive single crystals is surprisingly common has inspired researchers to control crystal motility for actuation. However, new mechanically responsive crystals are reported at a greater rate than their quantitative photophysical characterization; a quantitative identification of measurable parameters and molecular-scale factors that determine the mechanical response has yet to be established. Herein, a simple mathematical description of the quasi-static and time-dependent photoinduced bending of macroscopic single crystals is provided. This kinetic model goes beyond the approximate treatment of a bending crystal as a simple composite bilayer. It includes alternative pathways for excited-state decay and provides a more accurate description of the bending by accounting for the spatial gradient in the product/reactant ratio. A new crystal form (space group P21/n) of the photoresponsive azo-dye Disperse Red 1 (DR1) is analyzed within the constraints of the aforementioned model. The crystal bending kinetics depends on intrinsic factors (crystal size) and external factors (excitation time, direction, and intensity).

  9. How do spin waves pass through a bend?

    PubMed Central

    Xing, Xiangjun; Yu, Yongli; Li, Shuwei; Huang, Xiaohong

    2013-01-01

    Spin-wave devices hold great promise to be used in future information processing. Manipulation of spin-wave propagation inside the submicrometer waveguides is at the core of promoting the practical application of these devices. Just as in today's silicon-based chips, bending of the building blocks cannot be avoided in real spin-wave circuits. Here, we examine spin-wave transport in bended magnonic waveguides at the submicron scale using micromagnetic simulations. It is seen that the impact of the bend is relevant to the frequency of the passing spin wave. At the lowest frequencies, the spin wave continuously follows the waveguide in the propagation process. At the higher frequencies, however the bend acts as a mode converter for the passing spin wave, causing zigzag-like propagation path formed in the waveguide behind the bend. Additionally, we demonstrate a logic-NOT gate based on such a waveguide, which could be combined to perform logic-NAND operation. PMID:24129823

  10. Seismic Reflection Imaging of Subduction Bending-Related Faults at Cascadia

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Gibson, J. C.; Canales, J. P.; Nedimovic, M. R.

    2014-12-01

    The hydration state of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes at Cascadia, yet is poorly known. As oceanic plates subduct, faults develop at the outer rise due to flexural bending and have been shown to facilitate plate hydration near the trench. We present pre-stack time migrated (PSTM) images of two cross-plate transects offshore Oregon and Washington to characterize faulting within the Juan de Fuca Plate. Basement faulting evident from vertical offsets in the sediment section is observed as far as 200 km seaward of the deformation front, and may result from complex intraplate stresses within the JdF plate. Along the Oregon margin, bright fault plane reflections within the crust are observed beginning ~40 km seaward of the deformation front. They are sparsely spaced, form in conjugate pairs, and cut completely through the crust. We suggest they are related to plate bending. Within the same region, a set of mantle reflections, possibly originating from the continuations at depth of some of the crustal faults, extend as deep as ~6 km beneath the Moho. The waveforms of the fault plane reflections vary with depth, implying variation of the internal structure and/or pore fluid pressure within the fault zones. Along the Washington margin, densely spaced faults that may be bending-related are confined to the upper and middle crust and most of them are seaward dipping. Mantle reflections are not observed on this transect. In the lower crust, a set of dipping events is imaged, they are spaced at 1-2 km, dip ~ 30° towards the ridge and shoal into the Moho reflection. The crust in which these reflections are observed is 6-8 Ma old. Lower crustal reflections with similar characteristics are also observed in crust of same age on our Oregon transect, suggesting they are related to accretionary processes at the JdF Ridge during this time period. We conclude that different faulting patterns at Oregon and Washington margin result

  11. Effect of bend separation distance on the mass transfer in back-to-back pipe bends arranged in a 180° configuration

    NASA Astrophysics Data System (ADS)

    Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.

    2016-12-01

    The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.

  12. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light.

  13. Real-time resilient focusing through a bending multimode fiber.

    PubMed

    Caravaca-Aguirre, Antonio M; Niv, Eyal; Conkey, Donald B; Piestun, Rafael

    2013-05-20

    Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micro-mirror device controlled by a field programmable gate array. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

  14. Flood characteristics of the Buffalo River at Tyler Bend, Arkansas

    USGS Publications Warehouse

    Neely, Braxtel L.

    1987-01-01

    The Buffalo River is located in the Ozark Mountains in north-central Arkansas. Tyler Bend is on the Buffalo River about 1.5 miles upstream from U.S. Highway 65. The National Park Service is developing several recreational park sites along this scenic river. The magnitude, frequency, duration and velocities of floods are primary factors needed for establishing guidelines for developing facilities and managing park sites. The Park Service plans to develop park facilities at Tyler Bend and needs flood information at this site. This report provides information on the 100-, 75-, 50-, 30-, 20-, 10-, and 5-year floods on the Buffalo River at Tyler Bend. It was prepared by the U.S. Geological Survey in cooperation with the National Park Service and is based on data collected during the December 1982 flood, gaging station data for the Buffalo River near St. Joe, Arkansas and a Statewide flood-frequency report. (Lantz-PTT)

  15. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    DOE PAGES

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less

  16. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  17. Single crystal plasticity with bend-twist modes

    NASA Astrophysics Data System (ADS)

    Elkhodary, Khalil I.; Bakr, Mohamed A.

    2015-06-01

    In this work a formulation is proposed and computationally implemented for rate dependent single crystal plasticity, which incorporates plastic bend-twist modes that arise from dislocation density based poly-slip mechanisms. The formulation makes use of higher order continuum theory and may be viewed as a generalized micromechanics model. The formulation is then linked to the burgers and Nye tensors, showing how their material rates are derivable from a newly proposed third-rank tensor Λp, which incorporates a crystallographic description of bend-twist plasticity through selectable slip-system level constitutive laws. A simple three-dimensional explicit finite element implementation is outlined and employed in three simulations: (a) bi-crystal bending; (b) tension on a notched single crystal; and (c) the large compression of a microstructure to induce the plastic buckling of secondary phases. All simulation are transient, for computational expediency. The results shed light on the physics resulting from dynamic inhomogeneous plastic deformation.

  18. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    SciTech Connect

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; Reinke, C. M.; Leseman, Z. C.; El-Kady, I.

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design process for an engineered 90° bend PnC waveguide from inception to experimental demonstration.

  19. Two-point bend studies of glass fibers

    NASA Astrophysics Data System (ADS)

    Tang, Zhongzhi

    The principal objective of this research is to advance our understanding of how glass breaks. Glass, a material well known for its brittleness, has been used widely but within a frustrating limit of its strength. Generally, strength is not considered as an intrinsic property of glass, due to the difficulty of avoiding the presence of flaws on the sample surface. The fiber drawing system and two-point bending (TPB) equipment developed at Missouri S&T allow the fabrication of pristine glass fibers and failure strain measurements while minimizing the effects of strength limiting critical flaws. Several conditions affect the failure behavior of glasses, including glass composition, thermal history of melts and environmental conditions during the failure tests. Understanding how these conditions affect failure helps us understand how glass fails. In this dissertation, failure strains for many different silicate and borate glasses were measured under a variety of experimental conditions. Failure stresses for various silicate glasses were calculated using values of the nonlinear elastic moduli reported in the literature. Inert intrinsic strengths for alkali silicate glasses were related to the structure and corresponding bond strengths, and the dependence of the inert strengths on faceplate velocity is discussed. Inert failure strains were also obtained for sodium borate glasses. Up to ˜40% failure strain was measured for vitreous B2O 3. The addition of soda to boron oxide increases the dimensionality and connectivity of the glass structure and hence increases its resistance to deformation, as was observed in elasticity and brittleness measurements reported in the literature. The increase in deformation resistance produces lower failure strains, a behavior also seen for alkali silicate and aluminosilicate glasses where the reduction of non-bridging oxygen increases the structure stiffness and leads to lower inert failure strain. Fatigue effects on silicate glasses were

  20. Strong bending of purple membranes in the M-state.

    PubMed

    Porschke, Dietmar

    2003-08-15

    Structure changes of purple membranes during the photocycle were analysed in solution by measurements of the electric dichroism. The D96N-mutant was used to characterize the M-state at neutral pH. The transition from the resting state to 61% photo-stationary M-state is associated with a strong reduction of the dichroism decay time constant by a factor of approximately 2. Because the change of the time constant is independent of the bacteriorhodopsin concentration, the effect is not attributed to light-induced dissociation but to light-induced bending of purple membranes. After termination of light-activation the dichroism decay of the resting state is restored with a time constant close to that of the M-state decay, which is more than two orders of magnitude slower than proton transfer to the bulk. Thus, bending is not due to asymmetric protonation but to the structure of the M-state. A very similar reduction of decay time constants at a corresponding degree of light-activation was found for wild-type bacteriorhodopsin at pH-values 7.8-9.3, where the lifetime of the M-state is extended. Light-induced bending is also reflected in changes of the stationary dichroism, whereas the overall permanent dipole moment remains almost constant, suggesting compensation of changes in molecular and global contributions. Bead model simulations indicate that disks of approximately 1 microm diameter are bent at a degree of photo-activation of 61% to a radius of approximately 0.25 microm, assuming a cylindrical bending modus. The large light-induced bending effect is consistent with light-induced opening of the protein on the cytoplasmic side of the membrane detected by electron crystallography, which is amplified due to coupling of monomers in the membrane. Bending may function as a mechanical signal.

  1. Bending of light in modified gravity at large distances

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-04-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.

  2. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  3. How protein-making machine bends without breaking

    SciTech Connect

    2011-01-01

    Scientists from several institutions including the U.S. Department of Energy's Lawrence Berkeley National Laboratory. They derived atomic-scale resolution structures of the cell's protein-making machine, the ribosome, at key stages of its job. The ability to bend but not break comes from this hinge within transfer RNA, which allows it to bend as much as 70 degrees when it passes through the ribosome during protein synthesis. The structures, developed primarily at Berkeley Lab's Advanced Light Source, reveal that the ribosome's ability to rotate an incredible amount without falling apart is due to the never-before-seen springiness of molecular widgets that hold it together.

  4. Bending of solitons in weak and slowly varying inhomogeneous plasma

    SciTech Connect

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  5. Note: Bending compliances of generalized symmetric notch flexure hinges.

    PubMed

    Lobontiu, Nicolae

    2012-01-01

    The bending compliances of generalized notch flexure hinges with transverse or transverse-and-axial symmetry are studied in two particular reference frames. For an end-point reference frame, the cross compliance and the rotary compliance are proportional. When the reference frame is placed at the flexure's midpoint, the cross compliance is zero. The translatory and rotary compliances of only half the flexure hinge are sufficient to calculate the overall compliances of a transverse-symmetry flexure configuration. Similarly, the overall bending compliances of a flexure hinge with transverse-and-axial symmetry require prior calculation of the translatory and rotary compliances of a quarter flexure solely.

  6. Transient coherent synchrotron radiation in magnetic bending systems

    SciTech Connect

    Li, R.; Bohn, L; Bisognano, J.J.

    1996-08-01

    Transient evolution of the power radiated coherently by a charged- particle bunch orbiting between two infinite, parallel conducting plates is calculated. The plates comprise an idealized vacuum pipe in a bending magnet. The bunch moves on a trajectory such that it suddenly diverts from a straight-line path to a circular orbit and begins radiating. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. The effect of the radiation field on beam emittance in a magnetic bending system is also quantified. 18 refs., 1 fig.

  7. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    SciTech Connect

    Gibert, Ivan; Kiseleva, Svetlana Popova, Natalya Koneva, Nina Kozlov, Eduard

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  8. Flexible wings and fins: bending by inertial or fluid-dynamic forces?

    PubMed

    Daniel, Thomas L; Combes, Stacey A

    2002-11-01

    Flapping flight and swimming in many organisms is accompanied by significant bending of flexible wings and fins. The instantaneous shape of wings and fins has, in turn, a profound effect on the fluid dynamic forces they can generate, with non-monotonic relationships between the pattern of deformation waves passing along the wing and the thrust developed. Many of these deformations arise, in part, from the passive mechanics of oscillating a flexible air- or hydrofoil. At the same time, however, their instantaneous shape may well emerge from details of the fluid loading. This issue-the extent to which there is feedback between the instantaneous wing shape and the fluid dynamic loading-is core to understanding flight control. We ask to what extent surface shape of wings and fins is controlled by structural mechanics versus fluid dynamic loading. To address this issue, we use a combination of computational and analytic methods to explore how bending stresses arising from inertial-elastic mechanisms compare to those stresses that arise from fluid pressure forces. Our analyses suggest that for certain combinations of wing stiffness, wing motions, and fluid density, fluid pressure stresses play a relatively minor role in determining wing shape. Nearly all of these combinations correspond to wings moving in air. The exciting feature provided by this analysis is that, for high Reynolds number motions where linear potential flow equations provide reasonable estimates of lift and thrust, we can finally examine how wing structure affects flight performance. Armed with this approach, we then show how modest levels of passive elasticity can affect thrust for a given level of energy input in the form of an inertial oscillation of a compliant foil.

  9. Characterization of bending CD errors induced by resist trimming in 65 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Gu, Yiming; Friedmann, James B.; Ukraintsev, Vladimir; Zhang, Gary; Wolf, Thomas; Lii, Tom; Jackson, Ricky

    2007-03-01

    Resist trimming is a technique that is often used to close the gap between line widths which can be repeatedly printed with currently available lithography tools and the desired transistor gate length. For the 65-nm node, the resist line width delivered at pattern is between 60 to 70 nm while the final transistor gate length is usually targeted between 35 to 45 nm. The 15 to 35 nm critical dimension (CD) difference can be bridged by resist trimming. Due to the stringent gate CD budget, a resist trimming process should ideally have the following characteristics: i) no degradation in CD uniformity; ii) no damage in pattern fidelity; iii) controllable CD trim rate with good linearity; and iv) no degradation in line edge roughness (LER) or line width roughness (LWR). Unfortunately, a realistic resist trimming process is never perfect. In particular, resist consumption and the resultant internal stress build-up during resist trimming can lead to resist line bending. The effect of bent resist lines is a higher post-etch CD and significantly degraded local CD uniformity (LCDU). In order to reduce resist bending CD errors (defined as the difference between the post-etch CD and the design CD due to resist bending after trimming) several useful procedures either in layout or in processes are presented. These procedures include: i) symmetrically aligning gates to contact pads and field connecting poly in the circuit layout; ii) enlarging the distance between contact pad (or field connecting poly) to active area within the limits of the design rules (DR) and silicon real estate; iii) adding assist features to the layout within the DR limits; iv) minimizing resist thickness; and v) applying special plasma cure before resist trim.

  10. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  11. Stress-enhanced corrosion of boiler tubing

    SciTech Connect

    Esmacher, M.J.

    1987-05-01

    Five case histories are presented on the effect of residual stresses (from fabrication or welding) on the waterside corrosion performance of carbon steel boiler tubing. Specifically, cases are reviewed in which tube swaging or tube bending operations (producing high forming stresses in deformed zones) resulted in the formation of stress-enhanced corrosion cells. In addition, the phenomenon of accelerated corrosion in welded support zones, membrane-welded panel sections, and weld-repaired areas is discussed.

  12. Preliminary survey of the mayflies (Ephemeroptera) and caddisflies (Trichoptera) of Big Bend Ranch State Park and Big Bend National Park

    PubMed Central

    Baumgardner, David E.; Bowles, David E.

    2005-01-01

    The mayfly (Insecta: Ephemeroptera) and caddisfly (Insecta: Trichoptera) fauna of Big Bend National Park and Big Bend Ranch State Park are reported based upon numerous records. For mayflies, sixteen species representing four families and twelve genera are reported. By comparison, thirty-five species of caddisflies were collected during this study representing seventeen genera and nine families. Although the Rio Grande supports the greatest diversity of mayflies (n=9) and caddisflies (n=14), numerous spring-fed creeks throughout the park also support a wide variety of species. A general lack of data on the distribution and abundance of invertebrates in Big Bend National and State Park is discussed, along with the importance of continuing this type of research. PMID:17119610

  13. Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods

    NASA Astrophysics Data System (ADS)

    Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.

    2015-08-01

    The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.

  14. Mechanical properties of nanocrystalline metals, intermetalics and multiphase materials determined by tension, compression and disk-bend techniques

    SciTech Connect

    Eastman, J.A.; Thompson, L.J.; DiMelfi, R.J.; Choudry, M. Dollar, M.; Weertman, J.R.; Rittner, M.N.; Youngdahl, C.J. /

    1997-02-01

    The mechanical behavior of nanocrystalline metallic, intermetallic, and multiphase materials was investigated using tension, compression, and disk-bend techniques. Nanocrystalline NiAl, Al-Al{sub 3}Zr, and Cu were synthesized by gas condensation and either resistive or electron beam heating followed by high temperature vacuum compaction. Disk- bend tests of nanocrystalline NiAl show evidence of improved ductility at room temperature in this normally extremely brittle material. In contrast, tension tests of multiphase nanocrystalline Al- Al{sub 3}Zr samples show significant increases in strength by substantial reductions in ductility with decreasing grain size. Compression tests of nanocrystalline copper result in substantially higher yield stress and total elongation values than those measured in tensile tests. Implications for operative deformation mechanisms in these materials are discussed.

  15. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  16. Ultrahigh strain-rate bending of copper nanopillars with laser-generated shock waves

    SciTech Connect

    Colorado, H. A.; Navarro, A.; Prikhodko, S. V.; Yang, J. M.; Ghoniem, N.; Gupta, V.

    2013-12-21

    An experimental study to bend FIB-prepared cantilevered single crystal Cu nanopillars of several hundred nanometers in diameter and length at ultrahigh strain rate is presented. The deformation is induced by laser-generated stress waves, resulting in local strain rates exceeding 10{sup 7} s{sup −1}. Loading of nano-scale Cu structures at these extremely short loading times shows unique deformation characteristics. At a nominal stress value of 297 MPa, TEM examination along with selected area electron diffraction characterization revealed that twins within the unshocked Cu pillars interacted with dislocations that nucleated from free surfaces of the pillars to form new subgrain boundaries. MD simulation results were found to be consistent with the very low values of the stress required for dislocation activation and nucleation because of the extremely high surface area to volume ratio of the nanopillars. Specifically, simulations show that the stress required to nucleate dislocations at these ultrahigh strain rates is about one order of magnitude smaller than typical values required for homogeneous nucleation of dislocation loops in bulk copper single crystals under quasi-static conditions.

  17. Fatigue criterion for the design of rotating shafts under combined stress

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1977-01-01

    A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.

  18. Structural constraints on palaeomagnetic rotations south of the Arica Bend, northern Chile: implications for the Bolivian Orocline

    NASA Astrophysics Data System (ADS)

    Scanlan, P. M.; Turner, P.

    1992-04-01

    Palaeomagnetic data from the Central Andean fore-arc appears to support the Bolivian Orocline model, with clockwise rotations to the south, and counter-clockwise rotations to the north of the Arica Bend, respectively. However, counter-clockwise rotations in northernmost Chile extend south of the Arica Deflection, consistent with Mesozoic rotations in southern Peru. This suggests that the Bolivian Orocline model needs to be redefined. We present a palaeomagnetic study of 140 specimens from 15 sites, sampled in Middle Jurassic sediments and volcanics of the Camaraca Formation and in the Upper Jurassic-Lower Cretaceous Cuya Dykes, of northernmost Chile (19.2dgS, 70.3°W). The calculated pole (81.4°S, 354.7°E, α95 = 6.7°), when compared with the Upper Jurassic pole for cratonic South America (89.0°S, 217.1°E, α95 = 4.6°), suggests that the sampled area has undergone a small counter-clockwise rotation of approximately 10°. The change from counter-clockwise to clockwise rotations occurs between 19°S and 23°S and may correspond to a known bend in the Peru-Chile trench. These rotations were probably the result of in-situ block rotation in response to shear. This shear is the result of stresses in the subducted lithosphere, with sinistral shear to the north (counter-clockwise rotations), and relatively larger dextral shear to the south (clockwise rotations) of the bend in the trench, respectively. The amount of shear is reduced in the area of the bend due to contortion of the subducting slab. These stresses resulted due to the shape of the Andean margin rather than as a result of oroclinal bending. The Arica Bend is interpreted as an ancient feature which may have evolved from a hot-spot generated triple-junction rift system. The Velasco Alkaline Province of eastern Bolivia possibly formed the failed-arm of this triple-junction.

  19. Along-fault migration of the Mount McKinley restraining bend of the Denali fault defined by late Quaternary fault patterns and seismicity, Denali National Park & Preserve, Alaska

    NASA Astrophysics Data System (ADS)

    Burkett, Corey A.; Bemis, Sean P.; Benowitz, Jeff A.

    2016-12-01

    The tallest mountain in North America, Denali (formerly Mount McKinley, 6,190 m), is situated inside an abrupt bend in the right-lateral strike-slip Denali fault. This anomalous topography is clearly associated with the complex geometry of the Denali fault, but how this restraining bend has evolved in conjunction with the regional topography is unknown. To constrain how this bend in the Denali fault is deforming, we document the Quaternary fault-related deformation north of the Denali fault through combined geologic mapping, active fault characterization, and analysis of background seismicity. Our mapping illustrates an east-west change in faulting style where normal faults occur east of the fault bend and thrust faults predominate to the west. The complex and elevated regional seismicity corroborates the style of faulting adjacent to the fault bend and provides additional insight into the change in local stress field in the crust adjacent to the bend. The style of active faulting and seismicity patterns define a deforming zone that accommodates the southwestward migration of this restraining bend. Fault slip rates for the active faults north of the Denali fault, derived from offset glacial outwash surfaces, indicate that the Mount McKinley restraining bend is migrating along the Denali fault at a late Pleistocene/Holocene rate of 2-6 mm/yr. Ongoing thermochronologic and structural studies of the Mount McKinley restraining bend will extend these constraints on the migration and evolution of the restraining bend deeper in time and to the south of the Denali fault.

  20. Photoacoustic elastic bending in thin film—Substrate system

    SciTech Connect

    Todorović, D. M.; Rabasović, M. D.; Markushev, D. D.

    2013-12-07

    Theoretical model for optically excited two-layer elastic plate, which includes plasmaelastic, thermoelastic, and thermodiffusion mechanisms, is given in order to study the dependence of the photoacoustic (PA) elastic bending signal on the optical, thermal, and elastic properties of thin film—substrate system. Thin film-semiconductor sample (in our case Silicon) is modeled by simultaneous analysis of the plasma, thermal, and elastic wave equations. Multireflection effects in thin film are included in theoretical model and analyzed. Relations for the amplitude and phase of electronic and thermal elastic bending in the optically excited two-layer mechanically-supported circular plate are derived. Theoretical analysis of the thermodiffusion, plasmaelastic, and thermoelastic effects in a sample-gas-microphone photoacoustic detection configuration is given. Two normalization procedures of the photoacoustic elastic bending signal in function of the modulation frequency of the optical excitation are established. Given theoretical model can be used for various photoacoustic detection configurations, for example, in the study of optical, thermal, and elastic properties of the dielectric-semiconductor or metal-semiconductor structure, etc., Theoretical analysis shows that it is possible to develop new noncontact and nondestructive experimental method—PA elastic bending method for thin film study, with possibility to obtain the optical, thermal, and elastic parameters of the film thinner than 1 μm.

  1. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. Teaching Cultural Geography with "Bend It like Beckham"

    ERIC Educational Resources Information Center

    Algeo, Katie

    2007-01-01

    The British film "Bend It Like Beckham" (2002) is pedagogically useful in the cultural geography classroom for engaging students with core concepts, such as ethnicity, migration, acculturation, and assimilation, and with more advanced modes of analysis, such as the social construction of identity. Although the film depicts a particular…

  3. "A shape bend in the road, showing how the horses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "A shape bend in the road, showing how the horses are hitched in 'blocking.' The remainder of the team has been hitched to the block and tackle." San Joaquin Light and Power Magazine, Vol. I, No. 12, December 1913, p. 553 - Tule River Hydroelectric Complex, CA Highway 190 at North Fork of Middle Fork of Tule River, Springville, Tulare County, CA

  4. Effect of train carbody's parameters on vertical bending stiffness performance

    NASA Astrophysics Data System (ADS)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  5. A Second Look at Brian Simon's "Bending the Rules"

    ERIC Educational Resources Information Center

    Cox, Sue

    2016-01-01

    In this article the author revisits an important book: Brian Simon's "Bending the Rules: the Baker reform of education." Written by a key figure in the history of the journal FORUM as well as in the history of education, Simon's book documented the features of the Education Reform Bill of 1987 (the precursor to the Education Reform Act…

  6. Bend-twist coupling potential of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Berggreen, C.

    2014-06-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.

  7. Extrinsic Michelson interferometric fibre optic sensor with bend insensitive downlead

    NASA Astrophysics Data System (ADS)

    Hand, D. P.; Carolan, T. A.; Barton, J. S.; Jones, J. D. C.

    1993-04-01

    A novel optical arrangement is described for an interferometric optical fibre sensor of the extrinsic type. Based on a Michelson interferometer, it combines a bend insensitive downlead with the availability of antiphase outputs without insertion loss, and provides isolation of the source.

  8. VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ON RIGHT. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  9. Tune shifts due to systematic errors in bend magnets

    SciTech Connect

    Douglas, D.

    1983-12-01

    The presence of systematic error multipoles in bend magnets, persistent currents at low magnet excitation, and saturation effects at high magnet excitation may all lead to tune shifts which could prove detrimental to the operation of the SSC. It is the purpose of this note to report estimates of the magnitude of these tune shifts and the corrector strengths required to circumvent them.

  10. 2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 2932 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  11. On the extent of mantle hydration caused by plate bending

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2017-01-01

    When bent at subduction zones, oceanic plates are damaged by normal faulting, and this bending-related faulting is widely believed to cause deep mantle hydration, down to ∼20-30 km deep. The buoyancy of water (or equivalently, confining pressure), however, makes it difficult to bring water down even if faulting is deep. Extension associated with plate bending generates negative dynamic pressure, but the magnitude of such dynamic pressure is shown to be insufficient to overcome confining pressure. Seismic velocity anomalies that have been used to infer the extent of mantle hydration are reviewed, and it is suggested that small crack-like porosities, which can be produced by thermal cracking and further enhanced by bending-related faulting, is sufficient to explain such velocity anomalies. The presence of such porosities, however, does not necessarily lead to the substantial hydration of oceanic plates because of confining pressure. Whereas the depth extent of bending-generated porosities is uncertain, the theory of thermal cracking can be used to place a lower bound on the amount of water contained in the slab mantle (0.03-0.07 wt% H2O), and this lower bound is suggested to be more than sufficient to explain the lower-plane earthquakes of the double seismic zone by dehydration embrittlement.

  12. Influence of fiber bending and strain on the modal content

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Duparré, Michael; Schröter, Siegmund

    2012-02-01

    Today multimode optical fibers are used to transport and generate high brilliant beams of considerable power. External perturbation of the fiber, e.g., induced by bending or strain, will influence the guided light, i.e., change modal content and beam properties. We present a detailed experimental investigation of fiber bending and strain induced changes of the modal content, based on the Correlation Filter Method that performs a modal decomposition with computer-generated holograms. Using this technique the modal amplitudes and phases can be monitored in real-time, i.e., currently with up to 30 Hz, such that variations in the modal composition can be observed instantaneously. The fast measurement rate can be used for adjustment purposes, e.g., to evaluate quantitatively the change of beam quality with varying bending diameter. We have applied our method to different kinds of multimode fibers such as step-index, photonic crystal and multicore fibers, whereas the results for a step-index and a multicore large mode area fiber are exemplarily presented, including the impact of bending on the beam quality.

  13. Rotary-bending fatigue characteristics of medical-grade Nitinol wire.

    PubMed

    Pelton, A R; Fino-Decker, J; Vien, L; Bonsignore, C; Saffari, P; Launey, M; Mitchell, M R

    2013-11-01

    The rotary bending fatigue properties of medical-grade Nitinol wires were investigated under conditions of 0.5-10% strain amplitudes to a maximum of 10(7) cycles. The results from this study provide insight into the behavior of Nitinol under fully reversed (εmin/εmax=-1) fatigue conditions for three compositions, two surface conditions and three test temperatures. For pseudoelastic conditions there are four distinct regions of the strain-cycle curves that are related to phases (austenite, stress-induced martensite, and R-Phase) and their respective strain accommodation mechanisms. In contrast, there are only two regions for the strain-cycle curves for thermal martensite. It was further observed that the strain amplitude to achieve 10(7)-cycles increases with both decreasing test temperature and increasing transformation temperature. Fatigue behavior was not, however, strongly influenced by wire surface condition. SEM of the fracture surfaces showed that the fatigue fracture area increased with decreasing strain amplitude. Finite element analysis was used to illustrate strain distributions across the wire as well as to calculate the tension-compression contributions to the rotary bending curves. The results from this investigation are discussed with respect to mechanisms of strain accommodation under cyclic tensile and compressive conditions.

  14. Bending strength measurements at different materials used for IR-cut filters in mobile camera devices

    NASA Astrophysics Data System (ADS)

    Dietrich, Volker; Hartmann, Peter; Kerz, Franca

    2015-03-01

    Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.

  15. Experimental and Numerical Analysis of Damage in Woven GFRP Composites Under Large-deflection Bending

    NASA Astrophysics Data System (ADS)

    Ullah, Himayat; Harland, Andy R.; Silberschmidt, Vadim V.

    2012-10-01

    Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes - delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.

  16. Layer model for long-term deflection analysis of cracked reinforced concrete bending members

    NASA Astrophysics Data System (ADS)

    Bacinskas, Darius; Kaklauskas, Gintaris; Gribniak, Viktor; Sung, Wen-Pei; Shih, Ming-Hsiang

    2012-05-01

    A numerical technique has been proposed for the long-term deformation analysis of reinforced concrete members subjected to a bending moment. The technique based on the layer approach in a simple and rational way deals with such complex issues as concrete cracking and tension-stiffening as well as creep and shrinkage. The approach uses the material stress-strain relationships for compressive concrete, cracked tensile concrete and steel. Such effects as linear and nonlinear creep, cracking, tension-stiffening as well as the reduction in concrete tension strength due to sustained loading have been taken into account. The shrinkage effect has been modeled by means of adequate actions of axial force and bending moment. A statistical deflection calculation analysis has been carried out for 322 experimental reinforced concrete beams reported in the literature. The comparative analysis of the experimental and the modeling results has shown that the proposed technique has well captured the time-deflection behavior of reinforced concrete flexural members. The results of the predictions by ACI 318 and Eurocode 2 design codes have been also discussed.

  17. DNA-bend modulation in a repressor-to-activator switching mechanism

    NASA Astrophysics Data System (ADS)

    Ansari, Aseem Z.; Bradner, James E.; O'Halloran, Thomas V.

    1995-03-01

    RECENT discoveries of activator proteins that distort DNA but bear no obvious activation domains have focused attention on the role of DNA structure in transcriptional regulation1. Here we describe how the transcription factor MerR can mediate repression as well as activation through stereospecific modulation of DNA structure. The represser form of MerR binds between the -10 and -35 promoter elements of the bacterial mercury-detoxification genes, PT, allowing RNA polymerase to form an inactive complex with PT and MerR at this stress-inducible promoter2,3. Upon mercuric ion binding, Hg-MerR converts this polymerase complex into the transcriptionally active or 'open' form2-4. We show here that MerR bends DNA towards itself in a manner similar to the bacterial catabolite-activator protein CAP, namely at two loci demarked by DNase I sensitivity, and that the activator conformation, Hg-MerR, relaxes these bends. This activator-induced unbending, when coupled with the previously described untwisting of the operator5, remodels the promoter and makes it a better template for the poised polymerase.

  18. Computational comparison of the bending behavior of aortic stent-grafts.

    PubMed

    Demanget, Nicolas; Avril, Stéphane; Badel, Pierre; Orgéas, Laurent; Geindreau, Christian; Albertini, Jean-Noël; Favre, Jean-Pierre

    2012-01-01

    Secondary interventions after endovascular repair of abdominal aortic aneurysms are frequent because stent-graft (SG) related complications may occur (mainly endoleak and SG thrombosis). Complications have been related to insufficient SG flexibility, especially when devices are deployed in tortuous arteries. Little is known on the relationship between SG design and flexibility. Therefore, the aim of this study was to simulate numerically the bending of two manufactured SGs (Aorfix--Lombard Medical (A) and Zenith--Cook Medical Europe (Z)) using finite element analysis (FEA). Global SG behavior was studied by assessing stent spacing variation and cross-section deformation. Four criteria were defined to compare flexibility of SGs: maximal luminal reduction rate, torque required for bending, maximal membrane strains in graft and maximal Von Mises stress in stents. For angulation greater than 60°, values of these four criteria were lower with A-SG, compared to Z-SG. In conclusion, A-SG was more flexible than Z-SG according to FEA. A-SG may decrease the incidence of complications in the setting of tortuous aorto-iliac aneurysms. Our numerical model could be used to assess flexibility of further manufactured as well as newly designed SGs.

  19. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell H.; Yarin, Alexander L.; Fong, Hao; Koombhongse, Sureeporn

    2000-05-01

    Nanofibers of polymers were electrospun by creating an electrically charged jet of polymer solution at a pendent droplet. After the jet flowed away from the droplet in a nearly straight line, it bent into a complex path and other changes in shape occurred, during which electrical forces stretched and thinned it by very large ratios. After the solvent evaporated, birefringent nanofibers were left. In this article the reasons for the instability are analyzed and explained using a mathematical model. The rheological complexity of the polymer solution is included, which allows consideration of viscoelastic jets. It is shown that the longitudinal stress caused by the external electric field acting on the charge carried by the jet stabilized the straight jet for some distance. Then a lateral perturbation grew in response to the repulsive forces between adjacent elements of charge carried by the jet. The motion of segments of the jet grew rapidly into an electrically driven bending instability. The three-dimensional paths of continuous jets were calculated, both in the nearly straight region where the instability grew slowly and in the region where the bending dominated the path of the jet. The mathematical model provides a reasonable representation of the experimental data, particularly of the jet paths determined from high speed videographic observations.

  20. Numerical Determination of Sheet Metal Formability under Simultaneous Stretching and Bending

    NASA Astrophysics Data System (ADS)

    Martinezhyphen; Lopez, A.; van den Boogaard, A. H.

    2011-01-01

    The plastic behavior of AHSS is still far from being completely understood, and its prediction is of large importance in reliability of forming simulation in present automotive industry [1]. Conventional techniques have been proven to be not accurate enough, and underestimate the formability limits for AHSS materials in cases where stretching and bending are combined. In order to satisfy industrial requirements more work need to be done to understand the formability behavior of sheet metal, and special attention needs to be directed to the possible reasons of the lower predicted formability limits. In previous work [2], experimental results for different materials confirmed the positive effect of bending in terms of formability, and demonstrated the influence of curvature on the FLC is especially clear in the plane strain region. Using conventionally determined FLC could lead to not optimal material consumption during sheet forming operations. For this reason, in this study 3D Finite Element simulations were developed using the commercial code ABAQUS/Standard to investigate further the effect of the out of plane stress, and punch radii for the FLC determination. Also the investigation of the influence of different lubrication systems was accomplished.

  1. Comparison of Bending Fatigue Strength among Spur Gears Manufactured by Various Methods

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masashi; Matsushima, Yu; Miwa, Shinji; Narita, Yukihito; Inoue, Katsumi; Kawasaki, Yoshiki

    This paper deals with an experimental evaluation of bending fatigue strengths for hobbed, forged, sintered and austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The materials of the test gears are SCr420H for hobbed and forged gears, prealloyed powder metal with 1.5 wt.% Mo for sintered gears, and FCAD 1100-15 for ADI gears. All gears except ADI gears were carburized. The pulsator bending fatigue tests were carried out for the test gears. Then the relationship between the strength and the manufacturing cost is obtained. The forged gear has the high strength of 3% and low cost compared with the hobbed gear. It is the best among the four gears. The sintered and ADI gears have approximately half the strength and cost of the hobbed gear. These gears are effective when cost is a high priority. In the progress of the fatigue tests, comparisons of strength among gears having different tooth-root forms were needed. The nominal stress obtained from actual measured profile data using a noncontact-type measuring machine is suitable for comparing the fatigue strength in gears having different root forms.

  2. Applying a potential across a biomembrane: electrostatic contribution to the bending rigidity and membrane instability.

    PubMed

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-05-01

    We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stress-tensor we find (1) in the small screening length limit, where the Debye screening length is smaller than the distance between the electrodes, the screening certifies that all electrostatic interactions are short range and the major effect of the applied potential is to decrease the membrane tension and increase the bending rigidity; explicit expressions for electrostatic contribution to the tension and bending rigidity are derived as a function of the applied potential, the Debye screening lengths, and the dielectric constants of the membrane and the solvents. For sufficiently large voltages the negative contribution to the tension is expected to cause a membrane stretching instability. (2) For the dielectric limit, i.e., no salt (and small wave vectors compared to the distance between the electrodes), when the dielectric constant on the two sides are different the applied potential induces an effective (unscreened) membrane charge density, whose long-range interaction is expected to lead to a membrane undulation instability.

  3. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers.

    PubMed

    Skorobogatiy, Maksim; Saitoh, Kunimasa; Koshiba, Masanori

    2008-09-15

    In the hollow core photonic bandgap fibers, modal losses are strongly differentiated, potentially enabling effectively single mode guidance. However, in the presence of macro-bending, due to mode coupling, power in the low-loss mode launched into a bend is partially transferred into the modes with higher losses, thus resulting in increased propagation loss, and degradation of the beam quality. We show that coupled mode theory formulated in the curvilinear coordinates associated with a bend can describe correctly both the bending induced loss and beam degradation. Suggested approach works both in absorption dominated regime in which fiber modes are square integrable over the fiber crossection, as well as in radiation dominated regime in which leaky modes are not square integrable. It is important to stress that for multimode fibers, full-vectorial coupled mode theory developed in this work is not a simple approximation, but it is on par with such "exact" numerical approaches as finite element and finite difference methods for prediction of macro-bending induced losses.

  4. 77 FR 36012 - PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... layout, to prepare an EIS as part of the review of the Bell Bend COL application. Possible alternatives to the proposed action (issuance of the COL for the BBNPP) include no action, reasonable alternative energy sources, and alternate sites. As set forth in 10 CFR 51.20(b)(2), issuance of a COL under 10...

  5. Architecture, tectonics and subsidence mechanisms of the Focsani Depression - southeastern Carpathians bend

    NASA Astrophysics Data System (ADS)

    Tarapoanca, M.; Bertotti, G.; Matenco, L.; Garcia-Castellanos, D.; Cloetingh, S.; Dinu, C.

    2003-04-01

    -ward tilting coeval with the exhumation of the Carpathians Bend and opening of the intramountain basins to the inner part of the belt. Therefore, the subsidence in FD is split in 2 stages: extension-related (Badenian) and flexure-related (Sarmatian-Quaternary). The modeling results of the former stage reveal a small amount of extension, large EET and intermediate-to-deep depth of necking. The latter subsidence stage is modeled through a 3D static-flexural approach using the present-day topography as the only load. The lateral variation of the strength of the lithospheric domains leads to occurrence of a basin (~3.5 km-deep) in front of the orogenic load in the Carpathians Bend area. An additional load may be provided by the sedimentary fill of the western prolongation of FD, presently buried beneath the Carpathians Bend structures. Also, this basin would explain the exhumation delay of the Bend orogenic wedge (started at ~5-6 Myr ago) as well as the ~400-500 m difference in elevation. Together with the effect of N-S intraplate compressive stress, a ~6.5 km-deep basin is predicted in FD.

  6. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-01-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  7. Bauschinger effect on API 5L B and X56 steel plates under repeating bending load

    NASA Astrophysics Data System (ADS)

    Chandra, Icho Y.; Korda, Akhmad A.

    2017-01-01

    During steel pipe fabrication, hot rolled coil steel will undergo coiling and uncoiling process, where the steel plate is bent repeatedly. When cyclic loading is imposed on steel, tensile and compressive stress will occur in it resulting in softening caused by Bauschinger effect. This research is focused on Bauschinger effect and cyclic loading during coiling and uncoiling process on API 5L B and API 5L X56 steel. Both types of steel were given repeated bend loading with variation in loading cycle and the curvature radius. The steel's response was then observed by using tensile testing, microhardness testing, and microstructure observation. A decrease in yield strength is observed during lower cycles and on smaller radii. After higher loading cycle, the yield strength of the steel was increased. Microhardness testing also reported similar results on the subsurface part of the steel where loading is at its highest.

  8. Comparison of heat transfer measurements with computations for turbulent flow around a 180 deg bend

    NASA Astrophysics Data System (ADS)

    Besserman, D. L.; Tanrikut, S.

    1992-10-01

    Detailed heat transfer measurements for all four walls of a 180-deg 1:1 aspect ratio duct are reported. Experiments using a transient heat transfer technique with liquid crystal thermography were conducted for turbulent flow over a Reynolds number range of 12,500-50,000. Computational results using a Navier-Stokes code are also presented to complement the experiments. Two near-wall shear-stress treatments are evaluated in conjunction with k-epsilon formulation of turbulence to assess their ability to predict high local gradients in heat transfer. Results show that heat transfer on the convex and concave walls is a manifestation of the complex flow field created by the 180-deg bend. For the flat walls, the streamwise average Nusselt number increases approximately two times the fully developed turbulent flow value. The numerical predictions with the two-layer wall integration k-epsilon turbulence model show very good agreement with the experimental data.

  9. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  10. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-04-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  11. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  12. EPA Regional Administrator Highlights the Benefits of Reducing Food Waste in South Bend

    EPA Pesticide Factsheets

    (SOUTH BEND, IND. - November 5, 2015) U.S. Environmental Protection Agency Regional Administrator Susan Hedman joined South Bend Mayor Pete Buttigieg today at Ivy Tech Community College's culinary school to highlight the benefits of diverting food waste fr

  13. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    SciTech Connect

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  14. A hybrid-stress finite element for linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Fly, Gerald W.; Oden, J. Tinsley; Pearson, Mark L.

    1988-01-01

    Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased.

  15. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Luo, S. N.

    2008-12-01

    We propose and validate an indirect tensile testing method to measure the dynamic tensile strength of rocks and other brittle solids: semicircular bend (SCB) testing with a modified split Hopkinson pressure bar (SHPB) system. A strain gauge is mounted near the failure spot on the specimen to determine the rupture time. The momentum trap technique is utilized to ensure single pulse loading for postmortem examination. Tests without and with pulse shaping are conducted on rock specimens. The evolution of tensile stress at the failure spot is determined via dynamic and quasistatic finite element analyses with the dynamic loads measured from SHPB as inputs. Given properly shaped incident pulse, far-field dynamic force balance is achieved and the peak of the loading matches in time with the rupture onset of the specimen. In addition, the dynamic tensile stress history at the failure spot obtained from the full dynamic finite element analysis agrees with the quasistatic analysis. The opposite occurs for the test without pulse shaping. These results demonstrate that when the far-field dynamic force balance is satisfied, the inertial effects associated with stress wave loading are minimized and thus one can apply the simple quasistatic analysis to obtain the tensile strength in the SCB-SHPB testing. This method provides a useful and cost effective way to measure indirectly the dynamic tensile strength of rocks and other brittle materials.

  16. The Strength of PIN-PMN-PT Single Crystals under Bending with a Longitudinal Electric Field

    DTIC Science & Technology

    2011-04-06

    The strength of PIN– PMN – PT single crystals under bending with a longitudinal electric field This article has been downloaded from IOPscience. Please...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Strength Of PIN- PMN - PT Single Crystals Under Bending With A Longitudinal Electric Field... PMN ? PT ) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The

  17. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  18. Analysis of flagellar bending in hamster spermatozoa: characterization of an effective stroke.

    PubMed

    Kinukawa, Masashi; Ohmuro, Junko; Baba, Shoji A; Murashige, Sunao; Okuno, Makoto; Nagata, Masao; Aoki, Fugaku

    2005-12-01

    The mechanism by which flagella generate the propulsive force for movement of hamster spermatozoa was analyzed quantitatively. Tracing points positioned 30, 60, 90, and 120 microm from the head-midpiece junction on the flagellum revealed that they all had zigzag trajectories. These points departed from and returned to the line that crossed the direction of progression. They moved along the concave side (but not the convex side) of the flagellar envelope that was drawn by tracing the trajectory of the entire flagellum. To clarify this asymmetry, the bending rate was analyzed by measuring the curvatures of points 30, 60, 90, and 120 microm from the head-midpiece junction. The bending rate was not constant through the cycle of flagellar bending. The rate was higher when bending was in the direction described by the curve of the hook-shaped head (defined as a principal bend [P-bend]) to the opposite side (R-bend). We measured a lower bending rate in the principal direction (R-bend to P-bend). To identify the point at which the propulsive force is generated efficiently within the cycle of flagellar bending, we calculated the propulsive force generated at each point on the flagellum. The value of the propulsive force was positive whenever the flagellum bent from an R-bend to a P-bend (when the bending rate was lowest). By contrast, the propulsive force value was zero or negative when the flagellum bent in the other direction (when the bending rate was higher). These results indicate that flagellar bending in hamster spermatozoa produces alternate effective and ineffective strokes during propulsion.

  19. Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Gao, J.; Wang, Y.; Viswan, R.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-07-01

    In this paper, we discuss a theoretical model with experimental verification for the resonance enhancement of magnetoelectric (ME) interactions at frequencies corresponding to bending-tension oscillations. A dynamic theory of arbitrary laminated magneto-elasto-electric bars was constructed. The model included bending and longitudinal vibration effects for predicting ME coefficients in laminate bar composite structures consisting of magnetostrictive, piezoelectric, and pure elastic layers. The thickness dependence of stress, strain, and magnetic and electric fields within a sample are taken into account, as such the bending deformations should be considered in an applied magnetic or electric field. The frequency dependence of the ME voltage coefficients has obtained by solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions corresponding to free vibrations at both ends. As a demonstration, our theory for multilayer ME composites was then applied to ferromagnetic-ferroelectric bilayers, specifically Metglas-PZT ones. A theoretical model is presented for static (low-frequency) ME effects in such bilayers. We also performed experiments for these Metglas-PZT bilayers and analyzed the influence of Metglas geometry (length and thickness) and Metglas/PZT volume fraction on the ME coefficient. The frequency dependence of the ME coefficient is also presented for different geometries (length, thickness) of Metglas. The theory shows good agreement with experimental data, even near the resonance frequency.

  20. Prediction of Maximum Moment of Circular Tubes Subjected to Pure Bending in Consideration of the Length Effect

    NASA Astrophysics Data System (ADS)

    Masuda, Kenichi; Chen, Dai-Heng; Ozaki, Shingo; Ushijima, Kuniharu

    In the present study, the bending collapse of an elastoplastic cylindrical tube subjected to static pure bending is investigated using the finite element method (FEM). The moment of the elastoplastic cylindrical tube is controlled by the flattening rate of the tube cross-section. For a long tube, the flattening rate can be expressed in terms of the axial and circumferential stresses that, in turn, depend on the material and geometrical properties and the curvature of the tube. On the other hand, for a short tube, the boundary condition of the fixed walls prevents the flattening rate. In order to account for the length effect of tubes, we propose a new method in which flattening is considered as a deflection problem of a fixed curved beam. The proposed method was able to predict the change in the flattening rate as the curvature was increased. A rational prediction method is proposed for estimating the maximum bending moment of cylindrical tubes that accounts for the length effect. Its validity is demonstrated by comparing it predictions with numerical results obtained using the finite element method.

  1. Fatigue Testing of TBC on Structural Steel by Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Kovarik, Ondrej; Medricky, Jan; Curry, Nicholas; Bjorklund, Stefan; Nylen, Per

    2015-01-01

    For applications with variable loading, fatigue performance of coated parts is of utmost importance. In this study, fatigue performance of conventional structural steel coated with thermal barrier coating (TBC) was evaluated in cyclic bending mode by "SF-Test" device. Testing was carried out at each stage of the TBC preparation process, i.e., for as-received and grit-blasted substrates, as well as for samples with Ni-based bond-coat and complete TBC: bond-coat with YSZ-based top-coat. Comparison of results obtained for different loading amplitudes supplemented by fractographic analysis enabled identification of dominating failure mechanisms and demonstrated applicability of the high-frequency resonant bending test for evaluation of fatigue resistance alteration at each stage of the TBC deposition process.

  2. Enhancement of focusing properties by interfering spatial bending beams

    NASA Astrophysics Data System (ADS)

    Li, Hui; Xu, Yongzheng; Qu, Yu; Zhang, Bin; Wang, Li; Zhang, Zhongyue

    2016-12-01

    In this study, two slits were designed symmetrically on a metal film to excite surface plasmon polaritons (SPPs), and two groups of parallel dielectric rectangles were designed over a metal film to convert the SPPs into double mirror-symmetric spatial bending beams. The high-energy far-field focused beams were achieved by interfering double mirror-symmetric spatial bending beams using the finite-element method The focusing properties of the proposed structure are enhanced compared with the conventional metal grating structures. Furthermore, the effects of the structural parameters on the focusing properties were investigated Results show that the focusing properties of the proposed structure rely on the structural parameters of dielectric rectangles and on the distance between the dielectric rectangles and the metal film. The position of the focusing spot relies on the distance between two slits. These findings can be applied in the fields of biology imaging, nanolithography, optical data storage and photo-biomedical detection.

  3. Directional sliding of histone octamers caused by DNA bending

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye; Li, Wei; Dou, Shuo-Xing; Xie, Ping

    2006-03-01

    Chromatin-remodeling complexes such as SWI/SNF and RSC of yeast can perturb the structure of nucleosomes in an ATP-dependent manner. Experimental results prove that this chromatin remodeling process involves DNA bending. We simulate the effect of DNA bending, caused by chromatin-remodeling complexes, on directional sliding of histone octamers by Brownian dynamics simulation. The simulation results show that, after a DNA loop being generated at the side of a nucleosome, the histone octamer slides towards this DNA loop until the loop disappears. The DNA loop size is an important factor affecting the process of directional sliding of the histone octamer. A model for directional sliding of histone octamers induced by chromatin-remodeling complexes is suggested. (This research was supported by National Natural Science Foundation of China, and the Innovation Project of the Chinese Academy of Sciences.) (Email: pywang@aphy.iphy.ac.cn)

  4. Mechanical bending behaviour of composite T-beams

    NASA Astrophysics Data System (ADS)

    Silva, A.; Travassos, J.; de Freitas, M. M.; Mota Soares, C. M.

    A study of the design and mechanical behavior of co-cured T-beams subjected to very high loading is presented. The T-beams were made by press molding from pre-pregs of uni-directional glass or carbon fiber and glass fabric reinforced high performant epoxy matrix. Each type of beam was instrumented with strain gauges in the web and flange in order to carry out experimental four point bending tests. Analytical and numerical studies were also performed to compare experimental versus numerical and analytical results and to establish the suitability of a simplified bending theory for statically determinate composite beams constructed from laminated composite panels. The maximum carrying loads in the beam layers were evaluated experimentally and analytically using the Tsai-Wu failure criterion. Results showing the suitability of the simplified beam theory are presented and discussed.

  5. Bending and Torsion Load Alleviator With Automatic Reset

    NASA Technical Reports Server (NTRS)

    delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)

    1996-01-01

    A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.

  6. Coupling of CH stretching and bending vibrations in trihalomethanes

    SciTech Connect

    Wong, J.S.; Green, W.H. Jr.; Cheng, C.; Moore, C.B.

    1987-06-01

    The vibrational spectra of HCCl/sub 3/, HCF/sub 3/, HCCl/sub 2/F, and HCClF/sub 2/ have been measured in the vapor from the CH stretching fundamental through to the fifth overtone (i.e., v/sub 1/ = 6, where v/sub 1/ is the number of quanta in the CH stretching mode), using FTIR and photoacoustic spectrometers. Instead of a single strong CH overtone progression, additional strong bands attributable to Fermi-resonant combination tones are prominent in the spectra. The CH stretch is found to be most strongly coupled to the CH bending mode and much less strongly coupled to the heavy atom motions. The resolved band structures are analyzed in the following paper to give quantitative stretch--bend coupling constants for these CH oscillators.

  7. The oroclinal bend in the South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Mortimer, N.

    2014-07-01

    Most of the South Island of New Zealand lies within an Eocene-Recent continental shear zone related to Pacific-Australia plate motion. Macroscopic finite strain in this shear zone has, in the past, been tracked through the deformation of the Dun Mountain Ophiolite Belt. This paper identifies additional sub-vertical basement strain markers including: Buller-Takaka Terrane boundary, Darran Suite and Jurassic volcanic belt within the Median Batholith, Taieri-Wakatipu-Goulter Synform axial trace, Esk Head Melange and bedding form surfaces within the Buller, Takaka and Torlesse terranes. An analysis of the oroclinal bend over the entire Zealandia continent shows that it is a composite feature involving pre- as well as post-Eocene bending of basement structures. Satisfactory paleogeographic reconstructions of Zealandia cannot be made without the use of substantial regional scale, non-rigid intracontinental deformation.

  8. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.

    PubMed

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-22

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.

  9. Negative bending mode curvature via Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Adams, Samuel D. M.; Craster, Richard V.; Guenneau, Sébastien

    2009-06-01

    We examine the band spectrum, and associated Floquet-Bloch eigensolutions, arising in straight walled acoustic waveguides that have periodic structure along the guide. Homogeneous impedance (Robin) conditions are imposed along the guide walls and we find that in certain circumstances, negative curvature of the lowest (bending) mode can be achieved. This is unexpected, and has not been observed in a variety of physical situations examined by other authors. Further unexpected properties include the existence of the bending mode only on a subset of the Brillouin zone, as well as permitting otherwise unobtainable velocities of energy transmission. We conclude with a discussion of how such boundary conditions might be physically reproduced using effective conditions and homogenization theory, although the methodology to achieve these effective conditions is an open problem. To cite this article: S.D.M. Adams et al., C. R. Physique 10 (2009).

  10. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    PubMed Central

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-01

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range. PMID:28117740

  11. Bending Behavior of Structural Glass Laminated With Different Interlayers

    NASA Astrophysics Data System (ADS)

    Serafinavicius, T.; Kvedaras, A. K.; Sauciuvenas, G.

    2013-09-01

    Experimental results on the bending strength of structural laminated glass are presented. Three different interlayer laminates were used: polyvinyl butyric (PVB), ethylene vinyl acetate (EVA), DuPont SentryGlas Plus (SGP), and a 6-mm-thick tempered soda-lime-silica glass. Four-point bending tests up to failure were carried out on test specimens according to the EN 1288-3 standard and deflections at the midspan of the specimens and the sliding displacement between their two structural glass sheets with different types of interlayer laminates were measured. A comparison between experimental results for the resistances of glass composite panels with various interlayers and monolithic glass sheets is presented too.

  12. Electrical bending actuation of gold-films with nanotextured surfaces

    NASA Astrophysics Data System (ADS)

    Kwan, K. W.; Gao, P.; Martin, C. R.; Ngan, A. H. W.

    2015-01-01

    An actuating material system comprising a gold-film with nanotextured surface was fabricated. Using electroless gold plating onto a substrate of porous anodized aluminum oxide, a thin film of gold with a high density of short gold nanofibers on its surface was made. When one end of such a film was connected to an ion generator, bending was achieved upon electrical charging in air. Experiments showed that the free end of an 8 mm film could be displaced by more than 1.6 mm with a bending strain of 0.08%. In contrast with other types of thin-film artificial muscle materials, the present Au-film did not require any electrolyte to function. With the relatively easy fabrication method, this nanotextured film shows promising actuation behavior in air.

  13. OPTIMIZING THE DYNAMIC APERTURE FOR TRIPLE BEND ACHROMATIC LATTICES.

    SciTech Connect

    KRAMER, S.L.; BENGTSSON, J.

    2006-06-26

    The Triple Bend Achromatic (TBA) lattice has the potential for lower natural emittance per period than the Double Bend Achromatic (DBA) lattice for high brightness light sources. However, the DBA has been chosen for 3rd generation light sources more often due to the higher number of undulator straight section available for a comparable emittance. The TBA has considerable flexibility in linear optics tuning while maintaining this emittance advantage. We have used the tune and chromaticity flexibility of a TBA lattice to minimize the lowest order nonlinearities to implement a 3rd order achromatic tune, while maintaining a constant emittance. This frees the geometric sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the TBA as a proposed lattice for NSLS-II facility. The flexibility of the TBA lattice will also provide for future upgrade capabilities of the beam parameters.

  14. Study of Silicon Cantilevers by the Photoacoustic Elastic Bending Method

    NASA Astrophysics Data System (ADS)

    Todorovic, D. M.; Rabasovic, M. D.; Markushev, D. D.; Jovic, V.; Radulovic, K. T.

    2017-03-01

    Rectangular silicon cantilevers are studied by the photoacoustic (PA) elastic bending method. Experimental signals versus modulation frequency of the excitation optical beam are measured and analyzed in a frequency range from 20 Hz to 50 000 Hz. The procedure for experimental signal correction to eliminate the frequency characteristics of the measuring system is given. The corrected experimental signal shows a good correlation with theoretically calculated PA signal at frequencies below 32 000 Hz. The corrected experimental PA elastic bending signals for cantilevers with different thicknesses are analyzed. The experimental results allow identifying the resonant frequency (the first resonant mode) of the cantilever vibrations. These values are in good agreement with the theoretically computed values. A theoretical model of the optically excited Si cantilever is derived, taking into account plasmaelastic, thermoelastic, and thermodiffusion mechanisms. Dynamic relations for the amplitude and phase of electronic and thermal elastic vibrations in optically excited cantilevers are derived. The theoretical model is compared to the experimental results.

  15. The complete bending energy function for nicked DNA

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Zocchi, Giovanni

    2011-04-01

    We derive an analytic expression for the bending elastic energy of short DNA molecules, valid in the entire range from low to high energies. The elastic energy depends on three parameters: the length of the molecule (2L), the bending modulus B, and a critical torque τc at which the molecule develops a kink. In the kinked state, the elastic energy is linear in the kink angle, i.e. the torque at the kink is constant (=τc). τc depends (weakly) on the sequence around the nick, but is about 27 pN×nm. We measure it for a specific sequence, through experiments where the elastic energy of constrained DNA molecules is directly measured.

  16. Bending and buckling behavior analysis of foamed metal circular plate.

    PubMed

    Fan, Jian Ling; Ma, Lian Sheng; Zhang, Lu; De Su, Hou

    2016-07-04

    This paper establishes a density gradient model along the thickness direction of a circular plate made of foamed material. Based on the first shear deformation plate theory, the result is deduced that the foamed metal circular plate with graded density along thickness direction yields axisymmetric bending problem under the action of uniformly distributed load, and the analytical solution is obtained by solving the governing equation directly. The analyses on two constraint conditions of edge radial clamping and simply supported show that the density gradient index and external load may affect the axisymmetric bending behavior of the plate. Then, based on the classical plate theory, the paper analyzes the behavior of axisymmetric buckling under radial pressure applied on the circular plate. Shooting method is used to obtain the critical load, and the effects of gradient nature of material properties and boundary conditions on the critical load of the plate are analyzed.

  17. Bending response of Kevlar 49/epoxy beams and rings

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1988-01-01

    Kevlar 49/epoxy laminates often exhibit substantial material nonlinearity when subjected to bending. A unidirectionally reinforced Kevlar 49 lamina is nearly linear elastic to failure in tension, however, in fiber-directed compression, it responds in a perfectly plastic-like manner once a compressive strength of roughly 20% of its tensile ultimate strength is exceeded. This combined linear tensile/nonlinear compressive behavior is the source of Kevlar 49/epoxy's flexural nonlinearity. Since Kevlar 49 reinforced laminates can often carry bending loads well above those needed to cause initial compressive yield, it is desirable to be able to predict the post-yield flexural response. In this presentation, analyses that utilize a simple idealization of compressive yielding are described and calculated results for Kevlar 49 reinforced beams and rings are compared with available data. 2 refs., 3 figs.

  18. 78 FR 13843 - Proposed Amendment of Class E Airspace; Bend, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Bend, OR AGENCY... action proposes to modify Class E airspace at Bend, OR to accommodate aircraft departing and arriving under Instrument Flight Rules (IFR) at Bend Municipal Airport. This action would enhance the safety...

  19. 75 FR 67095 - Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife Refuge, Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Fish and Wildlife Service Charles M. Russell National Wildlife Refuge and UL Bend National Wildlife... Charles M. Russell and UL Bend National Wildlife Refuges (NWRs, Refuges) in Montana for public review and... the draft CCP and EIS for Charles M. Russell NWR and UL Bend NWR. On September 7, 2010, we opened a...

  20. Bending properties of different REBCO coated conductor tapes and Roebel cables at T = 77 K

    NASA Astrophysics Data System (ADS)

    Otten, Simon; Kario, Anna; Kling, Andrea; Goldacker, Wilfried

    2016-12-01

    Application of REBCO coated conductors in coils or cables involves deformation of the conductor in different modes, such as in-plane bending, out-of-plane bending and torsion. For example, the dipole magnet designs in the EuCARD-2 project require bending radii as low as 7.5 mm, inducing significant bending strain in the REBCO layer. In this paper, we investigate the effect of out-of-plane bending on the current-carrying properties of coated conductors from different manufacturers. The samples are manipulated by means of a Goldacker-type bending rig, which allows continuous bending at T = 77 K. By reversal to R=∞ after each bending step, the reversible strain effect is separated from irreversible degradation. All tested conductors are found to tolerate compressive bending to a radius of 6 mm with less than 5% irreversible degradation of the critical current. The magnitude of the reversible strain effect shows a large variation among the samples. The effect of out-of-plane bending on Roebel cables is investigated as well, and the results are compared to the bending characteristic of single conductors. The results show no detrimental effect of the cable assembly on the bending properties within the constraints of the test.

  1. Variations in oceanic plate bending along the Mariana trench

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Jian; Zhan, Wenhuan

    2014-09-01

    We quantify along-trench variations in plate flexural bending along the Mariana trench in the western Pacific Ocean. A 3-D interpreted flexural deformation surface of the subducting Pacific Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 75 across-trench profile sections and calculated five best-fitting tectonic and plate parameters that control the flexural bending. Results of analysis revealed significant along-trench variations: the trench relief varies from 0.9 to 5.7 km, trench-axis vertical loading (-V0) from -0.73×1012 to 3.17×1012 N/m, and axial bending moment (-M0) from 0.1×1017 to 2.7×1017 N. The effective elastic plate thickness seaward of the outer-rise region (TeM) ranges from 45 to 52 km, while that trench-ward of the outer-rise (Tem) ranges from 19 to 40 km. This corresponds to a reduction in Te of 21-61%. The transition from TeM to Tem occurs at a breaking distance of 60-125 km from the trench axis, which is near the outer-rise and corresponds to the onset of observed pervasive normal faults. The Challenger Deep area is associated with the greatest trench relief and axial vertical loading, while areas with seamounts at the trench axis are often associated with more subtle trench relief, smaller axial vertical loading, and greater topographic bulge at the outer-rise.

  2. Geomorpho-tectonic evolution of the Jamaican restraining bend

    NASA Astrophysics Data System (ADS)

    Domínguez-González, Leomaris; Andreani, Louis; Stanek, Klaus P.; Gloaguen, Richard

    2015-01-01

    This work applies recent advances in tectonic geomorphology in order to understand the geomorphic evolution of the Jamaican restraining bend located along the Caribbean-Gonâve-North American plate boundary. We propose a classification of landscapes according to their erosional stages. The approach is mainly based on the combination of two DEM-based geomorphic indices: the hypsometric integral which highlights elevated surfaces, and the surface roughness which increases when the relief is incised by the drainage network. River longitudinal profiles were also analyzed as the drainage network responds quickly to base-level change triggered by external forcing such as tectonics. Anomalies in river profiles (knickpoints and convex segments) were mapped using stream length-gradient (SL) and normalized steepness (ksn) indices. The results provide new insights for understanding the complex evolution of the Jamaican restraining bend. Three main morphotectonic regions were identified in Jamaica: (1) the Blue Mountain-Wagwater unit located at the eastern tip of the island, (2) the Jamaican highlands plateau which covers most of the northern and central areas and (3) the tilted block province located along the southern part of Jamaica. Each region has a specific morphological signature which marks a different stage in the Late Miocene to present evolution of the Jamaican restraining bend. The evolution of the bend is mainly associated with the western propagation of major E-trending strike-slip faults and NW-trending thrusts. In the western and central parts of Jamaica the present-day motion between the Caribbean plate and the Gonâve microplate is broadly distributed along several structures, while in the easternmost part of the island this motion seems to be almost completely accommodated along the Blue Mountain range and the Plantain-Garden Fault.

  3. Sensitivity analysis of static resistance of slender beam under bending

    NASA Astrophysics Data System (ADS)

    Valeš, Jan

    2016-06-01

    The paper deals with statical and sensitivity analyses of resistance of simply supported I-beams under bending. The resistance was solved by geometrically nonlinear finite element method in the programme Ansys. The beams are modelled with initial geometrical imperfections following the first eigenmode of buckling. Imperfections were, together with geometrical characteristics of cross section, and material characteristics of steel, considered as random quantities. The method Latin Hypercube Sampling was applied to evaluate statistical and sensitivity resistance analyses.

  4. New triangular and quadrilateral plate-bending finite elements

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1974-01-01

    A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.

  5. Numerical fracture simulation of bend specimens using a CTOD criterion

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1989-01-01

    Stable crack growth in 50-mm-thick side-grooved three-point bend specimens of HY-130 steel is modeled numerically. A two-dimensional elastoplastic FEM formulation incorporating a CTOD fracture criterion is developed analytically, and the theoretical predictions are compared with experimental data in graphs. Good general agreement is obtained, except for the crack extension, which was typically overpredicted. The value of the J integral at crack initiation is found to be 83 kJ/sq m.

  6. Long-Term Immersion Testing of Alloy 22 and Titanium Grade 7 Double U-bend Specimens

    SciTech Connect

    Evans, K J; Stuart, M L; Hailey, P D; Rebak, R B

    2007-02-08

    Double U-bend specimens of Alloy 22 (N06022) and Titanium Grade 7 (R52400) were exposed to a naturally aerated concentrated Basic Saturated Water (BSW) electrolyte at 105 C for over six years. Different type of discoloration of the Ti Gr 7 and Alloy 22 specimens was observed. General Corrosion was minimal and not distinguishable under a scanning electron microscope. None of the tested specimens suffered environmentally assisted cracking (EAC) or localized corrosion under the tested conditions. The specimens retained their residual stress after the long environmental exposure.

  7. Biomorphodynamic modelling of inner bank advance in migrating meander bends

    NASA Astrophysics Data System (ADS)

    Zen, Simone; Zolezzi, Guido; Toffolon, Marco; Gurnell, Angela M.

    2016-07-01

    We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the 'bar push' mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.

  8. Local efficiency in fluvial systems: Lessons from Icicle Bend

    NASA Astrophysics Data System (ADS)

    Jerin, Tasnuba; Phillips, Jonathan

    2017-04-01

    Development of fluvial systems is often described and modeled in terms of principles related to maxima, minima, or optima of various hydraulic or energy parameters that can generally be encompassed by a principle of efficiency selection (more efficient flow routes tend to be preferentially selected and enhanced). However, efficiency selection is highly localized, and the cumulative effects of these local events may or may not produce more efficient pathways at a broader scale. This is illustrated by the case of Icicle Bend on Shawnee Run, a limestone bedrock stream in central Kentucky. Field evidence indicates that a paleochannel was abandoned during downcutting of the stream, and the relocation was analyzed using a flow partitioning model. The bend represents abandonment of a steeper, straighter, more efficient channel at the reach scale in favor of a longer, currently less steep and less efficient flow path. This apparently occurred owing to capture of Shawnee Run flow by a subsurface karst flow path that was subsequently exhumed. The development of Icicle Bend illustrates the local nature of efficiency selection and the role of historical contingency in geomorphic evolution.

  9. Transformation optofluidics for large-angle light bending and tuning.

    PubMed

    Yang, Y; Chin, L K; Tsai, J M; Tsai, D P; Zheludev, N I; Liu, A Q

    2012-10-07

    Transformation optics is a new art of light bending by designing materials with spatially variable parameters for developing wave-manipulation devices. Here, we introduce a transformation optofluidic Y-branch splitter with large-angle bending and tuning based on the design of a spatially variable index. Differing from traditional splitters, the optofluidic splitter is achieved in an inhomogeneous medium by coordinate transformation. The designed bidirectional gradient index (GRIN) distribution can be achieved practically by the convection-diffusion process of liquid flowing streams. The transformation optofluidic splitter can achieve a much larger split angle with little bend loss than the traditional ones. In the experiments, a large tunable split angle up to 30° is achieved by tuning the flow rates, allowing optical signals to be freely transferred to different channels. Besides the symmetrical branch splitting, asymmetrical Y-branch splitting with approximately equal power splitting is also demonstrated by changing the composition of the liquids. The optofluidic splitter has high potential applications in biological, chemical and biomedical solution measurement and detection.

  10. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  11. On-line fuzzy logic control of tube bending

    NASA Astrophysics Data System (ADS)

    Lieh, Junghsen; Li, Wei Jie

    2005-11-01

    This paper describes the simulation and on-line fuzzy logic control of tube bending. By combining elasticity and plasticity theories, a conventional model was developed. The results from simulation were compared with those obtained from testing. The experimental data reveal that there exists certain level of uncertainty and nonlinearity in tube bending, and its variation could be significant. To overcome this, a on-line fuzzy logic controller with self-tuning capabilities was designed. The advantages of this on-line system are (1) its computational requirement is simple in comparison with more algorithmic-based controllers, and (2) the system does not need prior knowledge of material characteristics. The device includes an AC motor, a servo controller, a forming mechanism, a 3D optical sensor, and a microprocessor. This automated bending machine adopts primary and secondary errors between the actual response and desired output to conduct on-line rule reasoning. Results from testing show that the spring back angle can be effectively compensated by the self- tuning fuzzy system in a real-time fashion.

  12. Curvature reduces bending strains in the quokka femur

    PubMed Central

    McCabe, Kyle; Henderson, Keith; Pantinople, Jess; Milne, Nick

    2017-01-01

    This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side) bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading. PMID:28348929

  13. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  14. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  15. Fiber-optic bending sensor for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Yao, Jianquan

    2006-09-01

    Cochlear implantation has been proved as a great success in treating profound sensorineural deafness in both children and adults. Cochlear electrode array implantation is a complex and delicate surgical process. Surgically induced damage to the inner wall of the scala tympani could happen if the insertion angle of the electrode is incorrect and an excessive insertion force is applied to the electrode. This damage could lead to severe degeneration of the remaining neural elements. It is therefore of vital importance to monitor the shape and position of the electrode during the implantation surgery. In this paper, we report a fiber-optic bending sensor which can be integrated with the electrode and used to guide the implantation process. The sensor consists of a piece of optical fiber. The end of the fiber is coated with aluminum layer to form a mirror. Bending the fiber with the electrode introduces loss to the light transmitting in the fiber. By detecting the power of the reflected light, we can detennine the bending happened to the fiber, and consequently measure the curved shape of the electrode. Experimental results show that the proposed fiber sensor is a promising technique to make in-situ monitoring of the shape and position of the electrode during the implantation process.

  16. Computing Stresses In Spur Gears

    NASA Technical Reports Server (NTRS)

    Oswald, F. B.; Lin, H. H.

    1995-01-01

    Dynamic Analysis of Spur Gear Transmissions (DANST) developed as easy-to-use program for static and dynamic analysis of spur-gear systems. Used for parametric studies to predict effects of operating speed, torque, stiffness, damping, inertia, and tooth profile on dynamic loads and tooth-bending stresses in spur gears. Performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. Simulates gear systems with contact ratios ranging from one to three. Written in FORTRAN 77.

  17. Stress Management: Job Stress

    MedlinePlus

    Healthy Lifestyle Stress management Job stress can be all-consuming — but it doesn't have to be. Address your triggers, keep perspective and know when ... effects of stress at work. Effectively coping with job stress can benefit both your professional and personal ...

  18. Control of Prestressing Force in Rod for Reducing Bending in Beams

    NASA Astrophysics Data System (ADS)

    Wong, M. B.

    2010-05-01

    This paper presents a method to determine the prestressing force required in a rod for reducing the bending effects in a beam. The rod is positioned underneath the beam such that the prestressing force is counteracting the effects of beam bending. It has been found that the prestressing force may also increase the bending as a result of P-δ effect. Therefore, the choice of both the prestressing force and the rod eccentricity from the beam axis is important in determining the appropriate actions to resist the bending of the beam. Over-prestressing the rod may even induce bending or buckling failure in the beam in the reverse direction.

  19. An estimation of critical buckling strain for pipe subjected plastic bending

    NASA Astrophysics Data System (ADS)

    Ji, L. K.; Zheng, M.; Chen, H. Y.; Zhao, Y.; Yu, L. J.; Hu, J.; Teng, H. P.

    2014-09-01

    An approach for estimating critical buckling strain of pipe subjected plastic bending is established in the present paper. A rigid — perfectly plastic material model and cross section ovalization of pipe during bending are employed for the approach. The energy rates of the ovalised pipe bending and the cross section ovalising are proposed firstly. Furthermore, these energy rates are combined to perform the buckling analysis of pipe bending, an estimation formula of critical buckling strain for pipe subjected plastic bending is proposed. The predicting result of the new critical buckling strain formula is compared with the available experimental data, it shows that the formula is valid.

  20. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests.

    PubMed

    Kemper, Andrew R; McNally, Craig; Pullins, Clayton A; Freeman, Laura J; Duma, Stefan M; Rouhana, Stephen M

    2007-10-01

    The purpose of this study was to quantify both the tensile material properties and structural response of human ribs in order to determine which variables contribute to regional variation in the strength of human ribs. This was done by performing 94 matched tests on human rib specimens; 46 tension coupon tests, 48 three-point bending tests. Contralateral matched specimens were dissected from anterior and lateral regions of ribs 4 through 7 of six male fresh frozen post mortem human subjects ranging from 42 to 81 years of age. Tension coupons were taken from one side of the thorax, while three-point bending specimens were taken from the opposite side as the tension coupons at corresponding anatomical locations. The results of the tension coupon testing showed that there were no significant differences with respect to region or rib level: ultimate stress (p=0.90; p=0.53), ultimate strain (p=0.49; p=0.86), or modulus (p=0.72; p=0.81). In contrast, lateral three-point bending specimens were found to have a significantly higher peak bending moment (p<0.01), peak strain (p=0.03), modulus (p=0.05), and stiffness (p<0.01) than anterior specimens. The lateral three-point bending specimens also had a significantly larger area moment of inertia (p<0.01), larger distance to the neutral axis (p<0.01), smaller ratio of distance to the neutral axis to area moment of inertia (p<0.01), larger cortical bone area (p<0.01), and larger radius of gyration (p<0.01) than the anterior specimens. In addition, the peak moment (Ant p=0.20; Lat p=0.02), peak strain (Ant p=0.05; Lat p=0.15), and stiffness (Ant p<0.01; Lat p<0.01) were found to vary significantly with respect to rib level. Similar to anatomical region, the changes in the structural response with respect to rib level were also accompanied by significant changes in geometry. For anterior specimens, distance to the neutral axis (p<0.01), ratio of the distance to the neutral axis to area moment of inertia (p=0.02) and radius of

  1. Hawaii, Tombstone of the Dinosaurs, Part 2: The Bend in the HEC

    NASA Astrophysics Data System (ADS)

    Brown, R. D.

    2002-05-01

    of the core vis-…-vis the mantle causes the asteroidal mass to tumble at the core-mantle boundary. Rotational deformation and electromagnetic coupling between Earth's main magnetic field and the impactor-iron generates excess heat at this location. 4. Why the Sr87/86 ratios increase in going from Suiko to the bend and remain constant thereafter. The strontium ratios reflect the motions of the asteroid's downward movement through the mantle and its fixed depth since the bend. 5. Why there is a circular ring of mountains (Rockies, Central America, Andes, trans-Antarctic, Australian Rise, Indonesia and Philippine Islands, East Asian Rise, the Kolymas, Japanese Islands, Brooks, Mackenzie's) that were centered on the Hawaiian impact site circa 65 Ma. The primary shock front associated with the original impact would have been reflected away from the impact site by the curvature of the Earth's core. As a consequence, the impactor's main mass is not extensively disrupted by rebound effects that would otherwise cause its dissolution. While the position of the circular ring of mountains is determined by the geometry of the core-reflected shock front punching up from beneath the continental plates, the greater portion of the orogenic energy is attributed to the impact-catalyzed release of stress-coupled stored tectonic energy (due to plate motions occurring prior to the impact). See: Hawaii: Tombstone of the Dinosaurs, RD Brown, Eos 75: 418 (1994) 6. This model explains why the greatest terrain and faunal damage at the KT boundary occurred in the western portions of NA and the eastern portions of Asia, a distribution not explained by the Yucatan impact. Twinning of asteroids is common.

  2. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-01

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  3. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms.

    PubMed

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-03-21

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.

  4. Enhanced Transmissions Through Three-dimensional Cascade Sharp Waveguide Bends Using C-slit Diaphragms

    PubMed Central

    Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei

    2017-01-01

    Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends. PMID:28322344

  5. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Stress distributions were calculated for a creep law to predict a rate of plastic deformation. The expected reduction in stresses is obtained. Improved schemes for calculating growth system temperature distributions were evaluated. Temperature field modeling examined the possibility of using horizontal temperature gradients to influence stress distribution in ribbon. The defect structure of 10 cm wide ribbon grown in the cartridge system was examined. A new feature is identified from an examination of cross sectional micrographs. It consists of high density dislocation bands extending through the ribbon thickness. A four point bending apparatus was constructed for high temperature study of the creep response of silicon, to be used to generate defects for comparison with as grown defects in ribbon. The feasibility of laser interferometric techniques for sheet residual stress distribution measurement is examined. The mathematical formalism for calculating residual stress from changes in surface topology caused by an applied stress in a rectangular specimen was developed, and the system for laser interferometric measurement to obtain surface topology data was tested on CZ silicon.

  6. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summervile with a 12º bend in the East Coast fault system and triple-fault junctions

    USGS Publications Warehouse

    Marple, R.; Miller, R.

    2006-01-01

    Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.

  7. High compressive pre-strains reduce the bending fatigue life of nitinol wire.

    PubMed

    Gupta, Shikha; Pelton, Alan R; Weaver, Jason D; Gong, Xiao-Yan; Nagaraja, Srinidhi

    2015-04-01

    Prior to implantation, Nitinol-based transcatheter endovascular devices are subject to a complex thermo-mechanical pre-strain associated with constraint onto a delivery catheter, device sterilization, and final deployment. Though such large thermo-mechanical excursions are known to impact the microstructural and mechanical properties of Nitinol, their effect on fatigue properties is still not well understood. The present study investigated the effects of large thermo-mechanical pre-strains on the fatigue of pseudoelastic Nitinol wire using fully reversed rotary bend fatigue (RBF) experiments. Electropolished Nitinol wires were subjected to a 0%, 8% or 10% bending pre-strain and RBF testing at 0.3-1.5% strain amplitudes for up to 10(8) cycles. The imposition of 8% or 10% bending pre-strain resulted in residual set in the wire. Large pre-strains also significantly reduced the fatigue life of Nitinol wires below 0.8% strain amplitude. While 0% and 8% pre-strain wires exhibited distinct low-cycle and high-cycle fatigue regions, reaching run out at 10(8) cycles at 0.6% and 0.4% strain amplitude, respectively, 10% pre-strain wires continued to fracture at less than 10(5) cycles, even at 0.3% strain amplitude. Furthermore, over 70% fatigue cracks were found to initiate on the compressive pre-strain surface in pre-strained wires. In light of the texture-dependent tension-compression asymmetry in Nitinol, this reduction in fatigue life and preferential crack initiation in pre-strained wires is thought to be attributed to compressive pre-strain-induced plasticity and tensile residual stresses as well as the formation of martensite variants. Despite differences in fatigue life, SEM revealed that the size, shape and morphology of the fatigue fracture surfaces were comparable across the pre-strain levels. Further, the mechanisms underlying fatigue were found to be similar; despite large differences in cycles to failure across strain amplitudes and pre-strain levels, cracks

  8. Contact force and mechanical loss of multistage cable under tension and bending

    NASA Astrophysics Data System (ADS)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  9. Decohesion and rupture mechanisms of a multilayered microbattery studied by 4-point bending

    NASA Astrophysics Data System (ADS)

    Mézin, André; Hemel-Manquin, Audrey

    2016-12-01

    This paper presents tests to characterize the mechanical resistance of the multilayers set which forms an all-solid-state lithium-ion micro battery. The system under investigation consists in five layers that were deposited successively onto a crystalline silicon substrate (100): Ti, TiOS, LiPON, aSi, Ti. The layer thicknesses are between 65 nm (amorphous silicon layer aSi) and 1400 nm (LiPON, TiOS). First, simple water immersion experiments allow internal stress to be put into evidence in the two external layers (aSi and Ti), basically a strong compressive stress in the aSi layer (at least -0.8 GPa). Afterwards, well-controlled 4-point bending tests lead to delamination of the weakest parts of the multilayer, which are the TiOS-LiPON and LiPON-aSi interfaces. The TiOS-LiPON interface is the weakest, with an adhesion energy around 2.5 J/m2. The TiOS layer exhibits a rather low cohesion energy, scarcely higher than 2.5 J/m2. The brittle character of LiPON clearly appears. By using samples of another kind (-Ti-TiOS-Ti on Si), local adhesion flaws are identified between the TiOS and underlying Ti layer. In our experiment, these local adhesion flaws lead to characteristic phenomena (formation of comet-shaped scales), which are explained in the framework of a simple mechanical model.

  10. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.

    PubMed

    Wang, L; Fritton, S P; Cowin, S C; Weinbaum, S

    1999-07-01

    When bone is mechanically loaded, bone fluid flow induces shear stresses on bone cells that have been proposed to be involved in bone's mechanosensory system. To investigate bone fluid flow and strain-generated potentials, several theoretical models have been proposed to mimic oscillatory four-point bending experiments performed on thin bone specimens. While these previous models assume that the bone fluid relaxes across the specimen thickness, we hypothesize that the bone fluid relaxes primarily through the vascular porosity (osteonal canals) instead and develop a new poroelastic model that integrates the microstructural details of the lacunar-canalicular porosity, osteonal canals, and the osteonal cement lines. Local fluid pressure profiles are obtained from the model, and we find two different fluid relaxation behaviors in the bone specimen, depending on its microstructure: one associated with the connected osteonal canal system, through which bone fluid relaxes to the nearby osteonal canals; and one associated with the thickness of a homogeneous porous bone specimen (approximately 1 mm in our model), through which bone fluid relaxes between the external surfaces of the bone specimen at relatively lower loading frequencies. Our results suggest that in osteonal bone specimens the fluid pressure response to cyclic loading is not sensitive to the permeability of the osteonal cement lines, while it is sensitive to the applied loading frequency. Our results also reveal that the fluid pressure gradients near the osteonal canals (and thus the fluid shear stresses acting on the nearby osteocytes) are significantly amplified at higher loading frequencies.

  11. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  12. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  13. On the bending algorithms for soft objects in flows

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Schraml, Marcel P.; Chen, Paul G.; Leonetti, Marc; Gekle, Stephan

    2016-10-01

    One of the most challenging aspects in the accurate simulation of three-dimensional soft objects such as vesicles or biological cells is the computation of membrane bending forces. The origin of this difficulty stems from the need to numerically evaluate a fourth order derivative on the discretized surface geometry. Here we investigate six different algorithms to compute membrane bending forces, including regularly used methods as well as novel ones. All are based on the same physical model (due to Canham and Helfrich) and start from a surface discretization with flat triangles. At the same time, they differ substantially in their numerical approach. We start by comparing the numerically obtained mean curvature, the Laplace-Beltrami operator of the mean curvature and finally the surface force density to analytical results for the discocyte resting shape of a red blood cell. We find that none of the considered algorithms converges to zero error at all nodes and that for some algorithms the error even diverges. There is furthermore a pronounced influence of the mesh structure: Discretizations with more irregular triangles and node connectivity present serious difficulties for most investigated methods. To assess the behavior of the algorithms in a realistic physical application, we investigate the deformation of an initially spherical capsule in a linear shear flow at small Reynolds numbers. To exclude any influence of the flow solver, two conceptually very different solvers are employed: the Lattice-Boltzmann and the Boundary Integral Method. Despite the largely different quality of the bending algorithms when applied to the static red blood cell, we find that in the actual flow situation most algorithms give consistent results for both hydrodynamic solvers. Even so, a short review of earlier works reveals a wide scattering of reported results for, e.g., the Taylor deformation parameter. Besides the presented application to biofluidic systems, the investigated

  14. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  15. Comparison of Measured Flapwise Structural Bending Moments on a Teetering Rotor Blade With Results Calculated From the Measured Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Mayo, Alton P.

    1959-01-01

    Flapwise bending moments were calculated for a teetering rotor blade using a reasonably rapid theoretical method in which airloads obtained from wind-tunnel tests were employed. The calculated moments agreed reasonably well with those measured with strain gages under the same test conditions. The range of the tests included one hovering and two forward-flight conditions. The rotor speed for the test was very near blade resonance, and difficult-to-calculate resonance effects apparently were responsible for the largest differences between the calculated and measured harmonic components of blade bending moments. These differences, moreover, were largely nullified when the harmonic components were combined to give a comparison of the calculated and measured blade total- moment time histories. The degree of agreement shown is therefore considered adequate to warrant the use of the theoretical method in establishing and applying methods of prediction of rotor-blade fatigue loads. At the same time, the validity of the experimental methods of obtaining both airload and blade stress measurement is also indicated to be adequate for use in establishing improved methods for prediction of rotor-blade fatigue loads during the design stage. The blade stiffnesses and natural frequencies were measured and found to be in close agreement with calculated values; however, for a condition of blade resonance the use of the experimental stiffness values resulted in better agreement between calculated and measured blade stresses.

  16. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    SciTech Connect

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G.

    1997-04-01

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  17. A terahertz two-wire waveguide with low bending loss

    NASA Astrophysics Data System (ADS)

    Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M.

    2009-12-01

    We present experimental and theoretical evidence for low loss terahertz pulse propagation along a two-wire waveguide. We find that the mode pattern at the end of the waveguide resembles that of a dipole, consistent with the fundamental transverse-electromagnetic mode of the structure. Compared to the weakly guided Sommerfeld wave of a single wire, this structure exhibits much lower bending losses. We also observe that a commercial 300 Ω two-wire TV-antenna cable can be used for guiding frequency components up to ˜0.2 THz, although they are generally designed to operate only up to about 800 MHz.

  18. Photo-origami—Bending and folding polymers with light

    NASA Astrophysics Data System (ADS)

    Ryu, Jennie; D'Amato, Matteo; Cui, Xiaodong; Long, Kevin N.; Jerry Qi, H.; Dunn, Martin L.

    2012-04-01

    Photo-origami uses the dynamic control of the molecular architecture of a polymer by a combination of mechanical and non-contact optical stimuli to design and program spatially and temporally variable mechanical and optical fields into a material. The fields are essentially actuators, embedded in the material at molecular resolution, designed to enable controllable, sequenced, macroscopic bending and folding to create three-dimensional material structures. Here, we demonstrate, through a combination of theory, simulation-based design, synthesis, and experiment, the operative phenomena and capabilities of photo-origami that highlight its potential as a powerful, and potentially manufacturable, approach to create three-dimensional material structures.

  19. Wake-induced bending of two-dimensional plasma crystals

    SciTech Connect

    Röcker, T. B. Ivlev, A. V. Zhdanov, S. K.; Morfill, G. E.; Couëdel, L.

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  20. Bending and stretching of two-dimensional fluids and solids

    NASA Astrophysics Data System (ADS)

    Hanna, James

    2016-11-01

    Soap films, lipid membranes, and elastic sheets are often analyzed with similar (idealized) models that emphasize the geometric features of these surfaces. If deformations of these surfaces are area-preserving, simple and elegant expressions may be used to describe surface and bending energies and the corresponding equations of equilibrium. However, in general, one should make a distinction between geometric energies, as measured per unit area, and elastic energies, as measured per unit mass. I will discuss some of the differences between these types of energies, and the resulting potential difficulties and inelegancies in their mathematical descriptions.

  1. Determination of Biomembrane Bending Moduli in Fully Atomistic Simulations

    PubMed Central

    2015-01-01

    The bilayer bending modulus (Kc) is one of the most important physical constants characterizing lipid membranes, but precisely measuring it is a challenge, both experimentally and computationally. Experimental measurements on chemically identical bilayers often differ depending upon the techniques employed, and robust simulation results have previously been limited to coarse-grained models (at varying levels of resolution). This Communication demonstrates the extraction of Kc from fully atomistic molecular dynamics simulations for three different single-component lipid bilayers (DPPC, DOPC, and DOPE). The results agree quantitatively with experiments that measure thermal shape fluctuations in giant unilamellar vesicles. Lipid tilt, twist, and compression moduli are also reported. PMID:25202918

  2. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Electrical characterization of defects induced in FZ and CZ silicon stress in four-point bending above 1200 C was started. Techniques to study electrical activity that will permit correlation of defect activity with diffusion length and with room and low temperature EBIC are being developed. Preliminary characterization of defects in ribbon grown at very low speeds of less than 1 cm/min shows that the dislocation density is very low over significant regions of cross section, while regions of high dislocation density (approx. 5 x 10(6)/cm(2)) occur in bands in a number of places. Addition measurements of stress distributions in EFG material were obtained at the University of Illinois using shadow-Moire interferometry.

  3. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  4. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    SciTech Connect

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-15

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  5. Bend insensitive graded index multimode polymer optical waveguides fabricated using the Mosquito method

    NASA Astrophysics Data System (ADS)

    Takahashi, Asami; Ishigure, Takaaki

    2015-02-01

    We fabricate low-loss graded index (GI) circular core multimode polymer optical waveguides with 90o bending and demonstrate low bending loss even if the bend radius is as small as 1 mm. In the several fabrication methods for GI-core polymer waveguides already proposed, we adopt the "Mosquito method" that utilize a microdispenser because the Mosquito method makes it possible to fabricate waveguides directly on board at desired places on a printed circuit board, and to draw various patterns of cores including curves. However, in the waveguides including such curved cores, the additional transmission loss due to the bending (bending loss) is a concern. Thus, we characterize the fabricated GI-core polymer waveguides with bending: using two kinds of cladding monomer with different refractive indexes for fabricating waveguides with bending. We found when the NA of waveguides was as high as 0.35, no additional loss due to bending was observed even if the bending radius is as small as 1 mm. The core diameter of the fabricated waveguides is 50 μm, and it is possible to further decrease the bending loss in the waveguides with smaller core diameter. Furthermore, utilizing the Mosquito method, we fabricate waveguides with not only horizontally curved cores but also vertically curved ones. Waveguides with vertically curved cores could make it possible to realize three-dimensionally optical wiring applicable to on-board optical interconnects.

  6. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable

    PubMed Central

    Jeong, Useok; Cho, Kyu-Jin

    2016-01-01

    Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959

  7. Experimental study on pressure drop of bends in dense phase pneumatic conveying under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Gaoyang; Liang, Cai; Chen, Xiaoping; Xu, Pan; Xu, Guiling; Shen, Liu

    2014-04-01

    The transport test using nitrogen as conveying gas are carried out at high operating pressure up to 4MPa in the experimental equipment for dense phase pneumatic conveying. The transport powders in the experiment are anthracite coal and petroleum coke. The pressure drop characteristics in bends are acquired with the different transport powder. The experimental results show that under the similar mass flow, the pressure drop of vertical upward bend is greater than the horizontal bend and the horizontal bend is greater than the vertical downward bend at the same superficial gas velocity, while there is a best superficial gas velocity minimizes the pressure drop of the bend. Under the similar mass flow rate and the similar particle size, the pressure drop of the bend with the petroleum coke is greater than the pressure drop with the anthracite coal as the same superficial gas velocity. According to Barth's additional pressure drop method, the pressure drop fitting formulas of the vertical upward bend, the horizontal bend and the vertical downward bend are obtained, and the predicted results are in accordance with that of the experiments.

  8. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable.

    PubMed

    Jeong, Useok; Cho, Kyu-Jin

    2016-06-24

    Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable's inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m(-1), unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor.

  9. Neogene development of the Swan Islands restraining-bend complex, Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Tyburski, Stacey A.; Rosencrantz, Eric

    1991-08-01

    We present SeaMARC II and multichannel seismic data describing deformation at an active restraining-bend complex formed along a left-lateral strike-slip fault in the western Caribbean Sea. The bend complex consists of three distinct strike- slip fault traces that form two right-stepping "sharp restraining bends" or "push-ups" at its western end and form a right-stepping "gentle restraining bend" at its eastern end. Deformation at the sharp restraining bends is characterized by local folding between overlapping strike-slip faults. Deformation at the much larger gentle restraining bend consists of a large anticline adjacent to a gently curving strike-slip fault. A small, active accretionary wedge forms the northern flank of the bend complex. We speculate that the 30-km-wide, right-stepping bend complex formed as a consequence of southward propagation of the Mid-Cayman spreading center during Oligocene to early Miocene time. Active faults along the southern edge of the bend complex may have formed after the initial uplift and folding of the complex, and may currently serve to straighten the strike-slip fault by "bypassing" the bend complex.

  10. Vibrational effects on the reaction of NO(2)(+) with C(2)H(2): effects of bending and bending angular momentum.

    PubMed

    Boyle, Jason M; Uselman, Brady W; Liu, Jianbo; Anderson, Scott L

    2008-03-21

    NO(2)(+) in six different vibrational states was reacted with C(2)H(2) over the center-of-mass energy range from 0.03 to 3.3 eV. The reaction, forming NO(+)+C(2)H(2)O and NO+C(2)H(2)O(+), shows a bimodal dependence on collision energy (E(col)). At low E(col), the reaction is quite inefficient (<2%) despite this being a barrierless, exoergic reaction, and is strongly inhibited by E(col). For E(col)> approximately 0.5 eV, a second mechanism turns on, with an efficiency reaching approximately 27% for E(col)>3 eV. The two reaction channels have nearly identical dependence on E(col) and NO(2)(+) vibrational state, and identical recoil dynamics, leading to the conclusion that they represent a single reaction path throughout most of the collision. All modes of NO(2)(+) vibrational excitation enhance both channels at all E(col), however, the effects of bend (010) and bend overtone (02(0)0) excitation are particularly strong (factor of 4). In contrast, the asymmetric stretch (001), which intuition suggests should be coupled to the reaction coordinate, leads to only a factor of approximately 2 enhancement, as does the symmetric stretch (100). Perhaps the most surprising effect is that of the bending angular momentum, which strongly suppress reaction, even though both the energy and angular momentum involved are tiny compared to the collision energy and angular momentum. The results are interpreted in light of ab initio and Rice-Ramsperger-Kassel-Marcus calculations.

  11. Model For Bending Actuators That Use Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji; Harrison, Joycelyn S.

    2001-01-01

    Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%). Combined with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output mechanical energy density, for an electroactive polymeric material. Therefore, it has been considered as one of the candidates that can be used in high performance, low mass actuation devices in many aerospace applications. Various bilayer- based bending actuators have been designed and fabricated. An analytic model based on beam theory in the strength of materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam. The curvature and strain are functions of the applied voltage and the thickness, width, and Young s modulus of the active and passive layers. The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet the requirements of various applications. In this presentation, optimization and sensitivity studies are applied to the bending performance of such actuators.

  12. Overall thermal performance of flexible piping under simulated bending conditions

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Demko, J. A.

    2002-05-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (koafi) is described for use in design and analysis of cryogenic piping systems.

  13. Inertia and Double Bending of Light from Equivalence

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  14. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  15. Bending continuous structures with SMAs: a novel robotic fish design.

    PubMed

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  16. DNA bending is a determinant of calicheamicin target recognition.

    PubMed

    Salzberg, A A; Dedon, P C

    2000-06-27

    Calicheamicin is a hydrophobic enediyne antibiotic that binds noncovalently to DNA and causes sequence-selective oxidation of deoxyribose. While the drug makes several base contacts along the minor groove, the diversity of binding-site sequences and the effects of DNA conformation on calicheamicin-induced DNA cleavage suggest that sequence recognition per se is not the primary determinant of target selection. We now present evidence that calicheamicin bends its DNA targets. Using a gel mobility assay, we observed that polymers of oligonucleotide constructs containing AGGA and ACAA binding sites for calicheamicin did not possess intrinsic curvature. Binding of calicheamicin epsilon, the aromatized form of the parent calicheamicin gamma(1)(I), to oligonucleotide constructs containing binding sites in phase with the helical repeat caused a shift to smaller circle sizes in T4 ligase-mediated circle formation assays, with a much smaller shift observed with constructs containing out-of-phase binding sites. It was also observed that binding of calicheamicin epsilon to a 273 bp construct with phased binding sites caused an increase in the molar cyclization factor, J, from 8 x 10(-8) to 9 x 10(-6) M. These results are consistent with DNA bending as part of an induced-fit mechanism of DNA target recognition and with the hypothesis that the preferred targets of calicheamicin, the 3' ends of oligopurine tracts, are characterized by unique conformational properties.

  17. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Experimental work in support of stress studies in high speed silicon sheet growth has been emphasized in this quarter. Creep experiments utilizing four-point bending have been made in the temperature range from 1000 C to 1360 C in CZ silicon as well as on EFG ribbon. A method to measure residual stress over large areas using laser interferometry to map strain distributions under load is under development. A fiber optics sensor to measure ribbon temperature profiles has been constructed and is being tested in a ribbon growth furnace environment. Stress and temperature field modeling work has been directed toward improving various aspects of the finite element computing schemes. Difficulties in computing stress distributions with a very high creep intensity and with non-zero interface stress have been encountered and additional development of the numerical schemes to cope with these problems is required. Temperature field modeling has been extended to include the study of heat transfer effects in the die and meniscus regions.

  18. New Variational Formulations of Hybrid Stress Elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.; Kang, D.

    1984-01-01

    In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.

  19. Transport of torsional stress in DNA

    PubMed Central

    Nelson, Philip

    1999-01-01

    It is well known that transcription can induce torsional stress in DNA, affecting the activity of nearby genes or even inducing structural transitions in the DNA duplex. It has long been assumed that the generation of significant torsional stress requires the DNA to be anchored, forming a limited topological domain, because otherwise it would spin almost freely about its axis. Previous estimates of the rotational drag have, however, neglected the role of small natural bends in the helix backbone. We show how these bends can increase the drag several thousandfold relative to prior estimates, allowing significant torsional stress even in linear unanchored DNA. The model helps explain several puzzling experimental results on structural transitions induced by transcription of DNA. PMID:10588707

  20. Moderate bending strain induced semiconductor to metal transition in Si nanowires

    NASA Astrophysics Data System (ADS)

    Rabbani, M. Golam; Patil, Sunil R.; Anantram, M. P.

    2016-12-01

    A moderate amount of bending strains, ∼3% is found to be enough to induce the semiconductor-metal transition in Si nanowires of ∼4 nm diameter. The influence of bending on silicon nanowires of 1 nm to 4.3 nm diameter is investigated using molecular dynamics and quantum transport simulations. Local strains in nanowires are analyzed along with the effect of bending strain and nanowire diameter on electronic transport and the transmission energy gap. Interestingly, relatively wider nanowires are found to undergo semiconductor-metal transition at relatively lower bending strains. The effect of bending strain on electronic properties is then compared with the conventional way of straining, i.e. uniaxial, which shows that bending is a much more efficient way of straining to enhance the electronic transport and also to induce the semiconductor-metal transition in experimentally realizable Si nanowires.