Science.gov

Sample records for bending test designed

  1. Reversal bending fatigue testing

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  2. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  3. Design, modeling, fabrication and testing of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Voor, M.; Martin, M.; Hnat, W.; Lin, J.; Jackson, D.; Naber, J.

    2006-04-01

    Presented herein are the design, modelling, fabrication and testing of a MEMSbased capacitive bending strain sensor utilizing a comb drive. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist orthopaedic surgeons with the diagnosis of spinal fusion. ABAQUS/CAE version 6.5 finite element analysis (FEA) modelling software was used to predict sensor actuation, capacitance output and the avoidance of material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. For testing, the sensor was adhered to a steel beam, which was subjected to four-point bending. This mechanically changed the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers, beginning with an initial capacitance of 7.56 pF at the unstrained state and increasing inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with experimental data. The largest differential of 0.65 pF or 6.33% occurred at 1000 µɛ.

  4. Design and validation of bending test method for characterization of miniature pediatric cortical bone specimens.

    PubMed

    Albert, Carolyne I; Jameson, John; Harris, Gerald

    2013-02-01

    Osteogenesis imperfecta is a genetic disorder of bone fragility; however, the effects of this disorder on bone material properties are not well understood. No study has yet measured bone material strength in humans with osteogenesis imperfecta. Small bone specimens are often extracted during routine fracture surgeries in children with osteogenesis imperfecta. These specimens could provide valuable insight into the effects of osteogenesis imperfecta on bone material strength; however, their small size poses a challenge to their mechanical characterization. In this study, a validated miniature three-point bending test is described that enables measurement of the flexural material properties of pediatric cortical osteotomy specimens as small as 5 mm in length. This method was validated extensively using bovine bone, and the effect of span/depth aspect ratio (5 vs 6) on the measured flexural properties was examined. The method provided reasonable results for both Young's modulus and flexural strength in bovine bone. With a span/depth ratio of 6, the median longitudinal modulus and flexural strength results were 16.1 (range: 14.4-19.3)GPa and 251 (range: 219-293)MPa, respectively. Finally, the pilot results from two osteotomy specimens from children with osteogenesis imperfecta are presented. These results provide the first measures of bone material strength in this patient population.

  5. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  6. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  7. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure. PMID:23556847

  8. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  9. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  10. Monitoring thermoplastic composites under cyclic bending tests

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro

    2016-05-01

    This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.

  11. Design and development of a MEMS capacitive bending strain sensor

    NASA Astrophysics Data System (ADS)

    Aebersold, J.; Walsh, K.; Crain, M.; Martin, M.; Voor, M.; Lin, J.-T.; Jackson, D.; Hnat, W.; Naber, J.

    2006-05-01

    The design, modeling, fabrication and testing of a MEMS-based capacitive bending strain sensor utilizing a comb drive is presented. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist with the diagnosis of spinal fusion. ABAQUS/CAE finite-element analysis (FEA) software was used to predict sensor actuation, capacitance output and avoid material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. The sensor was adhered to a steel beam and subjected to four-point bending to mechanically change the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers. At the unstrained state, the capacitive output was 7.56 pF and increased inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with the largest differential of 0.65 pF or 6.33% occurring at 1000 µɛ. Advantages of this design are a dice-free process without the use of expensive silicon-on-insulator (SOI) wafers.

  12. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  13. Design of a 90{degree} overmoded waveguide bend

    SciTech Connect

    Nantista, C.; Kroll, N.M.; Nelson, E.M.

    1993-04-01

    A design for a 90{degree} bend for the TE{sub 01} mode in over-moded circular waveguide is presented. A pair of septa, symmetrically placed perpendicular to the plane of the bend, are adiabatically introduced into the waveguide before the bend and removed after it. Introduction of the curvature excites five propagating modes in the curved section. The finite element field solver YAP is used to calculate the propagation constants of these modes in the bend, and the guide diameter, septum depth, septum thickness, and bend radius are set so that the phase advances of all five modes through the bend are equal modulo 2{pi}. To a good approximation these modes are expected to recombine to form a pure mode at the end of the bend.

  14. Security hologram foil labels with a design facilitating authenticity testing: effects of mechanical bending of substrates with the glued on holograms

    NASA Astrophysics Data System (ADS)

    Aubrecht, Ivo

    2015-05-01

    Optimal design of security holograms or diffractive optically variable image devices (DOVIDs) that would be complex enough to deter counterfeiters from attempts of mimicking but contains features readily recognizable by laymen has been addressed by many experts. This paper tries to discuss effects of mechanical bending of a flexible substrate to visual appearance of a glued-on foil DOVID. Initially plane, the DOVID is deformed to a convex- or concave-shaped curved surface. Theoretical analyses and experimental results assume the surface to be a cylindrical segment and concern rainbow-type surface-relief holograms that are recorded piecewise in a photoresist material, coated on planar and non-planar substrates.

  15. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-03-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,`` the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic ``S-bend`` configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  16. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  17. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  18. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  19. Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds

    NASA Astrophysics Data System (ADS)

    Weaver, Jason D.; Gutierrez, Erick J.

    2015-12-01

    Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

  20. Modelling The Bending Test Behaviour Of Carbon Fibre Reinforced SiC By Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Koch, D.; Voggenreiter, H.

    2012-07-01

    Liquid silicon infiltrated carbon fibre reinforced SiC, has shown to be a high-potential material for thermal protection systems. The tensile and bending behaviour of the ceramic-matrix composite, C/C-SiC, were investigated in varying orientations relative to the 0/90° woven carbon fibres. The ratio of bending to tensile strength was about 1.7 to 2 depending on the loading direction. With the goal to understand this large difference finite element analyses (FEA) of the bending tests were performed. The different stress-strain behaviour of C/C-SiC under tensile and compression load were included in the FEA. Additionally the bending failure of the CMC-material was modelled by Cohesive Zone Elements (CZE) accounting for the directional tensile strength and Work of Fracture (WOF). The WOF was determined by Single Edge Notched Bending (SENB) tests. Comparable results from FEA and bending test were achieved. The presented approach could also be adapted for the design of C/C-SiC-components and structures.

  1. Fatigue Testing of TBC on Structural Steel by Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Kovarik, Ondrej; Medricky, Jan; Curry, Nicholas; Bjorklund, Stefan; Nylen, Per

    2015-01-01

    For applications with variable loading, fatigue performance of coated parts is of utmost importance. In this study, fatigue performance of conventional structural steel coated with thermal barrier coating (TBC) was evaluated in cyclic bending mode by "SF-Test" device. Testing was carried out at each stage of the TBC preparation process, i.e., for as-received and grit-blasted substrates, as well as for samples with Ni-based bond-coat and complete TBC: bond-coat with YSZ-based top-coat. Comparison of results obtained for different loading amplitudes supplemented by fractographic analysis enabled identification of dominating failure mechanisms and demonstrated applicability of the high-frequency resonant bending test for evaluation of fatigue resistance alteration at each stage of the TBC deposition process.

  2. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  3. Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending

    NASA Astrophysics Data System (ADS)

    Hong; Hocheng; Hung, Jeng-Nan; Guu, Yunn-Horng

    2008-06-01

    With the vast potential of micro-electro-mechanical systems (MEMS) technology, the reliability is essential for the successful applications of microdevices. Polycrystalline silicon is one of the most often used structural materials in microdevices. Tension testing for fatigue life of this material has been investigated since past years. This paper presents a micro-actuator-based bending testing system as well as a MTS Tytron250 micro-tensile-force testing machine to study the fatigue of microbeams in bending. The polycrystalline silicon microcantilever beams are fabricated on silicon wafer. The influence of various dimensions and stress on the fatigue endurance is studied when an external force is loaded on the microcantilever beam. The flexural strength of beams are calculated by the ANSYS. Based on the experimental results and ANSYS analysis, it shows that the longer specimen reduces the stresses when the displacement, width and thickness are kept the same. When the width varies, the larger width results in higher stresses. The fatigue life lies between 9.1 ×105-1.53 ×107 cycles in use of the testing machine. For microactuator testing experiment, the fatigue life persists up to million cycles without failure. The obtained results are compared with the references of different testing methods.

  4. Bending continuous structures with SMAs: a novel robotic fish design.

    PubMed

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  5. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  6. Method of testing gear wheels in impact bending

    SciTech Connect

    Tikhonov, A.K.; Palagin, Y.M.

    1995-05-01

    Chemicothermal treatment processes are widely used in engineering to improve the working lives of important components, of which the most common is nitrocementation. That process has been applied at the Volga Automobile Plant mainly to sprockets in gear transmissions, which need high hardness and wear resistance in the surfaces with relatively ductile cores. Although various forms of chemicothermal treatment are widely used, there has been no universal method of evaluating the strengths of gear wheels. Standard methods of estimating strength ({sigma}{sub u}, {sigma}{sub t}, {sigma}{sub b}, and hardness) have a major shortcoming: They can determine only the characteristics of the cores for case-hardened materials. Here we consider a method of impact bending test, which enables one to evaluate the actual strength of gear teeth.

  7. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  8. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  9. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  10. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  11. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  12. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  13. Transformation optical design of a bending waveguide by use of isotropic materials.

    PubMed

    Wu, Xiaojiong; Lin, Zhifang; Chen, Huanyang; Chan, C T

    2009-11-01

    Based on the effective medium theory, we designed a simplified transformation media bending waveguide by use of only three kinds of isotropic material in an alternating layered structure. The design can be used to guide incoming waves smoothly along the bending part of a waveguide with slight distortions. Numerical simulations are performed to illustrate its functionality.

  14. Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology.

    PubMed

    Van Erps, Jürgen; Debaes, Christof; Nasilowski, Tomasz; Watté, Jan; Wojcik, Jan; Thienpont, Hugo

    2008-03-31

    We present the design of a low bending loss hole-assisted fiber for a 180?-bend fiber socket application, including a tolerance analysis for manufacturability. To this aim, we make use of statistical design methodology, combined with a fully vectorial mode solver. Two resulting designs are presented and their performance in terms of bending loss, coupling loss to Corning SMF-28 standard telecom fiber, and cut-off wavelength is calculated.

  15. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  16. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  17. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  18. Ares-I Bending Filter Design using a Constrained Optimization Approach

    NASA Technical Reports Server (NTRS)

    Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth

    2008-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.

  19. Strength Tests of Thin-walled Duralumin Cylinders in Pure Bending

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E

    1933-01-01

    This report is the third of a series presenting the results of strengths tests on thin-walled cylinders and truncated cones of circular and elliptic section; it includes the results obtained from pure bending tests on 58 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The tests show that the stress on the extreme fiber at failure as calculated by the ordinary theory of bending is from 30 to 80 percent greater than the compressive stress at failure for thin-walled cylinders in compression. The tests also show that length/radius ratio has no consistent effect upon the bending strength and that the size of the wrinkles that form on the compression half of a cylinder in bending is approximately equal to the size of the wrinkles that form in the complete circumference of a cylinder of the same dimensions in compression.

  20. Optimum Design of Composite Sandwich Structures Subjected to Combined Torsion and Bending Loads

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Gangyan; Wang, Chun H.; You, Min

    2012-06-01

    This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.

  1. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from

  2. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    SciTech Connect

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the area of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The

  3. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    DOE PAGESBeta

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the areamore » of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength

  4. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests.

    PubMed

    Shih, Kao-Shang; Hsu, Ching-Chi; Hou, Sheng-Mou; Yu, Shan-Chuen; Liaw, Chen-Kun

    2015-09-01

    Spinal pedicle screw fixations have been used extensively to treat fracture, tumor, infection, or degeneration of the spine. Cannulated spinal pedicle screws with bone cement augmentation might be a useful method to ameliorate screw loosening. However, cannulated spinal pedicle screws might also increase the risk of screw breakage. Thus, the purpose of this study was to investigate the bending performance of different spinal pedicle screws with either solid design or cannulated design. Three-dimensional finite element models, which consisted of the spinal pedicle screw and the screw's hosting material, were first constructed. Next, monotonic and cyclic cantilever bending tests were both applied to validate the results of the finite element analyses. Finally, both the numerical and experimental approaches were evaluated and compared. The results indicated that the cylindrical spinal pedicle screws with a cannulated design had significantly poorer bending performance. In addition, conical spinal pedicle screws maintained the original bending performance, whether they were solid or of cannulated design. This study may provide useful recommendations to orthopedic surgeons before surgery, and it may also provide design rationales to biomechanical engineers during the development of spinal pedicle screws. PMID:26208430

  5. TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study is to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical

  6. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    SciTech Connect

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  7. Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis

    NASA Astrophysics Data System (ADS)

    Mets, Magnus; Antsov, Mikk; Zadin, Vahur; Dorogin, Leonid M.; Aabloo, Alvo; Polyakov, Boris; Lõhmus, Rünno; Vlassov, Sergei

    2016-11-01

    In this study, we performed finite element method simulations to investigate the effect of the structure on the elastic response of Ag and Au nanowires (NWs) with a fivefold twinned crystal structure in bending tests. Two different models of a pentagonal NW were created: a ‘uniform model’ having an isotropic continuous structure and a ‘segmented model’ consisting of five anisotropic domains. Two asymmetrical mechanical test configurations were simulated: cantilevered beam bending and 3-point bending. The dimensions of the NW, the test configurations, as well as the force and the displacement ranges were based on the previously obtained experimental data. The results of the simulations demonstrated that the segmented model was stiffer than the uniform one in both of the bending tests. The effect was more pronounced for the cantilevered beam bending configuration. This fact should be taken into account in the interpretation of the increased measured Young’s modulus of pentagonal NWs in comparison to the elasticity of the same material in bulk form.

  8. Design and optimization of a bend-and-sweep compliant mechanism

    NASA Astrophysics Data System (ADS)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2013-09-01

    A novel contact aided compliant mechanism called bend-and-sweep compliant mechanism is presented in this paper. This mechanism has nonlinear stiffness properties in two orthogonal directions. An angled compliant joint (ACJ) is the fundamental element of this mechanism. Geometric parameters of ACJs determine the stiffness of the compliant mechanism. This paper presents the design and optimization of bend-and-sweep compliant mechanism. A multi-objective optimization problem was formulated for design optimization of the bend-and-sweep compliant mechanism. The objectives of the optimization problem were to maximize or minimize the bending and sweep displacements, depending on the situation, while minimizing the von Mises stress and mass of each mechanism. This optimization problem was solved using NSGA-II (a genetic algorithm). The results of this optimization for a single ACJ during upstroke and downstroke are presented in this paper. Results of two different loading conditions used during optimization of a single ACJ for upstroke are presented. Finally, optimization results comparing the performance of compliant mechanisms with one and two ACJs are also presented. It can be inferred from these results that the number of ACJs and the design of each ACJ determines the stiffness of the bend-and-sweep compliant mechanism. These mechanisms can be used in various applications. The goal of this research is to improve the performance of ornithopters by passively morphing their wings. In order to achieve a bio-inspired wing gait called continuous vortex gait, the wings of the ornithopter need to bend, and sweep simultaneously. This can be achieved by inserting the bend-and-sweep compliant mechanism into the leading edge wing spar of the ornithopters.

  9. Static and Cyclic Load-Deflection Characteristics of NiTi Orthodontic Archwires Using Modified Bending Tests

    NASA Astrophysics Data System (ADS)

    Nili Ahmadabadi, Mahmoud; Shahhoseini, Tahereh; Habibi-Parsa, Mohamad; Haj-Fathalian, Maryam; Hoseinzadeh-Nik, Tahereh; Ghadirian, Hananeh

    2009-08-01

    Near-equiatomic nickel-titanium (nitinol) has the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. One of the most successful applications of nitinol is orthodontic archwire. One of the suitable characteristics of these wires is superelasticity, a phenomenon that allows better-tolerated loading conditions during clinical therapy. Superelastic nitinol wires deliver clinically desired light continuous force enabling effective tooth movement with minimal damage for periodontal tissues. In this research, a special three-point bending fixture was invented and designed to determine the superelastic property in simulated clinical conditions, where the wire samples were held in the fixture similar to an oral cavity. In this experimental study, the load-deflection characteristics of superelastic NiTi commercial wires were studied through three-point bending test. The superelastic behavior was investigated by focusing on bending time, temperature, and number of cycles which affects the energy dissipating capacity. Experimental results show that the NiTi archwires are well suited for cyclic load-unload dental applications. Results show reduction in superelastic property for used archwires after long-time static bending.

  10. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test.

    PubMed

    Chung, S M; Yap, A U J; Chandra, S P; Lim, C T

    2004-11-15

    This study compared two test methods used to evaluate the flexural strength of resin-based dental composites. The two test methods evaluated were the three-point bending test4 and the biaxial flexural test. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid modified (F2000), and flowable [Filtek Flowable (FF)] composites. Flexural strength was determined with the use of both test methods after 1 week of conditioning in water at 37 degrees C. Data were analyzed with the use of an ANOVA/Scheffe test and an independent-samples t test at significance level 0.05. Mean flexural strength (n = 7) ranged from 66.61 to 147.21 and 67.27 to 182.81 MPa for three-point bending and ball-on-three-ball biaxial test methods, respectively. In both test methods, Z100 was significantly stronger than all other composites evaluated. In the three-point bending test, flexural strength of Z250 was significantly higher than A110, F2000 and FF, and FF was significantly stronger than A110 and F2000. The biaxial test method arrived at the same conclusions except that there was no significant difference between Z250 and FF. Pearson's correlation revealed a significantly (p < 0.01) positive and good correlation (R2 = 0.72) in flexural strength between the two test methods. Although the biaxial test has the advantage of utilizing small specimens, the low reproducibility of this test method does not support the proposition that it is a more reliable test method when compared to the ISO three-point bending test. PMID:15386492

  11. Design of a multi-bend achromat lattice for 3 GeV synchrotron light source

    NASA Astrophysics Data System (ADS)

    Kim, Eun-San

    2016-03-01

    We present a lattice design for a low-emittance and high-brilliance 3 GeV synchrotron light source that has been widely investigated in the world. We show the design results for a MBA (Multi-Bend Achromat) lattice with an emittance of 1.3 nm and 282.4 m circumference. Each cell has 5 bending magnets that consist of outer two with bending angle of 4.5° and inner three with bending angle of 7°. The lattice is designed to be flexible and consists of 12 straight sections in which one straight section has a length of 5.9 m. We have studied the dynamic aperture in the lattice with machine errors. It is shown that the designed low-emittance lattice provides sufficient dynamic aperture after COD correction. We present the results of variations of emittance, energy spread and dynamic aperture due to in-vacuum undulators in the straight sections. We performed particle tracking after the beam injection to investigate the efficiency of the injection scheme. We show the designed results of an injection scheme that shows the space allocation in injection section and the particle motions of injected beam. Our designed lattice provides a good optimization in terms of the emittance and brilliance as a light source for 3 GeV energy and circumference of 28 m.

  12. Springback evaluation for TRIP 800 steel sheets by simple bending tests

    NASA Astrophysics Data System (ADS)

    Avellaneda, F. J.; Miguel, V.; Coello, J.; Martínez, A.; Calatayud, A.

    2012-04-01

    TRIP steels, or Transformed Induced Plasticity steels, have excellent mechanical properties if compared with conventional steels. Strain hardening is also greater, thus they offer a good combination of strength and formability properties that may be justified by the multiphase structure of these steels. The highlighted characteristic of these steels is that they modify the microstructure with the deformation process as part of the austenite transforms to martensite, with the consequent change of the material properties. One of the main problems of TRIP steels is strong elastic recovery, or springback, after forming. In this work, the springback phenomenon is evaluated by bending tests and the influence of the variables involved in it is determined. The factor found to affect material recovery the most was the bending angle. Experimental bending forces do not agree with theoretical predictions.

  13. Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.

    1999-01-01

    Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.

  14. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  15. Design study of a low-emittance lattice with a five-bend achromat

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Lin; Kim, Eun-San

    2016-04-01

    The multi-bend achromat (MBA) lattice, which can provide a small horizontal emittance in the subnanometer range, shows promise for future storage-ring-based light-source facilities. We present the linear and the nonlinear properties of an optical design and the results of its optimization. The MBA lattice is designed as a five-bend achromat, and an emittance of 0.270 nm rad is achieved. The energy and the circumference of the designed ring are 3 GeV and 499.3 m, respectively. We investigated an injection system with a single-pulsed sextupole magnet in the storage ring. We describe the space allocation in the injection section and the particle dynamics of the injected beam. The investigation shows that our design exhibits a very low emittance and a sufficient dynamic aperture, and provides a suitable injection scheme for a 3-GeV light source.

  16. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  17. The use of experimental bending tests to more accurate numerical description of TBC damage process

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Golewski, P.

    2016-04-01

    Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.

  18. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  19. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  20. Design study of the bending sections between harmonic cascade FEL stages

    SciTech Connect

    Wan, Weishi; Corlett, John; Fawley, William; Zholents, A.

    2004-06-30

    The present design of LUX (linac based ultra-fast X-ray facility) includes a harmonic cascade FEL chain to generate coherent EUV and soft X-ray radiation. Four cascade stages, each consisting of two undulators acting as a modulator and a radiator, respectively, are envisioned to produce photons of approximate wavelengths 48 nm, 12 nm, 4 nm and 1 nm. Bending sections may be placed between the modulator and the radiator of each stage to adjust and maintain bunching of the electrons, to separate, in space, photons of different wavelengths and to optimize the use of real estate. In this note, the conceptual design of such a bending section, which may be used at all four stages, is presented. Preliminary tracking results show that it is possible to maintain bunch structure of nm length scale in the presence of errors, provided that there is adequate orbit correction and there are 2 families of trim quads and trim skew quads, respectively, in each bending section.

  1. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3° to allow SHMS to reach angles as low as 5.5°. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  2. Bending and pressurisation test of the human aortic arch: experiments, modelling and simulation of a patient-specific case.

    PubMed

    García-Herrera, Claudio M; Celentano, Diego J; Cruchaga, Marcela A

    2013-01-01

    This work presents experiments, modelling and simulation aimed at describing the mechanical behaviour of the human aortic arch during the bending and pressurisation test. The main motivation is to describe the material response of this artery when it is subjected to large quasi-static deformations in three different stages: bending, axial stretching and internal pressurisation. The sample corresponds to a young artery without cardiovascular pathologies. The pressure levels are within the normal and hypertension physiological ranges. The two principal findings of this work are firstly, the material characterisation performed via tensile test measurements that serve to derive the material parameters of a hyperelastic isotropic constitutive model and, secondly, the assessment of these material parameters in the simulation of the bending and pressurisation test. Overall, the reported material characterisation was found to provide a realistic description of the mechanical behaviour of the aortic arch under severe complex loading conditions considered in the bending and pressurisation test.

  3. Design of triangular core LMA-PCF with low-bending loss and low non-linearity for laser application

    NASA Astrophysics Data System (ADS)

    Kabir, Sumaiya; Khandokar, Md. Rezwanul Haque; Khan, Muhammad Abdul Goffar

    2016-07-01

    In this paper we characterize the design of a simple large-mode area photonic crystal fiber (LMA-PCF) with low bending loss and low non-linearity. The finite element method (FEM) with perfectly matched boundary layer (PML) is used to investigate the guiding properties. According to simulation the characterized four ring fluorine doped triangular core LMA-PCF achieves 1500 μm2 effective mode area with a low bending loss of 10-5dB/km at the wavelength of 1.064 μm and at a bending radius of 40 cm which is suitable for high power fiber laser.

  4. Design optimization of wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface.

    PubMed

    Saijyou, Kenji; Okuyama, Tomonao

    2010-05-01

    Wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface has been proposed to improve sonar detection performance in shallow water. This transducer is driven by utilizing two vibration modes, i.e., longitudinal and bending. Consequently, to achieve a wide-band signal transmission by this transducer, the phase difference between signals, which drive the ring-stack and the bending-disk piezoelectric resonators has to be optimized. In this paper, optimization approach of this phase difference in the design process is proposed. The effectiveness of this approach was confirmed by water-pool experiments.

  5. Computer Designed Instruction & Testing.

    ERIC Educational Resources Information Center

    New Mexico State Univ., Las Cruces.

    Research findings on computer designed instruction and testing at the college level are discussed in 13 papers from the first Regional Conference on University Teaching at New Mexico State University. Titles and authors are as follows: "Don't Bother Me with Instructional Design, I'm Busy Programming! Suggestions for More Effective Educational…

  6. Redesign of the mixed-mode bending delamination test to reduce nonlinear effects

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John H., Jr.

    1992-01-01

    The mixed-mode bending (MMB) test uses a lever to apply simultaneously mode I and mode II loading to a split-beam specimen. An iterative analysis that accounts for the geometric nonlinearity of the MMB test was developed. The analysis accurately predicted the measured load-displacement response and the strain energy release rate, G, of an MMB test specimen made of AS4/PEEK. The errors in G when calculated using linear theory were found to be as large as 30 percent in some cases. Because it would be inconvenient to use a nonlinear analysis to analyze MMB data, the MMB apparatus was redesigned to minimize the nonlinearity. With the improved apparatus, loads are applied just above the midplane of the test specimen through a roller attached to the lever. This apparatus was demonstrated by measuring the mixed-mode delamination fracture toughhess of the test specimen. The nonlinearity errors associated with testing this tough composite material were less than +/- 3 percent. The data from the improved MMB apparatus analyzed with a linear analysis were similar to those found with the original apparatus and the nonlinear analysis.

  7. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Cox, Thomas S; Baldwin, Charles A; Bevard, Bruce Balkcom

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  8. Numerical Modeling for Hole-Edge Cracking of Advanced High-Strength Steels (AHSS) Components in the Static Bend Test

    NASA Astrophysics Data System (ADS)

    Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem

    2011-08-01

    Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.

  9. Acoustic emission responses of plasma sprayed ceramics during four point bend tests

    SciTech Connect

    Lin, Chung-Kwei; Leigh, S.H.; Berndt, C.C.

    1996-12-31

    Free standing ceramics including alumina-13 wt.% titania (AT13), alumina-3 wt.% titania (AT3), alumina-40 wt.% zirconia (AZ40), and calcia-stabilized zirconia (CSZ), were produced by water-stabilized plasma spraying. Four point bend tests were performed in the in-plane direction (i.e., spray direction) to obtain the modulus of rupture of the materials. In situ acoustic emission (AE) monitoring was used to detect cracking during the tests. The AE characteristics such as ring down counts, event duration, peak amplitude, and energy were recorded and analyzed to evaluate different cracking mechanisms. The AE responses versus time for individual tests were evaluated and two basic types of cracking mechanisms; i.e., catastrophic failure and microcracking before failure, can be observed. AT3 and AZ40 tend to exhibit microcracking before failure and CSZ shows catastrophic failure. However, both mechanisms can be observed for AT13. For the total AE responses, the amplitude distributions are skewed to the right and the energy distributions show multi-modal distributions. Micro-, transitional, and macro-cracks can be better distinguished by the energy distribution. The relative proportion of these cracks was also determined.

  10. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests

    SciTech Connect

    Vanstreels, K. Zahedmanesh, H.; Bender, H.; Gonzalez, M.; De Wolf, I.; Lefebvre, J.; Bhowmick, S.

    2014-11-24

    This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.

  11. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  12. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  13. Three Point Bending Test of Human Femoral Tissue: An Essay in Ancient and Modern Bones

    NASA Astrophysics Data System (ADS)

    González-Bárcenas, L. A.; Trejo-Camacho, H.; Suárez-Estrella, I.; Heredia, A.; Magaña, C.; Bucio, L.; Orozco, E.

    2003-09-01

    Some procedures for characterising the mechanical properties of femur diaphysis are reviewed here. We have used the three point bending test to measure the relative rupture modulus of ancient healthy human tissues (1250, 800, 614, and 185 years BP) as well as recent bones. The maximum resistance to fracture was measured applying a force (by a wedge) over the femoral inner surface. The maximum rupture strength was about 150 MPa for recent bone and decreased as the antiquity increased. The typical anisotropy that is observed in this kind of tissues is due to the anisotropical orientation of fibres as well as the textured orientation of the apatite crystals over the collagen fibres. Therefore we found that ancient bones show less fracture strength probably due to an abiotic crystal growth phenomenon during the diagenesis process. By LVSEM analysis we have found that in recent samples the fracture surface is irregular due to the crosslinking interactions between the collagen molecules, in comparison with the ancient samples, where a smooth surface is clearly appreciated as the antiquity of the sample increases. The results reported here strongly suggest that these composites should contain a fibrillar phase as a matrix constituted mainly by a natural polymer (i.e. collagen, cellulose, etc.). Moreover, this composite must have a minimum rupture strength of about 150 MPa.

  14. Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency

    NASA Astrophysics Data System (ADS)

    Jafferis, Noah T.; Lok, Mario; Winey, Nastasia; Wei, Gu-Yeon; Wood, Robert J.

    2016-05-01

    In previous work we presented design and manufacturing rules for optimizing the energy density of piezoelectric bimorph actuators through the use of laser-induced melting, insulating edge coating, and features for rigid ground attachments to maximize force output, as well as a pre-stacked technique to enable mass customization. Here we adapt these techniques to bending actuators with four active layers, which utilize thinner material layers. This allows the use of lower operating voltages, which is important for overall power usage optimization, as typical small-scale power supplies are low-voltage and the efficiency of boost-converter and drive circuitry increases with decreasing output voltage. We show that this optimization results in a 24%-47% reduction in the weight of the required power supply (depending on the type of drive circuit used). We also present scaling arguments to determine when multi-layer actuator are preferable to thinner actuators, and show that our techniques are capable of scaling down to sub-mg weight actuators.

  15. Load-displacement measurement and work determination in three-point bend tests of notched or precracked specimens

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Fisher, D. M.

    1977-01-01

    Suggestions for testing of notched or cracked three-point bend specimens are presented which: (1) correct displacement measurement errors resulting from misalignment between the load applicator and specimen; (2) account for coincidental strains not associated with the work of crack extension; (3) simplify record analysis and processing; and (4) extend displacement gage range without sacrifice of sensitivity or accuracy. These testing details are particularly applicable to procedures in which the crack extension force is determined from the work done on the specimen.

  16. Design of GaN-based S-bend Y-branch power splitter with MMI structure

    NASA Astrophysics Data System (ADS)

    Azhar, Arviza; Purnamaningsih, Retno W.

    2015-01-01

    In this work, we have designed GaN based symmetric S-Bend Y-branch power splitter with rectangular MMI structure at telecommunication wavelength. Optimization of the structure parameters required for this structure was conducted accurately by theoretical tools using BPM methods. The simulation results proposed the optimum dimension for the design Y-branch power splitter at relative output power 94.5%.

  17. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  18. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    NASA Astrophysics Data System (ADS)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  19. Local strain and damage mapping in single trabeculae during three-point bending tests.

    PubMed

    Jungmann, R; Szabo, M E; Schitter, G; Tang, Raymond Yue-Sing; Vashishth, D; Hansma, P K; Thurner, P J

    2011-05-01

    The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic-plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6±0.9)% at whitening onset and (12±4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains. PMID:21396601

  20. Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence

    NASA Astrophysics Data System (ADS)

    Turco, Emilio; Barcz, Katarzyna; Rizzi, Nicola Luigi

    2016-10-01

    In dell'Isola et al. (Zeitschrift für Angewandte Math und Physik 66(6):3473-3498, 2015, Proc R Soc Lond A Math Phys Eng Sci 472(2185):1-23, 2016) pantographic sheets are proposed as a basic constituent for a novel metamaterial. In Part I, see Turco et al. (Zeitschrift für Angewandte Math und Physik, doi: 10.1007/s00033-016-0713-4, 2016), two different numerical models are applied in order to design an experimental setup aimed to prove the effectiveness of introduced concept. The aim of this paper is to prove that the Hencky-type model introduced for planar pantographic sheets allows for the correct prediction, in a large range of imposed displacements, of the experimental measurements concerning specimens undergoing coupled bending and extensional deformations. The four-parameter numerical model introduced is shown to have a large range of applicability: Indeed without changing the values of the material parameters previously attributed in simple extensional tests to a specific specimen by a best-fit procedure, it is possible to forecast its behavior in all the considered type of imposed deformations. The measurements performed include the determination of reactive forces exerted by used hard devices, and the numerical modeling is able to predict very carefully quantitatively and qualitatively also this complex aspect of phenomenology, where previously attempted models seem to have failed.

  1. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  2. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  3. The role of confinement and corona crystallinity on the bending modulus of copolymer micelles measured directly by AFM flexural tests.

    PubMed

    Jennings, L; Glazer, P; Laan, A C; de Kruijff, R M; Waton, G; Schosseler, F; Mendes, E

    2016-09-21

    We present an approach which makes it possible to directly determine the bending modulus of single elongated block copolymer micelles. This is done by forming arrays of suspended micelles onto microfabricated substrates and by performing three-point bending flexural tests, using an atomic force microscope, on their suspended portions. By coupling the direct atomic force microscopy measurements with differential scanning calorimetry data, we show that the presence of a crystalline corona strongly increases the modulus of the copolymer elongated micelles. This large increase suggests that crystallites in the corona are larger and more uniformly oriented due to confinement effects. Our findings together with this hypothesis open new interesting avenues for the preparation of core-templated polymer fibres with enhanced mechanical properties. PMID:27506248

  4. Test Design and Speededness

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2011-01-01

    A critical component of test speededness is the distribution of the test taker's total time on the test. A simple set of constraints on the item parameters in the lognormal model for response times is derived that can be used to control the distribution when assembling a new test form. As the constraints are linear in the item parameters, they can…

  5. Load-displacement measurement and work determination in three-point bend tests of notched or precracked specimens

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Fisher, D. M.

    1978-01-01

    Suggestions for testing of notched or cracked three-point bend specimens are presented that (1) correct displacement measurement errors resulting from misalignment between the load applicator and specimen; (2) account for coincidental strains not associated with the work of crack extension; (3) simplify record analysis and processing; and (4) extend displacement gage range without sacrifice of sensitivity or accuracy. These testing details are particularly applicable to procedures in which the crack extension force J(I) is determined from the work done on the specimen.

  6. Effect of dexamethasone on mandibular bone biomechanics in rats during the growth phase as assessed by bending test and peripheral quantitative computerized tomography.

    PubMed

    Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E

    2015-04-01

    Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species. PMID:25950168

  7. Effect of dexamethasone on mandibular bone biomechanics in rats during the growth phase as assessed by bending test and peripheral quantitative computerized tomography.

    PubMed

    Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E

    2015-04-01

    Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.

  8. A comparison of deformation and failure behaviors of AZ31 and E-form Mg alloys under V-bending test

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Singh, Jaiveer; Kim, Min-Seong; Yoon, Jeong-Whan

    2016-08-01

    Deformation and failure behaviors of magnesium (Mg) alloys (AZ31 and E-form) were investigated using V-bending test. Formability of these Mg alloys was discussed in terms of minimum bending radius. Microtexture evolution in the deformed Mg alloys was examined via electron back-scattered diffraction (EBSD) technique. Two level simulation technique which combined continuum finite element method (FEM) and crystal plasticity FEM successfully simulated the microtexture evolution in Mg alloys during V-bending test. The effect of deformation twinning on the failure in Mg alloys was also examined.

  9. Test Analysis Correlation of the Single Stringer Bending Tests for the Space Shuttle ET-137 Intertank Stringer Crack Investigation

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Saxon, Joseph B.; Wingate, Robert J.

    2012-01-01

    , occurred as the LOX liquid level crossed the LOX tank / Intertank interface ring frame. Hence, cryogenically-induced displacements were suspected as a contributing cause of the stringer cracks. To study the behavior of Intertank stringers subjected to similar displacements, static load tests of individual stringers, colloquially known as "single stringer bending tests" were performed. Approximately thirty stringers were tested, many of which were cut from the partially completed Intertank for what would have been ET-139. In addition to the tests, finite element (FE) analyses of the test configuration were also performed. In this paper, the FE analyses and test-analysis correlation for stringer test S6-8 are presented. Stringer S6-8 is a "short chord" configuration with no doubler panels.

  10. An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet

    NASA Astrophysics Data System (ADS)

    Bokor, J.; Pavlovič, M.

    2016-03-01

    Ion-optical designs of an isocentric ion gantry with a compact curved superconducting final bending magnet are presented. The gantry is designed for transporting carbon-therapy beams with nominal kinetic energy of 400 MeV/u, which corresponds to the penetration range of C6+ beam in water of about 28 cm. In contrast to other existing designs, we present a "hybrid" beam transport system containing a single superconducting element - the last bending magnet. All other elements are based on conventional warm technology. Ion-optical properties of such a hybrid system are investigated in case of transporting non-symmetric (i.e. different emittance patterns in the horizontal and vertical plane) beams. Different conditions for transporting the non-symmetric beams are analyzed aiming at finding the optimal, i.e. the most compact, gantry version. The final gantry layout is presented including a 2D parallel scanning. The ion-optical and scanning properties of the final gantry design are described, discussed and illustrated by computer simulations performed by WinAGILE.

  11. Design of Bioelectronic Interfaces by Exploiting Hinge-Bending Motions in Proteins

    NASA Astrophysics Data System (ADS)

    Benson, David E.; Conrad, David W.; de Lorimier, Robert M.; Trammell, Scott A.; Hellinga, Homme W.

    2001-08-01

    We report a flexible strategy for transducing ligand-binding events into electrochemical responses for a wide variety of proteins. The method exploits ligand-mediated hinge-bending motions, intrinsic to the bacterial periplasmic binding protein superfamily, to establish allosterically controlled interactions between electrode surfaces and redox-active, Ru(II)-labeled proteins. This approach allows the development of protein-based bioelectronic interfaces that respond to a diverse set of analytes. Families of these interfaces can be generated either by exploiting natural binding diversity within the superfamily or by reengineering the specificity of individual proteins. These proteins may have numerous medical, environmental, and defense applications.

  12. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N.

  13. The design and experiment of a novel ultrasonic motor based on the combination of bending modes.

    PubMed

    Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan

    2016-09-01

    This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N. PMID:27400216

  14. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE PAGESBeta

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  15. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John

    2016-10-01

    Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.

  16. Design optimization of a low-loss and wide-band sharp 120° waveguide bend in 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Yuan, Jianhua; Yang, Jian; Shi, Dan; Ai, Wenbao; Shuai, Tianping

    2016-05-01

    For two dimensional photonic crystals containing finite cylinders on triangle lattice, a 120° waveguide bend with low-loss and wide-band is obtained in this paper. The optimal process can be divided into two steps: firstly, a conventional waveguide bend can be introduced by maximizing the photonic bandgap; then further optimization involves shifting the position and modifying the radius of only one air hole near the bend. An optimization problem at a given frequency or over a frequency range needs to be solved. It depends on both the field solutions obtained by using the finite element method and the optimization of photonic bandgap obtained by using the plane wave expansion method. With the proposed optimal technique, the result of our optimized design for sharp 120° waveguide bends shows that an obvious low-loss transmission at wavelength 1550 nm can be observed and the maximum value of objective function is able to be rapidly obtained.

  17. International round robin test of the retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Nishijima, G.; Osamura, K.; Shin, H. S.; Goldacker, W.; Breschi, M.; Ribani, P.

    2016-02-01

    An international round robin test was carried out in order to establish a test method for retained critical current after double bending at room temperature of Ag-sheathed Bi-2223 superconducting wires. Tests for commercial Bi-2223 tape were conducted by six laboratories using the same guidelines. The standard uncertainties (SUs) of measurands were evaluated for these four quantities: I C0, I C/I C080, I C/I C060, I C/I C050, where, I C0 is initial critical current and I C /I C0XX is critical current after XX mm bending. Using an F test to determine where the most scatter was generated in the test results it was found that the greatest scatter in the normalized critical current measurements came from inter-laboratory scatter. In a type-B uncertainty evaluation, the major contribution was from the bending diameter and measuring temperature. The relative SU tended to increase as the bending diameter decreased. A specific mandrel diameter corresponding to a retained critical current of 95% could be determined with a relative SU of 1.3%. In order to reduce the overall scatter, the temperature difference between the critical current measurements before and after bending should be small.

  18. Field Bending Tests of Three Riparian Species Common to the Central Platte River: Resistance, Rigidity and Plant Streamlining

    NASA Astrophysics Data System (ADS)

    Thomas, R. E.; Bankhead, N. L.; Simon, A.

    2010-12-01

    The braided Platte River, central Nebraska, was described by the 19th Century wit Artemus Ward as being “a mile wide and an inch deep”. 150 years on, the upstream diversion and storage of water for agricultural, municipal and industrial uses has caused significant alteration of the hydrologic regime. As a result, sandbars have been progressively colonized by vegetation, leading to the formation of semi-permanent islands and the narrowing of braids by 30-90%. In response, a program was initiated early in 2007 to recreate habitat for endangered birds. One potential management strategy is to modify the hydrologic regime with the goal of removing vegetation and hence re-establishing a dynamic braided channel. An interdisciplinary approach has been adopted to evaluate the likelihood for successful implementation of such a strategy. In a companion paper, Bankhead et al. describe field tests conducted to quantify the forces necessary to uproot and/or break the stems and roots of four common riparian species. Herein, we describe field measurements of the behavior of reed canary grass, phragmites australis and cottonwood plants in response to being pulled horizontally at a known height above the ground. During the tests, the extent of plant bending in response to the applied force and the resistance to bending were monitored continuously. Furthermore, a novel approach employing time lapse photography and image processing was used to quantify associated changes in plant projected area. The mean stem diameter of reed canary grass plants was 3.21 ± 1.08 mm (μ ± σ, n = 69), that of phragmites australis plants was 6.05 ± 1.95 mm (n = 90), and that of cottonwood plants was 4.18 ± 3.59 mm (n = 76). The mean stem length of reed canary grass was 0.77 ± 0.35 m (n = 69), that of phragmites australis was 0.86 ± 0.64 m (n = 90), and that of cottonwoods was 0.55 ± 0.43 m (n = 76). The flexural rigidities (J) of cottonwoods were particularly sensitive to plant age: for 1 year

  19. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  20. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  1. Designing Accelerated Tests Of Electromigration

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.

    1991-01-01

    Method for design of accelerated tests of electromigration (as in microscopic conductors in integrated circuits) based partly on simplified mathematical model of electromigration and partly on error analysis. Objective to determine quickly operating life of tested components under normal operating conditions by extrapolation from lifetime measurements at operating stresses greater than normal. Involves compromise between reducing testing time by increasing stresses and reducing uncertainty in extrapolated lifetime by decreasing stresses.

  2. Bending and torquing accuracy of the bending art system (BAS).

    PubMed

    Fischer-Brandies, H; Orthuber, W; Pohle, L; Sellenrieck, D

    1996-02-01

    With the bending art system (BAS) the computerized production of individual arch wires has become possible. The BAS consists of an intraoral camera, a computer program and a bending machine producing the archwire by consecutive bending and twisting procedures. This study examines the accuracy of the bending machine when using 0.016" x 0.016" and 0.016" x 0.022" steel wire of rectangular cross-section. Bending angles ranging from 6 degrees to 54 degrees, and torsion angles ranging from 2 degrees to 35 degrees were tested; also the minimum distance between these individual operations was determined. The bent pieces of wire were analysed in a 3D-coordinate gauging system. The 0.016" x 0.016" steel wire showed a mean measuring error of 0.62 degree in bending procedures and of 0.72 degree in torsion procedures, whereas the 0.016" x 0.022" steel wire showed an error of 0.87 degree with edgewise bendings and of 0.86 degree with torsions. To ensure this accuracy a minimum distance of 0.5 mm to 0.7 mm, depending on which kind of bending combination is used, between bending and torsion is required. The error could be reduced even further if a more constant wire material and a more accurate calibration of the bending machine were used. All in all the precision of the bending machine meets the clinical requirements. PMID:8626166

  3. A novel method of strain - bending moment calibration for blade testing

    NASA Astrophysics Data System (ADS)

    Greaves, P.; Prieto, R.; Gaffing, J.; van Beveren, C.; Dominy, R.; Ingram, G.

    2016-09-01

    A new method of interpreting strain data in full scale static and fatigue tests has been implemented as part of the Offshore Renewable Energy Catapult's ongoing development of biaxial fatigue testing of wind turbine blades. During bi-axial fatigue tests, it is necessary to be able to distinguish strains arising from the flapwise motion of the blade from strains arising from the edgewise motion. The method exploits the beam-like structure of blades and is derived using the equations of beam theory. It offers several advantages over the current state of the art method of calibrating strain gauges.

  4. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  5. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  6. A Biaxial-Bending Test to Observe the Growth of Interacting Delaminations in a Composite Laminate Plate

    NASA Technical Reports Server (NTRS)

    McElroy, Mark; Jackson, Wade; Pankow, Mark

    2016-01-01

    It is not easy to isolate the damage mechanisms associated with low-velocity impact in composites using traditional experiments. In this work, a new experiment is presented with the goal of generating data representative of progressive damage processes caused by low-velocity impact in composite materials. Carbon fiber reinforced polymer test specimens were indented quasi-statically such that a biaxial-bending state of deformation was achieved. As a result, a three-dimensional damage process, involving delamination and delamination-migration, was observed and documented using ultrasonic and x-ray computed tomography. Results from two different layups are presented in this paper. Delaminations occurred at up to three different interfaces and interacted with one another via transverse matrix cracks. Although this damage pattern is much less complex than that of low-velocity impact on a plate, it is more complex than that of a standard delamination coupon test and provides a way to generate delamination, matrix cracking, and delamination-migration in a controlled manner. By limiting the damage process in the experiment to three delaminations, the same damage mechanisms seen during impact could be observed but in a simplified manner. This type of data is useful in stages of model development and validation when the model is capable of simulating simple tests, but not yet capable of simulating more complex and realistic damage scenarios.

  7. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  8. Design of a low-bending-loss large-mode-area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Napierala, Marek; Beres-Pawlik, Elzbieta; Nasilowski, Tomasz; Mergo, Pawel; Berghmans, Francis; Thienpont, Hugo

    2012-04-01

    We present a design of a photonic crystal fiber for high power laser and amplifier applications. Our fiber comprises a core with a diameter larger than 60 μm and exhibits single mode operation when the fiber is bent around a 10 cm radius at a wavelength of 1064 nm. Single mode guidance is enforced by the high loss of higher order modes which exceeds 80 dB/m whereas the loss of the fundamental mode (FM) is lower than 0.03 dB/m. The fiber can therefore be considered as an active medium for compact high power fiber lasers and amplifiers with a nearly diffraction limited beam output. We also analyze our fiber in terms of tolerance to manufacturing imperfections. To do so we employ a statistical design methodology. This analysis reveals those crucial parameters of the fiber that have to be controlled precisely during the fabrication process not to deteriorate the fiber performance. Finally we show that the fiber can be fabricated according to our design and we present experimental results that confirm the expected fiber performance.

  9. Ares I Static Tests Design

    NASA Technical Reports Server (NTRS)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  10. Stringer Bending Test Helps Diagnose and Prevent Cracks in the Space Shuttle's External Tank

    NASA Technical Reports Server (NTRS)

    Saxon, Joseph B.; Swanson, Gregory R.; Ondocsin, William P.; Wingate, Robert J.

    2012-01-01

    Space Shuttle Discovery's last mission, STS-133, was scheduled to launch on November 5, 2010. Just hours before liftoff, a hydrogen leak at an umbilical connection scrubbed the launch attempt. After the scrub, further inspection revealed a large crack in the foam insulation covering the External Tank, ET-137. Video replay of the launch attempt confirmed the crack first appeared as cryogenic propellants were being loaded into the ET. When the cracked foam was removed, technicians found the underlying stringer had two 9-inch-long cracks. Further inspection revealed a total of 5 of the 108 ET stringers had cracked. NASA and Lockheed Martin immediately launched an aggressive campaign to understand the cracks and repair the stringers in ET-137, targeting February 2011 as the new launch date for STS-133. Responsibilities for the various aspects of the investigation were widely distributed among NASA centers and organizations. This paper will focus on lab testing at Marshall Space Flight Center (MSFC) in Huntsville, Alabama that was intended to replicate the stringer failure and gauge the effect of proposed countermeasures.

  11. Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations

    NASA Astrophysics Data System (ADS)

    Turco, Emilio; Barcz, Katarzyna; Pawlikowski, Marek; Rizzi, Nicola Luigi

    2016-10-01

    In dell'Isola et al. (Zeitschrift für Angewandte Math und Physik 66(6):3473-3498, 2015, Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016), the concept of pantographic sheet is proposed. The aim is to design a metamaterial showing: (i) a large range of elastic response; (ii) an extreme toughness in extensional deformation; (iii) a convenient ratio between toughness and weight. However, these required properties must coexist with non-detrimental mechanical characteristics in the presence of other kinds of imposed displacements. The aim of this paper is to prove via numerical simulations that pantographic sheets may effectively resist to coupled bending and extensional deformations. The four-parameter model introduced shows its versatility as it is able to encompass all the considered types of (large) deformations. The numerical integration scheme which we use is based on the same concepts exploited in Turco et al. (Zeitschrift für Angewandte Math und Physik 67(4):1-28, 2016): They prove that the Hencky-type discretization is very efficient also in nonlinear large deformations and large displacements regimes. In Part II of this paper, we will show that the used models are very effective to describe experimental evidence.

  12. Damage Characterization of Glass/Epoxy Composite Under Three-Point Bending Test Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Pashmforoush, Farzad; Fotouhi, Mohamad; Ahmadi, Mehdi

    2012-07-01

    Acoustic emission (AE) technique is an efficient non-destructive method for detection and identification of various damage mechanisms in composite materials. Discrimination of AE signals related to different damage modes is of great importance in the use of this technique. For this purpose, integration of k-means algorithm and genetic algorithm (GA) was used in this study to cluster AE events of glass/epoxy composite during three-point bending test. Performing clustering analysis, three clusters with separate frequency ranges were obtained, each one representing a distinct damage mechanism. Furthermore, time-frequency analysis of AE signals was performed based on wavelet packet transform (WPT). In order to find the dominant components associated with different damage mechanisms, the energy distribution criterion was used. The frequency ranges of the dominant components were then compared with k-means genetic algorithm (KGA) outputs. Finally, SEM observation was utilized to validate the results. The obtained results indicate good performance of the proposed methods in the damage characterization of composite materials.

  13. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  14. Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators

    NASA Astrophysics Data System (ADS)

    Jafferis, Noah T.; Smith, Michael J.; Wood, Robert J.

    2015-06-01

    Increasing the energy and power density of piezoelectric actuators is very important for any weight-sensitive application, and is especially crucial for enabling autonomy in micro/milli-scale robots and devices utilizing this technology. This is achieved by maximizing the mechanical flexural strength and electrical dielectric strength through the use of laser-induced melting or polishing, insulating edge coating, and crack-arresting features, combined with features for rigid ground attachments to maximize force output. Manufacturing techniques have also been developed to enable mass customization, in which sheets of material are pre-stacked to form a laminate from which nearly arbitrary planar actuator designs can be fabricated using only laser cutting. These techniques have led to a 70% increase in energy density and an increase in mean lifetime of at least 15× compared to prior manufacturing methods. In addition, measurements have revealed a doubling of the piezoelectric coefficient when operating at the high fields necessary to achieve maximal energy densities, along with an increase in the Young’s modulus at the high compressive strains encountered—these two effects help to explain the higher performance of our actuators as compared to that predicted by linear models.

  15. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  16. Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2016-05-01

    Concrete is still the leading structural material due to its low production cost and great structural design flexibility. Although it is distinguished by such a high durability and compressive strength, it is vulnerable in a series of ambient and operational degradation factors which all too frequently result in crack formation that can adversely affect its mechanical performance. The autonomous healing system, using encapsulated polyurethane-based, expansive, healing agent embedded in concrete, is triggered by the crack formation and propagation and promises material repair and operational service life extension. As shown in our previous studies, the formed cracks on small-scale concrete beams are sealed and repaired by filling them with the healing agent. In the present study, the crack formation and propagation in autonomously healed, large-scale concrete beams are thoroughly monitored through a combination of non-destructive testing (NDT) methods. The ultrasonic pulse velocity (UPV), using embedded low-cost and aggregate-size piezoelectric transducers, the acoustic emission (AE) and the digital image correlation (DIC) are the NDT methods which are comprehensively used. The integrated ultrasonic, acoustic and optical monitoring system introduces an experimental configuration that detects and locates the four-point bending mode fracture on large-scale concrete beams, detects the healing activation process and evaluates the subsequent concrete repair.

  17. Design and testing of a new, simple continuous bent sagittally focusing monochromator

    SciTech Connect

    Kycia, S.; Inoue, K.; Shen, Q.

    1996-09-01

    A continuous bent sagittally focusing monochromator has been designed and built. The monochromator is compatible with the present single-point bender apparatus designed for polygonal (ribbed) triangular sagittally focusing monochromators. This monochromator implements a new design concept taking advantage of a tapered rectangular wafer to allow for sagittal bending while simultaneously minimizing anticlastic bending. The monochromator was optimized to operate at x-ray energies in the range of 5 to 25 keV. The design was derived from finite element analysis using ANSYS. The monochromator performance was tested by means of an apparatus implementing an x-ray tube source and a double-crystal configuration. This method yields precise contour maps of the entire monochromator surface. Details of the monochromator design, test apparatus, and corresponding results will be presented. {copyright} {ital 1996 American Institute of Physics.}

  18. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  19. Biomechanical properties of the mid-shaft femur in middle-aged hypophysectomized rats as assessed by bending test.

    PubMed

    Bozzini, Clarisa; Picasso, Emilio O; Champin, Graciela M; Alippi, Rosa María; Bozzini, Carlos E

    2012-10-01

    Both stiffness and strength of bones are thought to be controlled by the "bone mechanostat". Its natural stimuli would be the strains of bone tissue (sensed by osteocytes) that are induced by both gravitational forces (body weight) and contraction of regional muscles. Body weight and muscle mass increase with age. Biomechanical performance of load-bearing bones must adapt to these growth-induced changes. Hypophysectomy in the rat slows the rate of body growth. With time, a great difference in body size is established between a hypophysectomized rat and its age-matched control, which makes it difficult to establish the real effect of pituitary ablation on bone biomechanics. The purpose of the present investigation was to compare mid-shaft femoral mechanical properties between hypophysectomized and weight-matched normal rats, which will show similar sizes and thus will be exposed to similar habitual loads. Two groups of 10 female rats each (H and C) were established. H rats were 12-month-old that had been hypophysectomized 11 months before. C rats were 2.5-month-old normals. Right femur mechanical properties were tested in 3-point bending. Structural (load-bearing capacity and stiffness), geometric (cross-sectional area, cortical sectional area, and moment of inertia), and material (modulus of elasticity and maximum elastic stress) properties were evaluated. The left femur was ashed for calcium content. Comparisons between parameters were performed by the Student's t test. Average body weight, body length, femur weight, femur length, and gastrocnemius weight were not significantly different between H and C rats. Calcium content in ashes was significantly higher in H than in C rats. Cross-sectional area, medullary area, and cross-sectional moment of inertia were higher in C rats, whereas cortical area did not differ between groups. Structural properties (diaphyseal stiffness, elastic limit, and load at fracture) were about four times higher in hypophysectomized rats

  20. Biomechanical properties of the mid-shaft femur in middle-aged hypophysectomized rats as assessed by bending test.

    PubMed

    Bozzini, Clarisa; Picasso, Emilio O; Champin, Graciela M; Alippi, Rosa María; Bozzini, Carlos E

    2012-10-01

    Both stiffness and strength of bones are thought to be controlled by the "bone mechanostat". Its natural stimuli would be the strains of bone tissue (sensed by osteocytes) that are induced by both gravitational forces (body weight) and contraction of regional muscles. Body weight and muscle mass increase with age. Biomechanical performance of load-bearing bones must adapt to these growth-induced changes. Hypophysectomy in the rat slows the rate of body growth. With time, a great difference in body size is established between a hypophysectomized rat and its age-matched control, which makes it difficult to establish the real effect of pituitary ablation on bone biomechanics. The purpose of the present investigation was to compare mid-shaft femoral mechanical properties between hypophysectomized and weight-matched normal rats, which will show similar sizes and thus will be exposed to similar habitual loads. Two groups of 10 female rats each (H and C) were established. H rats were 12-month-old that had been hypophysectomized 11 months before. C rats were 2.5-month-old normals. Right femur mechanical properties were tested in 3-point bending. Structural (load-bearing capacity and stiffness), geometric (cross-sectional area, cortical sectional area, and moment of inertia), and material (modulus of elasticity and maximum elastic stress) properties were evaluated. The left femur was ashed for calcium content. Comparisons between parameters were performed by the Student's t test. Average body weight, body length, femur weight, femur length, and gastrocnemius weight were not significantly different between H and C rats. Calcium content in ashes was significantly higher in H than in C rats. Cross-sectional area, medullary area, and cross-sectional moment of inertia were higher in C rats, whereas cortical area did not differ between groups. Structural properties (diaphyseal stiffness, elastic limit, and load at fracture) were about four times higher in hypophysectomized rats

  1. Nanoelectronic circuit design and test

    NASA Astrophysics Data System (ADS)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  2. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system?

    PubMed

    Schmidt, Hendrik; Heuer, Frank; Wilke, Hans-Joachim

    2009-01-01

    Dynamic stabilization devices have been introduced to clinics as an alternative to rigid fixation. The stiffness of these devices varies widely, whereas the optimal stiffness, achieving a predefined stabilization of the spine, is unknown. This study was focused on the determination of stiffness values for posterior stabilization devices achieving a flexible, semi-flexible or rigid connection between two vertebrae. An extensively validated finite element model of a lumbar spinal segment L4-5 with an implanted posterior fixation device was used in this study. The model was exposed to pure moments of 7.5 and 20Nm around the three principal anatomical directions, simulating flexion, extension, lateral bending and axial rotation. In parametrical studies, the influence of the axial and bending fixator stiffness on the spinal range of motion was investigated. In order to examine the validity of the computed results, an in-vitro study was carried out. In this, the influence of two posterior stabilization devices (DSS and rigidly internal fixator) on the segmental stabilization was investigated. The finite element (FE)-model predicted that each load direction caused a pairing of stiffness relations between axial and bending stiffness. In flexion and extension, however, the bending stiffness had a neglectable effect on the segmental stabilization, compared to the axial stiffness. In contrast, lateral bending and axial rotation were influenced by both stiffness parameters. Except in axial rotation, the model predictions were in a good agreement with the determined in-vitro data. In axial rotation, the FE-model predicted a stiffer segmental behavior than it was determined in the in-vitro study. It is usually expected that high stiffness values are required for a posterior stabilization device to stiffen a spinal segment. We found that already small stiffness values were sufficient to cause a stiffening. Using these data, it may possible to develop implants for certain clinical

  3. Stress and stress relaxation behaviors of multi-layered polarizer structures under a reliability test condition characterized by use of a bending beam technique

    NASA Astrophysics Data System (ADS)

    Lin, Taiy-In; Hsieh, Chih-Yung; Li, I.-Yin; Leu, Jihperng

    2015-04-01

    The bending curvature, stresses, and stress relaxation of various multi-layered structures with different adhesive layers pertaining to the polarizer in a thin-film transistor liquid-crystal display (TFT-LCD) have been successfully characterized by using bending beam technique under reliability test. To be more specific, three different types of pressure-sensitive adhesive (hard-, middle-, and soft-type) and various poly(vinyl alcohol) (PVA) stretched directions are devised to examine to key stress contributors and correlations with light leakage. The shrinkage stress in stretched PVA film and stress relaxation ability of pressure-sensitive adhesives (PSA) layers are found to be the key factors determining the stress distribution and out-of-plane displacement of a polarizer stack. For hard-type PSA, its polarizer stack generates the highest bending curvature with maximum out-of-plane displacement but minimum in-plane displacement, leading to anisotropic stress distribution with high stress around the edges. On the other hand, polarizer stack with soft-type PSA yields the maximum in-plane displacement but the minimum out-of-plane displacement, resulting in isotropic stress distribution.

  4. Program Helps Design Tests Of Developmental Software

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  5. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  6. Sheet Bending using Soft Tools

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  7. Designing special test instruments for preventive maintenance.

    PubMed

    McCullough, C E; Baker, L S

    1979-01-01

    Periodic performance testing of biomedical equipment can be made considerably more efficient by careful design of test procedures and by fabrication of special test instruments which are designed for those procedures. The design philosophy behind such procedures and instruments and its applicability to a wide variety of biomedical devices is discussed. As a practical example, an ECG machine/patient monitor test system is described and construction details are given. PMID:10241383

  8. A3 Subscale Diffuser Test Article Design

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  9. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  10. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  11. An Experimental Investigation of Transverse Tension Fatigue Characterization of IM6/3501-6 Composite Materials Using a Three-Point Bend Test

    NASA Technical Reports Server (NTRS)

    Peck, Ann W.

    1998-01-01

    As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.

  12. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and...

  13. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... constructed to test the effectiveness of backfill placement and compaction procedures against...

  14. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... constructed to test the effectiveness of backfill placement and compaction procedures against...

  15. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Dai, F.; Xu, N. W.; Zhao, T.

    2016-03-01

    The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

  16. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  17. Designing the Fitness Testing Environment.

    ERIC Educational Resources Information Center

    Petray, Clayre; And Others

    1989-01-01

    This article provides teachers with strategies for planning and organizing a positive, efficient physical fitness testing environment for K-12 students, including students with special needs. Methods of class organization and scheduling suggestions are presented. Sample record and score sheets are included. (IAH)

  18. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  19. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  20. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.

    PubMed

    van Lenthe, G Harry; Voide, Romain; Boyd, Steven K; Müller, Ralph

    2008-10-01

    Current practice to determine bone tissue modulus of murine cortical bone is to estimate it from three-point bending tests, using Euler-Bernoulli beam theory. However, murine femora are not perfect beams; hence, results can be inaccurate. Our aim was to assess the accuracy of beam theory, which we tested for two commonly used inbred strains of mice, C57BL/6 (B6) and C3H/He (C3H). We measured the three-dimensional structure of male and female B6 and C3H femora (N=20/group) by means of micro-computed tomography. For each femur five micro-finite element (micro-FE) models were created that simulated three-point bending tests with varying distances between the supports. Tissue modulus was calculated from beam theory using micro-FE results. The accuracy of beam theory was assessed by comparing the beam theory-derived moduli with the modulus as used in the micro-FE analyses. An additional set of fresh-frozen femora (10 B6 and 12 C3H) was biomechanically tested and subjected to the same micro-FE analyses. These combined experimental-computational analyses enabled an unbiased assessment of specimen-specific tissue modulus. We found that by using beam theory, tissue modulus was underestimated for all femora. Femoral geometry and size had strong effects on beam theory-derived tissue moduli. Owing to their relatively thin cortex, underestimation was markedly higher for B6 than for C3H. Underestimation was dependent on support width in a strain-specific manner. From our combined experimental-computational approach we calculated tissue moduli of 12.0+/-1.3 GPa and 13.4+/-2.1 GPa for B6 and C3H, respectively. We conclude that tissue moduli in murine femora are strongly underestimated when calculated from beam theory. Using image-based micro-FE analyses we could precisely quantify this underestimation. We showed that previously reported murine inbred strain-specific differences in tissue modulus are largely an effect of geometric differences, not accounted for by beam theory. We

  1. Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Sayir, Haluk

    1995-01-01

    The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.

  2. Formal Functional Test Designs: Bridging the Gap Between Test Requirements and Test Specifications

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1993-01-01

    This presentation describes the testing life cycle, the purpose of the test design phase, and test design methods and gives an example application. Also included is a description of Test Representation Language (TRL), a summary of the language, and an example of an application of TRL. A sample test requirement and sample test design are included.

  3. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  4. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  5. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  6. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  7. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  8. SP-100 liquid metal test loop design

    NASA Astrophysics Data System (ADS)

    Fallas, T. Ted; Kruger, Gordon B.; Wiltshire, Frank R.; Jensen, Grant C.; Clay, Harold; Upton, Hugh A.; Gamble, Robert E.; Kjaer-Olsen, Christian; Lee, Keith

    1992-01-01

    The SP-100 Power System Qualification (PSO) program validates the technology readiness of the SP-100 Generic Flight System (GFS). As part of the PSQ, the GFS reactor, heat transport and power generation systems are being validated, by test, in high temperature liquid metal test loops. The liquid metal test loop program consists of two test loops. The first, a natural circulation material test loop (MTL), has been successfully operating for the last year at GE's test facility in San Jose. The second, a forced circulation Component Test Loop (CTL) is in the preliminary design phase. Fabrication of the CTL and modifications to the Test Facility will be completed in FY94 with component testing scheduled to begin in FY95. The CTL is a Nb-1Zr test loop with an Electromagnetic (EM) pump providing forced circulation for the liquid lithium coolant. The CTL test program is comprised of a series of individual component tests. Test components containing thermoelectric cells will have their cold side ducts piped to an existing heat rejection loop external to the CTL vacuum vessel. The test assembly and test components are being designed by GE. The detail design of several loop components is being performed by Westinghouse Atomic Energy Systems (WAES). The CTL will be assembled and the test performed at GE's facilties in San Jose, California.

  9. Design, manufacture and test of the composite case for ERINT-1 solid rocket motor

    NASA Astrophysics Data System (ADS)

    Mard, Francis

    1993-06-01

    SEP is in charge since 1989 of the ERINT-1 motor case and nozzle. The stringent missile weight and volume requirements coupled with the specification to provide an aerodynamically stable configuration over a very large Mach number range led to the need to develop a high-performance composite motor case. Development of this SRM case presented a variety of technical challenges that were solved by an original design: (1) integral skirts, high bending stiffness, and bending loads are required; (2) high temperature composite stiffness and loads are required up to 160 C; (3) integral fin lugs attachments high aerodynamic loading is required on fin lugs; (4) enclosed fore dome; and (5) aft-pinned joint: a large rear opening is required to cast the propellant. Structural testing in ultimate conditions confirmed the soundness of the design. Positive safety margins were demonstrated on both internal pressure and mechanical loads requirements.

  10. The Experimental Design Ability Test (EDAT)

    ERIC Educational Resources Information Center

    Sirum, Karen; Humburg, Jennifer

    2011-01-01

    Higher education goals include helping students develop evidence based reasoning skills; therefore, scientific thinking skills such as those required to understand the design of a basic experiment are important. The Experimental Design Ability Test (EDAT) measures students' understanding of the criteria for good experimental design through their…

  11. A powerful test for Balaam's design.

    PubMed

    Mori, Joji; Kano, Yutaka

    2015-01-01

    The crossover trial design (AB/BA design) is often used to compare the effects of two treatments in medical science because it performs within-subject comparisons, which increase the precision of a treatment effect (i.e., a between-treatment difference). However, the AB/BA design cannot be applied in the presence of carryover effects and/or treatments-by-period interaction. In such cases, Balaam's design is a more suitable choice. Unlike the AB/BA design, Balaam's design inflates the variance of an estimate of the treatment effect, thereby reducing the statistical power of tests. This is a serious drawback of the design. Although the variance of parameter estimators in Balaam's design has been extensively studied, the estimators of the treatment effect to improve the inference have received little attention. If the estimate of the treatment effect is obtained by solving the mixed model equations, the AA and BB sequences are excluded from the estimation process. In this study, we develop a new estimator of the treatment effect and a new test statistic using the estimator. The aim is to improve the statistical inference in Balaam's design. Simulation studies indicate that the type I error of the proposed test is well controlled, and that the test is more powerful and has more suitable characteristics than other existing tests when interactions are substantial. The proposed test is also applied to analyze a real dataset.

  12. TESLA test facility alternate cryostat design

    SciTech Connect

    Nicol, T.H.

    1996-12-31

    Collaborators on the design of a Tevatron Superconducting Linear Accelerator (TESLA) are working toward construction of a test cell consisting of four full length cryostats, 12 meters long, each consisting of eight, 9-cell superconducting RF cavities. The purpose of this facility is to test all aspects of the accelerator system design; vacuum, cryogenics, RF, and electron source, prior to initiating construction of the full linac. The design for these cryostats pose many interesting challenges to cryostat designers. The systems must be capable of supporting all eight cavity structures within tight alignment tolerances, impose very low thermal heat loads on the 1.8K cryogenic system, provide strength and stiffness to resist structural loads during fabrication, shipping, and installation, and be manufactured at low cost. Several design options are being explored, each of which attempt to address requirements imposed by the reference design guidelines. This paper describes the design and analysis of one design alternative.

  13. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  14. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  15. Designing a Gas Test Loop for the Advanced Test Reactor

    SciTech Connect

    James R. Parry

    2005-11-01

    The Generation IV Reactor Program and the Advanced Fuel Cycle Initiative are investigating some new reactor concepts which require extensive materials and fuels testing in a fast neutron spectrum. The capability to test materials and fuels in a fast neutron flux in the United States is very limited to non-existent. It has been proposed to install a gas test loop (GTL) in one of the lobes of the Advanced Test Reactor (ATR) at the Idaho National Laboratory and harden the spectrum to provide some fast neutron flux testing capabilities in the United States. This paper describes the neutronics investigation into the design of the GTL for the ATR.

  16. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    PubMed

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. PMID:23127643

  17. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  18. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  19. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  20. Testing Multiple Outcomes in Repeated Measures Designs

    ERIC Educational Resources Information Center

    Lix, Lisa M.; Sajobi, Tolulope

    2010-01-01

    This study investigates procedures for controlling the familywise error rate (FWR) when testing hypotheses about multiple, correlated outcome variables in repeated measures (RM) designs. A content analysis of RM research articles published in 4 psychology journals revealed that 3 quarters of studies tested hypotheses about 2 or more outcome…

  1. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  2. An evaluation of the sandwich beam in four-point bending as a compressive test method for composites

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Herakovich, C. T.

    1978-01-01

    The experimental phase of the study included compressive tests on HTS/PMR-15 graphite/polyimide, 2024-T3 aluminum alloy, and 5052 aluminum honeycomb at room temperature, and tensile tests on graphite/polyimide at room temperature, -157 C, and 316 C. Elastic properties and strength data are presented for three laminates. The room temperature elastic properties were generally found to differ in tension and compression with Young's modulus values differing by as much as twenty-six percent. The effect of temperature on modulus and strength was shown to be laminate dependent. A three-dimensional finite element analysis predicted an essentially uniform, uniaxial compressive stress state in the top flange test section of the sandwich beam. In conclusion, the sandwich beam can be used to obtain accurate, reliable Young's modulus and Poisson's ratio data for advanced composites; however, the ultimate compressive stress for some laminates may be influenced by the specimen geometry.

  3. Overview of the IFMIF test cell design

    SciTech Connect

    Moeslang, A.; Daum, E.; Haines, J.R.; Williams, D.M.; Jitsukawa, S.; Noda, K.; Viola, R.

    1996-10-01

    The Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) has entered its second and final year, and an outline design has been developed. Initial evaluations of the potential of this high flux, high intensity D-Li source have shown that the main materials testing needs can be fulfilled. According to these needs, Vertical Test Assemblies will accommodate test modules for the high flux (0.5 liter, 20 dpa/a, 250-1000 C), the medium flux (6 liter, 1-20 dpa/a, 250-1000 C), the low flux (7.5 liter, 0.1-1 dpa/a), and the very low flux (> 100 liter, 0.01-0.1 dpa/a) regions. Detailed test matrices have been defined for the high and medium flux regions, showing that on the basis of small specimen test technologies, a database for an engineering design of an advanced fusion reactor (DEMO) can be established for a variety of structural materials and ceramic breeders. The design concepts for the Test Cell, including test assemblies, remote handling equipment and Hot Cell Facilities with capacity for investigating all irradiation specimens at the IFMIF site are described.

  4. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    SciTech Connect

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect.

  5. Resonant coupling in trenched bend-insensitive optical fiber.

    PubMed

    Ren, Guobin; Lin, Zhen; Zheng, Siwen; Jian, Shuisheng

    2013-03-01

    We report in this Letter the resonant coupling mechanism in bending trenched bend-insensitive fiber (BIF). It is found that among the trench parameters, the core-trench distance is predominant for optimized BIF design. We reveal that resonant coupling is an intrinsic characteristic of bending trenched BIF, and resonant coupling between the fiber core and the innermost cladding would limit the ultimate bending loss of BIF under tight bend. Resonant coupling is also present in double-trenched BIF, and would impair its bending performance.

  6. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    SciTech Connect

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  7. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  8. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  9. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-20

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  10. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  11. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  12. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  13. Bending strength and holding power of tibial locking screws.

    PubMed

    Lin, J; Lin, S J; Chiang, H; Hou, S M

    2001-04-01

    The bending strength and holding power of two types of specially designed tibial locking devices, a both-ends-threaded screw and an unthreaded bolt, were studied and compared with four types of commercially available tibial interlocking screws: Synthes, Howmedica, Richards, and Osteo AG. To test bending strength, the devices were inserted into a high molecular weight polyethylene tube and loaded at their midpoint by a materials testing machine to simulate a three point bending test. Single loading yielding strength and cyclic loading fatigue life were measured. To test holding power, the devices were inserted into tubes made of polyurethane foam, and their tips were loaded axially to measure pushout strength. The devices were tested with two different densities of foam materials and two different sizes of pilot holes. Insertion torque and stripping torque of the screws were measured first. Pushout tests were performed with each screw inserted with a tightness equal to 60% of its stripping torque. Test results showed that the yielding strength and the fatigue life were related closely to the inner diameter of the screws. The stripping torque predicted the pushout strength more reliably than did the insertion torque. All tested devices showed greater holding power in the foam with the higher density and with the smaller pilot holes. The both-ends-threaded screw had the highest pushout strength and a satisfactory fatigue strength. The unthreaded bolt had the highest fatigue strength but only fair holding power. Clinical studies of the use of these two types of locking devices are worthwhile.

  14. DESIGN AND SHIELDING OF A BEAM LINE FROM ELENA TO ATRAP USING ELECTROSTATIC QUADRUPOLE LENSES AND BENDS

    SciTech Connect

    Yuri, Yosuke; Lee, Edward P.

    2010-09-01

    The construction of the Extra Low ENergy Antiprotons (ELENA) upgrade to the Antiproton Decelerator (AD) ring has been proposed at CERN to produce a greatly increased current of low-energy antiprotons for various experiments including anti-hydrogen studies. This upgrade involves the addition of a small storage ring and electrostatic beam lines. The 5.3-MeV antiproton beams from AD are decelerated down to 100 keV in the compact ring and transported to each experimental apparatus. In this paper, we describe an electrostatic beam line from the ELENA ring to the ATRAP experimental apparatus and magnetic shielding of the low-energy beam line against the ATRAP superconducting solenoid magnet. A possible rough conceptual design of this system is displayed.

  15. Siemens SOFC Test Article and Module Design

    SciTech Connect

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  16. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  17. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  18. Tunable waveguide bends with graphene-based anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  19. A Computerized Test of Design Fluency

    PubMed Central

    Woods, David L.; Wyma, John M.; Herron, Timothy J.; Yund, E. William

    2016-01-01

    Tests of design fluency (DF) assess a participant’s ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF) test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years) correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use) correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79). Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI). Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI. PMID:27138985

  20. Design and Test of an Electrometer Test Track

    NASA Astrophysics Data System (ADS)

    Lui, C.

    2010-12-01

    I worked on a experiment that would help on testing the parts of the MSRG satellite of Stanford. The goal of my experiment is to figure out how far a probe can be moved from a piece of mass to still be able to measure the potential (voltage) between the two.A model designed in Solidworks will be used; this model is put in a vacuum chamber for precise results.

  1. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  2. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  3. Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.

    1984-01-01

    Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.

  4. Design, analysis, and testing of a metal matrix composite web/flange intersection

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.

    1992-01-01

    An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.

  5. Spacecraft load, design and test philosophies

    NASA Technical Reports Server (NTRS)

    Wada, B. K.

    1986-01-01

    The development of spacecraft loads, design and test philosophies at the Jet Propulsion Laboratory (JPL) during the past 25 years is presented. Examples from the JPL's Viking, Voyager and Galileo spacecraft are used to explain the changes in philosophy necessary to meet the program requirements with a reduction in cost and schedule. Approaches to validate mathematical models of large structures which can't be ground tested as an overall system because of size and/or adverse effects of terrestrial conditions such as gravity are presented.

  6. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  7. Design, manufacturing and characterization of aero-elastically scaled wind turbine blades for testing active and passive load alleviation techniques within a ABL wind tunnel

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Bottasso, Carlo L.; Bettini, Paolo

    2014-06-01

    In the research described in this paper, a scaled wind turbine model featuring individual pitch control (IPC) capabilities, and equipped with aero-elastically scaled blades featuring passive load reduction capabilities (bend-twist coupling, BTC), was constructed to investigate, by means of wind tunnel testing, the load alleviation potential of BTC and its synergy with active load reduction techniques. The paper mainly focus on the design of the aero-elastic blades and their dynamic and static structural characterization. The experimental results highlight that manufactured blades show desired bend-twist coupling behavior and are a first milestone toward their testing in the wind tunnel.

  8. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  9. Ceramic high temperature receiver design and tests

    NASA Technical Reports Server (NTRS)

    Davis, S. B.

    1982-01-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectagular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable; and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  10. Ceramic high temperature receiver design and tests

    SciTech Connect

    Davis, S.B.

    1982-07-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectangular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable, and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  11. Wrapped multilayer insulation design and testing

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Tyler, P. N.; Mills, G. L.; Kopelove, A. B.

    2014-11-01

    New vehicles need improved cryogenic propellant storage and transfer capabilities for long duration missions. Multilayer insulation (MLI) for cryogenic propellant feedlines is much less effective than MLI tank insulation, with heat leak into spiral wrapped MLI on pipes 3-10 times higher than conventional tank MLI. Better insulation for cryogenic feed lines is an important enabling technology that could help NASA reach cryogenic propellant storage and transfer requirements. Improved insulation for Ground Support Equipment could reduce cryogen losses during launch vehicle loading. Wrapped-MLI (WMLI) is a high performance multilayer insulation using innovative discrete spacer technology specifically designed for cryogenic transfer lines and Vacuum Jacketed Pipe (VJP) to reduce heat flux. The poor performance of traditional MLI wrapped on feed lines is due in part to compression of the MLI layers, with increased interlayer contact and heat conduction. WMLI uses discrete spacers that maintain precise layer spacing, with a unique design to reduce heat leak. A Triple Orthogonal Disk spacer was engineered to minimize contact area/length ratio and reduce solid heat conduction for use in concentric MLI configurations. A new insulation, WMLI, was developed and tested. Novel polymer spacers were designed, analyzed and fabricated; different installation techniques were examined; and rapid prototype nested shell components to speed installation on real world piping were designed and tested. Prototypes were installed on tubing set test fixtures and heat flux measured via calorimetry. WMLI offered superior performance to traditional MLI installed on cryogenic pipe, with 2.2 W/m2 heat flux compared to 26.6 W/m2 for traditional spiral wrapped MLI (5 layers, 77-295 K). WMLI as inner insulation in VJP can offer heat leaks as low as 0.09 W/m, compared to industry standard products with 0.31 W/m. WMLI could enable improved spacecraft cryogenic feedlines and industrial hot/cold transfer

  12. OPSAID Initial Design and Testing Report.

    SciTech Connect

    Hurd, Steven A.; Stamp, Jason Edwin; Chavez, Adrian R.

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and

  13. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  14. ACCESS: Design, Strategy, and Test Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Pelton, R. S.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Foltz, R.; Gardner, J. P.; Mott, D. B.; Wen, Y.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    Improvements in the astrophysical flux scale are needed to answer fundamental scientific questions ranging from cosmology to stellar physics. In particular, the precise calibration of the flux scale across the visible-NIR bandpass is fundamental to the precise determination of dark energy parameters based on SNeIa photometry. ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass. The telescope is a Dall-Kirkham Cassegrain with a 15.5-inch primary. The spectrograph is a Rowland circle design, with the grating operating as a low order (m=1-4) echelle, a Fery prism provides cross dispersion, and a HST/WFC3 heritage HAWAII-1R HgCdTe detector is used across the full spectral bandpass. The telescope mirrors have received their flight coatings. The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. Detector characterization testing is in progress (Morris et al.). Fabrication, integration, and automation of the ground-based calibration subsystems are also in progress. The ACCESS design, calibration strategy, and ground-based integration and test results will be presented. Launch is expected this year. NASA sounding rocket grant NNX08AI65G and DOE DE-FG02-07ER41506 support this work.

  15. Occipital bending in depression.

    PubMed

    Maller, Jerome J; Thomson, Richard H S; Rosenfeld, Jeffrey V; Anderson, Rodney; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2014-06-01

    There are reports of differences in occipital lobe asymmetry within psychiatric populations when compared with healthy control subjects. Anecdotal evidence and enlarged lateral ventricles suggests that there may also be a different pattern of curvature whereby one occipital lobe wraps around the other, termed 'occipital bending'. We investigated the prevalence of occipital bending in 51 patients with major depressive disorder (males mean age = 41.96 ± 14.00 years, females mean age = 40.71 ± 12.41 years) and 48 age- and sex-matched healthy control subjects (males mean age = 40.29 ± 10.23 years, females mean age = 42.47 ± 14.25 years) and found the prevalence to be three times higher among patients with major depressive disorder (18/51, 35.3%) when compared with control subjects (6/48, 12.5%). The results suggest that occipital bending is more common among patients with major depressive disorder than healthy subjects, and that occipital asymmetry and occipital bending are separate phenomena. Incomplete neural pruning may lead to the cranial space available for brain growth being restricted, or ventricular enlargement may exacerbate the natural occipital curvature patterns, subsequently causing the brain to become squashed and forced to 'wrap' around the other occipital lobe. Although the clinical implications of these results are unclear, they provide an impetus for further research into the relevance of occipital bending in major depression disorder.

  16. A flexible sensor measuring displacement and bending

    NASA Astrophysics Data System (ADS)

    Nishijima, Takashi; Yamamoto, Akio; Higuchi, Toshiro

    2009-04-01

    This paper proposes a new sensor that is capable of measuring both linear displacement and bending. The sensor is designed to be used with an electrostatic film motor that features mechanical flexibility, but can also be used as an independent sensor. The sensor employs three-phase electrodes both in sliding and stationary parts and estimates displacement and bending from the change of the capacitance between the electrodes. The paper describes an equivalent capacitance-network model for the sensor. Based on the model, sensing principles for both displacement and bending are presented and analyzed. The analyses are experimentally verified using a prototype sensor. The experimental results show that the prototype sensor could measure both displacement and bending with little interference between them.

  17. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  18. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  19. OMEGA timing receiver, design and system test

    NASA Technical Reports Server (NTRS)

    Wilson, J. J.; Britt, J. E.; Chi, A.

    1972-01-01

    The design of a two frequency OMEGA Timing Receiver is discussed. The receiver tracks the arrival time of the signals by precise phase matching at the receiving antenna. Provision is made for inserting a propagation delay correction for each signal path. Time is measured as the difference between the zero crossing coincidence of the corrected signals and the local time. This number is displayed on the front panel in microseconds. The receiver can also function as a precise phase tracking receiver for collection of propagation data essential to augmenting the propagation corrections. All phase and time information is made available in a BCD format for flexibility in interfacing with other equipment. Results of preliminary tests using experimental transmissions are given. Preliminary results indicate time may be transferred by this technique to an accuracy of a few microseconds.

  20. Mechanical properties of orthodontic wires in tension, bending, and torsion.

    PubMed

    Drake, S R; Wayne, D M; Powers, J M; Asgar, K

    1982-09-01

    The mechanical properties of three sizes of stainless steel (SS), nickel-titanium (NT), and titanium-molybdenum (TM) orthodontic wires were studied in tension, bending, and torsion. The wires (0.016 inch, 0.017 by 0.025 inch, and 0.019 by 0.025 inch) were tested in the as-received condition. Tensile testing and stiffness testing machines along with a torsional instrument were used. Mean values and standard deviations of properties were computed. The data were analyzed statistically by analysis of variance using a factorial design. Means were ranked by a Tukey interval calculated at the 95 percent level of confidence. In tension, the stainless steel wires had the least maximum elastic strain or springback, whereas the titanium-molybdenum wires had the most. Higher values of springback indicate the capacity for an increased range of activation clinically. In bending and torsion, the stainless steel wires had the least stored energy at a fixed moment, whereas the nickel-titanium wires had the most. Spring rates in bending and torsion, however, were highest for stainless steel wires and lowest for nickel-titanium wires. A titanium-molybdenum teardrop closing loop delivered less than one half the force of a comparable stainless steel loop for similar activations. PMID:6961793

  1. Mechanical bending behaviour of composite T-beams

    NASA Astrophysics Data System (ADS)

    Silva, A.; Travassos, J.; de Freitas, M. M.; Mota Soares, C. M.

    A study of the design and mechanical behavior of co-cured T-beams subjected to very high loading is presented. The T-beams were made by press molding from pre-pregs of uni-directional glass or carbon fiber and glass fabric reinforced high performant epoxy matrix. Each type of beam was instrumented with strain gauges in the web and flange in order to carry out experimental four point bending tests. Analytical and numerical studies were also performed to compare experimental versus numerical and analytical results and to establish the suitability of a simplified bending theory for statically determinate composite beams constructed from laminated composite panels. The maximum carrying loads in the beam layers were evaluated experimentally and analytically using the Tsai-Wu failure criterion. Results showing the suitability of the simplified beam theory are presented and discussed.

  2. Advanced burner test reactor preconceptual design report.

    SciTech Connect

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  3. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions. PMID:26809055

  4. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  5. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  6. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.

    2014-01-01

    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  7. Single Event Testing on Complex Devices: Test Like You Fly Versus Test-Specific Design Structures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth

    2016-01-01

    We present a mechanism for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  8. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  9. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  10. Test Design Project: Studies in Test Bias. Annual Report.

    ERIC Educational Resources Information Center

    McArthur, David

    Item bias in a multiple-choice test can be detected by appropriate analyses of the persons x items scoring matrix. This permits comparison of groups of examinees tested with the same instrument. The test may be biased if it is not measuring the same thing in comparable groups, if groups are responding to different aspects of the test items, or if…

  11. Prediction and measurement of composite tube twist and bending due to thermal loading

    NASA Astrophysics Data System (ADS)

    Bluth, A. Marcel; Tucker, James R.; Thompson, Troy

    2013-09-01

    Composite materials are applied in precision optical metering structures because of their low thermal expansion properties in concert with high specific stiffness. Twisting and bending of long composite tubes, such as the secondary mirror support structure for the JWST telescope, requires control and verification. A stochastic modeling method was applied that simulates the manufacturing process variability and estimates ranges for expected twist and bend over the tube length from ambient to cryogenic temperatures. A development strut for the JWST secondary mirror support structure was fabricated and a metrology system was designed and implemented that measured the bend and twist response from ambient to 30 K. Modeling methods and predictions are outlined. The test metrology and results are summarized, along with a comparison between test and prediction.

  12. Cricket antennae shorten when bending (Acheta domesticus L.)

    PubMed Central

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W.

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to “unfold” and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head. PMID:25018734

  13. Design, fabrication and test of block 4 design solar cell modules. Part 2: Residential module

    NASA Technical Reports Server (NTRS)

    Jester, T. L.

    1982-01-01

    Design, fabrication and test of the Block IV residential load module are reported. Design changes from the proposed module design through three iterations to the discontinuance of testing are outlined.

  14. Static Fatigue of Optical Fibers in Bending

    NASA Astrophysics Data System (ADS)

    Roberts, D.; Cuellar, E.; Middleman, L.; Zucker, J.

    1987-02-01

    While delayed fracture, or static fatigue, of optical fibers is well known, it is not well understood, and the prediction of the time to failure under a given set of conditions can be problematic. Unlike short term fracture, which is quite well understood and quantified in terms of the theory of linear elastic fracture mechanics, the long term strength remains empirical. The goal of this study is to determine the design criteria for optical fibers subjected to long term applied mechanical loads. One difficulty in making lifetime predictions, as pointed out by Matthewson (Reference 1) and others, is that predictions made from data taken in tension and in bending do not agree. Another difficulty is the statistical nature of the fracture of glass. In making lifetime predictions it becomes important therefore that one (a) have ample data for statistical analysis and (b) have data for the loading configuration of interest. This is the purpose of our work. Since there is less data available in bending, and since several applications (such as wiring in aircraft and missiles) require bending, the data are taken in that configuration. The most significant finding in our work so far is the very large difference in static fatigue behavior between buffer coatings. Chandan and Kalish (Reference 2) and others have reported static fatigue curves, log (time to failure) versus log (applied stress), which are not linear, but rather bimodal. Our study confirms this result, but so far only for acrylate coated fibers. Silicone coated fibers show unimodal behavior. That is, the log (time to failure) versus log (applied stress) curve is linear, at least on the time scale studied so far. Data for acrylate coated fibers at 80°C in water are linear only for time scales of about one day, where a pronounced "knee" is observed. Data for silicone coated fibers under the same conditions are linear up to at least 6 months. Longer time scale tests and tests on fibers with other buffer materials

  15. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  16. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  17. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  18. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  19. 46 CFR 61.40-3 - Design verification testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Design verification testing. 61.40-3 Section 61.40-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Design Verification and Periodic Testing of Vital System Automation § 61.40-3 Design...

  20. Enamel Insulated Copper Wire in Electric Motors: Sliding Behavior and Possible Damage Mechanisms During Die Bending

    NASA Astrophysics Data System (ADS)

    Demiri, Albion

    This study investigates the sliding friction and the forming behaviour of enamel insulated copper wire during the die-forming process. It also aims to determine potential damage mechanisms to the wire during bending process for electric motor coils. In this investigation a wire-bending machine was designed and built in order to simulate the wire forming process in a laboratory scale. Bending angle of the wire and the bending radii were used to control the strain on the wire surface. The effect of speed on COF was investigated for different speeds of of 1, 5, 10, 15, and 20mm/s. A positive correlation was observed between the COF and the testing speed. Additionally, the effect of strain on COF was studied for 2% and 23% to determine its influence on the COF. A general trend was observed of decreased COF with increased strain in wires. Finally, the ability of the enamel coating to resist external damage and wire strain was investigated by tensile testing of pre-scratched magnet wire. The results showed that wire enamel can withstand significant surface damage prior to breach and failure. The insulating polymer coating failed under the scratch tests at 20N load using a Rockwell indenter and at 5N load using a 90° conical steel indenter. Additional tests, such as tensile testing, scratch testing and reciprocating friction testing, were used to characterize the mechanical and tribological properties of the enamel insulated copper wire.

  1. A general design for energy test procedures

    SciTech Connect

    Meier, Alan

    2000-06-15

    Appliances are increasingly controlled by microprocessors. Unfortunately, energy test procedures have not been modified to capture the positive and negative contributions of the microprocessor to the appliance's energy use. A new test procedure is described which captures both the mechanical and logical features present in many new appliances. We developed an energy test procedure for refrigerators that incorporates most aspects of the proposed new approach. Some of the strengths and weaknesses of the new test are described.

  2. Teal Ruby - Design, manufacture and test

    NASA Astrophysics Data System (ADS)

    Pepi, J. W.; Kahan, M. A.; Barnes, W. H.; Zielinski, R. J.

    The Teal Ruby infrared telescope, designed to passively operate in a cryogenic and orbital environment, and capable of maintaining integrity under a severe set of design criteria, is presented. The infrared telescope unit, a curved-field centered design, is described; a woven graphite epoxy composite structure encloses the lightweight fused silica mirrors. The completed telescope design satisfies the necessary criteria, including spacecraft payload capabilities, good stiffness characteristics, low heat loss, and low thermal expansion. To meet performance in terms of optical resolution, the overall design error is held to one-tenth of one wavelength or less of near infrared light. To ascertain the design validity, a detailed mathematical model was constructed using the NASTRAN digital routine. The instrument is scheduled for Space Shuttle orbital launch, one of its purposes being the verification of the capabilities of an infrared sensor and a mosaic focal plane.

  3. Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Tufts, Brian

    2007-01-01

    The power density of a gearbox is an important consideration for many applications and is especially important for gearboxes used on aircraft. One approach to improving power density of gearing is to improve the steel properties by design of the alloy. The alloy tested in this work was designed to be case-carburized with surface hardness of Rockwell C66 after hardening. Test gear performance was evaluated using surface fatigue tests and single-tooth bending fatigue tests. The performance of gears made from the new alloy was compared to the performance of gears made from two alloys currently used for aviation gearing. The new alloy exhibited significantly better performance in surface fatigue testing, demonstrating the value of the improved properties in the case layer. However, the alloy exhibited lesser performance in single-tooth bending fatigue testing. The fracture toughness of the tested gears was insufficient for use in aircraft applications as judged by the behavior exhibited during the single tooth bending tests. This study quantified the performance of the new alloy and has provided guidance for the design and development of next generation gear steels.

  4. Design and performance test of spacecraft test and operation software

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng

    2011-06-01

    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  5. Tunable thermoelectric properties in bended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chang-Ning, Pan; Jun, He; Mao-Fa, Fang

    2016-07-01

    The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).

  6. NASA Now: Engineering Design: Wind Tunnel Testing

    NASA Video Gallery

    Dr. Norman W. Schaeffler, a NASA aerospace research engineer, describes how wind tunnels work and how aircraft designers use them to understand aerodynamic forces at low speeds. Learn the advantage...

  7. Dynamic (Vibration) Testing: Design-Certification of Aerospace System

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2010-01-01

    Various types of dynamic testing of structures for certification purposes are described, including vibration, shock and acoustic testing. Modal testing is discussed as it frequently complements dynamic testing and is part of the structural verification/validation process leading up to design certification. Examples of dynamic and modal testing are presented as well as the common practices, procedures and standards employed.

  8. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    NASA Astrophysics Data System (ADS)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  9. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  10. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement. PMID:27587096

  11. Cost effective dynamic design and test requirements for Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloff, H. R.; Bangs, W. F.

    1975-01-01

    The results of a study examining current spacecraft dynamic design and test requirements for the cost effective design and development of Shuttle payloads are presented. Dynamic environments, payload configurations, design/test requirements, test levels, assembly level of testing, simulation methods, prototype role, load limiting, test facilities, and flight measurements are discussed as they relate to the development of a cost effective design and test philosophy for Shuttle Spacelab payloads. It is concluded that changes to current design/test practices will minimize long range payload costs. However, changes to current practices need be quantitatively evaluated before an orderly progression to more cost effective methods can be achieved without undue risk of mission failures. Of major importance is optimization of test levels and plans for payloads and payload subsystems which will result in minimum project costs.

  12. The Stability of Orthotropic Elliptic Cylinders in Pure Bending

    NASA Technical Reports Server (NTRS)

    Heck, O S

    1937-01-01

    The theoretical critical bending stress of elliptic cylindrical shells is determined on the assumption of infinite shell length and absence of local instability phenomena. The results of the tests on isotropic elliptic cylindrical shells stressed in bending are compared with the theoretical results. The practical applicability of the theory is discussed.

  13. A Psychological Measurement of Student Testing Design Preferences.

    ERIC Educational Resources Information Center

    Shukla, P. K.; Bruno, James

    An analytical technique from the field of market research called conjoint analysis was applied to a psychological measurement of student testing design preferences. Past concerns with testing design are reviewed, and a newer approach to testing is identified--the modified confidence weighted-admissible probability measurement (MCW-APM) test…

  14. 49 CFR 178.33b-7 - Design qualification test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design qualification test. 178.33b-7 Section 178... Specifications for Inside Containers, and Linings § 178.33b-7 Design qualification test. (a) Drop testing. (1) To ensure that creep does not affect the ability of the container to retain the contents, each new...

  15. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    SciTech Connect

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de; Kinkeldei, T.; Tröster, G.

    2013-11-07

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order to define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design.

  16. Test Design Project: Studies in Test Adequacy. Annual Report.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    These studies in test adequacy focus on two problems: procedures for estimating reliability, and techniques for identifying ineffective distractors. Fourteen papers are presented on recent advances in measuring achievement (a response to Molenaar); "an extension of the Dirichlet-multinomial model that allows true score and guessing to be…

  17. Multilevel light bending in nanoplasmonics

    NASA Astrophysics Data System (ADS)

    El Sherif, Mohamed H.; Ahmed, Osman S.; Bakr, Mohamed H.; Swillam, Mohamed A.

    2014-03-01

    Nanoplasmonic optical interconnects is proposed to mitigate challenges facing electronics integration. It provides fast and miniaturized data channel that overcome the diffraction limit. We present a three dimensional plasmonic coupler that vertically bends the light to multilevel circuit configurations. It exploits light guiding in nanoscale plasmonic slot waveguides (PSWs). A triangularly-shaped plasmonic slot waveguide rotator is introduced to attain such coupling with good efficiency over a wide bandwidth. Using this approach, light propagating in a horizontal direction is easily converted and coupled to propagate in the vertical direction and vice versa. The proposed configuration is further extended to the design of a multilayer power divider/combiner with ultra-compact footprint that guides the light to multiple channels. A detailed study of the triangular rotator is demonstrated with the analysis of multiple configurations. This structure is suitable for efficient coupling and splitting in multilevel nano circuit environment.

  18. Design manual: Oxygen Thermal Test Article (OTTA)

    NASA Technical Reports Server (NTRS)

    Chronic, W. L.; Baese, C. L.; Conder, R. L.

    1974-01-01

    The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.

  19. APEX 3D Propeller Test Preliminary Design

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2002-01-01

    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  20. The R.M.C. Design-Build-Test Projects

    ERIC Educational Resources Information Center

    Ellis, J. S.

    1971-01-01

    Four projects were assigned to final year civil engineering undergraduates in a course on structural steel design. The projects involved the design, construction, and testing of two columns and two trusses. (TS)

  1. Test Designers Tap Students for Feedback

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Pondering a math problem while she swings her sneakered feet from a chair, 12-year-old Andrea Guevara is helping researchers design an assessment that will shape the learning of 19 million students. The 8th grader, who came to the United States from Ecuador three years ago, is trying out two ways of providing English-language support on a…

  2. Design development tests for composite crashworthy helicopter fuselage

    SciTech Connect

    Sen, J.K.; Dremann, C.C.

    1985-10-01

    Design development tests were conducted to investigate the crashworthy characteristics of composite helicopter fuselage subcomponents, and to design helicopter center beam/bulkhead specimens lighter than structural elements of honeycomb sandwich construction. Skinstringer designs of center beams - made of carbon, and hybrids of carbon and Kevlar - were fabricated and tested in axial compression. Crashworthy design parameters of specific energy, operating load and stroke efficiency were investigated. 8 references, 15 figures, 2 tables.

  3. Bending strength of delaminated aerospace composites.

    PubMed

    Kinawy, Moustafa; Butler, Richard; Hunt, Giles W

    2012-04-28

    Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.

  4. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications.

    PubMed

    Anton, Steven R; Erturk, Alper; Inman, Daniel

    2012-06-01

    The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads.

  5. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications.

    PubMed

    Anton, Steven R; Erturk, Alper; Inman, Daniel

    2012-06-01

    The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads. PMID:22711404

  6. Space power distribution system technology. Volume 3: Test facility design

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Cannady, M. D.; Cassinelli, J. E.; Farber, B. F.; Lurie, C.; Fleck, G. W.; Lepisto, J. W.; Messner, A.; Ritterman, P. F.

    1983-01-01

    The AMPS test facility is a major tool in the attainment of more economical space power. The ultimate goals of the test facility, its primary functional requirements and conceptual design, and the major equipment it contains are discussed.

  7. Panel Design Variations in the Multistage Test Using the Mixed-Format Tests

    ERIC Educational Resources Information Center

    Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.; Park, Ryoungsun

    2012-01-01

    This study compared various panel designs of the multistage test (MST) using mixed-format tests in the context of classification testing. Simulations varied the design of the first-stage module. The first stage was constructed according to three levels of test information functions (TIFs) with three different TIF centers. Additional computerized…

  8. Students' Initial Knowledge State and Test Design: Towards a Valid and Reliable Test Instrument

    ERIC Educational Resources Information Center

    CoPo, Antonio Roland I.

    2015-01-01

    Designing a good test instrument involves specifications, test construction, validation, try-out, analysis and revision. The initial knowledge state of forty (40) tertiary students enrolled in Business Statistics course was determined and the same test instrument undergoes validation. The designed test instrument did not only reveal the baseline…

  9. Test fixture design for boron-aluminum and beryllium test panels

    NASA Technical Reports Server (NTRS)

    Breaux, C. G.

    1973-01-01

    A detailed description of the test fixture design and the backup analysis of the fixture assembly and its components are presented. The test fixture is required for the separate testing of two boron-aluminum and two beryllium compression panels. This report is presented in conjunction with a complete set of design drawings on the test fixture system.

  10. Designing the Board's New Literature Achievement Test.

    ERIC Educational Resources Information Center

    Purves, Alan C.

    1968-01-01

    This article describes the problems that the College Entrance Examination Board's Committee of Review for the Examinations in English encountered in creating a fair, objective, hour-long literature achievement test which would meet four objectives--to measure the breadth of a student's reading, his understanding of that reading, his response to…

  11. Designing surveys for tests of gravity.

    PubMed

    Jain, Bhuvnesh

    2011-12-28

    Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several distinct signatures of gravity theories exist outside the 'linear' regime, especially owing to the screening mechanism that operates inside halos such as the Milky Way to ensure that gravity tests in the solar system are satisfied. This opens up several decades in length scale and classes of galaxies at low redshift that can be exploited by surveys. While theoretical work on models of gravity is in the early stages, we can already identify new regimes that cosmological surveys could target to test gravity. These include: (i) a small-scale component that focuses on the interior and vicinity of galaxy and cluster halos, (ii) spectroscopy of low-redshift galaxies, especially galaxies smaller than the Milky Way, in environments that range from voids to clusters, and (iii) a programme of combining lensing and dynamical information, from imaging and spectroscopic surveys, respectively, on the same (or statistically identical) sample of galaxies.

  12. Designing surveys for tests of gravity.

    PubMed

    Jain, Bhuvnesh

    2011-12-28

    Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several distinct signatures of gravity theories exist outside the 'linear' regime, especially owing to the screening mechanism that operates inside halos such as the Milky Way to ensure that gravity tests in the solar system are satisfied. This opens up several decades in length scale and classes of galaxies at low redshift that can be exploited by surveys. While theoretical work on models of gravity is in the early stages, we can already identify new regimes that cosmological surveys could target to test gravity. These include: (i) a small-scale component that focuses on the interior and vicinity of galaxy and cluster halos, (ii) spectroscopy of low-redshift galaxies, especially galaxies smaller than the Milky Way, in environments that range from voids to clusters, and (iii) a programme of combining lensing and dynamical information, from imaging and spectroscopic surveys, respectively, on the same (or statistically identical) sample of galaxies. PMID:22084295

  13. Inhibited Shaped Charge Launcher Testing of Spacecraft Shield Designs

    NASA Technical Reports Server (NTRS)

    Grosch, Donald J.

    1996-01-01

    This report describes a test program in which several orbital debris shield designs were impact tested using the inhibited shaped charge launcher facility at Southwest Research Institute. This facility enables researchers to study the impact of one-gram aluminum projectiles on various shielding designs at velocities above 11 km/s. A total of twenty tests were conducted on targets provided by NASA-MSFC. This report discusses in detail the shield design, the projectile parameters and the test configuration used for each test. A brief discussion of the target damage is provided, as the detailed analysis of the target response will be done by NASA-MSFC.

  14. The effect of contact stresses in four-point bend testing of graphite/epoxy and graphite/PMR-15 composite beams

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.

    1992-01-01

    The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.

  15. A Testlet Assembly Design for Adaptive Multistage Tests

    ERIC Educational Resources Information Center

    Luecht, Richard; Brumfield, Terry; Breithaupt, Krista

    2006-01-01

    This article describes multistage tests and some practical test development considerations related to the design and implementation of a multistage test, using the Uniform CPA (certified public accountant) Examination as a case study. The article further discusses the use of automated test assembly procedures in an operational context to produce…

  16. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  17. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  18. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  19. Z-2 Threaded Insert Design and Testing

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Jones, Robert J.; Graziosi, David; Ferl, Jinny; Sweeny, Mitch; Scarborough, Stephen

    2016-01-01

    NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement was to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. During initial assembly, cracking sounds were heard followed by the lifting of one of the blind inserts out of its hole when the screws were torqued. A failure investigation was initiated to understand the mechanism of the failure. Ultimately, it was determined that the pre-tension caused by torqueing the fasteners is a much larger force than induced from the pressure loads of the suit which was not considered in the insert design. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes the failure investigation that was performed to identify the root cause of the suit failure and details how the insert design was modified to resist a higher pull out tension.

  20. Development and testing of new upper-limb prosthetic devices: research designs for usability testing.

    PubMed

    Resnik, Linda

    2011-01-01

    The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in prosthetic research.

  1. 29 CFR 1926.1433 - Design, construction and testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Design, construction and testing. 1926.1433 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1433 Design, construction and testing. The following requirements apply to equipment...

  2. 29 CFR 1926.1433 - Design, construction and testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Design, construction and testing. 1926.1433 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1433 Design, construction and testing. The following requirements apply to equipment...

  3. 29 CFR 1926.1433 - Design, construction and testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Design, construction and testing. 1926.1433 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1433 Design, construction and testing. The following requirements apply to equipment...

  4. 29 CFR 1926.1433 - Design, construction and testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Design, construction and testing. 1926.1433 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Cranes and Derricks in Construction § 1926.1433 Design, construction and testing. The following requirements apply to equipment...

  5. Design and testing of a superfluid liquid helium cooling loop

    SciTech Connect

    Gavin, L.M.; Green, M.A.; Levin, S.M.; Smoot, G.F.; Witebsky, C.

    1989-07-01

    This paper describes the design and preliminary testing of a cryogenic cooling loop that uses a thermomechanical pump to circulate superfluid liquid helium. The cooling loop test apparatus is designed to prove forced liquid helium flow concepts that will be used on the Astromag superconducting magnet facility. 3 refs., 2 figs.

  6. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The analytical methodology for advanced encapsulation designs for the development of photovoltaic modules is presented. Analytical models are developed to test optical, thermal, electrical and structural properties of the various encapsulation systems. Model data is compared to relevant test data to improve model accuracy and develop general principles for the design of photovoltaic modules.

  7. Using partial safety factors in wind turbine design and testing

    SciTech Connect

    Musial, W.D.

    1997-12-31

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  8. Using partial safety factors in wind turbine design and testing

    SciTech Connect

    Musial, W D; Butterfield, C

    1997-09-01

    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  9. High-pressure sensor using piezoelectric bending resonators

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki

    2016-04-01

    A novel design of pressure sensor based on piezoelectric bending resonator is described in this paper. The resonator is isolated from and mechanically coupled to the surrounding fluid using a sealed enclosure. The pressure applied to the enclosure induces a compressive stress to the resonator and reduces its resonance frequency. In principle the mechanism allows for achieving large resonance frequency shifts close to 100% of the resonance frequency. A high-pressure sensor based on the mechanism was designed for down-hole pressure monitoring in oil wells. The sensor is potentially remotely-readable via the transmission of an electromagnetic signal down a waveguide formed by the pipes in the oil well. The details of the pressure sensor design and verification by FE analysis and initial test results of a preliminary prototype are presented in this paper.

  10. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  11. Design requirements for the supercritical water oxidation test bed

    SciTech Connect

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

  12. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  13. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  14. Designing a respirator fit testing program.

    PubMed

    Murphy, D C

    1992-11-01

    The requirements for adequate respiratory protection for the employees of this agency vary. Therefore, accurate, updated job descriptions are a critical piece of information. Although the agency has made an effort to establish a respiratory protection program, a number of limitations exist when compared to the program components defined in ANSI, NIOSH, and OSHA guidance documents. In response to a request from the agency, the nurse consultant evaluated the existing respiratory protection program and made specific recommendations for improvement. At this time, the agency has signed a formal agreement with the Division of Federal Occupational Health to request continued assistance with "overhauling" their program. Top management has begun assigning responsibilities for the program to specific individuals, and a centralized database is being set up. The agency has implemented two new DFOH developed forms to improve the testing process, and the nurse consultant has revised the educational/training session to more adequately meet the needs of the work force. The Agency and DFOH are collaborating on reassessment of employees to correctly assign them to appropriate respiratory risk categories. This will, in turn, affect the medical monitoring needs as well as the educational needs of each individual.

  15. Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal

    NASA Astrophysics Data System (ADS)

    Olivier, S.; Benisty, H.; Rattier, M.; Weisbuch, C.; Qiu, M.; Karlsson, A.; Smith, C. J. M.; Houdré, R.; Oesterle, U.

    2001-10-01

    We have measured the near-infrared transmission spectra of 60° bends defined in two-dimensional photonic crystal waveguides consisting of three missing rows. Two limit cases are studied: a basic nonresonant bend and a bend built around a resonant lozenge cavity, which is found to exhibit peaked transmission. Finite-difference-time-domain simulations show very good agreement with the data allowing general design issues for efficient bends to be discussed.

  16. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  17. Testing block subdivision algorithms on block designs

    NASA Astrophysics Data System (ADS)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  18. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  19. Reliability based design including future tests and multiagent approaches

    NASA Astrophysics Data System (ADS)

    Villanueva, Diane

    The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method

  20. Test methods and design allowables for fibrous composites. Volume 2

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C. (Editor)

    1989-01-01

    Topics discussed include extreme/hostile environment testing, establishing design allowables, and property/behavior specific testing. Papers are presented on environmental effects on the high strain rate properties of graphite/epoxy composite, the low-temperature performance of short-fiber reinforced thermoplastics, the abrasive wear behavior of unidirectional and woven graphite fiber/PEEK, test methods for determining design allowables for fiber reinforced composites, and statistical methods for calculating material allowables for MIL-HDBK-17. Attention is also given to a test method to measure the response of composite materials under reversed cyclic loads, a through-the-thickness strength specimen for composites, the use of torsion tubes to measure in-plane shear properties of filament-wound composites, the influlence of test fixture design on the Iosipescu shear test for fiber composite materials, and a method for monitoring in-plane shear modulus in fatigue testing of composites.

  1. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  2. Designing an Affordable Usability Test for E-Learning Modules

    ERIC Educational Resources Information Center

    O'Bryan, Corliss A.; Johnson, Donald M.; Shores-Ellis, Katrina D.; Crandall, Philip G.; Marcy, John A.; Seideman, Steve C.; Ricke, Steven C.

    2010-01-01

    This article provides background and an introduction to a user-centered design and usability test in an inexpensive format that allows content experts who are novices in e-learning development to perform testing on newly developed technical training modules prior to their release. The use of a small number of test participants, avoidance of…

  3. Optical design for the Laser Astrometric Test of Relativity

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L., Jr.

    2004-01-01

    This paper discusses the Laser Astrometric Test of Relativity (LATOR) mission. LATOR is a Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation the fundamental postulate of Einstein's theory of general relativity. With its focus on gravity's action on light propagation it complements other tests which rely on the gravitational dynamics of bodies.

  4. Optimal Testlet Pool Assembly for Multistage Testing Designs

    ERIC Educational Resources Information Center

    Ariel, Adelaide; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the test, such as measurement precision. In an MST…

  5. A flight test facility design for examining digital information transfer

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  6. Multidimensional Adaptive Testing with Optimal Design Criteria for Item Selection

    ERIC Educational Resources Information Center

    Mulder, Joris; van der Linden, Wim J.

    2009-01-01

    Several criteria from the optimal design literature are examined for use with item selection in multidimensional adaptive testing. In particular, it is examined what criteria are appropriate for adaptive testing in which all abilities are intentional, some should be considered as a nuisance, or the interest is in the testing of a composite of the…

  7. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design

    ERIC Educational Resources Information Center

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff

    2016-01-01

    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  8. Communications systems design for testability: Grey-box testing

    NASA Astrophysics Data System (ADS)

    Probert, Robert L.; Geldrez, Cecilia

    Large systems such as telecommunications systems may involve several million lines of executable code and tend to evolve incrementally, thus rendering testing and maintainability a very complex task. For this reason, testing and verification requirements must be defined and incorporated into the development process early in the software development cycle. Thus, design becomes a key component of these systems. An approach to assist in enhancing the testability of software designs is proposed, termed grey-box testing. One particular grey-box testing paradigm named semantic instrumentation is illustrated. Designs are represented as design machines, an extension of finite-state machines. A design-level plan for verification/test is then derived to guarantee branch coverage of the design machine for both normal behaviors and for processing of exceptions. Finally, semantic probes are defined to provide a mapping from the design machine to implemented code. These probes are used to document design decisions, implementation decisions, and execution traces during code verification and test. The process of semantic instrumentation is illustrated on communications services, more precisely, on the service of the alternating bit protocol.

  9. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    NASA Astrophysics Data System (ADS)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  10. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  11. Low-cycle fatigue behavior of a nickel-based alloy under combined bending/tension loading

    SciTech Connect

    Julien, D.; Bui-Quoc, T.; Bernard, M.; Saad, N.R.; Nguyen, H.L.

    1999-02-01

    In this paper, the effect of a combined bending/tension loading on the fatigue resistance and on the fatigue crack growth characteristics of a nickel-based alloy at room temperature is studied. For this purpose, a device was specifically designed so that it can be mounted onto a servohydraulic push-pull testing machine. With the device, a simultaneous displacement and rotation of the specimen extremities generate a combined bending/axial stress; the ratio between the bending stress and the axial stress may be specified by adjusting the eccentricity between the specimen axis and the load axis. Stress-controlled fatigue tests were carried out on plate specimens under bending/tension loading with a surface stress ratio of {minus}0.52 (ratio between the maximum cyclic stress on the back face and that on the front face of the specimen). During each test, the fatigue crack length was monitored using two traveling video cameras. The experimental results obtained under bending/tension loading have been analyzed in connection with the data obtained under pure tension loading. In particular, the fatigue crack propagation rate expressed in terms of the stress intensity factor of a crack under combined loading was examined.

  12. In vivo measurement of bending stiffness in fracture healing

    PubMed Central

    Hente, Reiner; Cordey, Jacques; Perren, Stephan M

    2003-01-01

    Background Measurement of the bending stiffness a healing fracture represents a valid variable in the assessment of fracture healing. However, currently available methods typically have high measurement errors, even for mild pin loosening. Furthermore, these methods cannot provide actual values of bending stiffness, which precludes comparisons among individual fractures. Thus, even today, little information is available with regards to the fracture healing pattern with respect to actual values of bending stiffness. Our goals were, therefore: to develop a measurement device that would allow accurate and sensitive measurement of bending stiffness, even in the presence of mild pin loosening; to describe the course of healing in individual fractures; and help to evaluate whether the individual pattern of bending stiffness can be predicted at an early stage of healing. Methods A new measurement device has been developed to precisely measure the bending stiffness of the healing fracture by simulating four-point-bending. The system was calibrated on aluminum models and intact tibiae. The influence of pin loosening on measurement error was evaluated. The system was tested at weekly intervals in an animal experiment to determine the actual bending stiffness of the fracture. Transverse fractures were created in the right tibia of twelve sheep, and then stabilized with an external fixator. At ten weeks, bending stiffness of the tibiae were determined in a four-point-bending test device to validate the in-vivo-measurement data. Results In-vivo bending stiffness can be measured accurately and sensitive, even in the early phase of callus healing. Up to a bending stiffness of 10 Nm/degree, measurement error was below 3.4% for one pin loose, and below 29.3% for four pins loose, respectively. Measurement of stiffness data over time revealed a significant logarithmic increase between the third and seventh weeks, whereby the logarithmic rate of change among sheep was similar, but

  13. Design and Construction of a Hydroturbine Test Facility

    NASA Astrophysics Data System (ADS)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  14. Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed

    NASA Technical Reports Server (NTRS)

    Marlow, Weston A.

    2011-01-01

    Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.

  15. The effect of skin passing on the material behavior of metal strip in pure bending and tension

    NASA Astrophysics Data System (ADS)

    Weiss, Matthias; Ryan, Will; Rolfe, Bernard; Yang, Chunhui

    2010-06-01

    The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing. This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.

  16. Design and experimental testing of the OctArm soft robot manipulator

    NASA Astrophysics Data System (ADS)

    Grissom, Michael D.; Chitrakaran, Vilas; Dienno, Dustin; Csencits, Matthew; Pritts, Michael; Jones, Bryan; McMahan, William; Dawson, Darren; Rahn, Chris; Walker, Ian

    2006-05-01

    This paper describes the development of the octopus biology inspired OctArm series of soft robot manipulators. Each OctArm is constructed using air muscle extensors with three control channels per section that provide two axis bending and extension. Within each section, mesh and plastic coupler constraints prevent extensor buckling. OctArm IV is comprised of four sections connected by endplates, providing twelve degrees of freedom. Performance of OctArm IV is characterized in a lab environment. Using only 4.13 bar of air pressure, the dexterous distal section provides 66% extension and 380° of rotation in less than .5 seconds. OctArm V has three sections and, using 8.27 bar of air pressure, the strong proximal section provides 890 N and 250 N of vertical and transverse load capacity, respectively. In addition to the in-lab testing, OctArm V underwent a series of field trials including open-air and in-water field tests. Outcomes of the trials, in which the manipulator demonstrated the ability for adaptive and novel manipulation in challenging environments, are described. OctArm VI is designed and constructed based on the in-lab performance, and the field testing of its predecessors. Implications for the deployment of soft robots in military environments are discussed.

  17. Task 8 -- Design and test of critical components

    SciTech Connect

    Chance, T.F.

    1996-11-01

    This report covers tasks 8.1, 8.1.1, and 8.2. The primary objective of Task 8.1, Particulates Flow Deposition, is to characterize the particulate generated in an operating gas turbine combined cycle (GTCC) power plant whose configuration approximates that proposed for an ATS power plant. In addition, the task is to evaluate the use of full-flow filtering to reduce the steam particulate loads. Before the start of this task, GE had already negotiated an agreement with the candidate power plant, piping and a filter unit had already been installed at the power plant site, and major elements of the data acquisition system had been purchased. The objective of Task 8.1.1, Coolant Purity, is to expose typical ATS gas turbine airfoil cooling channel geometries to real steam flow to determine whether there are any unexpected deposit formations. The task is a static analog of the centrifugal deposition rig trials of Task 8.2, in which a bucket channel return bend is exposed to steam flow. Two cooling channel geometries are of primary interest in this static exposure. The primary objective of Task 8.2, Particle Centrifugal Sedimentation, is to determine the settling characteristics of particles in a cooling stream from an operating gas turbine combined cycle (GTCC) power plant when that stream is ducted through a passage experiencing the G-loads expected in a simulated bucket channel specimen representative of designs proposed for an ATS gas turbine.

  18. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  19. On the design and test of a low noise propeller

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1981-01-01

    An extensive review of noise and performance of general aviation propellers was performed. Research was done in three areas: The acoustic and aerodynamic theory of general aviation propellers, wind tunnel tests of three one-quarter scale models of general aviation propellers, and flight test of two low noise propellers. The design and testing of the second propeller is reviewed. The general aerodynamic considerations needed to design a new propeller are described. The design point analysis of low noise propellers is reviewed. The predicted and measured noise levels are compared.

  20. Vanguard/PLACE experiment system design and test plan

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.

    1973-01-01

    The design, development, and testing of the NASA-GFSC Position Location and Aircraft Communications Equipment (PLACE) at C band frequency are discussed. The equipment was installed on the USNS Vanguard. The tests involved a sea test to evalute the position-location, 2-way voice, and 2-way data communications capability of PLACE and a trilateration test to position-fix the ATS-5 satellite using the PLACE system.

  1. Design, testing and evaluation of latching end effector

    NASA Technical Reports Server (NTRS)

    Walker, B.; Vandersluis, R.

    1995-01-01

    The Latching End Effector (LEE) forms part of the Space Station Remote Manipulator System (SSRMS) for which Spar Aerospace Ltd, Space Systems Division is the prime contractor. The design, testing and performance evaluation of the Latching End Effector mechanisms is the subject of this paper focusing on: (1) ambient, thermal and vibration testing; (2) snare/rigidize performance testing and interaction during payload acquisition; and (3) latch/umbilical test results and performance.

  2. Influence of Additional Tensile Force on Springback of Tube Under Rotary Draw Bending

    NASA Astrophysics Data System (ADS)

    E, Daxin; Guan, Zhiping; Chen, Jisheng

    2012-11-01

    According to the characteristics of tube under rotary draw bending, the formulae were derived to calculate the springback angles of tubes subjected to combined bending and additional tension. Especially, as the neutral layer (NL) moves to the inner concave surface of the bend, the analytical values agree very well with the experimental results. The analysis shows that the additional tensile force causes the movement of the NL toward the bending center and makes the deformation behavior under rotary draw bending or numerically controlled (NC) bending different with that under pure bending, and also it could enlarge the springback angle if taking the movement of the NL into consideration. In some range, the springback angle would increase slightly with larger wall thickness/diameter ratio and decrease with wall thinning. The investigation could provide reference for the analysis of rotary draw bending, the design of NC tube bender and the related techniques.

  3. Teaching beyond the Test: A Method for Designing Test-Preparation Classes

    ERIC Educational Resources Information Center

    Derrick, Deirdre

    2013-01-01

    Test-preparation classes that focus on skills will benefit students beyond the test by developing skills they can use at university. This article discusses the purposes of various tests and outlines how to design effective test-prep classes. Several practical activities are included, and an appendix provides information on common standardized…

  4. Heat pipe design for sheath insulator reactor test

    NASA Astrophysics Data System (ADS)

    Miskolczy, Gabor; Lee, Celia C. M.

    1991-01-01

    A reactor experiment was designed to test the sheath insulator component of the thermionic fuel element (TFE) of a space power reactor. In this fully instrumented reactor test, two gas-controlled sodium heat pipes will be used to control the temperature of the sheath insulator specimens to which an external voltage will be applied. The heat pipes were designed with the aid of a computer program, which predicted performance. A demonstrator heat pipe was built and electrically tested. The test results agreed with the prediction as modeled by the computer program.

  5. Heat pipe design for sheath insulator reactor test

    NASA Astrophysics Data System (ADS)

    Miskolczy, Gabor; Lee, Celia C. M.

    A reactor experiment was designed to test the sheath insulator component of the thermionic fuel element (TFE) of a space power reactor. In this fully instrumented reactor test, two gas-controlled sodium heat pipes will be used to control the temperature of the sheath insulator specimens to which an external voltage will be applied. The heat pipes were designed with the aid of a computer program, which predicted performance. A demonstrator heat pipe was built and electrically tested. The test results agreed with the prediction as modeled by the computer program.

  6. Heat pipe design for sheath insulator reactor test

    SciTech Connect

    Miskolczy, G.; Lee, C.C.M. )

    1991-01-05

    A reactor experiment was designed to test the sheath insulator component of the thermionic fuel element (TFE) of a space power reactor. In this fully instrumented reactor test, two gas-controlled sodium heat pipes will be used to control the temperature of the sheath insulator specimens to which an external voltage will be applied. The heat pipes were designed with the aid of a computer program, which predicted performance. A demonstrator heat pipe was built and electrically tested. The test results agreed with the prediction as modeled by the computer program.

  7. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    NASA Technical Reports Server (NTRS)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  8. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  9. Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems

    NASA Technical Reports Server (NTRS)

    Balling, R. J.; Wilkinson, C. A.

    1997-01-01

    A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.

  10. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  11. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    SciTech Connect

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  12. Preconceptual design of the new production reactor circulator test facility

    SciTech Connect

    Thurston, G.

    1990-06-01

    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  13. Thermal design, analysis and testing of the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Foss, Richard A.; Smith, Dewey M.

    1987-01-01

    This paper briefly introduces the Halogen Occultation Experiment (HALOE) and describes the thermal requirements in some detail. The thermal design of the HALOE is described, together with the design process and the analytical techniques used to arrive at this design. The flight hardware has undergone environmental testing in a thermal vacuum chamber to validate the thermal design. The HALOE is a unique problem in thermal control due to its variable solar loading, its extremely sensitive optical components and the high degree of pointing accuracy required. This paper describes the flight hardware, the design process and its verification.

  14. Design and test of a magnetic thrust bearing

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Mikula, A.; Banerjee, B.; Lewis, D. W.; Imlach, J.

    1993-01-01

    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented.

  15. Design and test of the 172K fluidic rudder

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1978-01-01

    Progress in the development of concepts for control of aircraft without moving parts or a separate source of power is described. The design and wind tunnel tests of a full scale fluidic rudder for a Cessna 172K aircraft, intended for subsequent flight tests were documented. The 172K fluidic rudder was designed to provide a control force equivalent to 3.3 degrees of deflection of the conventional rudder. In spite of an extremely thin airfoil, cascaded fluidic amplifiers were built to fit, with the capacity for generating the required level of control force. Wind tunnel tests demonstrated that the principles of lift control using ram air power are sound and reliable under all flight conditions. The tests also demonstrated that the performance of the 172K fluidic rudder is not acceptable for flight tests until the design of the scoop is modified to prevent interference with the lift control phenomenon.

  16. Designs and test results for three new rotational sensors

    USGS Publications Warehouse

    Jedlicka, P.; Kozak, J.T.; Evans, J.R.; Hutt, C.R.

    2012-01-01

    We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

  17. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    ERIC Educational Resources Information Center

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  18. The application test system: Technical approach and system design

    NASA Technical Reports Server (NTRS)

    Benson, J. L.; Mcclelland, D. R.; Tarbet, J. D.; Purnell, R. F. (Principal Investigator)

    1979-01-01

    An insight is provided of the technical approach which was applied to the system design of the USDA Applications Test Program. Included are: identification of requirements, assessment of remote sensing contributions, evaluations of existing techniques, and cost effective development of a system design which utilizes techniques and procedures consistent with requirements.

  19. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  20. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    NASA Technical Reports Server (NTRS)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  1. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  2. Multivariate Tests for Correlated Data in Completely Randomized Designs.

    ERIC Educational Resources Information Center

    Mielke, Paul W., Jr.; Berry, Kenneth J.

    1999-01-01

    Provides power comparisons for three permutation tests and the Bartlett-Nanda-Pillai trace test (BNP) (M. Bartlett, 1939; D. Nanda, 1950; K. Pillai, 1955) in completely randomized experimental designs with correlated multivariate-dependent variables. The power of the BNP was generally found to be less than that of at least one of the permutation…

  3. Error Rates of Multiple F Tests in Factorial ANOVA Designs.

    ERIC Educational Resources Information Center

    Halderson, Judith S.; Glasnapp, Douglas R.

    The primary purpose of the present study was to investigate empirically the effect of multiple hypothesis testing on error rates in factorial ANOVA designs under a variety of controlled conditions. The per comparison, per experiment, and experimentwise error rates were investigated for three hypothesis testing procedures. The specific conditions…

  4. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    NASA Astrophysics Data System (ADS)

    Gawedzki, Waclaw; Tarnowski, Jerzy

    2015-10-01

    Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  5. NASA reliability preferred practices for design and test

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  6. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  7. Design and testing of wood containers for radioactive waste

    SciTech Connect

    Roberts, R.S.; Barry, P.E.

    1981-03-25

    A wood container for shipping and storing radioactive waste was designed to eliminate the problems caused by the weight, cost, and shape of the steel containers previously used. Tests specified by federal regulations (compression, free-drop, penetration, and vibration) were conducted on two of the containers, one loaded to 2500 lb and one loaded to 5000 lb. The 5000-lb container failed the free-drop test, but the 2500-lb container easily passed the tests and therefore qualifies as a Type A container. Its simplicity of design, low weight, and ease in handling have proved to be time-saving and cost-effective.

  8. Invited Commentary: Beware the Test-Negative Design.

    PubMed

    Westreich, Daniel; Hudgens, Michael G

    2016-09-01

    In this issue of the Journal, Sullivan et al. (Am J Epidemiol. 2016;184(5):345-353) carefully examine the theoretical justification for use of the test-negative design, a common observational study design, in assessing the effectiveness of influenza vaccination. Using modern causal inference methods (in particular, directed acyclic graphs), they describe different threats to the validity of inferences drawn about the effect of vaccination from test-negative design studies. These threats include confounding, selection bias, and measurement error in either the exposure or the outcome. While confounding and measurement error are common in observational studies, the potential for selection bias inherent in the test-negative design brings into question the validity of inferences drawn from such studies. PMID:27587722

  9. A modal test design strategy for model correlation

    SciTech Connect

    Carne, T.G.; Dohrmann, C.R.

    1994-12-01

    When a modal test is to be performed for purposes of correlation with a finite element model, one needs to design the test so that the resulting measurements will provide the data needed for the correlation. There are numerous issues to consider in the design of a modal test; two important ones are the number and location of response sensors, and the number, location, and orientation of input excitation. From a model correlation perspective, one would like to select the response locations to allow a definitive, one-to-one correspondence between the measured modes and the predicted modes. Further, the excitation must be designed to excite all the modes of interest at a sufficiently high level so that the modal estimation algorithms can accurately extract the modal parameters. In this paper these two issues are examined in the context of model correlation with methodologies presented for obtaining an experiment design.

  10. Preliminary design of a 1-MWe OTEC test plant

    NASA Astrophysics Data System (ADS)

    Kajikawa, T.

    1982-02-01

    An ocean-based, 1-MWe (gross) test plant has been planned to establish the feasibility of OTEC (ocean thermal energy conversion) power generation in the revised Sunshine Project. The preliminary design of the proposed test plant employs a closed-cycle power system using ammonia as the working fluid on a barge-type platform with a rigid-arm-type, detachable, single-buoy mooring system. Two types each of titanium evaporators and condensers are to be included. The steel, cold-water pipe is suspended from the buoy. The design value of the ocean temperature difference is 20 K. The paper presents an overview of the preliminary design of the test plant and the tests to be conducted.

  11. SMART wind turbine rotor. Design and field test

    SciTech Connect

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  12. Materials Reliability Program: Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-137)

    SciTech Connect

    R.Kilian

    2004-12-01

    Laboratory data generated in the past decade indicate a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been supported by nuclear power plant component operating experience. In recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but applicable in plant operating environments. Available data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of a reactor water environment. Similar information is lacking for stainless steel piping materials. This report documents progress made to date in an extensive testing program underway to evaluate the effects of flow rate on the corrosion fatigue of 304L stainless steel under simulated PWR primary water environmental conditions.

  13. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Barszcz, Eric; Turner, Irem Y.; Lewicki, David; Decker, Harry; Norvig, Peter (Technical Monitor)

    1999-01-01

    As part of a cooperative research program between NASA Ames Research Center, NASA Glenn Research Center, and the U.S. Army Laboratories, a series of experiments are being performed on the 500 HP OH-58a Transmission Test Rig at NASA Glenn Research Center. The findings reported in this paper were drawn from Phase 1 of a two-phase experiment, and are focused on the vibration response of an undamaged pinion gear and planetary system operating in situ in the transmission test rig. Phase 2 of the experiment, which is reported elsewhere, introduced a seeded fault into the pinion gear and tracked its progress in real-time. Based on methods presented here, further experimental research will be conducted to examine planetary system faults.

  14. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations

    SciTech Connect

    Howard, Richard H.; Yan, Yong; Wang, Jy-An John; Ott, Larry J.; Howard, Rob L.

    2013-10-01

    This report documents ongoing work performed at Oak Ridge National Laboratory (ORNL) for the Department of Energy, Office of Fuel Cycle Technology Used Fuel Disposition Campaign (UFDC), and satisfies the deliverable for milestone M2FT-13OR0805041, “Data Report on Hydrogen Doping and Irradiation in HFIR.” This work is conducted under WBS 1.02.08.05, Work Package FT-13OR080504 ST “Storage and Transportation-Experiments – ORNL.” The objectives of work packages that make up the S&T Experiments Control Account are to conduct the separate effects tests (SET) and small-scale tests that have been identified in the Used Nuclear Fuel Storage and Transportation Data Gap Prioritization (FCRD-USED-2012-000109). In FY 2013, the R&D focused on cladding and container issues and small-scale tests as identified in Sections A-2.9 and A-2.12 of the prioritization report.

  15. Size and deformation limits to maintain constraint in K{sub Ic} and J{sub c} testing of bend specimens

    SciTech Connect

    Koppenhoefer, K.C.; Dodds, R.H. Jr.

    1995-10-01

    The ASTM Standard Test Method for Plane-Strain Fracture Toughness of metallic Materials (E399-90) restricts test specimen dimensions to insure the measurement of highly constrained fracture toughness values (K{sub Ic}). These requirements insure small-scale yielding (SSY) conditions at fracture, and thereby the validity of linear elastic fracture mechanics. Recently, Dodds and Anderson have proposed a less restrictive size requirement for cleavage fracture toughness measured in terms of the J-integral (J{sub c}), as given by a, b, B {ge} 200 J{sub c}/{sigma}{sub 0}. The size requirement proposed by Dodds and Anderson increases the applicability of fracture toughness experiments by expanding the range of conditions over which fracture toughness data meeting SSY conditions can be reliably measured. This investigation compares the proposed size requirement with that of ASTM Standard Test Method E399 and, by comparison with published experimental data for various alloys, provides validation of the new requirements.

  16. Aptitude and Reading Tests for Consideration in Designing a Screening and Diagnostic Test Battery.

    ERIC Educational Resources Information Center

    Pierson, Dorothy A.

    Aptitude and reading tests to be administered to technical college students are discussed in considering the design of a screening and diagnostic test battery. Diagnosis is condidered as a series of sequential steps: screening; testing; individualized program planning; program implementation; and investigation of the causes of reading difficulty.…

  17. Fresh-wood bending: linking the mechanical and growth properties of a Norway spruce stem.

    PubMed

    Lundström, Tor; Heiz, Urs; Stoffel, Markus; Stöckli, Veronika

    2007-09-01

    To provide data and methods for analyzing stem mechanics, we investigated bending, density and growth characteristics of 207 specimens of fresh wood from different heights and radial positions of the stem of one mature Norway spruce (Picea abies L. Karst.) tree. From the shape of each stress-strain curve, which was calculated from bending tests that accounted for shear deformation, we determined the modulus of elasticity (MOE), the modulus of rupture (MOR), the completeness of the material, an idealized stress-strain curve and the work involved in bending. In general, all mechanical properties increased with distance from the pith, with values in the ranges of 5.7-18 GPa for MOE, 23-90 MPa for MOR and 370-630 and 430-1100 kg m(-3) for dry and fresh wood densities, respectively. The first three properties generally decreased with stem height, whereas fresh wood density increased. Multiple regression equations were calculated, relating MOR, MOE and dry wood density to growth properties. We applied these equations to the growth of the entire stem and considered the annual rings as superimposed cylindrical shells, resulting in stem-section values of MOE, MOR and dry and fresh densities as a function of stem height and cambial age. The standing tree exhibits an inner stem structure that is well designed for bending, especially at a mature stage. PMID:17545123

  18. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  19. Design and Test of an Improved Crashworthiness Small Composite Airframe

    NASA Technical Reports Server (NTRS)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark

    2002-01-01

    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  20. Optimal design of multiple stress constant accelerated life test plan on non-rectangle test region

    NASA Astrophysics Data System (ADS)

    Chen, Wenhua; Gao, Liang; Liu, Juan; Qian, Ping; Pan, Jun

    2012-11-01

    For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method. The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.

  1. Bending mechanics of the red-eared slider turtle carapace.

    PubMed

    Achrai, Ben; Bar-On, Benny; Wagner, H Daniel

    2014-02-01

    The turtle shell is a natural shield that possesses complex hierarchical structure, giving rise to superior mechanical properties. The keratin-covered boney top (dorsal) part of the shell, termed carapace, is composed of rigid sandwich-like ribs made of a central foam-like interior flanked by two external cortices. The ribs are attached to one another in a 3-D interdigitated manner at soft unmineralized collagenous sutures. This unique structural combination promotes sophisticated mechanical response upon predator attacks. In the present study mechanical bending tests were performed to examine the static behavior of the red-eared slider turtle carapace, in different orientations and from various locations, as well as from whole-rib and sub-layer regions. In addition, the suture properties were evaluated as well and compared with those of the rib. A simplified classical analysis was used here to rationalize the experimental results of the whole rib viewed as a laminated composite. The measured strength (~300MPa) and bending modulus (~7-8.5GPa) of the rib were found to be of the same order of magnitude as the strength and modulus of the cortices. The theoretical prediction of the ribs' moduli, predicted in terms of the individual sub-layers moduli, agreed well with the experimental results. The suture regions were found to be more compliant and weaker than the ribs, but comparatively tough, likely due to the interlocking design of the boney zigzag elements. PMID:24333673

  2. Design of a mechanism to simulate the quasi-static moment-deflection behaviour of the osteoligamentous structure of the C3-C4 cervical spine segment in the flexion-extension and lateral bending directions.

    PubMed

    Chen, Samuel; Arsenault, Marc; Moglo, Kodjo

    2012-11-01

    The human neck is susceptible to traumatic injuries due to impacts as well as chronic injuries caused by loads such as those attributed to the wearing of heavy headgear. To facilitate the analysis of the loads that cause injuries to the cervical spine, it is possible to replicate the human neck's behaviour with mechanical devices. The goal of this work is to lay the foundation for the eventual development of a novel mechanism used to simulate the behaviour of the cervical spine during laboratory experiments. The research presented herein focuses on the design of a mechanism capable of reproducing the non-linear relationships between moments applied to the C3 vertebra and its corresponding rotations with respect to the C4 vertebra. The geometrical and mechanical properties of the mechanism are optimized based on the ability of the latter to replicate the load-deflection profile of the osteoligamentous structure of the C3-C4 vertebral pair in the flexion-extension and lateral bending directions. The results show that the proposed design concept is capable of faithfully replicating the non-linear behaviour of the motion segment within acceptable tolerances.

  3. Electro-impulse de-icing testing analysis and design

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1988-01-01

    Electro-Impulse De-Icing (EIDI) is a method of ice removal by sharp blows delivered by a transient electromagnetic field. Detailed results are given for studies of the electrodynamic phenomena. Structural dynamic tests and computations are described. Also reported are ten sets of tests at NASA's Icing Research Tunnel and flight tests by NASA and Cessna Aircraft Company. Fabrication of system components are described and illustrated. Fatigue and electromagnetic interference tests are reported. Here, the necessary information for the design of an EIDI system for aircraft is provided.

  4. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  5. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    SciTech Connect

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  6. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed. PMID:21730690

  7. Thermal Analysis and Testing of Fastrac Gas Generator Design

    NASA Technical Reports Server (NTRS)

    Nguyen, H.

    1998-01-01

    The Fastrac Engine is being developed by the Marshall Space Flight Center (MSFC) to help meet the goal of substantially reducing the cost of access to space. This engine relies on a simple gas-generator cycle, which burns a small amount of RP-1 and oxygen to provide gas to drive the turbine and then exhausts the spent fuel. The Fastrac program envisions a combination of analysis, design and hot-fire evaluation testing. This paper provides the supporting thermal analysis of the gas generator design. In order to ensure that the design objectives were met, the evaluation tests have started on a component level and a total of 15 tests of different durations were completed to date at MSFC. The correlated thermal model results will also be compared against hot-fire thermocouple data gathered.

  8. Italsat in-orbit test transponder design and performance

    NASA Astrophysics Data System (ADS)

    Mott, R.; Estep, G.; Kelly, W.; Yogev, I.; di Fiore, L.; Talcott, J.; Williams, A.; Assal, F.

    1992-03-01

    This paper describes the design, fabrication, and test of the Italsat in-orbit test (IOT) RF bypass transponder mounted on board the Italsat multibeam spacecraft, which was launched in January 1991. It is believed that the in-orbit test transponder (IOTT) contains the first monolithic microwave integrated circuits (MMICs) ever launched into space on a communications satellite. The IOTT bypasses the demodulator, basebands switchboard, and modulator of the multibeam package of the Italsat spacecraft payload, enabling full characterization of the satellite's transponders using well-established IOT techniques. This space-qualified design incorporates custom-designed gallium arsenide MMIC Ku-band amplifiers, lightweight waveguide Ku-band channel filters, electronic power conditioner, and combined IOTT telemetry and command circuitry.

  9. Design and testing of a tandem row pump inducer

    NASA Technical Reports Server (NTRS)

    Etter, R. J.

    1974-01-01

    The design and testing of a tandem row pump inducer having a supercavitating first stage with a 0.60 hub ratio is presented. The second stage tested was a helical impeller with a 0.70 hub ratio. A cubic arc transition was utilized to accomplish the hub change. The first stage had two blades and the free-vortex design approach was empirically modified based on previous experience. The recommended second stage design having four blades and using cambered blade section is presented but the model was not built or tested. The more simple helix was built instead to reduce cost. Data taken included head generation, cavitation observations and unsteady head fluctuations over the 0-100Hz range.

  10. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  11. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  12. Design, analysis and testing of small, affordable HAWT rotors

    NASA Astrophysics Data System (ADS)

    Pricop, Mihai V.; Niculescu, Mihai L.; Cojocaru, Marius G.; Barsan, Dorin

    2012-09-01

    The paper presents affordable technologies dedicated to design, CAD modelling and manufacturing of the small-medium HAWT rotors. Three numerical tools are developed: blade/rotor design, blade modelling for industry CATIA(CATScript) and blade modelling for small scale developers. Numerical analysis of the rotors is accomplished for both performance and noise level estimation using XFLOW (LES) and an in-house code (URANS). Results are presented for a 5KW rotor at the design point only, since computations are expensive. Developement examples are included as two rotors are designed, manufactured and tested for 1.5 and 5KW. A third one, rated for 20KW is under developement. Basic testing results are also included.

  13. Design characteristics of a heat pipe test chamber

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Jang, J. Hoon; Yu, Juin S.

    1992-01-01

    LeRC has designed a heat pipe test facility which will be used to provide data for validating heat pipe computer codes. A heat pipe test chamber that uses helium gas for enhancing heat transfer was investigated. The conceptual design employs the technique of guarded heating and guarded cooling to facilitate accurate measurements of heat transfer rates to the evaporator and from the condenser. The design parameters are selected for a baseline heat pipe made of stainless steel with an inner diameter of 38.10 mm and a wall thickness of 1.016 mm. The heat pipe operates at a design temperature of 1000 K with an evaporator radial heat flux of 53 W/sq. cm.

  14. Design and testing of z-shaped stringer-stiffened compression panels -- Evaluation of ARALL, GLARE, AND 2090 materials

    SciTech Connect

    Wu, M.; Reddy, S.V.; Wilson, D.

    1997-12-31

    Within the aerospace industry, there is a constant objective to develop more efficient and more economical aircraft. It is well known that the more prohibitive costs of air travel are associated with fuel consumption and the service losses incurred during downtime maintenance. Obviously, fuel consumption is greatly affected by weight. Thus, there is a search for new materials and construction techniques that offer substantial weight savings. A design study was conducted to determine the potential weight savings and performance increase from advanced metallic materials for wing skin panels. The materials included aluminum lithium 2090-T83, ARALL-3 (aramid-reinforced aluminum laminate) and GLARE-2 (glass-aluminium-reinforced epoxy). This wing has mechanically attached stringers to stiffen the panel against compressive and shear loading. The advanced skin materials were designed into an advanced wing box; advantage was taken of the increase in strength and stiffness. Two 2090-T83 aluminum-lithium skins with 7075-T6511 extruded Z-shaped stringers bonded to them were used for the evaluation of the upper wing cover structure. One panel had five bays, the other four. The study confirmed that a weight savings in the order of 10 to 15% can be achieved with panels made with these advanced materials. The compression tests showed that all test panels failed in column bending and the predicted critical loads compared to those from the tests were conservative. The tests also validated the design methodology.

  15. The Superconducting Horizontal Bend Magnet for the Jefferson Lab's 11 GeV/c Super High Momentum Spectrometer

    SciTech Connect

    S. Chouhan, J. DeKamp, A. Zeller, P. Brindza, S. Lassiter, M. Fowler, E. Sun

    2010-06-01

    A collaboration between NSCL and Jlab has developed the reference design and coil winding for Jlab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet. A warm iron ??C?? type superferric dipole magnet will bend the 12 GeV/c particles horizontally by 3?? to allow the SHMS to reach angles as low as 5.5??. This requires an integral field strength of up to 2.1 T.m. The major challenges are the tight geometry, high and unbalanced forces and a required low fringe field in primary beam path. A coil design based on flattened SSC Rutherford cable that provides a large current margin and commercially available fiberglass prepreg epoxy tape has been developed. A complete test coil has been wound and will be cold tested. This paper present the modified magnet design includes coil forces, coil restraint system and fringe field. In addition, coil properties, quench calculations and the full mechanical details are also presented.

  16. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  17. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  18. Design, fabrication and testing of an optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Decker, R. O.; Mcclurg, W. C.

    1980-01-01

    The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, design and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately 1 C at room temperature or approximately + or - 0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.

  19. Design verification and cold-flow modeling test report

    SciTech Connect

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  20. Disturbance Rejection Based Test Rocket Control System Design and Validation

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhang, S.; Li, T.; Zhang, Y.

    2015-09-01

    This paper presents a novel design and validation for the three-channel attitude controller of a STT test rocket based on the extended state observer approach. The uniform second order integral-chain state space model is firstly established for the control variable of the angle of attack, angle of sideslip and roll angle. Combined with the pole placement, the extended state observer is applied to the disturbance rejection design of the attitude controller. Through numerical and hardware-in-the-loop simulation with uncertainties considered, the effectiveness and robustness of the controller are illustrated and verified. Finally, the performance of the controller is validated by flight-test with satisfactory results.

  1. Transpiring wall supercritical water oxidation test reactor design report

    SciTech Connect

    Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G.; Rousar, D.C.

    1996-02-01

    Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

  2. Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source

    SciTech Connect

    Green, M.A.; Madura, D.

    1995-06-01

    This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, The iron in the pole pieces is highly saturated, Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.

  3. Design parameters for a 7.2 tesla bending magnet for a 1.5 GeV compact light source

    SciTech Connect

    Green, M.A.; Madura, D.

    1996-07-01

    This report describes the design for a 7.2 tesla superconducting dipole magnet for a compact synchrotron light source. The proposed magnet is a Vobly type modified picture frame dipole that has the flux returned through unsaturated iron. In this magnet, the iron in the pole pieces is highly saturated. Separately powered coils around the pole pieces are used to direct the flux lines until the flux can be returned through the unsaturated iron. The proposed dipole will develop a uniform field over a region that is 80 mm high by 130 mm wide over a range of central induction from 0.4 T to almost 8 T. Each dipole for the compact light source will have a magnetic length of about 0.38 meters.

  4. Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    NASA Technical Reports Server (NTRS)

    Holmberg, N. A.; Faust, R. P.; Holt, H. M.

    1980-01-01

    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective.

  5. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  6. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    SciTech Connect

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  7. Bending properties of carbon nanotubes encapsulating solid nanowires.

    PubMed

    Danailov, D; Keblinski, P; Nayak, S; Ajayan, P M

    2002-10-01

    Using empirical potentials and atomistic simulations, we model three-point bend tests of single-walled carbon nanotubes encapsulating metal nanowires. The presence of a metal nanowire inside the nanotube greatly suppresses the tube-buckling instability. Increasing tube diameter leads to an increase in the bending strength; however, in contrast to hollow tubes, there is no decrease in the maximum deflection before buckling. Analysis of the principal bending vibrational mode shows a lowering of the frequency, associated with increased tube inertia. Remarkably, metal-filled tubes exhibit strong damping of oscillations whereas unfilled single-walled and multiwalled tubes show no damping. Our studies demonstrate the benefits of filling tubes with solids to modify bending strength and flexibility, suggesting applications for nanotube-based elements in micromechanical devices or nanoprobes.

  8. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  9. HyRAM Testing Strategy and Quality Design Elements.

    SciTech Connect

    Reynolds, John Thomas

    2014-12-01

    Strategy document and tentative schedule for testing of HyRAM, a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. Because proposed and existing features in HyRAM that support testing are important factors in this discussion, relevant design considerations of HyRAM are also discussed. However, t his document does not cover all of HyRAM desig n, nor is the full HyRAM software development schedule included.

  10. Design and testing of ultralite fabric reflux tubes

    SciTech Connect

    Pauley, K.A.; Antoniak, Z.I.; King, L.L.; Hollenberg, G.W.

    1993-01-01

    This paper describes the design, fabrication, and testing of Ultralite Fabric Reflux Tubes intended to provide thermal control for a Lunar Colony. The Ultralite Fabric Reflux Tubes, under this phase of development, are constructed of thin-walled copper liners overwrapped with aluminoborosilicate fabric. These devices were constructed and tested in air at the Pacific Northwest Laboratory and subsequently taken to the NASA Johnson Space Center for thermal vacuum experimentation.

  11. Design and testing of high-pressure railguns and projectiles

    SciTech Connect

    Peterson, D.R.; Fowler, C.M.; Cummings, C.E.; Kerrisk, J.F.; Parker, J.V.; Marsh, S.P.; Adams, D.F.

    1983-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low-strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magnetic-flux compression generators. Calculations to predict railgun and power supply performance were performed.

  12. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    SciTech Connect

    Wang, Haipeng; Cheng, Guangfeng; Clemens, William; Davis, G; Macha, Kurt; Overton, Roland; Spell, D.

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  13. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  14. Design driven test patterns for OPC models calibration

    NASA Astrophysics Data System (ADS)

    Al-Imam, Mohamed

    2009-03-01

    In the modern photolithography process for manufacturing integrated circuits, geometry dimensions need to be realized on silicon which are much smaller than the exposure wavelength. Thus Resolution Enhancement Techniques have an indispensable role towards the implementation of a successful technology process node. Finding an appropriate RET recipe, that answers the needs of a certain fabrication process, usually involves intensive computational simulations. These simulations have to reflect how different elements in the lithography process under study will behave. In order to achieve this, accurate models are needed that truly represent the transmission of patterns from mask to silicon. A common practice in calibrating lithography models is to collect data for the dimensions of some test structures created on the exposure mask along with the corresponding dimensions of these test structures on silicon after exposure. This data is used to tune the models for good predictions. The models will be guaranteed to accurately predict the test structures that has been used in its tuning. However, real designs might have a much greater variety of structures that might not have been included in the test structures. This paper explores a method for compiling the test structures to be used in the model calibration process using design layouts as an input. The method relies on reducing structures in the design layout to the essential unique structure from the lithography models point of view, and thus ensuring that the test structures represent what the model would actually have to predict during the simulations.

  15. Design, fabrication, and test of lightweight shell structure, phase 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A cylindrical shell skirt structure 4.57 m (180 in.) in diameter and 3.66 m (144 in.) high was subjected to a design and analysis study using a wide variety of structural materials and concepts. The design loading of 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion is representative of that expected on a typical space tug skirt section. Structural concepts evaluated included honeycomb sandwich, truss, isogrid, and skin/stringer/frame. The materials considered included a wide variety of structural metals as well as glass, graphite, and boron-reinforced composites. The most unique characteristic of the candidate designs is that they involve the use of very thin-gage material. Fabrication and structural test of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods.

  16. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials

    NASA Astrophysics Data System (ADS)

    Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.

    2016-03-01

    A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S-N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.

  17. Design, fabrication, test, qualification, and price analysis of third generation design solar cell modules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The fabrication of solar cell modules is detailed with emphasis upon laminating and interconnecting the panels that hold the simicrystalline silicon cells. Design problems and enviromental tests are described as well as performance characteristics.

  18. Design and Testing of Improved Spacesuit Shielding Components

    SciTech Connect

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.

    2002-05-08

    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  19. Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI

    NASA Technical Reports Server (NTRS)

    Shah, A. M.; Shiva, S. G.

    1981-01-01

    The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.

  20. The Design and Use of a Practical Tests Assessment Inventory.

    ERIC Educational Resources Information Center

    Tamir, Pinchas; And Others

    1982-01-01

    Following a discussion of the role and importance of practical laboratory tests, describes an instrument designed for inquiry-oriented practical examinations. The instrument consists of 21 categories representing different inquiry skills. Examples and illustrative data based on results in biology matriculation examination in Israel are reported.…

  1. Survey of electrical submersible systems design, application, and testing

    SciTech Connect

    Durham, M.O.; Lea, J.F.

    1996-05-01

    The electrical submersible pump industry has numerous recommended practices and procedures addressing various facets of the operation. Ascertaining the appropriate technique is tedious. Seldom are all the documents available at one location. This synopsis of all the industry practices provides a ready reference for testing, design, and application of electrical submersible pumping systems. An extensive bibliography identifies significant documents for further reference.

  2. Some Current Problems in Simulator Design, Testing and Use.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Concerned with the general problem of the effectiveness of simulator training, this report reflects information developed during the conduct of aircraft simulator training research projects sponsored by the Air Force, Army, Navy, and Coast Guard. Problems are identified related to simulator design, testing, and use, all of which impact upon…

  3. PX series AMTEC cell design, testing and analysis

    SciTech Connect

    Borkowski, C.A.; Sievers, R.K.; Hendricks, T.J.

    1997-12-31

    PX (Pluto Express) cell testing and analysis has shown that AMTEC (Alkali Metal Thermal to Electric Conversion) cells can reach the power levels required by proposed RPS (Radioisotope Power Supply) system designs. A major PX cell design challenge was to optimize the power and efficiency of the cell while allowing a broad operational power range. These design optimization issues are greatly dependent on the placement of the evaporation zone. Before the PX-2 and PX-4 cells were built, the results from the PX-1, ATC-2 (artery test cell) and design analysis indicated the need for a thermal bridge between the heat input surface of the cell and the structure supporting the evaporation zone. Test and analytic results are presented illustrating the magnitude of the power transfer to the evaporation zone and the effect of this power transfer on the performance of the cell. Comparisons are also made between the cell test data and analytic results of cell performance to validate the analytic models.

  4. Design and testing of the LITE Variable Field Stop mechanism

    NASA Technical Reports Server (NTRS)

    Dillman, Robert A.

    1993-01-01

    The Variable Field Stop (VFS) is a rotary mechanism that reliably positions any of four aperture plates in the optical path of a spaceflight experiment, limiting the amount of light reaching the detectors. This paper discusses the design, operation, and testing of the VFS.

  5. Revisiting a Cognitive Framework for Test Design: Applications for a Computerized Perceptual Speed Test.

    ERIC Educational Resources Information Center

    Alderton, David L.

    This paper highlights the need for a systematic, content aware, and theoretically-based approach to test design. The cognitive components approach is endorsed, and is applied to the development of a computerized perceptual speed test. Psychometric literature is reviewed and shows that: every major multi-factor theory includes a clerical/perceptual…

  6. Great Bend tornadoes of August 30, 1974

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.; Fujita, T. T.; Dundas, R.

    1977-01-01

    Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.

  7. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  8. Design, Development and Testing of Airplanes for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hall, David W.

    2004-01-01

    The opportunity for a piggyback mission to Mars aboard an Ariane 5 rocket in the early spring of 1999 set off feverish design activity at several NASA centers. This report describes the contract work done by faculty, students, and consultants at the California Polytechnic State University in San Luis Obispo California (Cal poly/SLO) to support the NASA/Ames design, construction and test efforts to develop a simple and robust Mars Flyer configuration capable of performing a practical science mission on Mars. The first sections will address the conceptual design of a workable Mars Flyer configuration which started in the spring and summer of 1999. The following sections will focus on construction and flight test of two full-scale vehicles. The final section will reflect on the overall effort and make recommendations for future work.

  9. Design, synthesis, and testing toward a 57-codon genome.

    PubMed

    Ostrov, Nili; Landon, Matthieu; Guell, Marc; Kuznetsov, Gleb; Teramoto, Jun; Cervantes, Natalie; Zhou, Minerva; Singh, Kerry; Napolitano, Michael G; Moosburner, Mark; Shrock, Ellen; Pruitt, Benjamin W; Conway, Nicholas; Goodman, Daniel B; Gardner, Cameron L; Tyree, Gary; Gonzales, Alexandra; Wanner, Barry L; Norville, Julie E; Lajoie, Marc J; Church, George M

    2016-08-19

    Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms. PMID:27540174

  10. Design, fabrication and testing of single spoke resonators at Fermilab

    SciTech Connect

    Ristori, L.; Apollinari, G.; Borissov, E.; Gonin, I.V.; Khabiboulline, T.N.; Mukherjee, A.; Nicol, T.H.; Ozelis, J.; Pischalnikov, Y.; Sergatskov, D.A.; Wagner, R.; /Fermilab

    2009-09-01

    The Fermilab High Intensity Neutrino Source (HINS) linac R&D program is building a pulsed 30 MeV superconducting H- linac. The linac incorporates superconducting solenoids, high power RF vector modulators and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linac. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. In this paper we present the RF design, the mechanical design, the fabrication, the chemistry and testing of the first two SSR1 (Single Spoke Resonator type-1) prototype cavities that were built. These cavities operate at 325 MHz with {beta} = 0.21. The design and testing of the input coupler and the tuning mechanism are also discussed.

  11. Conservatism implications of shock test tailoring for multiple design environments

    NASA Technical Reports Server (NTRS)

    Baca, Thomas J.; Bell, R. Glenn; Robbins, Susan A.

    1987-01-01

    A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item.

  12. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  13. Optimization applications in aircraft engine design and test

    NASA Technical Reports Server (NTRS)

    Pratt, T. K.

    1984-01-01

    Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.

  14. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  15. Documentation of Stainless Steel Lithium Circuit Test Section Design

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  16. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  17. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  18. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  19. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong

    2013-07-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz <= fr <= 33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.

  20. Draw-Bending Analysis of a Cold Rolled DP980 Steel Sheet

    NASA Astrophysics Data System (ADS)

    Verma, Rahul K.; Noma, Nobuyasu; Chung, Kwansoo; Kuwabara, Toshihiko

    2011-05-01

    To assess the springback prediction accuracy of the recently proposed model (Verma et. al., 2011), simulations for tension-compression (TC) and draw-bending of a cold rolled DP980 steel sheet (Noma and Kuwabara, 2010b) were performed. Using a rotating die and a specimen specially designed to introduce the uniaxial state of stress during the draw bending test, friction could be neglected and the shape of the yield surface did not play any role in accurate simulations. The effects of incorporating permanent softening and the plastic strain dependent Young's modulus were studied in detail and it was found that the incorporation of permanent softening and the plastic strain dependent Young's modulus both was important for accurate springback prediction.

  1. Tritium pellet injector design for tokamak fusion test reactor

    SciTech Connect

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Easterly, C.E.; Lunsford, R.V.; Milora, S.L.; Schuresko, D.D.; White, J.A.; Williamson, D.H.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper.

  2. Optical fibers for long-haul transmission in severe-bending applications

    NASA Astrophysics Data System (ADS)

    Kamikawa, N. T.

    1992-04-01

    An optical-fiber technique is investigated that allows data transmission through 200 km of dual-mode optical fibers wound onto a bobbin for payout from a tethered missile. The study shows that the dual-mode fibers can be used over longer distances than conventional single-mode fibers and can meet the goal for 200-km transmission. The design of the dual-mode fibers is discussed, and test data are presented on their bending loss. Results from modal-noise and modal-dispersion tests are also given, showing that modal-noise and modal-dispersion effects are negligible, if the second-order mode is loosely bound.

  3. Space shuttle orbiter windshield system design and test

    NASA Technical Reports Server (NTRS)

    Hayashida, K.; Suppanz, M. J.

    1972-01-01

    The development and testing of primary structural elements that are necessary to design a windshield system for the space shuttle orbiter are summarized. The elements include the outer (heat shield) panes, the inner pressure panes, the seals for both panes, and components of both window frames. One test article representing a pressure pane, including frames and seals, was tested under two sets of conditions. One set represented 100 mission cycles with temperature and pressure typical of those exerted on the innermost pane of the three-pane window system, and the second set represented 100 mission cycles with temperature and pressure typical of those exerted on a middle pane. A second test article representing an outer (heat sheild) pane was tested to conditions of 120 entry cycles, which equates to 100 entry cycles plus sufficient fatigue on the pane to account for 100 boost cycles. All elements of the design survived the test conditions in good condition. Window system for the shuttle orbiter vehicle.

  4. Design of Refractory Metal Life Test Heat Pipe and Calorimeter

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.

    2010-01-01

    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  5. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  6. Bending spring rate investigation of nanopipette for cell injection

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-04-01

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.

  7. Bending spring rate investigation of nanopipette for cell injection.

    PubMed

    Shen, Yajing; Zhang, Zhenhai; Fukuda, Toshio

    2015-04-17

    Bending of nanopipette tips during cell penetration is a major cause of cell injection failure. However, the flexural rigidity of nanopipettes is little known due to their irregular structure. In this paper, we report a quantitative method to estimate the flexural rigidity of a nanopipette by investigating its bending spring rate. First nanopipettes with a tip size of 300 nm are fabricated from various glass tubes by laser pulling followed by focused ion beam (FIB) milling. Then the bending spring rate of the nanopipettes is investigated inside a scanning electron microscope (SEM). Finally, a yeast cell penetration test is performed on these nanopipettes, which have different bending spring rates. The results show that nanopipettes with a higher bending spring rate have better cell penetration capability, which confirms that the bending spring rate may well reflect the flexural rigidity of a nanopipette. This method provides a quantitative parameter for characterizing the mechanical property of a nanopipette that can be potentially taken as a standard specification in the future. This general method can also be used to estimate other one-dimensional structures for cell injection, which will greatly benefit basic cell biology research and clinical applications.

  8. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  9. A statistical design for testing apomictic diversification through linkage analysis.

    PubMed

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling

    2014-03-01

    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  10. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  11. The J-2X Oxidizer Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  12. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  13. AGS tune jump power supply design and test

    SciTech Connect

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-03-28

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  14. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  15. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  16. Quasi-static characterization and modeling of the bending behavior of single crystal galfenol for magnetostrictive sensors and actuators

    NASA Astrophysics Data System (ADS)

    Datta, Supratik

    2009-12-01

    Iron-gallium alloys (Galfenol) are structural magnetostrictive materials that exhibit high free-strain at low magnetic fields, high stress-sensitivity and useful thermo-mechanical properties. Galfenol, like smart materials in general, is attractive for use as a dynamic actuator and/or sensor material and can hence find use in active shape and vibration control, real-time structural health monitoring and energy harvesting applications. Galfenol possesses significantly higher yield strength and greater ductility than most smart materials, which are generally limited to use under compressive loads. The unique structural attributes of Galfenol introduce opportunities for use of a smart material in applications that involve tension, bending, shear or torsion. A principal motivation for the research presented in this dissertation is that bending and shear loads lead to development of non-uniform stress and magnetic fields in Galfenol which introduce significantly more complexity to the considerations to be modeled, compared to modeling of purely axial loads. This dissertation investigates the magnetostrictive response of Galfenol under different stress and magnetic field conditions which is essential for understanding and modeling Galfenol's behavior under bending, shear or torsion. Experimental data are used to calculate actuator and sensor figures of merit which can aid in design of adaptive structures. The research focuses on the bending behavior of Galfenol alloys as well as of laminated composites having Galfenol attached to other structural materials. A four-point bending test under magnetic field is designed, built and conducted on a Galfenol beam to understand its performance as a bending sensor. An extensive experimental study is conducted on Galfenol-Aluminum laminated composites to evaluate the effect of magnetic field, bending moment and Galfenol-Aluminum thickness ratio on actuation and sensing performance. A generalized recursive algorithm is presented for

  17. SCD1 thermal design and test result analysis

    NASA Technical Reports Server (NTRS)

    Cardoso, Humberto Pontes; Muraoka, Issamu; Mantelli, Marcia Barbosa Henriques; Leite, Rosangela M. G.

    1990-01-01

    The SCD 01 (Satelite de Coleta de Dados 01) is a spin stabilized low Earth orbit satellite dedicated to the collection and distribution of environmental data. It was completely developed at the Brazilian Institute for Space Research (INPE) and is scheduled to be launched in 1992. The SCD 01 passive thermal control design configuration is presented and the thermal analysis results are compared with the temperatures obtained from a Thermal Balance Test. The correlation between the analytical and experimental results is considered very good. Numerical flight simulations show that the thermal control design can keep all the subsystem temperatures within their specified temperature range.

  18. MSAT boom joint testing and load absorber design

    NASA Technical Reports Server (NTRS)

    Klinker, D. H.; Shuey, K.; St.clair, D. R.

    1994-01-01

    Through a series of component and system-level tests, the torque margin for the MSAT booms is being determined. The verification process has yielded a number of results and lessons that can be applied to many other types of deployable spacecraft mechanisms. The MSAT load absorber has proven to be an effective way to provide high energy dissipation using crushable honeycomb. Using two stages of crushable honeycomb and a fusible link, a complex crush load profile has been designed and implemented. The design features of the load absorber lend themselves to use in other spacecraft applications.

  19. Operation and design of selected industrial process heat field tests

    SciTech Connect

    Kearney, D. W.

    1981-02-01

    The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

  20. Design and preliminary testing of the RIC hybrid knee prosthesis.

    PubMed

    Lenzi, T; Sensinger, J; Lipsey, J; Hargrove, L; Kuiken, T

    2015-08-01

    We present a novel hybrid knee prosthesis that uses a motor, transmission and control system only for active dynamics tasks, while relying on a spring/damper system for passive dynamics activities. Active dynamics tasks require higher torque, lower speed, and occur less frequently than passive dynamic activities. By designing the actuation system around active tasks alone, we achieved a lightweight design (1.7 Kg w/o battery) without sacrificing peak torque (85Nm repetitive). Preliminary tests performed by an able-bodied person using a bypass orthosis show that the hybrid knee can support reciprocal stairs ambulation with low electrical energy consumption.

  1. Custom Unit Pump Design and Testing for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F

  2. Design of PF-1 Coil Helium Inlet and Dummy Joint Samples for Fatigue Tests at 77K

    NASA Astrophysics Data System (ADS)

    Nasluzov, S. N.; Sukhanova, M. V.; Rodin, I. Yu.; Marushin, E. L.; Mednikov, A. A.; Stepanov, D. B.; Lantsetov, A. A.; Khitruk, A. A.

    A helium inlet and dummy joint between conductors are one of the most important elements of the winding pack of the ITER PF -1 coil double pancakes. A helium inlet is used for letting liquid helium into the PF-1 coil conductor. A full-scale helium inlet sample for fatigue tests and the respective tooling were designed and manufactured. Fatigue tests of the full-scale helium inlet sample were conducted in accordance with ITER requirements testing parameters in order to check the fatigue strength of the structure. Before the fatigue tests thermo-cycling of the helium inlet in the temperature range of 77 to 293 K was conducted. Before and after the fatigue tests the leak tightness of the full-scale helium inlet sample was validated by the vacuum chamber method. A low ohm electrical joint is used to connect two NbTi «CICC» conductors of PF-1 coil into a single electrical loop. To qualify the design and technology of manufacturing of the electrical joint, a full-scale dummy joint sample was developed for fatigue tests at 77 K. The main design feature of the full-scale dummy joint sample for fatigue tests is a symmetrical model of two dummy joint samples with simultaneous loading to compensate the bending moment. Fatigue tests of the full-scale helium inlet sample at 77 K have been successfully conducted in 2013. Fatigue tests of the full-scale dummy joint sample will be conducted in 2014. This paper represents the results of calculating the stress-strain state of the symmetrical model of the full-scale dummy joint sample for fatigue tests with the prescribed loading and strain, the work on designing the symmetrical model of the dummy joint sample for fatigue tests and the test facility for conducting fatigue tests at 77 K. Also the results of the leak tightness tests and thermo-cycling of the full-scale helium inlet and the results of it fatigue tests at 77 K, are presented.

  3. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  4. Design, fabrication and testing of a thermal diode

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Kosson, R.

    1972-01-01

    Heat pipe diode types are discussed. The design, fabrication and test of a flight qualified diode for the Advanced Thermal Control Flight Experiment (ATFE) are described. The review covers the use of non-condensable gas, freezing, liquid trap, and liquid blockage techniques. Test data and parametric performance are presented for the liquid trap and liquid blockage techniques. The liquid blockage technique was selected for the ATFE diode on the basis of small reservoir size, low reverse mode heat transfer, and apparent rapid shut-off.

  5. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  6. Design and operation of an outdoor microalgae test facility

    SciTech Connect

    Weissman, J.C.; Tillett, D.M.; Goebel, R.P. )

    1989-10-01

    The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

  7. Design of an active magnetic regenerator test apparatus

    NASA Astrophysics Data System (ADS)

    Rowe, A. M.; Barclay, J. A.

    2002-05-01

    The Active Magnetic Regenerator (AMR) has been shown to be a refrigeration technology with high efficiencies. Complex thermodynamic interactions in the regenerator, a shortage of suitable magnetic refrigerants, and difficulty in acquiring accurate experimental data have combined to hamper the development of AMR refrigerators. An apparatus to dynamically characterize the behavior of AMR beds is a valuable tool in furthering the development of the technology. This paper describes the design and construction of an AMR test apparatus. For initial tests, the apparatus has been used to examine the performance of Gd AMR beds operating in 2 T fields.

  8. Planetary-gear-support bearing test rig design

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1985-01-01

    A test rig was designed to evaluate the performance of a spherical roller bearing with a geared outer ring operating under conditions similar to those of a planet bearing in a helicopter transmission. The configuration is an extension of the widely accepted four-square gearbox arrangement. It provides for testing of two bearings simultaneously with outer ring rotation, misalignment, diametrically opposed loading through the gear teeth, and under race lubrication. Instrumentation permits the measurement of inner and outer ring temperature, bearing drag torque, degree of misalignment, outer ring speed, cage speed, and applied load.

  9. Advanced beamline design for Fermilab's Advanced Superconducting Test Accelerator

    NASA Astrophysics Data System (ADS)

    Prokop, Christopher R.

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  10. Development of U-Frame Bending System for Studying the Vibration Integrity of Spent Nuclear Fuel

    SciTech Connect

    Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S; Howard, Rob L; Bevard, Bruce Balkcom; Flanagan, Michelle E

    2013-01-01

    A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. Design and analysis, fabrication, modification, calibration, and instrumentation are described. The system is composed of a U-frame testing setup for imposing bending loads on the spent fuel rod test specimen and a method for measuring the curvature of the rod during bending. The U-frame setup consists of two rigid arms, linking members, and linkages to a universal testing machine. The test specimen s curvature of bending is obtained through a three-point deflection measurement method consisting of three LVDTs mounted to the side connecting plates of the U-frame to capture the deformation of the test specimen. The system has some unique features: 1) The test specimen is installed by simple insertion using linear bearings incorporated with rigid sleeves. 2) Reverse cyclic bending tests can be carried out effectively and efficiently by push and pull at the loading point of the setup. Any test machine with a linear motion function can be used to drive the setup. 3) The embedded and preloaded linear roller bearings eliminate the backlash that exists in the conventional reverse bend tests. 4) The number of linkages between the U-frame and the universal machine is minimized. Namely, there are only two linkages needed at the two loading points of a U-frame setup, whereas a conventional four/three-point bend test frame requires four linkages. 5) The curvature measurement is immune to the effects arising from compliant layers and the rigid body motion of the machine. The compliant layers are used at the holding areas of the specimen to prevent contact damage. The tests using surrogate specimens composed of SS cladding/tube revealed several important phenomena that may cast light on the expected response of a spent fuel rod: 1) Cyclic quasi-static load (10 N/s under force control) in compressive mode (with respect to that at the loading point of the U

  11. Effects of Bending Radii on the Characteristics of Flexible Organic Solar Cells Investigated by Impedance Analysis.

    PubMed

    Kim, Hoonbae; Ye, Donghyun; Won, Beomhee; Yu, SeGi; Jung, Donggeun

    2016-05-01

    Flexible organic solar cells (OSCs) were fabricated on an indium-tin-oxide (ITO)/poly(ethylene terephthalate) (PET) substrate and were subjected to bending tests with various bending radii. We observed that the photovoltaic properties of the OSCs precipitously deteriorated at a bending radius ≤ 0.75 cm. In order to investigate the effects of the bending test, the changes in the surface morphology and the sheet resistance of the ITO-coated PET samples were investigated, and the photovoltaic properties of bent and unbent OSCs were evaluated. Thereafter, equivalent circuits for the OSCs were assumed and the change in their parameters, such as resistance and capacitance, was observed. PMID:27483935

  12. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  13. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the

  14. Portable oxygen subsystem. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.

  15. Design and test of porous-tungsten mercury vaporizers

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    New design requirements for porous plug-type vaporizers used with Kaufman thrusters and thruster arrays are discussed. The results of testing samples of porous tungsten for mercury flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used instead of mercury vapor for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feedlines have restrictions in the dynamic line during launch.

  16. Next linear collider test accelerator injector design and status

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.; Wang, J.W.

    1994-08-01

    The Next Linear Collider Test Accelerator (NLCTA) being built at SLAC will integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider, demonstrate multibunch beam-loading energy compensation and suppression of higher-order deflecting modes, measure transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator Injector design and simulation results for the NLCTA injector are discussed.

  17. Turbojet blade vibration data acquisition design and feasibility testing

    NASA Technical Reports Server (NTRS)

    Frarey, J. L.; Petersen, N. J.; Hess, D. A.

    1978-01-01

    A turbojet blade vibration data acquisition system was designed to allow the measurement of blade vibration. The data acquisition system utilizing 96 microprocessors to gather data from optical probes, store, sort and transmit to the central computer is described. Areas of high technical risk were identified and a two-microprocessor system was breadboarded and tested to investigate these areas. Results show that the system was feasible and that low technical risk would be involved in proceeding with the complete system fabrication.

  18. Modal testing in the design evaluation of wind turbines

    SciTech Connect

    Lauffer, J.P.; Carne, T.G.; Ashwill, T.D.

    1988-04-01

    This report reviews several techniques of low-frequency excitation used successfully to measure modal parameters for wind turbines, including impact, wind, step-relaxation, and human input. As one application of these techniques, a prototype turbine was tested and two modal frequencies were found to be close to integral multiples of the operating speed, which caused a resonant condition. The design was modified to shift these frequencies, and the turbine was retested to confirm expected changes in modal frequencies.

  19. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    NASA Astrophysics Data System (ADS)

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-04-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  20. Platonic Scattering Cancellation for Bending Waves in a Thin Plate

    PubMed Central

    Farhat, M.; Chen, P.-Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alù, A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry. PMID:24844801

  1. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect

    Benson, C.H.; Waugh, W.J.; Albright, W.H.; Smith, G.M.; Bush, R.P.

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  2. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    SciTech Connect

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  3. Investigation of the Structural Behavior and Maximum Bending Strength of Six Multiweb Beams with Three Types of Webs

    NASA Technical Reports Server (NTRS)

    Peterson, James P.; Bruce, Walter E., Jr.

    1959-01-01

    The results of bending tests on six multiweb beams of optimum weight-strength design are presented. The internal structure of the beams consisted of various combinations of two types of full-depth solid webs and a post-stringer web. The observed structural behavior, buckling load, and failing load of the beams are compared with results obtained by the use of existing methods of analysis and found to be quite predictable.

  4. The Danish SAR system - Design and initial tests

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Christensen, Erik L.; Skou, Niels; Dall, Jorgen

    1991-01-01

    In January 1986, the design of a high-resolution airborne C-band SAR started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system, its implementation, and its performance. They show how digital technology has been utilized to realize a very flexible radar with variable resolution, swath-width, and imaging geometry. The motion-compensation algorithms implemented to obtain the high resolution and the special features built into the system to ensure proper internal calibration are outlined. The data processing system, developed for image generation and quality assurance, is sketched, with special emphasis on the flexibility of the system. Sample images and a preliminary performance evaluation are presented, demonstrating that the design goals have been met. The ongoing system upgrades and the planned scientific utilization of the C-band SAR are described.

  5. Design and field testing of a Savonius windpump in Kenya

    SciTech Connect

    Smalera, A.; Kammen, D.M.

    1995-12-31

    One important means of improving water availability and reducing disease exposure from polluted or stagnant sources involves the design and diffusion of inexpensive and reliable water pumps. Modernized versions of the decades-old Savonius vertical axis windmill present one technology that can play an important role in this effort. To be successful, these systems must be tailored to exploit the local wind and hydrological resources, constructed and managed locally, and inexpensive to operate and maintain. We report here on our design efforts and cooperative field research with several Kenyan development organizations. Performance tests from 10-15 meter deep water pumping applications at two field sites are presented, as well as preliminary results of an analysis of the steps involved in disseminating such technology. Our research suggests that the combination of reliability and performance offered by the Savonius design make it a useful resource for community managed energy initiatives, particularly in developing nation settings.

  6. Designing and remotely testing mobile diabetes video games.

    PubMed

    DeShazo, Jonathan; Harris, Lynne; Turner, Anne; Pratt, Wanda

    2010-01-01

    We have investigated game design and usability for three mobile phone video games designed to deliver diabetes education. The games were refined using focus groups. Six people with diabetes participated in the first focus group and five in the second. Following the focus groups, we incorporated the new findings into the game design, and then conducted a field test to evaluate the games in the context in which they would actually be used. Data were collected remotely about game usage by eight people with diabetes. The testers averaged 45 seconds per question and answered an average of 50 total nutrition questions each. They self-reported playing the game for 10-30 min, which coincided with the measured metrics of the game. Mobile games may represent a promising new way to engage the user and deliver relevant educational content.

  7. Hypersonic wing test structure design, analysis, and fabrication

    NASA Technical Reports Server (NTRS)

    Plank, P. P.; Penning, F. A.

    1973-01-01

    An investigation to provide the analyses, data, and hardware required to experimentally validate the beaded panel concept and demonstrate its usefulness as a basis for design of a Hypersonic Research Airplane (HRA) wing is reported. Combinations of the beaded panel structure, heat shields, channel caps and corrugated webs for ribs and spars were analyzed for the wing of a specified HRA to operate at Mach 8 with a lifespan of 150 flights. Detailed analyses were conducted in accordance with established design criteria and included aerodynamic heating and load predictions, transient structural thermal calculations, extensive NASTRAN computer modeling, and structural optimization. Optimum beaded panel tests at 922 K (1200 F) were performed to verify panel performance. Close agreement of predicted and actual critical loads permitted use of design procedures and equations for the beaded panel concept without modification.

  8. Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Chen, Yangxin; Lu, Dizhou; Liu, Yuejia; Agogino, Adrian K.; SunSpiral, Vytas; Agogino, Alice M.

    2014-01-01

    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system.

  9. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.

  10. Aerothermal Protuberance Heating Design and Test Configurations for Ascent Vehicle Design

    NASA Technical Reports Server (NTRS)

    Martin, Charles E.; Neumann, Richard D.; Freeman, Delma

    2010-01-01

    A series of tests were conducted to evaluate protuberance heating for the purposes of vehicle design and modification. These tests represent a state of the art approach to both testing and instrumentation for defining aerothermal protuberance effects on the protuberance and surrounding areas. The testing was performed with a number of wind tunnel entries beginning with the proof of concept "pathfinder" test in the Test Section 1 (TS1) tunnel in the Langley Unitary Plan Wind Tunnel (UPWT). The TS1 section (see Figures 1a and 1b) is a lower Mach number tunnel and the Test Section 2 (TS2) has overlapping and higher Mach number capability as showin in Figure 1c. The pathfinder concept was proven and testing proceeded for a series of protuberance tests using an existing splitter aluminum protuberance mounting plate, Macor protuberances, thin film gages, total temperature and pressure gages, Kulite pressure transducers, Infra-Red camera imaging, LASER velocimetry evaluations and the UPWT data collection system. A boundary layer rake was used to identify the boundary layer profile at the protuberance locations for testing and helped protuberance design. This paper discusses the techniques and instrumentation used during the protuberance heating tests performed in the UPWT in TS1 and TS2. Runs of the protuberances were made Mach numbers of 1.5, 2.16, 2.65, and 3.51. The data set generated from this testing is for ascent protuberance effects and is termed Protuberance Heating Ascent Data (PHAD) and this testing may be termed PHAD-1 to distinguish it from future testing of this type.

  11. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    SciTech Connect

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).

  12. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  13. Acceptance testing for PACS: from methodology to design to implementation

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Huang, H. K.

    2004-04-01

    Acceptance Testing (AT) is a crucial step in the implementation process of a PACS within a clinical environment. AT determines whether the PACS is ready for clinical use and marks the official sign off of the PACS product. Most PACS vendors have Acceptance Testing (AT) plans, however, these plans do not provide a complete and robust evaluation of the full system. In addition, different sites will have different special requirements that vendor AT plans do not cover. The purpose of this paper is to introduce a protocol for AT design and present case studies of AT performed on clinical PACS. A methodology is presented that includes identifying testing components within PACS, quality assurance for both functionality and performance, and technical testing focusing on key single points-of-failure within the PACS product. Tools and resources that provide assistance in performing AT are discussed. In addition, implementation of the AT within the clinical environment and the overall implementation timeline of the PACS process are presented. Finally, case studies of actual AT of clinical PACS performed in the healthcare environment will be reviewed. The methodology for designing and implementing a robust AT plan for PACS was documented and has been used in PACS acceptance tests in several sites. This methodology can be applied to any PACS and can be used as a validation for the PACS product being acquired by radiology departments and hospitals. A methodology for AT design and implementation was presented that can be applied to future PACS installations. A robust AT plan for a PACS installation can increase both the utilization and satisfaction of a successful implementation of a PACS product that benefits both vendor and customer.

  14. General-Purpose Heat Source development: safety test program. Postimpact evaluation, Design Iteration Test 2

    SciTech Connect

    Schonfeld, F.W.; George, T.G.

    1984-06-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of /sup 238/PuO/sub 2/ decay to thermoelectric elements. Because of the inevitable return of certain missions, the heat source must be Designed and constructed to survive both re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing test program. In the first Design Iteration Test (DIT-1), a full GPHS module ontaining four iridium-alloy capsules loaded with /sup 238/PuO/sub 2/ was impacted at 57 m/s and 930/sup 0/C. All four capsules survived and none was breached. The capsules used in DIT-1 were loaded and welded at Los Alamos. The second Design Iteration Test (DIT-2) also used a full GPHS module and was impacted at 58 m/s and 930/sup 0/C. The four iridium-alloy capsules used in this test were loaded and welded at the Savannah River Plant (SRP). Postimpact examination revealed that two capsules had survived and two capsules had breached; a small quantity (approx. = 50 ..mu..g) of /sup 238/PuO/sub 2/ was released from the breached capsules. Internal cracking similar to that observed in the DIT-1 capsules was evident in all four of the DIT-2 capsules. Postimpact analyses of the units are described with emphasis on weld structure and performance.

  15. Variability in Flexion Extension Radiographs of the Lumbar Spine: A Comparison of Uncontrolled and Controlled Bending

    PubMed Central

    Cheng, Boyle; Castellvi, Anthony E.; Davis, Reginald J.; Lee, David C.; Lorio, Morgan P.; Prostko, Richard E.

    2016-01-01

    Background While low back pain is one of the most prevalent, if not the most prevalent reasons for visits to physicians, a majority of patients with low back pain cannot be given a definitive diagnosis. While there have been substantial advances in imaging technologies over the past 30 years, relatively little has changed in the methodologies for evaluating functionality of the lumbar spine. The current standard of care for function assessment of the lumbar spine focuses on uncontrolled patient directed motion which results in increased inter-patient variability. Recent advancements in functional lumbar spine testing utilize controlled bending and computerized imaging evaluation. Purpose To compare the measurement variability of lumbar spine motion when diagnosed using measurements of intervertebral motion taken from standard bending flexion/extension radiographs (FE) between uncontrolled and controlled motion. Study Design One-hundred nine patients (57 asymptomatic, 52 symptomatic) were consented in the prospective investigation. The research was designed to compare studies involving FE to controlled motion bending radiographs using the Vertebral Motion Analysis (VMA), (Ortho Kinematics, Inc) within the same patient. Each patient agreed to undergo fluoroscopic still imaging to capture FE data and to undergo cine fluoroscopic imaging to capture VMA data. Outcome Measures Measurement variability was determined by the mean and standard deviation of intervertebral rotation when evaluated by 5 independent observers evaluating each of the 109 patients FE and VMA. The resulting standard deviation of the intervertebral rotation determinations was used as the measure of variability. Methods The VMA measurements for assessing intervertebral motion were characterized by the use of: (1) a handling device that assists patients through a standard arc of lumbar bending in both an upright and recumbent posture (70 degree flexion/extension arcs; 60 degree left/right bending arcs

  16. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    SciTech Connect

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  17. Freezable Radiator Coupon Testing and Full Scale Radiator Design

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean T.; Guinn, John; Cognata, Thomas; Navarro, Moses

    2009-01-01

    Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes tests on three test articles that were performed to further empirically quantify the behavior of a simple freezable radiator, and the culmination of those tests into a full scale design. Each test article explored the bounds of freezing and recovery behavior, as well as providing thermo-physical data of the working fluid, a 50-50 mixture of DowFrost HD and water. These results were then used as a tool for developing correlated thermal model in Thermal Desktop which could be used for modeling the behavior of a full scale thermal control system for a lunar mission. The final design of a thermal control system for a lunar mission is also documented in this paper.

  18. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect

    C. A. Wemple

    2005-09-01

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  19. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  20. Vision loss with bending over.

    PubMed

    Lee, Michele D; Odel, Jeffrey G; Rudich, Danielle S; Ritch, Robert; Moster, Mark L

    2015-01-01

    A 66-year-old African American man presented with episodic transient visual loss triggered by bending forward. The initial examination did not suggest intraocular pathology and the patient was nearly sent for vascular evaluation given his cardiovascular risk factors. Fundus photographs taken during an episode of visual loss suggested an intraocular process, however. Gonioscopy revealed a microhyphema causing a "snow globe" effect in the anterior chamber, most likely related to recent bleb manipulation in the affected eye.

  1. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  2. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  3. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2011-01-01

    The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. The GPM core satellite carries an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. The avionics module on the core satellite contains a number of electronics boxes which are cooled by a network of aluminum/ammonia heat pipes and a honeycomb radiator which contains thirteen embedded aluminum/ammonia heat pipes. All heat pipes were individually tested by the vendor (Advanced Cooling Technologies, Inc.) prior to delivery. Following delivery to NASA, the flight avionics radiator and the flight spare transport heat pipes were mounted to flight-like test structure and a system level thermal vacuum test was performed. This test, which used simulators in place of all electronics boxes, was done to verify the operation of the thermal control system as a whole. This presentation will discuss the design of the avionics module heat pipes, and then discuss performance tests results for the individual heat pipes prior to delivery and for the system level thermal vacuum test. All heat pipes met their performance requirements. However, it was found that the power was too low in some instances to start all of the smaller radiator spreader heat pipes when they were tested in a reflux configuration (which is the nominal test configuration). Although this lowered the efficiency of the radiator somewhat, it did not impact the operating

  4. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  5. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    SciTech Connect

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  6. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  7. Design, Development and Testing of the GMI Reflector Deployment Assembly

    NASA Technical Reports Server (NTRS)

    Guy, Larry; Foster, Mike; McEachen, Mike; Pellicciotti, Joseph; Kubitschek, Michael

    2011-01-01

    The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met.

  8. Real-time infrared test set: system design and development

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Martin, Diehl H.; Chung, Ronald; Geist, Jon C.; Burrell, Jack O.; Slemp, Jim L.; Umstead, Jeffrey R.; Mann, Allen; Marlin, H. Ronald; Bates, Richard L.; Sweet, Miles H.; Williams, Donald N.; Carlson, Rowena M.; Gaitan, Michael; Marshall, Janet C.; Mulford, Charles D.; Zakar, Eugene S.; Zeto, Robert J.; Olson, Russ; Perkins, Gordon C.

    1997-07-01

    During the past several years, the technology for designing and fabricating thermal pixel arrays (TPAs) using silicon micromachined CMOS devices has been developed adequately to support the development of a real-time infrared test set (RTIR) for sensors and seekers. The TPA is a custom application-specific integrated circuit device that is fabricated using a low-cost commercial CMOS process. The system architecture and development of the initial RTIR Test Set is described. The RTIR is a compact, self-contained test instrument that is intended for test and evaluation of infrared systems in the field. In addition to the TPA, the RTIR contains projection optics and electronics which drive the TPA, provide TPA nonuniformity compensation, data translation, data transformation, and user interface. The RTIR can display internal test patterns (static and dynamic), external digital video data, and NTSC video. The initial RTIR unit incorporates a 64 X 64 TPA to provide flickerless infrared scenes at 30 frames per second. Additional TPAs are under development with formats of 128 X 128, 256 X 256, and 512 X 512 pixels.

  9. Ares I Stage Separation System Design Certification Testing

    NASA Technical Reports Server (NTRS)

    Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan

    2009-01-01

    NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.

  10. TRL - A FORMAL TEST REPRESENTATION LANGUAGE AND TOOL FOR FUNCTIONAL TEST DESIGNS

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1994-01-01

    A Formal Test Representation Language and Tool for Functional Test Designs (TRL) is an automatic tool and a formal language that is used to implement the Category-Partition Method and produce the specification of test cases in the testing phase of software development. The Category-Partition Method is particularly useful in defining the inputs, outputs and purpose of the test design phase and combines the benefits of choosing normal cases with error exposing properties. Traceability can be maintained quite easily by creating a test design for each objective in the test plan. The effort to transform the test cases into procedures is simplified by using an automatic tool to create the cases based on the test design. The method allows the rapid elimination of undesired test cases from consideration, and easy review of test designs by peer groups. The first step in the category-partition method is functional decomposition, in which the specification and/or requirements are decomposed into functional units that can be tested independently. A secondary purpose of this step is to identify the parameters that affect the behavior of the system for each functional unit. The second step, category analysis, carries the work done in the previous step further by determining the properties or sub-properties of the parameters that would make the system behave in different ways. The designer should analyze the requirements to determine the features or categories of each parameter and how the system may behave if the category were to vary its value. If the parameter undergoing refinement is a data-item, then categories of this data-item may be any of its attributes, such as type, size, value, units, frequency of change, or source. After all the categories for the parameters of the functional unit have been determined, the next step is to partition each category's range space into mutually exclusive values that the category can assume. In choosing partition values, all possible kinds

  11. Aluminum Stabilized NbTi Conductor Test Coil Design, Fabrication, and Test Results

    SciTech Connect

    Andreev, N.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Lamm, M.; Makarov, A.; Tartaglia, M.; Nakamoto, T.; Ogitsu, T.; Tanaka, K.; Yamamoto, A.; /KEK, Tsukuba

    2011-09-01

    A new generation of precision muon conversion experiments is planned at both Fermilab and KEK. These experiments will depend upon a complex set of solenoid magnets for the production, momentum selection and transport of a muon beam to a stopping target, and for tracking detector momentum analysis of candidate conversion electrons from the target. Baseline designs for the production and detector solenoids use NbTi cable that is heavily stabilized by an extruded high RRR aluminum jacket. A U.S.-Japan research collaboration has begun whose goal is to advance the development of optimized Al-NbTi conductors, gain experience with the technology of winding coils from this material, and test the conductor performance as modest length samples become available. For this purpose, a 'conductor test' solenoid with three coils was designed and built at Fermilab. A sample of the RIKEN Al-NbTi conductor from KEK was wound into a 'test' coil; this was sandwiched between two 'field' coils wound from doubled SSC cable, to increase the peak field on the RIKEN test coil. All three solenoid coils were epoxy impregnated, and utilized aluminum outer bandage rings to apply preload to the coils when cold. The design and fabrication details, and results of the magnet quench performance tests are presented and discussed.

  12. Experimental Design for the INL Sample Collection Operational Test

    SciTech Connect

    Amidan, Brett G.; Piepel, Gregory F.; Matzke, Brett D.; Filliben, James J.; Jones, Barbara

    2007-12-13

    This document describes the test events and numbers of samples comprising the experimental design that was developed for the contamination, decontamination, and sampling of a building at the Idaho National Laboratory (INL). This study is referred to as the INL Sample Collection Operational Test. Specific objectives were developed to guide the construction of the experimental design. The main objective is to assess the relative abilities of judgmental and probabilistic sampling strategies to detect contamination in individual rooms or on a whole floor of the INL building. A second objective is to assess the use of probabilistic and Bayesian (judgmental + probabilistic) sampling strategies to make clearance statements of the form “X% confidence that at least Y% of a room (or floor of the building) is not contaminated. The experimental design described in this report includes five test events. The test events (i) vary the floor of the building on which the contaminant will be released, (ii) provide for varying or adjusting the concentration of contaminant released to obtain the ideal concentration gradient across a floor of the building, and (iii) investigate overt as well as covert release of contaminants. The ideal contaminant gradient would have high concentrations of contaminant in rooms near the release point, with concentrations decreasing to zero in rooms at the opposite end of the building floor. For each of the five test events, the specified floor of the INL building will be contaminated with BG, a stand-in for Bacillus anthracis. The BG contaminant will be disseminated from a point-release device located in the room specified in the experimental design for each test event. Then judgmental and probabilistic samples will be collected according to the pre-specified sampling plan. Judgmental samples will be selected based on professional judgment and prior information. Probabilistic samples will be selected in sufficient numbers to provide desired confidence

  13. Design and Field Test of a Galvanometer Deflected Streak Camera

    SciTech Connect

    Lai, C C; Goosman, D R; Wade, J T; Avara, R

    2002-11-08

    We have developed a compact fieldable optically-deflected streak camera first reported in the 20th HSPP Congress. Using a triggerable galvanometer that scans the optical signal, the imaging and streaking function is an all-optical process without incurring any photon-electron-photon conversion or photoelectronic deflection. As such, the achievable imaging quality is limited mainly only by optical design, rather than by multiple conversions of signal carrier and high voltage electron-optics effect. All core elements of the camera are packaged into a 12 inch x 24 inch footprint box, a size similar to that of a conventional electronic streak camera. At LLNL's Site-300 Test Site, we have conducted a Fabry-Perot interferometer measurement of fast object velocity using this all-optical camera side-by-side with an intensified electronic streak camera. These two cameras are configured as two independent instruments for recording synchronously each branch of the 50/50 splits from one incoming signal. Given the same signal characteristics, the test result has undisputedly demonstrated superior imaging performance for the all-optical streak camera. It produces higher signal sensitivity, wider linear dynamic range, better spatial contrast, finer temporal resolution, and larger data capacity as compared with that of the electronic counterpart. The camera had also demonstrated its structural robustness and functional consistence to be well compatible with field environment. This paper presents the camera design and the test results in both pictorial records and post-process graphic summaries.

  14. Design and Preliminary Testing Plan of Electronegative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.

  15. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.; Armitage, Pamela Kay

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  16. Assured crew return vehicle post landing configuration design and test

    NASA Astrophysics Data System (ADS)

    Anderson, Loren A.; Armitage, Pamela Kay

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  17. On CD-AFM bias related to probe bending

    NASA Astrophysics Data System (ADS)

    Ukraintsev, V. A.; Orji, N. G.; Vorburger, T. V.; Dixson, R. G.; Fu, J.; Silver, R. M.

    2012-03-01

    Critical Dimension AFM (CD-AFM) is a widely used reference metrology. To characterize modern semiconductor devices, very small and flexible probes, often 15 nm to 20 nm in diameter, are now frequently used. Several recent publications have reported on uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements [1,2]. Results obtained in this work suggest that probe bending can be on the order of several nanometers and thus potentially can explain much of the observed CD-AFM probe-to-probe bias variation. We have developed and experimentally tested one-dimensional (1D) and two-dimensional (2D) models to describe the bending of cylindrical probes. An earlier 1D bending model reported by Watanabe et al. [3] was refined. Contributions from several new phenomena were considered, including: probe misalignment, diameter variation near the carbon nanotube tip (CNT) apex, probe bending before snapping, distributed van der Waals-London force, etc. The methodology for extraction of the Hamaker probe-surface interaction energy from experimental probe bending data was developed. To overcome limitations of the 1D model, a new 2D distributed force (DF) model was developed. Comparison of the new model with the 1D single point force (SPF) model revealed about 27 % difference in probe bending bias between the two. A simple linear relation between biases predicted by the 1D SPF and 2D DF models was found. This finding simplifies use of the advanced 2D DF model of probe bending in various CD-AFM applications. New 2D and three-dimensional (3D) CDAFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  18. Design, fabrication and testing of tunable RF meta-atoms

    NASA Astrophysics Data System (ADS)

    Langley, Derrick

    Metamaterials are engineered structures designed to alter the propagation of electromagnetic waves incident upon the structure. The focus of this research was the effect of metamaterials on electromagnetic signals at radio frequencies. RF meta-atoms were investigated to further develop the theory, modeling, design and fabrication of metamaterials. Comparing the analytic modeling and experimental testing, the results provide a deeper understanding into metamaterials which could lead to applications for beam steering, invisibility cloaking, negative refraction, super lenses, and hyper lenses. RF meta-atoms integrated with microelectromechanical systems produce tunable meta-atoms in the 10 -- 15 GHz and 1 -- 4 GHz frequency ranges. RF meta-atoms with structural design changes are developed to show how inductance changes based on structural modifications. RF meta-atoms integrated with gain medium are investigated showing that loss due to material characteristics can be compensated using active elements such as a Low Noise Amplifier. Integrating the amplifier into the split ring resonator causes a deeper null at the resonant frequency. The research results show that the resonant frequency can be tuned using microelectromechanical systems, or by induction with structural designs and reduce loss associated with the material conductivity by compensating with an active gain medium. Proposals that offer future research activities are discussed for inductance and active element meta-atoms. In addition, terahertz (THz), infrared (IR), and optical structures are briefly investigated.

  19. Helicopter vibration isolation: Design approach and test results

    NASA Astrophysics Data System (ADS)

    Lee, C.-M.; Goverdovskiy, V. N.; Sotenko, A. V.

    2016-03-01

    This paper presents a strategy based on the approach of designing and inserting into helicopter vibration isolation systems mountable mechanisms with springs of adjustable sign-changing stiffness for system stiffness control. A procedure to extend the effective area of stiffness control is presented; a set of parameters for sensitivity analysis and practical mechanism design is formulated. The validity and flexibility of the approach are illustrated by application to crewmen seat suspensions and vibration isolators for equipment protection containers. The strategy provides minimization of vibrations, especially in the infra-low frequency range which is the most important for crewmen efficiency and safety of the equipment. This also would prevent performance degradation of some operating systems. The effectiveness is demonstrated through measured data obtained from development and parallel flight tests of new and operating systems.

  20. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  1. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  2. Design, Development, Testing, and Evaluation: Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia

    2006-01-01

    While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.

  3. Design and testing of integrated circuits for reactor protection channels

    SciTech Connect

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-06-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built.

  4. Design and testing of a 0. 60 caliber, augmented railgun

    SciTech Connect

    Fuller, R.L.; Kitzmiller, J.R.; Ingram, M.W. . Center for Electromechanics)

    1991-01-01

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT) is currently in the manufacturing phase of a 29-month program to build and test a laboratory based small caliber electromagnetic (EM) launcher and compulsator power supply. The goal of the EM launcher is to deliver a three shot projectile salvo at 10 Hz. The muzzle energy of each 32-g projectile is 64 kJ, which yields an exit velocity of 2,000 m/s. A full-scale, 0.60 caliber, 1.6 m prototype railgun has been built and is currently being tested at CEM-UT. This augmented railgun incorporates a low mass, high inductance gradient (1.25 {mu}H/m) design. High strength stainless-steel laminations support the primary and augmenting rail package in a compact and inherently stiff design. Rail erosion is minimized by the use of molybdenum for the primary rails. Copper is used for the end turns and augmenting conductors to ensure reliable bolted connections and to reduce the overall gun resistance. The laminations are insulated using epoxy adhesive and held in compression using an overwrapped composite preload tube. The entire gun weighs less than 100 kg and will be mounted to a recoil mechanism when fired from the compulsator power supply. This paper presents the design for the 0.60 caliber augmented, laminated, solid-armature railgun. Included is the discussion of the magnetic pressure distribution and heating on the molybdenum and copper conductors, and gun stiffness as predicted by finite-element analysis. The inductance gradient is calculated and correlated to experimental results. The materials selection, fabrication details, and insulation methods are also discussed. Finally, gun performance is presented through experimental data collected from testing solid armature projectiles.

  5. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  6. XV-15 flight test results compared with design goals

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.; Magee, J. P.

    1979-01-01

    Aircraft No. 2 is presently in the midst of flight envelope expansion. Noise and safety design goals have been demonstrated; preliminary results indicate that performance and component life goals may also be met. Hovering power indicates a standard hover ceiling of 7,000 feet. After 18.0 hours of flight, a true airspeed of 207 knots has been reached. The goal is a 300-knot cruise speed. So far, XV-15 flight tests indicate no reason why the tilt rotor concept should not fulfill its promise to provide a major step forward in air vehicle flexibility and in rotary wing performance.

  7. Design and testing of high-pressure railguns and projectiles

    NASA Technical Reports Server (NTRS)

    Peterson, D. R.; Fowler, C. M.; Cummings, C. E.; Kerrisk, J. F.; Parker, J. V.; Marsh, S. P.; Adams, D. F.

    1984-01-01

    Attention is given to the results of high-pressure tests involving four railgun designs and four projectile types. Explosive magnetic-flux compression generators were employed to power the railguns. On the basis of the experimental data, it appears that the high-strength projectiles have lower resistance to acceleration than low-strength projectiles, which expand against the bore during acceleration. While confined in the bore, polycarbonate projectiles can be subjected to pressures as high as 1.3 GPa without shattering. In multishot railguns, it is important to prevent an accumulation of sooty material from the plasma armature in railgun seams.

  8. Design and test of porous-tungsten mercury vaporizers

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. The results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.

  9. Design and test of porous-tungsten mercury vaporizers.

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1972-01-01

    Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. This paper presents the results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.

  10. Vanguard/PLACE experiment system design and test plan

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.

    1973-01-01

    A system design and test plan are described for operational evaluation of the NASA-Goddard position location and aircraft communications equipment (PLACE), at C band (4/6GHz), using NASA's ship, the USNS Vanguard, and the ATS 3 and ATS 5 synchronous satellites. The Sea Test phase, extending from March 29, 1973 to April 15, 1973 was successfully completed; the principal objectives of the experiment were achieved. Typical PLACE-computed, position-location data is shown for the Vanguard. Position location and voice-quality measurements were excellent; ship position was determined within 2 nmi; high-quality, 2-way voice transmissions resulted as determined from audience participation, intelligibility and articulation-index analysis. A C band/L band satellite trilateration experiment is discussed.

  11. The DT-19 container: Design, impact testing and analysis

    SciTech Connect

    Aramayo, G.A.; Goins, M.L.

    1996-07-01

    Containers used by the Department of Energy (DOE) for the transport of radioactive material components, including components and special assemblies, are required to meet certain impact and thermal requirements that are demonstrated by performance or compliance testing, analytical procedures or a combination of both. The Code of Federal Regulations (CFR) Part 49, Section 173.7(d) stipulates that, `Packages (containers) made by or under direction of the U.S. DOE may be used for the transportation of radioactive materials when evaluated, approved, and certified by the DOE against packaging standards equivalent to those specified in 10 CFR Part 71.` This paper describes the details of the design, analysis and testing efforts undertaken to improve the overall structural and thermal integrity of the DC-19 shipping container.

  12. The DT-19 container design, impact testing and analysis

    SciTech Connect

    Aramayo, G.A.; Goins, M.L.

    1995-12-01

    Containers used by the Department of Energy (DOE) for the transport of radioactive material components, including components and special assemblies, are required to meet certain impact and thermal requirements that are demonstrated by performance or compliance testing, analytical procedures or a combination of both. The Code of Federal Regulations (CFR) Part 49, Section 173.7(d) stipulates that, {prime}Packages (containers) made by or under direction of the US DOE may be used for the transportation of radioactive materials when evaluated, approved, and certified by the DOE against packaging standards equivalent to those specified in 10 CFR Part 71. This paper describes the details of the design, analysis and testing efforts undertaken to improve the overall structural and thermal integrity of the DC-19 shipping container.

  13. Design, test, and evaluation of an electrostatically figured membrane mirror

    NASA Astrophysics Data System (ADS)

    Moore, James D., Jr.; Patrick, Brian; Gierow, Paul A.; Troy, Edward

    2004-02-01

    Significant advances have been achieved in manufacturing optical quality membrane materials with surface quality suitable for use as first surface mirrors. These materials have been used to fabricate test articles demonstrating diffraction limited performance in the laboratory environment. These mirrors are supported using heavy rigid fixtures and pressure forces to tension the membrane. A lighter weight system is required to transition the membrane mirror technology to space hardware applications. Using electrostatic forces to tension and figure the membrane is one promising approach to developing a flight weight membrane mirror system. This paper discusses the design and testing of an experimental membrane mirror system that was developed to evaluate the potential areal density, figure accuracy and stability of a lightweight electrostatically figured mirror manufactured from precision cast optical quality membrane material.

  14. Validation of the ITER CXRS design by tests on TEXTORa)

    NASA Astrophysics Data System (ADS)

    Jaspers, R. J. E.; von Hellermann, M. G.; Delabie, E.; Biel, W.; Marchuk, O.; Yao, L.

    2008-10-01

    The charge exchange recombination spectroscopy system (CXRS) for ITER is designed to measure the core helium concentration, and in addition, profiles of ion temperature and rotation. This highly demanding task, due to the huge background radiation (bremsstrahlung) and the high attenuation of the dedicated diagnostic neutral beam, requires high throughput spectrometers with high resolution. On TEXTOR, a CXRS system has been developed with the aim to test the physics implications of these specifications. (i) A relevant spectrometer has been tested. (ii) A method to determine the helium concentrations from the CXRS intensity, using the beam emission has been evaluated. A 20% discrepancy in beam emission was revealed. (iii) The determination of the magnetic pitch angle by the ratio of Balmer lines showed qualitatively the right behavior, although the accuracy was limited by the polarization sensitivity of the first mirror. (iv) The simulation code developed for the prediction of the CXRS spectra was quantitatively confronted with experimental data.

  15. Modal testing in the design evaluation of wind turbines

    SciTech Connect

    Lauffer, J.P.; Carne, T.G.; Ashwill, T.D.

    1987-01-01

    This paper reviews several techniques which have been used to successfully measure modal parameters for wind turbines. Due to problems in providing low frequency excitation (0.1 to 5.0 Hz), modal testing of moderate-size turbines can be difficult. Several techniques of low frequency excitation have been explored, including impact, wind, step-relaxation, and human input. As one application of these techniques, a prototype turbine was tested and two modal frequencies were found to be very close to integral multiples of the operating speed, which caused a resonant condition. The design was modified to shift these frequencies, and the turbine was retested to confirm the expected changes in the modal frequencies. 8 refs., 16 figs., 1 tab.

  16. Core design studies for advanced burner test reactor.

    SciTech Connect

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating

  17. Aeronautical satellite data link concept, design, and flight test results

    NASA Astrophysics Data System (ADS)

    Anderson, Samuel S.; Hogle, Lawrence H.; Breitwisch, Ronald; Edwards, C. P.; Hamilton, Robert J.; Lipke, David W.

    The MITRE Corporation has conducted a three-year study of aeronautical satellite communications that culminated in a set of flight tests over the North Atlantic during August of 1985. The flight tests required the cooperation of four organizations in addition to MITRE: The Communications Satellite Corporation (COMSAT), Rockwell International, Ball Aerospace and Avantek. A test aircraft, equipped with a specially designed satellite data link terminal and antenna configuration, was flown from Cedar Rapids, Iowa across the North Atlantic to Iceland, and north of Iceland to 75° latitude. The purpose of the flight tests was to measure the performance of a full duplex aeronautical satellite data link (ASDL) using the International Maritime Satellite Organization's (INMARSAT's) spacecraft and earth station at Southbury, Connecticut, and to demonstrate potential applications. The data link operates at 200 bits-per-second (bps), uses forward error correction (FEC) coding, and employs a terminal monitor that provides interfaces to on-board avionics, data recording equipment, and an industry-standard personal computer (PC). The PC serves as a user terminal as well as a real-time monitor of bit-error-rate (BER) performance. In addition to channel propagation and BER experiments, demonstrations of potential applications of an oceanic ASDL system were conducted. A standard commercial airline data link management unit (MU) was used to communicate data over the ASDL using standard protocols. The interface to the MU allowed access to data from two distinct navigation systems: an inertial navigation system (INS) and a Global Positioning System (GPS) receiver. Aircraft position data was transmitted from the aircraft to the earth station on an automatic basis to simulate automatic dependent surveillance (ADS) of oceanic air space. This paper is divided into three sections: 1) A discussion of background issues, such as the motivation for the reported research and development, and

  18. Experiment design for through-focus testing of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Millán, María. S.; Alba-Bueno, Francisco; Vega, Fidel

    2013-11-01

    Eye models to test intraocular lenses (IOLs) in an optical bench are commonly designed in agreement with the ISO 11979-2 and 11979-9 standard requirements. However, modifications to the ISO eye model have been proposed to test IOLs in conditions closer to real human eye. Wavefront analysis and aberration characterization, wavelength dependence, efficiency, off-axis performance and imaging degradation under certain amount of misalignment can thus be measured in vitro. The main parts of the system to test IOLs are: the illumination system and object test, the eye model including the IOL immersed in a wet cell and a microscope assembled to a sensor that magnifies and captures the aerial image of the object formed by the eye model. A problem concerning the simultaneous variation of defocus and magnification arises when using the microscope to capture out-of-focus images in a through-focus study. Using the eye model, we study the problem of implementing a through-focus measurement of the imaging quality of an IOL. We find a solution based on geometrical optics and compare it with other proposals reported in the literature. The effects on the measurement of the Modulation Transfer Function and the Point Spread Function are predicted. Experimental results are obtained and discussed.

  19. TFE sheath insulator in-reactor test design

    NASA Astrophysics Data System (ADS)

    Miskolczy, Gabor; Lee, Celia; Lieb, David

    A description is given of the Instrumental Fast-Reactor Accelerated Component-Sheath Insulator (IFAC-SI) test, which allows a set of selected sheath insulators to be tested in a fast reactor environment while monitoring temperature, voltage, and current for the life of the experiment. Two buffered heat pipes control the temperature of the sheath insulators. Gamma heating provides the input power to the heat pipes, and heat is rejected via radiation to the outer container and a copper conduction fin at the condenser area of each heat pipe. Computer thermal models of the IFAC-SI experiment were developed to investigate the effect of heat input variation, and to determine the effectiveness of the copper fin. These preliminary laboratory tests of the heat pipe and of the heat rejection system were designed for comparison to thermal model results. The results of the low power fin tests are presented. Preliminary experiment results show that the heat rejection is below that predicted by the computer model.

  20. Design and Fabrication of a Stirling Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Schreiber, Jeffrey G.

    2004-01-01

    A Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA space science missions. The development effort is being conducted by Lockheed Martin under contract to the Department of Energy (DOE). The Stirling Technology Company supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to the currently used alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been conceived at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG, however the requirement for low mass was not considered. This test will demonstrate the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The analysis, design, and fabrication of the test article will be described in this paper.