Sample records for beneath ice sheets

  1. Bacteria beneath the West Antarctic ice sheet.

    PubMed

    Lanoil, Brian; Skidmore, Mark; Priscu, John C; Han, Sukkyun; Foo, Wilson; Vogel, Stefan W; Tulaczyk, Slawek; Engelhardt, Hermann

    2009-03-01

    Subglacial environments, particularly those that lie beneath polar ice sheets, are beginning to be recognized as an important part of Earth's biosphere. However, except for indirect indications of microbial assemblages in subglacial Lake Vostok, Antarctica, no sub-ice sheet environments have been shown to support microbial ecosystems. Here we report 16S rRNA gene and isolate diversity in sediments collected from beneath the Kamb Ice Stream, West Antarctic Ice Sheet and stored for 15 months at 4 degrees C. This is the first report of microbes in samples from the sediment environment beneath the Antarctic Ice Sheet. The cells were abundant ( approximately 10(7) cells g(-1)) but displayed low diversity (only five phylotypes), likely as a result of enrichment during storage. Isolates were cold tolerant and the 16S rRNA gene diversity was a simplified version of that found in subglacial alpine and Arctic sediments and water. Although in situ cell abundance and the extent of wet sediments beneath the Antarctic ice sheet can only be roughly extrapolated on the basis of this sample, it is clear that the subglacial ecosystem contains a significant and previously unrecognized pool of microbial cells and associated organic carbon that could potentially have significant implications for global geochemical processes.

  2. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.

    2013-11-01

    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.

  3. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the Northeast Ice Stream. The contrasting rheology of glacial and interglacial ice may also enhance the deformation associated with freeze-on beneath large ice sheets. The occurrence of basal units both in the ice sheet interior and in the thermally very different ablation zone indicates refreezing is widespread and can occur in many environments beneath an ice sheet. This process appears to influence the morphology and behavior of the ice sheet from top to bottom.

  4. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  5. A microbial ecosystem beneath the West Antarctic ice sheet.

    PubMed

    Christner, Brent C; Priscu, John C; Achberger, Amanda M; Barbante, Carlo; Carter, Sasha P; Christianson, Knut; Michaud, Alexander B; Mikucki, Jill A; Mitchell, Andrew C; Skidmore, Mark L; Vick-Majors, Trista J

    2014-08-21

    Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes that can mobilize elements from the lithosphere and influence Southern Ocean geochemical and biological systems.

  6. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Achberger, Amanda M.; Christner, Brent C.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Priscu, John C.

    2017-08-01

    Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. We show that sub-ice-sheet methane is produced through the biological reduction of CO2 using H2. This methane pool is subsequently consumed by aerobic, bacterial methane oxidation at the SLW sediment-water interface. Bacterial oxidation consumes >99% of the methane and represents a significant methane sink, and source of biomass carbon and metabolic energy to the surficial SLW sediments. We conclude that aerobic methanotrophy may mitigate the release of methane to the atmosphere upon subglacial water drainage to ice sheet margins and during periods of deglaciation.

  7. NASA finds Shrimp Under Antarctic Ice [Video

    NASA Image and Video Library

    2017-12-08

    At a depth of 600 feet beneath the West Antarctic ice sheet, a small shrimp-like creature managed to brighten up an otherwise gray polar day in late November 2009. This critter is a three-inch long Lyssianasid amphipod found beneath the Ross Ice Shelf, about 12.5 miles away from open water. NASA scientists were using a borehole camera to look back up towards the ice surface when they spotted this pinkish-orange creature swimming beneath the ice. Credit: NASA

  8. Deformation, warming and softening of Greenland’s ice by refreezing meltwater

    NASA Astrophysics Data System (ADS)

    Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.

    2014-07-01

    Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.

  9. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  10. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  11. The geomorphic signature of past ice sheets in the marine record

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.

    2016-12-01

    The deglaciation of high-latitude continental shelves since the Last Glacial Maximum has revealed suites of subglacial and ice-contact landforms that have remained well-preserved beneath tens to hundreds of metres of water. Once ice has retreated, sedimentation is generally low on polar shelves during interglacials and the submarine landforms have not, therefore, been buried by subsequent sedimentation. By contrast, the beds of modern ice sheets are hidden by several thousand metres of ice, which is much more difficult than water to penetrate using geophysical methods. These submarine glacial landforms provide insights into past ice-sheet form and flow, and information on the processes that have taken place beneath former ice sheets. Examples will be shown of streamlined subglacial landforms that indicate the distribution and dimensions of former ice streams on high-latitde continental margins. Distinctive landform assemblages characterise ice stream and inter-ice stream areas. Landforms, including subglacially formed channel systems in inner- and mid-shelf areas, and the lack of them on sedimentary outer shelves, allow inferences to be made about subglacial hydrology. The distribution of grounding-zone wedges and other transverse moraine ridges also provides evidence on the nature of ice-sheet retreat - whether by rapid collapse, episodic retreat or by the slow retreat of grounded ice. Such information can be used to test the predictive capability of ice-sheet numerical models. These marine geophysical and geological observations of submarine glacial landforms enhance our understanding of the form and flow of past ice masses at scales ranging from ice sheets (1000s of km in flow-line and margin length), through ice streams (100s of km long), to surge-type glaciers (10s of km long).

  12. Potential methane reservoirs beneath Antarctica.

    PubMed

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  13. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    NASA Astrophysics Data System (ADS)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent with the steady state deforming till model of Cuffey and Alley (1997). Therefore, we hypothesize that the erosional system beneath the WAIS, which has overridden a thick layer of erodible, Tertiary marine sediments (Studinger et al., in press), is 'transport limited' and that the horizontal gradients in ice velocity and till flux have the predominant control over spatial patterns of subglacial erosion and deposition rates. In contrast, past studies of erosional systems have concentrated on mountain glaciers that derive their debris through erosion of hard bedrock. In those cases, the erosional system may be 'production limited' because erosion rates scale with dissipation of gravitational energy, represented by the velocity-times-constant equation. Thus, this concept of a 'transport limited' system represents a deviation from past thinking regarding the dynamics of bed erosion, and may be unique to marine-based ice sheets. Using this concept as a base, we will construct more accurately parameterized models to better define the relationship between the dynamics of ice streams and the character of the sub glacial bed.

  14. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  15. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Key, K.

    2017-12-01

    Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here we study the feasibility of passive and active source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. Specifically, we look at the passive magnetotelluric method and active-source EM methods that use a large loop transmitter and receivers that measure either frequency-domain or transient soundings. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques such as ground-penetrating radar and active seismic techniques, EM data have the potential to provide new insights on the interaction between ice, rock, and water at critical ice-sheet boundaries.

  16. The geomorphic signature of present ice-sheet flow in the radar-sounded subglacial record: Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Davies, D.; King, E. C.; Vaughan, D. G.; Cornford, S. L.; Brisbourne, A.; Smith, A.; De Rydt, J.; Graham, A. G. C.; Spagnolo, M.

    2016-12-01

    Deglaciated landscapes and landforms are much used in the quest to reconstruct past ice-sheet behaviour, on the principle that aspects of landform shapes, sizes and relative associations "fossilise" palaeo-ice-sheet processes. Such techniques have been widely used around the margin of the marine West Antarctic Ice Sheet, taking advantage of bathymetric surveying techniques which have exposed a rich suite of landform assemblages across West Antarctica's continental shelf. Though these geomorphological interpretations are solidly grounded in glacial geological theory, there has, until now, been little ability to compare these deglaciated, and potentially postglacially-modified, landforms offshore with landforms currently situated (and potentially still evolving) beneath the contemporary ice sheet. This paper presents a widespread view of glacial landforms presently situated beneath 1-2 km of ice in multi-square-km "windows to the bed" distributed throughout the catchment of Pine Island Glacier, West Antarctica. Imaged over three field seasons between 2007 and 2013 by dedicated radar surveys designed specifically to capture landforms analogous to those surveyed offshore by bathymetric surveying, the results provide significant insights for the interpretation of palaeo-ice-stream landforms, and their use in modelling ice-ocean interactions around the fringes of marine ice sheets. We show that landform sizes, shapes and associations vary significantly around Pine Island Glacier's catchment. The key controls appear to be substrate composition, pre-existing tectonic structure, and longstanding spatial stability of the ice-stream's flow distribution. The findings offer crucial information for modelling ice coupling to the bed, which should feed through to wider efforts to reconstruct the past behaviour of this significant marine ice sheet using its palaeoglacial landforms.

  17. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  18. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf

    PubMed Central

    Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Kasten, Sabine; Smith, James A.; Nitsche, Frank O.; Frederichs, Thomas; Wiers, Steffen; Ehrmann, Werner; Klages, Johann P.; Mogollón, José M.

    2017-01-01

    Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments. PMID:28569750

  19. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet

    PubMed Central

    Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.; Quartini, Enrica

    2014-01-01

    Heterogeneous hydrologic, lithologic, and geologic basal boundary conditions can exert strong control on the evolution, stability, and sea level contribution of marine ice sheets. Geothermal flux is one of the most dynamically critical ice sheet boundary conditions but is extremely difficult to constrain at the scale required to understand and predict the behavior of rapidly changing glaciers. This lack of observational constraint on geothermal flux is particularly problematic for the glacier catchments of the West Antarctic Ice Sheet within the low topography of the West Antarctic Rift System where geothermal fluxes are expected to be high, heterogeneous, and possibly transient. We use airborne radar sounding data with a subglacial water routing model to estimate the distribution of basal melting and geothermal flux beneath Thwaites Glacier, West Antarctica. We show that the Thwaites Glacier catchment has a minimum average geothermal flux of ∼114 ± 10 mW/m2 with areas of high flux exceeding 200 mW/m2 consistent with hypothesized rift-associated magmatic migration and volcanism. These areas of highest geothermal flux include the westernmost tributary of Thwaites Glacier adjacent to the subaerial Mount Takahe volcano and the upper reaches of the central tributary near the West Antarctic Ice Sheet Divide ice core drilling site. PMID:24927578

  20. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.

  1. The diatom record from beneath the West Antarctic Ice Sheet and the global proxy perspective

    NASA Technical Reports Server (NTRS)

    Scherer, Reed P.

    1993-01-01

    Recent glaciological evaluation and modeling of the marine-based West Antarctic Ice Sheet (WAIS) support the possibility that the WAIS disintegrated during one or more Pleistocene interglacial period(s). The magnitude of sea level and oxygen isotope variation during certain late-Pleistocene interglacial periods is also consistent with the possibility of major retreat of the WAIS. Although oxygen isotopes from deep-sea sediments provide the best available proxy record for global ice volume (despite the ambiguities in the record), the source of ice volume changes must be hypothesized. Based on the intensity of interglacial isotopic shifts recorded in Southern Ocean marine sedimentary records, stage 11 (400,000 years ago) is the strongest candidate for WAIS collapse, but the records for stages 9, 7, and 5.5 are all consistent with the possibility of multiple late-Pleistocene collapses. Seismic reflection studies through the WAIS have revealed thick successions of strata with seismic characteristics comparable to upper Tertiary marine sediments. Small samples of glacial diamictons from beneath the ice sheet have been collected via hot-water drilled access holes. These sediments include mixed diatom assemblages of varying ages. Late-Miocene diatoms dominate many samples, probably reflecting marine deposition in West Antarctic basins prior to development of a dominantly glacial phase in West Antarctica. In addition to late-Miocene diatoms, samples from Upstream B (1988/89) contain rare post-Miocene diatoms, many of which imply deposition in the West Antarctic interior during one or more Pleistocene deglaciation periods. Age-diagnostic fossils in glacial sediments beneath ice sheets provide relatively coarse chronostratigraphic control, but they do contain direct evidence of regional deglaciation. Thus, sub-glacial till samples provide the evidence regarding the source of ice sheet variability seen in well-dated proxy records. Combined, these independent data sets can provide a more comprehensive and less speculative interpretation of the history of past glacial minima in currently glaciated polar regions.

  2. New aerogeophysical data reveal the extent of the Weddell Sea Rift beneath the Institute and Möller ice streams

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Siegert, M. J.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A. M.

    2011-12-01

    Significant continental rifting associated with Gondwana breakup has been widely recognised in the Weddell Sea region. However, plate reconstructions and the extent of this rift system onshore beneath the West Antarctic Ice Sheet (WAIS) are ambiguous, due to the paucity of modern geophysical data across the Institute and Möller ice stream catchments. Understanding this region is key to unravelling Gondwana breakup and the possible kinematic links between the Weddell Sea and the West Antarctic Rift System. The nature of the underlying tectonic structure is also critical, as it provides the template for ice-flow draining ~20% of the West Antarctic Ice Sheet (WAIS). During the 2010/11 Antarctic field season ~25,000 km of new airborne radar, aerogravity and aeromagnetic data were collected to help unveil the crustal structure and geological boundary conditions beneath the Institute and Möller ice streams. Our new potential field maps delineate varied subglacial geology beneath the glacial catchments, including Jurassic intrusive rocks, sedimentary basins, and Precambrian basement rocks of the Ellsworth Mountains. Inversion of airborne gravity data reveal significant crustal thinning directly beneath the faster flowing coastal parts of the Institute and Möller ice streams. We suggest that continental rifting focussed along the Weddell Sea margin of the Ellsworth-Whitmore Mountains block, providing geological controls for the fast flowing ice streams of the Weddell Sea Embayment. Further to the south we suggest that strike-slip motion between the East Antarctica and the Ellsworth-Whitmore Mountains block may provide a kinematic link between Cretaceous-Cenozoic extension in the West Antarctic Rift System and deformation in the Weddell Sea Embayment.

  3. A Synthesis of the Basal Thermal State of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.; hide

    2016-01-01

    Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.

  4. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    PubMed

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E

    2017-02-01

    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  5. Sea-level response to ice sheet evolution: An ocean perspective

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1991-01-01

    The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.

  6. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    NASA Astrophysics Data System (ADS)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  7. Sensitivity of an Antarctic Ice Sheet Model to Sub-Ice-Shelf Melting

    NASA Astrophysics Data System (ADS)

    Lipscomb, W. H.; Leguy, G.; Urban, N. M.; Berdahl, M.

    2017-12-01

    Theory and observations suggest that marine-based sectors of the Antarctic ice sheet could retreat rapidly under ocean warming and increased melting beneath ice shelves. Numerical models of marine ice sheets vary widely in sensitivity, depending on grid resolution and the parameterization of key processes (e.g., calving and hydrofracture). Here we study the sensitivity of the Antarctic ice sheet to ocean warming and sub-shelf melting in standalone simulations of the Community Ice Sheet Model (CISM). Melt rates either are prescribed based on observations and high-resolution ocean model output, or are derived from a plume model forced by idealized ocean temperature profiles. In CISM, we vary the model resolution (between 1 and 8 km), Stokes approximation (shallow-shelf, depth-integrated higher-order, or 3D higher-order) and calving scheme to create an ensemble of plausible responses to sub-shelf melting. This work supports a broader goal of building statistical and reduced models that can translate large-scale Earth-system model projections to changes in Antarctic ocean temperatures and ice sheet discharge, thus better quantifying uncertainty in Antarctic-sourced sea-level rise.

  8. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F. J.; Forsberg, René; Matsuoka, Kenichi; Olesen, Arne V.; Casal, Tania G.

    2018-05-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the "bottleneck" zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.

  9. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  10. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  11. Diverse landscapes beneath Pine Island Glacier influence ice flow.

    PubMed

    Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E

    2017-11-20

    The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.

  12. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  13. A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian; Nøst, Ole Anders

    2017-04-01

    The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.

  14. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet.

    PubMed

    Bo, Sun; Siegert, Martin J; Mudd, Simon M; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li

    2009-06-04

    Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth's orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3 degrees C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.

  15. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate

    NASA Astrophysics Data System (ADS)

    Colgan, William; Machguth, Horst; MacFerrin, Mike; Colgan, Jeff D.; As, Dirk; MacGregor, Joseph A.

    2016-08-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  16. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  17. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    NASA Astrophysics Data System (ADS)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  18. Formation of a wave on an ice-sheet above the dipole, moving in a fluid

    NASA Astrophysics Data System (ADS)

    Il'ichev, A. T.; Savin, A. A.; Savin, A. S.

    2012-05-01

    Theory of wave motions of a fluid with an ice-sheet was developed due to the necessity of solving of a number of problems of marine and land physics. The main attention in these investigations was focused on propagation and interaction of free waves, and also on appearance of waves under action of different loadings on the ice-sheet. From the other side, the problems dealing with waves on the fluid surface, free from the ice due to motion in the mass of the fluid of rigid bodies, has the known solutions. In this connection, it seems natural to disserminate the formulation and methods of such problems to the case of the fluid with the ice-sheet. In the present note we describe the character of formation of waves from the singularity, localized in the fluid of infinite depth beneath the ice-sheet. We use the example of the dipole, which models a cylinder in the infinite mass of the fluid. The character of the formation does not depend on the type of singularity. The ice-sheet is considered as a thin elastic plate of a constant width, floating on the water surface.

  19. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Cook, Carys P.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Iwai, Masao; Kobayashi, Munemasa; Jimenez-Espejo, Francisco J.; Escutia, Carlota; González, Jhon Jairo; Khim, Boo-Keun; McKay, Robert M.; Passchier, Sandra; Bohaty, Steven M.; Riesselman, Christina R.; Tauxe, Lisa; Sugisaki, Saiko; Galindo, Alberto Lopez; Patterson, Molly O.; Sangiorgi, Francesca; Pierce, Elizabeth L.; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Bendle, James A. P.; Bijl, Peter K.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, José Abel; Hayden, Travis G.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Olney, Matthew P.; Pekar, Stephen F.; Pross, Jörg; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash K.; Stickley, Catherine E.; Tuo, Shouting; Welsh, Kevin; Yamane, Masako

    2013-09-01

    Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century and atmospheric CO2 concentrations similar to today. Estimates for global sea level highstands during these times imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.

  20. The Holocene Minimum of the West Antarctic Ice Sheet: Radiocarbon Model Ages for Subglacial Sediments

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Stansell, N.; Scherer, R. P.; Powell, R. D.

    2017-12-01

    It is commonly assumed that the West Antarctic Ice Sheet (WAIS) is at the present time as small as it has been since at least the last interglacial period about 125,000 years ago. Yet, our recent analyses of subglacial sediments recovered from beneath the ice sheet indicate regionally widespread presence of radiocarbon. This unstable isotope with half life of 5,730 years should decay to nil if the analyzed subglacial sediment samples have been isolated beneath the ice sheet from the atmosphere and the ocean for 125,000 years (over 20 half lives). However, the apparent radiocarbon ages for these samples are in the range of about 20,000-30,000 years BP, based on radiocarbon Fraction Modern (FM) of a few to several percent. The apparent sediment ages cannot be taken at face value because: (1) they overlap with the Last Glacial Maximum (LGM) when WAIS is known to have extended over 1,000 km past the sediment sampling locations, and (2) Antarctic glacigenic sediments commonly contain significant admixture of old, radiocarbon-dead organic matter. The latter biases apparent radiocarbon ages because it violates the assumption that the initial radiocarbon fraction in a sample was equal to FM. To mitigate the problem with apparent ages, we assume that initial radiocarbon fraction in subglacial sediments was equal to that determined by us independently in J-9 sediments from beneath the Ross Ice Shelf (RIS) and calculate radiocarbon 'model ages' between 1,000 and 6,000 years BP. This period of time overlaps with a regional climatic optimum and with late phases of post-LGM glacioisostatic adjustment in the region (e.g., Kingslake et al., this session). We propose that the grounding line of WAIS, at least on the RIS side, retreated in mid/late Holocene more than 300 km beyond its current position and then re-advanced to reach its modern geometry. This implies that the main body of WAIS was significantly smaller than today in mid/late Holocene and that the ice sheet is capable of large fluctuations on timescales much shorter than previously expected.

  1. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Bhatia, Maya P.; Das, Sarah B.; Longnecker, Krista; Charette, Matthew A.; Kujawinski, Elizabeth B.

    2010-07-01

    Subsurface microbial oxidation of overridden soils and vegetation beneath glaciers and ice sheets may affect global carbon budgets on glacial-interglacial timescales. The likelihood and magnitude of this process depends on the chemical nature and reactivity of the subglacial organic carbon stores. We examined the composition of carbon pools associated with different regions of the Greenland ice sheet (subglacial, supraglacial, proglacial) in order to elucidate the type of dissolved organic matter (DOM) present in the subglacial discharge over a melt season. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry coupled to multivariate statistics permitted unprecedented molecular level characterization of this material and revealed that carbon pools associated with discrete glacial regions are comprised of different compound classes. Specifically, a larger proportion of protein-like compounds were observed in the supraglacial samples and in the early melt season (spring) subglacial discharge. In contrast, the late melt season (summer) subglacial discharge contained a greater fraction of lignin-like and other material presumably derived from underlying vegetation and soil. These results suggest (1) that the majority of supraglacial DOM originates from autochthonous microbial processes on the ice sheet surface, (2) that the subglacial DOM contains allochthonous carbon derived from overridden soils and vegetation as well as autochthonous carbon derived from in situ microbial metabolism, and (3) that the relative contribution of allochthonous and autochthonous material in subglacial discharge varies during the melt season. These conclusions are consistent with the hypothesis that, given sufficient time (e.g., overwinter storage), resident subglacial microbial communities may oxidize terrestrial material beneath the Greenland ice sheet.

  2. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  3. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  4. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.

    PubMed

    Kingslake, J; Scherer, R P; Albrecht, T; Coenen, J; Powell, R D; Reese, R; Stansell, N D; Tulaczyk, S; Wearing, M G; Whitehouse, P L

    2018-06-01

    To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters 1 . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) 2-4 . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance 5 . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss 6 on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.

  5. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    NASA Astrophysics Data System (ADS)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  6. Formation of Ice-Rich Lobate Debris Aprons Through Regional Icesheet Collapse and Debris-Cover Armoring

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.; Marchant, D. R.

    2011-03-01

    We use a flowband model to assess development of lobate debris apron sublimation lag thickness and lateral extent beneath scarps. We obtain estimates of the climate in place as the LDAs were forming during collapse of a larger, regional ice sheet.

  7. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    NASA Astrophysics Data System (ADS)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  8. Constraining the Antarctic contribution to interglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  9. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  10. New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.

    2017-12-01

    Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and transfer zones, and the crustal boundary that is well-separated from the Transantarctic Mountains front, control the bathymetry, impart the large-scale patterning within and upon the base of the ice sheet, influence oceanographic circulation, and therefore are of import for Ross Ice Shelf stability.

  11. High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.

    PubMed

    Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K

    2018-01-22

    The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.

  12. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  13. Modelling water flow under glaciers and ice sheets.

    PubMed

    Flowers, Gwenn E

    2015-04-08

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.

  14. Glacier seismology: eavesdropping on the ice-bed interface

    NASA Astrophysics Data System (ADS)

    Walter, F.; Röösli, C.

    2015-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  15. NASA: First Map Of Thawed Areas Under Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik; Larour, Eric; Seroussi, Helene; Morlighem, Mathieu; Nowicki, Sophie

    2014-05-01

    A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has been generally losing its mass since the last glacial maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector of WAIS in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm/yr in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in the future.

  17. Hydrogeologic Controls on Water Dynamics in a Discontinuous Permafrost, Lake-Rich Landscape

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Briggs, M. A.; Day-Lewis, F. D.; Jepsen, S. M.; Lane, J. W., Jr.; McKenzie, J. M.; Minsley, B. J.; Striegl, R. G.; Voss, C. I.; Wellman, T. P.

    2014-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  18. Modeling the growth and decay of the Antarctic Peninsula Ice Sheet

    NASA Astrophysics Data System (ADS)

    Payne, A. J.; Sugden, D. E.; Clapperton, C. M.

    1989-03-01

    A model of the growth and decay of the Antarctic Peninsula Ice Sheet during the last glacial/interglacial cycle is used to identify the main controls on ice sheet behavior. Using as input glaciological assumptions derived by W. F. Budd and I. N. Smith (1982, Annals of Glaciology3, 42-49), bedrock topography, isostatic compensation, and mass balance relationships, the model is driven by sea-level change over the last 40,000 yr in association with assumed changes in the rate of melting beneath ice shelves. An ice sheet dome over 3.5 km thick grows on the offshore shelf and straits west of the Antarctic Peninsula and reaches a maximum at 18,000 yr B.P. Collapse begins at 14,000 yr B.P. but becomes rapid and continuous after 10,000 yr B.P. The present stable ice cover is achieved at 6500 yr B.P. Ice growth and decay are characterized by thresholds which separate periods of steady state from periods of rapid transition; the thresholds usually relate to topography. Tests show that ice sheet behavior is most sensitive to sea-level change, basal marine melting, and accumulation and is less sensitive to isostasy, spatial variation in accumulation, calving rates, and ice flow parameterization. Tests of the model against field evidence show good agreement in places, as well as discrepancies which require further work.

  19. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    NASA Astrophysics Data System (ADS)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial hydrology strengthens our understanding of the nature of meltwater drainage beneath ice sheets and informs better theory and numerical models.

  20. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  1. Future Antarctic bed topography and its implications for ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A~recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) is generally losing its mass since the last glacial maximum (LGM). In a sustained warming climate, the AIS is predicted to retreat at a greater pace primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that the past loading is relatively less important than future loading on the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years 2100 and 2500 AD, respectively, and that the East Antarctic Ice Sheet (EAIS) is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay approaches roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is associated with the flattening of reverse bed, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote the stability to marine portions of the ice sheet in future.

  2. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    NASA Technical Reports Server (NTRS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  3. The Microseismicity of Glacier Sliding

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Röösli, Claudia; Kissling, Edi

    2017-04-01

    Our understanding of glacier and ice sheet basal motion remains incomplete. The past decades have witnessed a shift away from initially proposed hard bed theories towards soft, till-laden beds, which deform and thus participate in basal motion. The theoretical treatment of deformable beds is subject to debate, yet our capability to predict ice sheet flow and ultimately sea level rise is contingent upon correct parameterization of basal motion (Ritz et al., 2015). Both hard and soft bed theories neglect frictional sliding across distinct basal fault planes and elastic deformation in response to sudden dislocation. Over recent years, this view has been repeatedly challenged as more and more studies report seismogenic faulting associated with basal sliding. For instance, large parts of the Whillans Ice Stream at Antarctica's Siple Coast move nearly exclusively during sudden sliding episodes (Wiens et al., 2008). This "stick-slip motion" is difficult to explain with traditional glacier sliding theories but more analogous to earthquake dislocation on tectonic faults. Although the Whillans Ice Stream motion may be an extreme example, there exists evidence for much smaller microseismic stick-slip events beneath the Greenland Ice Sheet and non-polar glaciers (Podolskiy and Walter, 2016). This raises the question how relevant and widespread the stick-slip phenomenon is and if it is necessary to include it into ice sheet models. Here we discuss recent seismic deployments, which focused on detection of stick-slip events beneath the Greenland Ice Sheet and European Alpine Glaciers. For all deployments, a considerable challenge lies in detection of stick-slip seismograms in the presence of a dominant background seismicity associated with surface crevassing. Nevertheless, automatic search algorithms and waveform characteristics provide important insights into temporal variation of stick-slip activity as well as information about fault plane geometry and co-seismic sliding direction. REFERENCES E.A. Podolskiy and F. Walter (2016). Cryo-seismology. Reviews of Geophysics. Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., & Hindmarsh, R. C. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature, 528(7580), 115-118. Wiens, D. A., Anandakrishnan, S., Winberry, J. P., & King, M. A. (2008). Simultaneous teleseismic and geodetic observations of the stick-slip motion of an Antarctic ice stream. Nature, 453(7196), 770-774.

  4. Glacial moulin formation triggered by rapid lake drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matt

    Scientists at Los Alamos National Laboratory and collaborators are uncovering the mystery of how, where and when a glacial feature called a moulin can form on the Greenland Ice Sheet. Moulins, drain-like holes that form in glaciers, funnel meltwater from the ice surface to the ground beneath, and they are the alarmingly efficient conduits that allow surface water to reach deep and drive the ice to flow faster.

  5. Warm water and life beneath the grounding zone of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro

    2013-04-01

    Ice-ocean interaction plays a key role in rapidly changing Antarctic ice sheet margins. Recent studies demonstrated that warming ocean is eroding floating part of the ice sheet, resulting in thinning, retreat and acceleration of ice shelves and outlet glaciers. Field data are necessary to understand such processes, but direct observations at the interface of ice and the ocean are lacking, particularly beneath the grounding zone. To better understand the interaction of Antarctic ice sheet and the ocean, we performed subglacial measurements through boreholes drilled in the grounding zone of Langhovde Glacier, an outlet glacier in East Antarctica. Langhovde Glacier is located at 69°12'S, 39°48'E, approximately 20 km south of a Japanese research station Syowa. The glacier discharges ice into Lützow-holm Bay through a 3-km-wide floating terminus at a rate of 130 m a-1. Fast flowing feature is confined by bedrock to the west and slow moving ice to the east, and it extends about 10 km upglacier from the calving front. In 2011/12 austral summer season, we operated a hot water drilling system to drill through the glacier at 2.5 and 3 km from the terminus. Inspections of the boreholes revealed the ice was underlain by a shallow saline water layer. Ice and water column thicknesses were found to be 398 and 24 m at the first site, and 431 and 10 m at the second site. Judging from ice surface and bed elevations, the drilling sites were situated at within a several hundred meters from the grounding line. Sensors were lowered into the boreholes to measure temperature, salinity and current within the subglacial water layer. Salinity and temperature from the two sites were fairly uniform (34.25±0.05 PSU and -1.45±0.05°C), indicating vertical and horizontal mixing in the layer. The measured temperature was >0.7°C warmer than the in-situ freezing point, and very similar to the values measured in the open ocean near the glacier front. Subglacial current was up to 3 cm/s, which is sufficient to carry coastal water to the study sites within several days. A video camera suspended in the boreholes captured a crustacean and krill beneath the grounding zone. Subglacial water samples contained abundant phytoplankton, which were most likely transported from the open ocean and served as trophic resources to the animals living under >400 m thick glacier. Our observations indicate that warm coastal water is actively transported to the grounding zone by subshelf current, and efficiently melting the floating ice bottom. It is also implied that changes in the ocean would immediately reach and influence physical and biological environment beneath the grounding zone.

  6. Continuous, Pulsed Export of Methane-Supersaturated Meltwaters from the Bed of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lamarche-Gagnon, G.; Wadham, J.; Beaton, A.; Fietzek, P.; Stanley, K. M.; Tedstone, A.; Sherwood Lollar, B.; Lacrampe Couloume, G.; Telling, J.; Liz, B.; Hawkings, J.; Kohler, T. J.; Zarsky, J. D.; Stibal, M.; Mowlem, M. C.

    2016-12-01

    Both past and present ice sheets have been proposed to cap large quantities of methane (CH4), on orders of magnitude significant enough to impact global greenhouse gas concentrations during periods of rapid ice retreat. However, to date most evidence for sub-ice sheet methane has been indirect, derived from calculations of the methanogenic potential of basal-ice microbial communities and biogeochemical models; field-based empirical measurements are lacking from large ice sheet catchments. Here, we present the first continuous, in situ record of dissolved methane export from a large catchment of the Greenland Ice Sheet (GrIS) in South West Greenland from May-July 2015. Our results indicate that glacial runoff was continuously supersaturated with methane over the observation period (dissolved CH4 concentrations of 30-700 nM), with total methane flux rising as subglacial discharge increased. Periodic subglacial drainage events, characterised by rapid changes (i.e. pulses) in meltwater hydrochemistry, also coincided with a rise in methane concentrations. We argue that these are likely indicative of the flushing of subglacial reservoirs of CH4 beneath the ice sheet. Total methane export was relatively modest when compared to global methane budgets, but too high to be explained by previously determined methanogenic rates from Greenland basal ice. Discrepancies between estimated Greenland methane reserves and observed fluxes stress the need to further investigate GrIS methane fluxes and sources, and suggest a more biogeochemically active subglacial environment than previously considered. Results indicate that future warming, and a coincident increase in ice melt rates, would likely make the GrIS, and by extension the Antarctic Ice Sheet, more significant sources of atmospheric methane, consequently acting as a positive feedback to a warming climate.

  7. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; Mienert, J.; Bünz, S.

    2017-06-01

    Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.

  8. Subglacial Volcanism in West-Antarctica - A Geologic and Ice Dynamical Perspective

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S.; Carter, S.; Renne, P.; Turrin, B. D.; Joughin, I.

    2004-12-01

    Subglacial volcanic eruptions may increase the contribution of the West-Antarctic Ice-Sheet (WAIS) to global sea-level rise in the near-future by enhancing basal melt water production and ice flow lubrication. Geophysical data have led scientists to believe that the ice sheet may be located over an extensive, young volcanic province containing ~1 million cubic kilometers of basalts (Behrendt, 1964; Behrendt et. al., 1991; 1995; 1998). While not all scientists may recognize this theory of widespread subglacial volcanism, so far no scientific paper has challenged its existence. Here we present the first geologic constraints on the presence/absence of widespread Late Cenozoic subglacial volcanism beneath the WAIS and investigate the potential influence of an individual subglacial volcano (Blankenship et. al., 1993) on the flow dynamic of WAIS. Properties of subglacial sediments indicate limited presence of subglacial volcanic rocks. Moreover, the only two basaltic pebbles, recovered from the region, are of Mesozoic-Paleozoic age (~100 to ~500 million years). While these findings reduce the potential for widespread near-future increases in ice discharge from WAIS due to eruptions of subglacial volcanoes, they do not rule out the presence of individual hot spots associated with volcanic centers beneath the WAIS. Fuel for the existence of a proposed volcano (Mt. Casertz) on the Whitmore Mountain Ross Sea Transitional Crust (WRT; Blankenship et. al., 1993), in the southern part of the WAIS, comes from thermo-dynamical modeling in comparison with observed ice velocities. Ice velocities (Joughin et. al., 1999; 2002) downstream of Mt. Casertz indicate significant basal sliding, where thermo-dynamical models suggest that the ice sheet is frozen to its base. Routing of basal melt water, produced in the vicinity of Mt. Casertz, may lubricate the ice base in parts of the WRT, thus enabling basal sliding and enhancing the discharge of ice in this sector of the WAIS. The only means to resolve any further questions on the existence of subglacial volcanism in West-Antarctica and its potential impact on the dynamic of the ice sheet, requires drilling into potential volcanic centers and the recovery of volcanic rocks for dating and geochemical analysis.

  9. Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Behrendt, John C.

    1993-01-01

    Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.

  10. Crevasse Migration in Southern Greenland as inferred from ICESat-1 Altimetry

    NASA Astrophysics Data System (ADS)

    Grigsby, S.; Abdalati, W.; Colgan, W. T.

    2017-12-01

    In an increasingly warm world, more and more of the Greenland ice sheet is susceptible to melt during the summer, raising the possibility of greater contributions to sea level rise from ice melt. However, meltwater deep within the interior of the ice sheet must still find a way to the ocean, otherwise it will simply refreeze within the firn or on top of the ice without impacting sea level rise. One way that water can make it off the ice sheet and into the ocean is via crevasses that allow water to access the bed beneath the ice sheet, where the water will float the ice above it and eventually drain to the coast. It is therefore essential to understand how the Greenland crevasse system is evolving in time, both for understanding meltwater inputs to the englacial hydrological system, and to understand how these inputs are impacting glacial stability. We utilize three years (2004—2006) of ICESat-1 waveform data processed by machine learning to establish a 100m resolution baseline grid of crevassed probability over the ice sheet, then compare against present day crevasses mapped from optical imagery at sites in Southwest and Southeast Greenland. Inland migration of crevasses strongly suggests that increasing meltwater inputs provide positive reinforcement to additional upslope crevassing and access to progressively greater drainage catchments.

  11. Antarctic lakes (above and beneath the ice sheet): Analogues for Mars

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.

    1992-01-01

    The perennial ice covered lakes of the Antarctic are considered to be excellent analogues to lakes that once existed on Mars. Field studies of ice covered lakes, paleolakes, and polar beaches were conducted in the Bunger Hills Oasis, Eastern Antarctica. These studies are extended to the Dry Valleys, Western Antarctica, and the Arctic. Important distinctions were made between ice covered and non-ice covered bodies of water in terms of the geomorphic signatures produced. The most notable landforms produced by ice covered lakes are ice shoved ridges. These features form discrete segmented ramparts of boulders and sediments pushed up along the shores of lakes and/or seas. Sub-ice lakes have been discovered under the Antarctic ice sheet using radio echo sounding. These lakes occur in regions of low surface slope, low surface accumulations, and low ice velocity, and occupy bedrock hollows. The presence of sub-ice lakes below the Martian polar caps is possible. The discovery of the Antarctic sub-ice lakes raises possibilities concerning Martian lakes and exobiology.

  12. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.

  13. Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.

    2011-12-01

    The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  14. Terrestrial geophysics in the SeaRISE project

    NASA Technical Reports Server (NTRS)

    Bentley, C. R.

    1991-01-01

    Some areas of research in the SeaRISE project are briefly discussed. They are as follows: (1) Radar Sounding serves multiple purposes. The most general and obvious is mapping ice thickness and the surface and bedrock topography of the ice sheet. (2) The purpose of Seismic Shooting, in addition to water depth measurements on floating ice, is to provide information about the internal physical characteristics of the ice sheet, the rock beneath it, and the interface between the two. (3) Passive Seismic monitoring of microearthquakes can be used to study brittle fracture within the ice or the rock beneath it. Common parameters available from these studies are fault location, orientation, and displacement, as well as the size of the rupture area, stress drop, and energy released. (4) There is a large contrast in Electrical Resistivity between ice or permafrost on the one hand and liquid water or wet rock on the other hand. Thus, electrical resistivity profiles have the ability of revealing the depth to the melting point, whether it is found at the base of the ice or in the subglacial rock. (5) Gravity anomalies, especially combined with seismic measurements, are an effective tool for determining deeper crustal structure. Anomalies averaged over extensive areas are useful also for their potential to reveal isostatic imbalance, which is a measure of average glacial change over the last several hundred years.

  15. A synthesis of the basal thermal state of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, S. Prasad; Morlighem, Mathieu; Nowicki, Sophie M. J.; Paden, John D.; Price, Stephen F.; Seroussi, Hélène

    2017-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state. PMID:28163988

  16. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  17. A synthesis of the basal thermal state of the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  18. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  19. The puzzle of high heads beneath the West Cumbrian coast, UK: a possible solution

    NASA Astrophysics Data System (ADS)

    Black, John H.; Barker, John A.

    2016-03-01

    A region of high heads within the Borrowdale Volcanic Group (BVG; a fractured crystalline rock) beneath the coastal plain of West Cumbria, England (UK), is identified as a possible relic left over by the Late Devensian ice sheet. It was found during investigations in the 1990s. Contemporary modelling work failed to produce a satisfactory explanation of the high heads compatible with the `cold recharge' isotopic signature of the groundwater. This study has reassessed the original hydraulic testing results. By plotting density-adjusted heads versus their depth below the water table in the immediate vicinity of the borehole in which they were measured, a depth profile resembling a `wave' was revealed with a peak value located at 1,100 m depth. The possibility that this wave represents relic heads from the last major ice sheet has been assessed using one-dimensional mathematical analysis based on a poroelastic approach. It is found that a wet-based ice sheet above the West Cumbrian coast was probably thick enough and sufficiently long-lasting to leave such relic heads providing that the hydraulic diffusivity of the BVG is in the order of 10-6 m s-1. Initial assessment 20 years ago of the long-interval slug tests suggested that such low values are not likely. More recent interpretation argues for such low values of hydraulic diffusivity. It is concluded that ice sheet recharge is the most likely cause of the raised heads, that the BVG contains significant patches of very low conductivity rock, and that long-interval single-hole tests should be avoided in fractured crystalline rock.

  20. Malaspina Glacier: a modern analog to the Laurentide Glacier in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.; Boothroyd, J.C.

    1985-01-01

    The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwatermore » moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.« less

  1. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

  2. Obliquity-paced Pliocene West Antarctic ice sheet oscillations.

    PubMed

    Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T

    2009-03-19

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

  3. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Subglacial hydrology is considered a key control of ice sheet dynamics. Here we show that basal freeze-on is a process that can terminate basal hydrologic networks both in the interior of East Antarctica and at the margins of the Greenland Ice Sheet. Basal freeze-on modifies the ice thickness, ice structure, and ice rheology and therefore must be considered in developing accurate understanding of how hydrology interacts with ice dynamics. In East Antarctica, the freeze-on process follows well-defined hydrologic networks within Gamburtsev Mountain valleys. The steep mountain topography strongly controls the routing of the subglacial water. Ice surface slope drives the water up the mountain valleys and freeze-on occurs at the valley heads. Freeze-on ice is characterized by distinct basal radar reflectors that emerge from the hydrologic network. Evidence that these spatially coherent reflectors demark accreted ice is the upward deflection of the overlying internal layers accompanied by thickening of base of the ice sheet. Individual accretion bodies can be 25 km wide across flow, 100 km along flow with average thicknesses of ~500m although the maximum thickness is 1100m. Regional accumulation rates near the accretion sites average 4cm/yr with low ice velocity (1.5 m/yr). The volume of the ice enclosed by the accretion ice reflectors is 45-1064 km3. The accretion occurs beneath 2200-3000m thick ice and has been persistent for at least 50,000yr. Other basal reflectors in northern Greenland appear in radar from NASA's Icebridge mission and CRESIS. To identify freeze-on ice, we use specific criteria: reflectors must originate from the bed, must be spatially continuous from line to line and the meteoric stratigraphy is deflected upward. The absence of coincident gravity anomalies indicates these reflectors define distinct packages of ice rather than frozen sediment or off-nadir subglacial topography. In the Petermann Glacier Catchment, one of the largest in northern Greenland, we have identified 14 distinct basal ice packages over a wide region. The accumulation rate (~17 cm/yr) and ice velocity (~5-200m/yr) are higher than East Antarctica. These accretion bodies are 10-50 km wide, up to 940m thick and can be traced up to 140 km. The volume of the ice enclosed by the accretion ice reflector units is ~70-300 km3. We estimate that the freeze-on process in Petermann has been active for at least 6,000yr. Water has been mapped beneath much of the Greenland ice sheet and adjacent to the inland freeze-on site flat bright reflectors are interpreted as basal water. The onset of fast flow in Petermann Glacier is associated with the development of the thickest unit of freeze-on ice. Other areas of Greenland also have basal freeze-on ice. North of Jakobshavn Isbrae where the ice sheet is ~1000 m thick, evidence exists for a nearly 10 km wide, 200 m thick unit of basal ice in airborne radar. Located close to the site where basal freeze-on outcrops at the ice sheet margin at Pakitsoq, this unit may be the result of freeze-on of water draining from a supraglacial lake. Basal freeze-on is a critical component of subglacial hydrology. The evidence for large scale freeze-on East Antarctica and many areas of Greenland indicates widespread modification of the base of the ice sheet by basal hydrology.

  4. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary bodies elsewhere in the Solar System.

  5. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.

    PubMed

    Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S

    2013-09-13

    Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.

  6. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.

    PubMed

    Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.

  7. Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing

    NASA Astrophysics Data System (ADS)

    Pelle, T.; Morlighem, M.; Choi, Y.

    2017-12-01

    Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.

  8. Reconstructing the groundwater flow in the Baltic Basin during the Last glaciation

    NASA Astrophysics Data System (ADS)

    Saks, T.; Sennikovs, J.; Timuhins, A.; Kalvāns, A.

    2012-04-01

    In last decades it has been discussed that most large ice sheets tend to reside on warm beds even in harsh clima tic conditions and subglacial melting occurs due to geothermal heat flow and deformation heat of the ice flow. However the subglacial groundwater recharge and flow conditions have been addressed in only few studies. The aim of this study is to establish the groundwater flow pattern in the Baltic Basin below the Scandinavian ice sheet during the Late Weichselian glaciation. The calculation results are compared to the known distribution of the groundwater body of the glacial origin found in Cambrian - Vendian (Cm-V) aquifer in the Northern Estonia which is believed to have originated as a result of subglacial meltwater infiltration during the reoccurring glaciations. Steady state regional groundwater flow model of the Baltic Basin was used to simulate the groundwater flow beneath the ice sheet with its geometry adjusted to reflect the subglacial topography. Ice thickness modelling data (Argus&Peltier, 2010) was used for the setup of the boundary conditions: the meltwater pressure at the ice bed was assumed equal to the overlying ice mass. The modelling results suggest two main recharge areas of the Cm-V aquifer system, and reversed groundwater flow that persisted for at least 14 thousand years. Model results show that the groundwater flow velocities in the Cm-V aquifer in the recharge area in N-Estonia beneath the ice sheet exceeded the present velocities by a factor of 10 on average. The calculated meltwater volume recharged into the Cm-V aquifer system during the Late Weichselian corresponds roughly to the estimated, however, considering the fact, that the study area has been glaciated at least 4 times this is an overestimation. The modeling results attest the hypothesis of light dO18 groundwater glacial origin in the Cm-V aquifer system, however the volumes, timing and processes involved in the meltwater intrusion are yet to be explored. This study was financed by the European Social fund Nr. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

  9. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  10. Ice-sheet-driven methane storage and release in the Arctic

    PubMed Central

    Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun

    2016-01-01

    It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features—pockmarks and active gas flares—across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone—which could serve as a methane sink—existed beneath the ice sheet. Moreover, we reveal that in water depths 150–520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release. PMID:26739497

  11. [Psycrophilic organisms in snow and ice].

    PubMed

    Kohshima, S

    2000-12-01

    Psychrophilic and psycrotrophic organisms are important in global ecology as a large proportion of our planet is cold. Two-third of sea-water covering more than 70% of Earth is cold deep sea water with temperature around 2 degrees C, and more than 90% of freshwater is in polar ice-sheets and mountain glaciers. Though biological activity in snow and ice had been believed to be extremely limited, various specialized biotic communities were recently discovered at glaciers of various part of the world. The glacier is relatively simple and closed ecosystem with special biotic community containing various psychrophilic and psycrotrophic organisms. Since psychrophilic organisms was discovered in the deep ice-core recovered from the antarctic ice-sheet and a lake beneath it, snow and ice environments in Mars and Europa are attracting a great deal of scientific attention as possible extraterrestrial habitats of life. This paper briefly reviews the results of the studies on ecology of psychrophilic organisms living in snow and ice environments and their physiological and biochemical adaptation to low temperature.

  12. Radar-Sounding of Icy Mantles and Comets Using Natural Radio Noise

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Sahr, J. D.

    2011-10-01

    Radar-sounding of ice sheets on Earth yields crucial information on ice history and dynamics, including discoveries of subglacial lakes beneath 3-4 km of ice [1]. Mars Express and the Mars Reconnaissance Orbiter (MRO) have now demonstrated the corresponding power of orbital radar sounding for planetary exploration, in particular by imaging structures within and beneath kilometers of Martian water ice [2-4]. Based on this experience, a sophisticated orbital radar sounder is planned for a flagship mission to Europa, with the aim of imaging stratigraphy, faults, diapirs and other geological structure in the upper few kilometers of the water-ice mantle there, and possibly even detecting the upper surface of the (likely) underlying ocean [5]. Recent modeling of the formation and evolution of volatilerich bodies suggests that oceans or lakes of liquid water occur beneath water-ice mantles in a surprising variety of places, including Ceres in the outer asteroid belt [6], 3 of the 4 Galilean moons of Jupiter as well as Enceladus and Titan in the Saturnian system [7], and possibly even Pluto [8]. Thus there is now a wide scope for low-cost missions to bodies of exceptional interest, and for radar sounding of icy mantles to image near-surface structural geology related to underlying water (whether past or present).

  13. Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure

    NASA Astrophysics Data System (ADS)

    Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.

    2017-12-01

    Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.

  14. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    NASA Astrophysics Data System (ADS)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized. Variations control whether discharge is a source or sink of atmospheric CO2 or CH4, but gas concentrations could be further modified by instream reactions. Increased meltwater fluxes should enhance the importance of greenhouse gas fluxes from subglacial discharge, and heighten the need to constrain variability in subglacial carbon processing.

  15. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models

    PubMed Central

    Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921

  16. Geology of the Okanogan Lobe Does Not Support Subglacial Catastrophic Flooding from Beneath the Cordilleran Ice Sheet

    NASA Astrophysics Data System (ADS)

    Dawes, Ralph

    2017-04-01

    The Okanogan lobe (OL) of the Cordilleran ice sheet (CIS) extended south from interior British Columbia in Canada to the subaerial, megaflood-scoured channeled scablands of Bretz (1923) in eastern Washington state. The drumlins and large, overdeepened valleys of the OL have been attributed to glaciofluvial processes that include at least one catastrophic megaflood, or underburst (e.g. Shaw et al., 1999; Lesemann and Brennand, 2009). If correct, the underburst hypothesis would have the OL provide another source, besides glacial Lake Missoula (GLM), for channeled scablands megaflooding. However, the geomorphology and sedimentology of the OL and the channeled scablands to its south appear to rule out megaflood-scale (≥106 m^3/s) underbursts. Underburst theory posits large subglacial lakes in the deepest valleys of the OL, overlain by relatively thin ice shelves. The largest, the Okanogan Valley, runs north-south 250 km across the US-Canada border, has bedrock-floored basins eroded to up to 650 m below sea level (Eyles et al., 1991), and sediment fill to terrace surfaces 380-420 m above sea level. Advance outwash overlain by till is exposed locally in valley walls, marking the arrival of the ice sheet. Glacial striations on bedrock at or near lowest current exposure elevations show thick glacial ice in the valleys. The last stage of the OL consisted of thick ice in the main valleys. A set of kame terraces deposited between ice and valley walls forms a composite "Great Terrace" 200 km along the sides of the Okanogan and Columbia River valleys, pocked by kettles, with local ice-contact-disturbed bedding. Ice-marginal, side-stream channels were eroded into bedrock adjacent to the Okanogan, Methow, and Columbia River valleys while the main valleys remained choked with last-stage glacial ice. Lacustrine beds in the Great Terrace, deposited in short-lived proglacial lakes, are interbedded with outwash and alluvial fans. A particularly thick, extensive sequence of lacustrine beds, including probable varves, extends for over 100 km along the British Columbia Okanagan Valley and was deposited in a large proglacial lake. In sum, the evidence supports the earlier model (e.g. Clague and Eyles, 1993) that the ice sheet was thickest along the main valley axes and the lacustrine beds in the region formed in proglacial lakes. In contrast to the channeled scablands to the south, in the OL region there are no major features that can be uniquely attributed to turbulent megafloods - no pendant bars, boulder lags strewn at high levels on outer channel walls, fosses, or potholes, as others have pointed out (e.g. Waitt, 2016). Underbursts from the interior CIS, passing beneath and discharging from the OL, would deposit large volumes of sediment. However, studies of sediment provenance in megaflood deposits of the channeled scablands have found no significant volume of sediment from the OL; instead, the major source of megaflood sediments in the channeled scablands was GLM, which was surrounded by uniquely identifiable Proterozoic metasedimentary lithologies. Glacial Lake Columbia was a large proglacial lake along the southeastern margin of the OL, into which large volumes of sediment were deposited. A recent provenance, sedimentary facies, and current-direction analysis (Nelson & Clague, 2016) finds that sediment within glacial Lake Columbia was deposited by megafloods from GLM, not from the OL, confirming the most detailed preceding study (Atwater, 1986). If the evidence across the area covered by the OL and adjacent channeled scablands rules out megaflood-scale underbursts, the subglacial landforms of the CIS, including the drumlins and the overdeepened valleys, must have other causes. Smaller-scale than whole-valley volumes of subglacial water trapped beneath the ice sheet in the overdeepened valleys, and smaller than megaflood-scale glaciofluvial discharges, may have been involved in eroding the largest valleys, including the Okanogan Valley. As for the origin of the drumlins, which have cores that vary from till, to outwash ± lacustrine beds (commonly topped by till), to bedrock, the evidence outlined here suggests they formed beneath the ice sheet, with water in the interface important in the process, but not in the form of subglacial megafloods.

  17. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling

    NASA Astrophysics Data System (ADS)

    Sharp, Martin; Parkes, John; Cragg, Barry; Fairchild, Ian J.; Lamb, Helen; Tranter, Martyn

    1999-02-01

    Bacterial populations found in subglacial meltwaters and basal ice are comparable to those in the active layer of permafrost and orders of magnitude larger than those found in ice cores from large ice sheets. Populations increase with sediment concentration, and 5% 24% of the bacteria are dividing or have just divided, suggesting that the populations are active. These findings (1) support inferences from recent studies of basal ice and meltwater chemistry that microbially mediated redox reactions may be important at glacier beds, (2) challenge the view that chemical weathering in glacial environments arises from purely inorganic reactions, and (3) raise the possibilities that redox reactions are a major source of protons consumed in subglacial weathering and that these reactions may be the dominant proton source beneath ice sheets where meltwaters are isolated from an atmospheric source of CO2. Microbial mediation may increase the rate of sulfide oxidation under subglacial conditions, a suggestion supported by the results of simple weathering experiments. If subglacial bacterial populations can oxidize and ferment organic carbon, it is important to reconsider the fate of soil organic carbon accumulated under interglacial conditions in areas subsequently overridden by Pleistocene ice sheets.

  18. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  19. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  20. Oceanographic Influences on Ice Shelves and Drainage in the Amundsen Sea

    NASA Astrophysics Data System (ADS)

    Minzoni, R. T.; Anderson, J. B.; Majewski, W.; Yokoyama, Y.; Fernandez, R.; Jakobsson, M.

    2016-12-01

    Marine sediment cores collected during the IB OdenSouthern Ocean 2009-2010 cruise are used to reconstruct the Holocene history of the Cosgrove Ice Shelf, which today occupies Ferrero Bay, a large embayment of eastern Pine Island Bay. Detailed sedimentology, geochemistry, and micropaleontology of cores, in conjunction with subbottom profiles, reveal an unexpected history of recession. Presence of planktic foraminifera at the base of Kasten Core-15 suggests an episode of enhanced circulation beneath a large ice shelf that covered the Amundsen Sea during the Early Holocene, and relatively warm water incursion has been interpreted as a potential culprit for major recession and ice mass loss by 10.7 cal kyr BP from radiocarbon dating. Fine sediment deposition and low productivity throughout the Mid Holocene indicate long-lived stability of the Cosgrove Ice Shelf in Ferrero Bay, despite regional warming evident from ice core data and ice shelf loss in the Antarctic Peninsula. High productivity and diatom abundance signify opening of Ferrero Bay and recession of the Cosgrove Ice Shelf to its present day configuration by 2.0 cal kyr BP. This coincides with deglaciation of an island near Canisteo Peninsula according to published cosmogenic exposure ages. Presence of benthic foraminifera imply that warm deep water influx beneath the extended Cosgrove Ice Shelf was a mechanism for under-melting the ice shelf and destabilizing the grounding line. Major ice shelf recession may also entail continental ice mass loss from the eastern sector of the Amundsen Sea during the Late Holocene. Oceanographic forcing remains a key concern for the current stability of the Antarctic Ice Sheet, especially along the tidewater margins of West Antarctica. Ongoing work on diatom and foraminiferal assemblages of the Late Holocene in Ferrero Bay and other fjord settings will improve our understanding of recent oceanographic changes and their potential influence on ice shelves and outlet glaciers that contribute to the mass balance of the West Antarctic Ice Sheet.

  1. Investigating the crustal elements of the central Antarctic Plate (ICECAP): How long-range aerogeophysics is critical to understanding the evolution of the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Brozena, J. M.; Siegert, M. J.; Morse, D. L.; Dalziel, I. W.; Lawver, L. A.; Holt, J. W.; Childers, V. A.; Bamber, J. L.; Payne, A. J.

    2004-12-01

    The highlands of the central Antarctic Plate have been the nursery for East Antarctic ice sheets since at least the early Oligocene separation of Antarctica and Australia. Significant strides have been made in deciphering the marine geological, geophysical, and geochemical record of the deposits left by these sheets and the Pleistocene paleoclimate record from ice cores taken from the central reaches of the contemporary ice sheet. Most recently, the scientific community has realized the importance of the isolated biome represented by the subglacial lakes that characterize the domes of the central East Antarctic ice sheet and evolve in concert with them. Understanding the evolution of the East Antarctic ice sheet and its sub-glacial environment would be a major contribution to the IPY 2007-2008 international effort. Critical to understanding offshore and ice core records of paleoclimate, as well as the distribution/isolation of any subglacial lake systems, is developing a comprehensive understanding of the crustal elements of the central Antarctic Plate. A complete understanding of the evolution of East Antarctic ice sheets throughout the Cenozoic requires knowledge of the boundaries, elevation and paleolatitude of these crustal elements through time as well as evidence of their morphological, sedimentological and tectono-thermal history. The basic impediments to gaining this understanding are the subcontinental scale of the central Antarctic Plate and the one to four kilometers of ice cover that inhibits direct access. It is possible however to provide a substantial framework for understanding these crustal elements through a comprehensive program of long-range airborne geophysical observations. We have proposed a plan to measure gravity, magnetics, ice-penetrating radar, and laser/radar altimetry over the Gamburtsev, Vostok and Belgica subglacial highlands beneath Domes A - C of the contemporary East Antarctic ice sheet using a Navy P-3 aircraft based in McMurdo. Such measurements would help characterize crustal boundaries, establish absolute bedrock elevation and contemporary basal melt distribution (for boundary conditions of ice sheet and lake evolution), and reveal detailed subglacial geomorphology. A P-3 aircraft based in McMurdo would provide access to more than half of the continent without the difficult logistic support of remote field camps and fuel caches.

  2. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.

    2016-12-01

    The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.

  3. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    NASA Astrophysics Data System (ADS)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.

  4. Reconstruction of the extent and variability of late Quaternary ice sheets and Arctic sea ice: Insights from new mineralogical and geochemical proxy records

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Niessen, F.; Fahl, K.; Forwick, M.; Kudriavtseva, A.; Ponomarenko, E.; Prim, A. K.; Quatmann-Hense, A.; Spielhagen, R. F.; Zou, H.

    2016-12-01

    The Arctic Ocean and surrounding continents are key areas within the Earth system and very sensitive to present and past climate change. In this context, the timing and extent of circum-Arctic ice sheets and its interaction with oceanic and sea-ice dynamics are major interest and focus of international research. New sediment cores recovered during the Polarstern Expeditions PS87 (Lomonosov Ridge/2014) and PS93.1 (Fram Strait/2015) together with several sediment cores available from previous Polarstern expeditions allow to carry out a detailed sedimentological and geochemical study that may help to unravel the changes in Arctic sea ice and circum-Arctic ice sheets during late Quaternary times. Our new data include biomarkers indicative for past sea-ice extent, phytoplankton productivity and terrigenous input as well as grain size, physical property, XRD and XRF data indicative for sources and pathways of terrigenous sediments (ice-rafted debris/IRD) related to glaciations in Eurasia, East Siberia, Canada and Greenland. Here, we present examples from selected sediment cores that give new insights into the timing and extent of sea ice and glaciations during MIS 6 to MIS 2. To highlight one example: SE-NW oriented, streamlined landforms have been mapped on top of the southern Lomonosov Ridge (LR) at water depths between 800 and 1000 m over long distances during Polarstern Expedition PS87, interpreted to be glacial lineations that formed beneath grounded ice sheets and ice streams. The orientations of the lineations identified are similar to those on the East Siberian continental margin, suggesting an East Siberian Chukchi Ice Sheet extended far to the north on LR during times of extreme Quaternary glaciations. Based on our new biomarker records from Core PS2757 (located on LR near 81°N) indicating a MIS 6 ice-edge situation with some open-water phytoplankton productivity, the glacial erosional event should have been older than MIS 6 (e.g., MIS 12?).

  5. Microbial Life beneath a High Arctic Glacier†

    PubMed Central

    Skidmore, Mark L.; Foght, Julia M.; Sharp, Martin J.

    2000-01-01

    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4°C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4°C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3°C in the dark (to simulate nearly in situ conditions), producing 14CO2 from radiolabeled sodium acetate with minimal organic amendment (≥38 μM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (≤−1.8°C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO2 and CH4 beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap. PMID:10919772

  6. Formation and interpretation of eskers beneath retreating ice sheets

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates and help understand the melt history of ice sheets.

  7. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    NASA Astrophysics Data System (ADS)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  8. Long-term Glacial History of the West Antarctic Ice Sheet from Cosmogenic Nuclides in a Subglacial Bedrock Core

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J.; Hillebrand, T.; Gombiner, J. H.

    2017-12-01

    To investigate the response of the West Antarctic Ice Sheet (WAIS) to climatic conditions warmer than present, we are analyzing cosmogenic nuclides in a bedrock core from beneath 150 m of ice at a site near the Pirrit Hills. Our aim is to determine whether the WAIS has thinned in the past, exposing bedrock at this site, and if so, when. This will help to determine the vulnerability of the ice sheet to future warming, and identify climatic thresholds capable of inducing WAIS collapse. We selected a site where the ice-sheet surface lies at 1300 m, approximately halfway from the ice-sheet divide to the grounding line. We expect ice thickness at the site to reflect WAIS dynamics, rather than local meteorology or topography. Ice flow speeds are moderate and ice above the core site is thin enough to remain cold-based, limiting the possibility of subglacial erosion which would compromise the cosmogenic nuclide record. We targeted a subglacial ridge adjacent to an exposed granite nunatak. This lithology provides minerals suitable for analysis of multiple cosmogenic nuclides with different half-lives. Although we aimed to collect two cores from different depths to compare exposure histories, hydrofracture of the basal ice prevented us from reaching the bed at the first drill site. The second hole produced 5.5 m of discontinuous ice core above 8 m of bedrock core. Initial analyses of quartz from the bedrock show low levels of Be-10. Further analyses of Be-10, Al-26, Cl-36 and Ne-21 from the full length of the core will be required to determine whether this is because the surface has never been exposed, or because the cosmogenic nuclide profile has been truncated by glacial erosion. We will present comprehensive cosmogenic nuclide data, and discuss implications for WAIS deglaciation history, at the meeting. Supported by US National Science Foundation awards ANT-1142162 and PLR-1341728.

  9. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    PubMed

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  10. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.

  11. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  12. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  13. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  14. History and anatomy of subsurface ice on Mars

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Forget, Francois

    2012-08-01

    Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.

  15. Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling

    NASA Astrophysics Data System (ADS)

    Heilig, Achim; Eisen, Olaf; MacFerrin, Michael; Tedesco, Marco; Fettweis, Xavier

    2018-06-01

    Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N, 46.2856° W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m-2 into firn beneath the summer surface of 2015. We find that continuous observations of liquid water content, percolation depths and rates for the seasonal mass fluxes are sufficiently accurate to provide valuable information for validation of model approaches and help to develop a better understanding of liquid water retention and percolation in perennial firn.

  16. Vostok Subglacial Lake: A Review of Geophysical Data Regarding Its Discovery and Topographic Setting

    NASA Technical Reports Server (NTRS)

    Siegert, Martin J.; Popov, Sergey; Studinger, Michael

    2011-01-01

    Vostok Subglacial Lake is the largest and best known sub-ice lake in Antarctica. The establishment of its water depth (>500 m) led to an appreciation that such environments may be habitats for life and could contain ancient records of ice sheet change, which catalyzed plans for exploration and research. Here we discuss geophysical data used to identify the lake and the likely physical, chemical, and biological processes that occur in it. The lake is more than 250 km long and around 80 km wide in one place. It lies beneath 4.2 to 3.7 km of ice and exists because background levels of geothermal heating are sufficient to warm the ice base to the pressure melting value. Seismic and gravity measurements show the lake has two distinct basins. The Vostok ice core extracted >200 m of ice accreted from the lake to the ice sheet base. Analysis of this ice has given valuable insights into the lake s biological and chemical setting. The inclination of the ice-water interface leads to differential basal melting in the north versus freezing in the south, which excites circulation and potential mixing of the water. The exact nature of circulation depends on hydrochemical properties, which are not known at this stage. The age of the subglacial lake is likely to be as old as the ice sheet (approx.14 Ma). The age of the water within the lake will be related to the age of the ice melting into it and the level of mixing. Rough estimates put that combined age as approx.1 Ma.

  17. Glaciotectonic deformation associated with the Orient Point-Fishers Island moraine, westernmost Block Island Sound: further evidence of readvance of the Laurentide ice sheet

    USGS Publications Warehouse

    Poppe, Lawrence J.; Oldale, Robert N.; Foster, David S.; Smith, Shepard M.

    2012-01-01

    High-resolution seismic-reflection profiles collected across pro-glacial outwash deposits adjacent to the circa 18 ka b.p. Orient Point–Fishers Island end moraine segment in westernmost Block Island Sound reveal extensive deformation. A rhythmic seismic facies indicates the host outwash deposits are composed of fine-grained glaciolacustrine sediments. The deformation is variably brittle and ductile, but predominantly compressive in nature. Brittle deformation includes reverse faults and thrust faults that strike parallel to the moraine, and thrust sheets that extend from beneath the moraine. Ductile deformation includes folded sediments that overlie undisturbed deposits, showing that they are not drape features. Other seismic evidence for compression along the ice front consists of undisturbed glaciolacustrine strata that dip back toward and underneath the moraine, and angular unconformities on the sea floor where deformed sediments extend above the surrounding undisturbed correlative strata. Together, these ice-marginal glaciotectonic features indicate that the Orient Point–Fishers Island moraine marks a significant readvance of the Laurentide ice sheet, consistent with existing knowledge for neighboring coeval moraines, and not simply a stillstand as previously reported.

  18. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  19. Lateral changes in temperature at the base of the Laurentide ice sheet inferred from borehole temperature data

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Rolandone, F.; Jaupart, C.

    2001-12-01

    Three temperature depth profiles from very deep (1720-2800m) boreholes in Canada were inverted to determine temporal changes in ground surface temperature. These boreholes are sufficiently deep to be affected by the ground surface temperature during and after the last glacial episode when the three sites were beneath the Laurentide ice sheet. At Sept Iles, Québec, on the north shore of the Bay of St Lawrence, the inversion of an 1820m deep profile suggests that temperature was <-4 \\deg C at the end of the Last Glacial Maximum, vs 3 \\deg C now. For FlinFlon, Manitoba, the inversion of a 2800m hole suggests that ground temperature was moderately colder (≈-1\\deg C) at the end of the LGM than at present (≈3\\deg C). This result is within the bounds suggested by Sass et al. [1971]. For a 1720m deeep borehole near Balmertown, Ontario, northwest of Lake Superior, the inversion shows almost no change in ground surface temperature (3+/-1 \\deg C) for the past 50,000 years. The difference between Balmertown and FlinFlon is difficult to explain within the framework of accepted ice sheet models because the two sites are at about the same distance from the center of the ice sheet and have experienced the same ice accumulation history. Simple models will be presented that explain how the temperature at the base of a large glacier is affected by the geometry and the flow of the ice sheet. Sass, J.H., A.H. Lachenbruch, & A.M. Jessop, Uniform heat flow in a deep hole in the Canadian Shield and its paleoclimatic implications, J. Geophys. Res., 76, 8586-8596, 1971.

  20. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    PubMed

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  1. Distinct Subglacial Drainage Patterns Revealed in High-Resolution Mapping of Basal Radar Reflectivity across Greenland

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Palmer, S. J.; Bell, R. E.

    2016-12-01

    Subglacial water beneath the Greenland Ice Sheet is linked to changes in sliding rate in both theoretical and field-based studies. These can lead to massive, widespread speed-ups or, conversely, very little response from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine how shifts in drainage occur and what controls them. By combining NASA IceBridge radar-sounding and ice-sheet modeling, we identified distinct subglacial drainage patterns across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and the Petermann-Humboldt glacier system as a northern example. In southern Greenland at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply and is strongly controlled by bed topography and properties. In the winter, water is stored on bedrock ridges but is absent in deep sediment-filled troughs. In the summer, water drains to the deep troughs that focus this water, flooding the bed to intensify sliding. Conversely, the subglacial drainage systems in northern Greenland are distinctly different. Beneath Petermann and Humboldt, subglacial water is present throughout the year and primarily fed by basal melt in the upstream reaches. In Petermann, this basal water is focused by the deep topography along the main ice trunk. These drainage networks are continuous up to 180 km from the glacier terminus, and likely facilitate the onset of fast flow. In contrast, in Humboldt the flat topography and the lack of water focusing produce more broadly distributed networks rather than locally focused systems. In Humboldt, onset of fast flow develops much closer to the ice edge where surface meltwater may contribute to the subglacial water budget. Our results provide insights into the relationship between surface melt, basal topography and properties over a wide range of controlling parameters. Local conditions often determine the degree to which subglacial systems focus and play an important role in determining individual catchment responses to surface melt.

  2. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    PubMed Central

    Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a microbial ecosystem beneath the West Antarctic Ice Sheet. PMID:27713727

  3. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  4. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bougamont, M.; Christoffersen, P.; Price, S. F.

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  6. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    USGS Publications Warehouse

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  7. Subglacial meltwater channels on the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Kirkham, J. D.; Hogan, K.; Dowdeswell, J. A.; Larter, R. D.; Arnold, N. S.; Nitsche, F. O.; Golledge, N. R.

    2017-12-01

    Extensive submarine channel networks exist on the Antarctic continental shelf. The genesis of the channels has been attributed to the flow of subglacial meltwater beneath a formerly more expansive Antarctic Ice Sheet (AIS), implying that there was an active subglacial hydrological system beneath the past AIS which influenced its ice flow dynamics and mass-loss behaviour. However, the dimensions of the channels are inconsistent with the minimal quantities of meltwater produced under the AIS at present; consequently, their formative mechanism, and its implications for past ice-sheet dynamics, remain unresolved. Here, analysis of >100,000 km2 of multibeam bathymetric data is used to produce the most comprehensive inventory of Antarctic submarine channelised landforms to date. Over 2700 bedrock channels are mapped across four locations on the inner continental shelves of the Bellingshausen and Amundsen Seas. Morphometric analysis reveals highly similar distributions of channel widths, depths, cross-sectional areas and geometric properties, with subtle differences present between channels located in the Bellingshausen Sea compared to those situated in the Amundsen Sea region. The channels are 75-3400 m wide, 3-280 m deep, 160-290,000 m2 in cross-sectional area, and exhibit V-shaped cross-sectional geometries that are typically eight times as wide as they are deep. The features are comparable, but substantially larger, than the system of channels known as the Labyrinth in the McMurdo Dry Valleys whose genesis has been attributed to catastrophic outburst floods, sourced from subglacial lakes, during the middle Miocene. A similar process origin is proposed for the channels observed on the Antarctic continental shelf, formed through the drainage of relict subglacial lake basins, including some 59 identified using submarine geomorphological evidence and numerical modelling calculations. Water is predicted to accumulate in the subglacial lakes over centuries to millennia and to drain over daily to monthly timescales, potentially influencing past ice-sheet dynamics.

  8. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  9. A new airborne geophysical platform and its application in the Princess Elizabeth Land during CHINARE 32 and 33 in East Antarctica

    NASA Astrophysics Data System (ADS)

    Cui, Xiangbin; Sun, Bo; Guo, Jingxue; Tang, Xueyuan; Greenbaum, Jamin; Lindzey, Laura; Habbal, Feras; Young, Duncan

    2017-04-01

    The ice thickness, subglacial topography and bedrock conditions of Princess Elizabeth Land (PEL) in central East Antarctic Ice Sheet (EAIS) are still unknown due to lack of direct geophysical measurements. This prevents our understanding of the ice sheet dynamics, subglacial morphology and climate evolution in the region. According to recent results from remote sensing results, it's very likely that there's a large, previously undiscovered subglacial lake and subglacial drainage networks existing beneath the ice sheet in PEL with possible subglacial canyons extend over a distance of 1100 km from inland to coast. But there's no direct measurements to identify them yet. China deployed its first fixed-wing airplane named Snow Eagle 601 and implemented airborne geophysical investigation in PEL during the 32nd and 33rd Chinese National Antarctic Research Expeditions (CHINARE 32 and 33, 2015/16 and 2016/17). The HiCARS deep ice-penetrating radar system and other instruments including GT-2A gravimeter, CS-3 magnetometer, laser altimeter, GPS and camera, were installed in the airplane to measure the ice sheet and subglacial conditions, as well as bedrock geology and tectonic. The field campaign was built beside Russian airfield (ZGN) near Zhongshan Station. During CHINARE 32, the airborne surveying grid was designed as radial lines from ZGN so as to investigate the region as large as possible, and total flight lines are 32 000 km. During the CHINARE 33, airborne survey will pay attention to the subglacial lake and subglacal canyons. Here, we introduce the Snow Eagle airborne geophysical platform firstly. Then, we present some preliminary results from CHINARE 32 and CHINARE 33.

  10. Volcanic rocks and subglacial volcanism beneath the West Antarctic Ice Sheet in the West Antarctic Rift System, (WAIS) from aeromagnetic and radar ice sounding - Thiel Subglacial Volcano as possible source of the ash layer in the WAISCORE

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2012-12-01

    Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the core (Dunbar, 2011) are consistent with the magnetic data. A prominent subaerially-erupted subglacial volcano, here named Mt Thiel, about 100 km distant to the NE, at approximately 78o 25' S, 111o 20' W, may be the source of the ash layer. This peak is characterized by a ~400-nT positive magnetic anomaly which Behrendt el, 2004, modeled as having apparent susceptibility contrasts of .034 and .15 SI. From its appearance (and the moat surrounding it), Mt. Thiel has subsided somewhat since initial eruption as is the case for Mt. Erebus and the Hawaiian Island chain. I suggest that Mt Thiel, about 100 km distance from the WAISCORE, may be the source of the ash layer. The present rapid changes in the WAIS resulting from global warming, could be accelerated by subglacial volcanism

  11. Evidence for heterogeneous (and possibly transient) geothermal flux beneath the Ross-Amundsen ice divide of the West Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Danque, H. A.; Quartini, E.; Young, D. A.

    2012-12-01

    It is well established that the geological framework for the evolution of the marine-based West Antarctic ice sheet (WAIS) is the Cretaceous through Cenozoic rifting of the underlying lithosphere. The southern flank of this rift along the Whitmore Mountains underlies the upper reaches of the Ross Sea catchment of the WAIS and has been identified as a site of active subglacial volcanism. Interestingly, the northern flank of this rift represented by the upward doming of the Marie Byrd Land volcanic province has not yet been associated with active subglacial volcanism. Similarly, it is not known whether the heterogeneity of geothermal flux associated with these existing and potential rift flank volcanic provinces extends across the floor of the rift between the rift flanks. Here we present geophysical evidence for heterogeneous geothermal flux associated with active subglacial volcanism along the northern rift flank adjacent to Marie Byrd Land where it intersects the ice divide for the Ross and Amundsen Sea sectors for the WAIS. We further evaluate the evidence for the continuity of heterogeneous geothermal flux along this ice divide and across the rift floor between the two flanks of the West Antarctic rift system.

  12. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    USGS Publications Warehouse

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.

  13. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    PubMed Central

    McKay, Robert; Naish, Tim; Carter, Lionel; Riesselman, Christina; Dunbar, Robert; Sjunneskog, Charlotte; Winter, Diane; Sangiorgi, Francesca; Warren, Courtney; Pagani, Mark; Schouten, Stefan; Willmott, Veronica; Levy, Richard; DeConto, Robert; Powell, Ross D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world. PMID:22496594

  14. A Thermal Melt Probe System for Extensive, Low-Cost Instrument Deployment Within and Beneath Ice Sheets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Elam, W. T.; Carpenter, M.; Kintner, P., III

    2014-12-01

    More numerous observations within and beneath ice sheets are needed to address a broad variety of important questions concerning ice sheets and climate. However, emplacement of instruments continues to be constrained by logistical burdens, especially in cold ice a kilometer or more thick. Electrically powered thermal melt probes are inherently logistically light and efficient, especially for reaching greater depths in colder ice. They therefore offer a means of addressing current measurement problems, but have been limited historically by a lack of technology for reliable operation at the necessary voltages and powers. Here we report field tests in Greenland of two new melt probes. We operated one probe at 2.2 kilowatts (kW) and 1050 volts (V), achieving a depth of 400 m in the ice in ~ 120 hours, without electrical failure. That depth is the second greatest achieved thus far with a thermal melt probe, exceeded only by one deployment to 1005 m in Greenland in 1968, which ended in an electrical failure. Our test run took place in two intervals separated by a year, with the probe frozen at 65 m depth during the interim, after which we re-established communication, unfroze the probe, and proceeded to the greater depth. During the second field test we operated a higher-power probe, initially at 2.5 kW and 1500 V and progressing to 4.5 kW and 2000 V. Initial data indicate that this probe achieved a descent rate of 8 m/hr, which if correct would be the fastest rate yet achieved for such probes. Moreover, we observed maintenance of vertical probe travel using pendulum steering throughout both tests, as well as autonomous descent without operator-intervention after launch. The latter suggests potential for crews of 1-2 to operate several melt probes concurrently. However, the higher power probe did suffer electrical failure of a heating element after 7 hours of operation at 2000 V (24 hours after the start of the test), contrary to expectations based on laboratory component and system testing. We are therefore revising the probe heaters using a newer but more development-intensive technology. With probe systems now validated in our tests, this will result in a reliable means to emplace instruments for studies of subglacial hydrology, ice dynamics, and possible subglacial ecologies.

  15. Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment.

    NASA Astrophysics Data System (ADS)

    Fretwell, Peter; Pritchard, Hamish

    2013-04-01

    Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment. The Bedmap2 project has been a large cooperative effort to compile, model, map and visualize the ice-rock interface beneath the Antarctic ice sheet. Here we present the final output of that project; the Bedmap2 printed map. The map is an A1, double sided print, showing 2d and 3d visualizations of the dataset. It includes scientific interpretations, cross sections and comparisons with other areas. Paper copies of the colour double sided map will be freely distributed at this session.

  16. Antarctica and Its Ice Sheet: Knowledge Gained During the IGY/IGC

    NASA Astrophysics Data System (ADS)

    Bentley, C. R.

    2006-12-01

    At the end of World War II, the interior of Antarctica, with the exception of the mountains south of the Ross Ice Shelf, was still terra incognita. It was described simply as a nearly continuous high plateau. Even less was known about the ice thickness; the eminent glacial geologist, Richard Foster Flint, believed it "unlikely that the ice thickness exceeds 2000 feet except very locally; probably its average thickness is considerably less." Then in the late 1940's and early 1950's, seismic sounding in Greenland by the Expéditions Polaires Françaises and in Queen Maud Land by the Norwegian-British-Swedish Antarctic Expedition, 1949-52, revealed that, inland of the coastal mountains, the beds in both regions lie close to sea level. This led to a reappraisal of the Antarctic ice sheet, such that the prescient glaciologist, Robert P. Sharp, could predict, on the eve of the IGY, that "between 3000 and 4000 meters of ice will be found" in East Antarctica and that "work during IGY will establish an average thickness for Antarctic inland ice in excess of 1600 m." Seismic and gravity soundings on oversnow traverses conducted by eight countries during the IGY and the succeeding IGC showed Sharp to be basically correct, but there were major surprises, such as the vast Gamburtsev Subglacial Mountains, completely hidden by the ice in central East Antarctica, and the equally vast Byrd Subglacial Basin beneath much of the West Antarctic ice sheet, so deep that roughly half the ice in the region lies below sea level. There were major discoveries on and above the surface too, such as the huge size of the Filchner/Ronne Ice Shelf, and the very existence of the Ellsworth and Pensacola Mountains, the former including the highest peak on the continent. Further, the fundamental difference between the crustal structures of East and West Antarctica became clear. A summary paper published in 1960, looking primarily at West Antarctica where the main U.S. activity lay, could conclude that 1) the bed of most of the West Antarctic ice sheet (including the ice shelves) lies below sea level; 2) the Byrd Subglacial Basin represents a fundamental division between the geological provinces of Marie Byrd Land, the Ellsworth Mountains, and the Transantarctic Mountains; 3) the crust of West Antarctica is continental in character and is in approximate isostatic equilibrium, but is only about 30 km thick; and 4) the ice sheet in West Antarctica originated separately in Marie Byrd Land and the Ellsworth-Whitmore-Horlick highland, expanded and converged to form an ice shelf over the open water between them, which then thickened to form the present grounded ice sheet. Thus the background was well laid for all the advances of the last 50 years.

  17. Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica

    DOE PAGES

    Bougamont, M.; Christoffersen, P.; Price, S. F.; ...

    2015-10-21

    Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less

  18. Lasting Effects of Glacial Lake Outburst Floods on Subglacial Drainage Networks

    NASA Astrophysics Data System (ADS)

    Robbins, M.; Hendy, I. L.; Bassis, J. N.; Aciego, S.; Stevenson, E. I.

    2017-12-01

    Supraglacial lakes forming in the ablation zone around the Greenland Ice Sheet will likely migrate toward higher elevations as polar temperatures rise through the 21st century. Present understanding of lake drainage shows it can temporarily enhance ice sheet motion, but other possible effects and interactions - especially with older pre-existing subglacial reservoirs - remain unexamined. Here we investigate possible enduring effects of the record high 2012 melt year on the en/subglacial hydrologic network, how this network responds to immediate high fluxes of water from floods, and how these phenomena might connect to previously isolated subglacial pools. Lake Hullet is a large ice dammed lake situated in south Greenland 22km up-ice from where Kiattuut Sermiat (KS) branches from a larger outlet glacier. Lake Hullet rests on bedrock and is contained by a bedrock ridge. It drains roughly annually through Lake Hullet's hydrologic network in a glacial lake outburst flood (GLOF) when water level rises such that it can flow over the obstructive ridge. Subglacial water samples collected from the toe of KS in July 2013 pre-flood were dated using U isotopes with 222Rn concentrations as well as noble gas ratios. These two independent methods reveal an exceedingly old water age of > 1000 years, indicating existence of isolated enduring subglacial meltwater pool(s). A comparison field study at the KS toe in August and September 2015 re-examined glacial hydrochemistry in a time series. 2015 222Rn concentrations are lower than 2013 values, suggesting less water-rock interaction, a reduction in residence time, and a proximal meltwater source. Increased water volume from the record high 2012 melt year may have enlarged the existing en/subglacial drainage network further into the ice sheet releasing meltwater with longer residence times beneath the ice, with effects lasting into subsequent melt seasons due to the stability of channels maintained from recurrent floods. These preliminary results indicate future increasing temperatures, resultant high surface melt, and lake drainage may affect ice sheet hydrology beyond the immediate melt season with implications for basal lubrication further inland and ice sheet motion.

  19. Joint-bounded crescentic scars formed by subglacial clast-bed contact forces: Implications for bedrock failure beneath glaciers

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Bradwell, T.; Everest, J. D.; Eyles, N.

    2017-08-01

    Glaciers and ice sheets are important agents of bedrock erosion, yet the precise processes of bedrock failure beneath glacier ice are incompletely known. Subglacially formed erosional crescentic markings (crescentic gouges, lunate fractures) on bedrock surfaces occur locally in glaciated areas and comprise a conchoidal fracture dipping down-ice and a steep fracture that faces up-ice. Here we report morphologically distinct crescentic scars that are closely associated with preexisting joints, termed here joint-bounded crescentic scars. These hitherto unreported features are ca. 50-200 mm deep and involve considerably more rock removal than previously described crescentic markings. The joint-bounded crescentic scars were found on abraded rhyolite surfaces recently exposed (< 20 years) beneath a retreating glacier in Iceland, as well as on glacially sculpted Precambrian gneisses in NW Scotland and various Precambrian rocks in Ontario, glaciated during the Late Pleistocene. We suggest a common formation mechanism for these contemporary and relict features, whereby a boulder embedded in basal ice produces a continuously migrating clast-bed contact force as it is dragged over the hard (bedrock) bed. As the ice-embedded boulder approaches a preexisting joint in the bedrock, stress concentrations build up in the bed that exceed the intact rock strength, resulting in conchoidal fracturing and detachment of a crescentic wedge-shaped rock fragment. Subsequent removal of the rock fragment probably involves further fracturing or crushing (comminution) under high contact forces. Formation of joint-bounded crescentic scars is favoured by large boulders at the base of the ice, high basal melting rates, and the presence of preexisting subvertical joints in the bedrock bed. We infer that the relative scarcity of crescentic markings in general on deglaciated surfaces shows that fracturing of intact bedrock below ice is difficult, but that preexisting weaknesses such as joints greatly facilitate rock failure. This implies that models of glacial erosion need to take fracture patterns of bedrock into account.

  20. Bouncing Continents: Insights into the Physics of the Polar Regions of the Earth from the POLENET Project in the International Polar Year

    ERIC Educational Resources Information Center

    Reading, Anya M.

    2008-01-01

    When ice sheets melt, and reduce the load on the surface of the Earth, the land areas beneath them bounce back up. New, accurate observations are needed to investigate this uplift and its implications effectively. This article provides a topical starting point for investigating some applications of physics applied to the polar regions of the…

  1. Fire beneath the ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the icemore » streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.« less

  2. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    NASA Astrophysics Data System (ADS)

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  3. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2013-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  4. Insect-Based Holocene (and Last Interglacial?) Paleothermometry from the E and NW Greenland Ice Sheet Margins: A Fly's-Eye View of Warmth on Greenland

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Bigl, M.; Carrio, C.; Corbett, L. B.; Francis, D. R.; Hall, B. L.; Kelly, M. A.; Levy, L.; Lowell, T. V.; Osterberg, E. C.; Richter, N.; Roy, E.; Schellinger, G. C.

    2011-12-01

    Here we present new paleotemperature reconstructions based upon insect (Chironomidae) assemblages and other proxies from lake sediment cores recovered in east Greenland at ~71° N near Scoresby Sund and in northwest Greenland at ~77° N near Thule/Qaanaaq. In east Greenland, Last Chance Lake (informal name) is a small, non-glacial lake situated ~90 km east of the Greenland Ice Sheet margin. The lake preserves a sedimentary record of the entire Holocene (Levy et al. 2013). Chironomids from Last Chance Lake record cold summer temperatures (and establishment of a cold-climate fauna including abundant Oliveridia and Pseudodiamesa) during the late Holocene, preceded by summer temperatures estimated to have been 3 to 6°C warmer during the first half of the Holocene (when summer insolation forcing was greater than today). In northwest Greenland, Delta Sø and Wax Lips Lake (informal name) both preserve Holocene sediments. Here we discuss the late Holocene chironomid record from Delta Sø, whereas from Wax Lips Lake (a small, non-glacial lake situated ~2 km west of the ice sheet margin) we present a longer sedimentary and biostratigraphic record. The deeper portions of cores from Wax Lips Lake yield pre-Holocene and nonfinite radiocarbon ages, suggesting that this lake preserves sediments predating the Last Glacial Maximum. Abundant chironomids in the pre-glacial sediments appear to record interglacial conditions, and we infer that these sediments may date to the Last Interglacial (Eemian). The preservation of in situ Last Interglacial lacustrine sediments so close to the modern ice sheet margin suggests a minimally erosive glacierization style throughout the last glacial period, like that inferred for other Arctic locales such as on Baffin Island (Briner et al. 2007), ~750 km southwest of our study site. Our study sites are situated nearby key ice core sites (including NEEM, Camp Century, Agassiz and Renland) and very close to the ice sheet margin. These chironomid records therefore provide opportunities to compare climate inferences based upon ice core data and reconstructed ice margin histories with independent, biologically based estimates of air temperatures for the Holocene and possibly the Last Interglacial. Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H., and Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology 35, 887-890. Levy, L.B., Kelly, M.A., Lowell, T.V., Hall, B.L., Hempel, L.A., Honsaker, W.M., Lusas, A.R., Howley, J.A., Axford, Y.L., 2013. Holocene fluctuations of Bregne ice cap, Scoresby Sund, east Greenland: a proxy for climate along the Greenland Ice Sheet margin. In press, Quaternary Science Reviews.

  5. Sediment features at the grounding zone and beneath Ekström Ice Shelf, East Antarctica, imaged using on-ice vibroseis.

    NASA Astrophysics Data System (ADS)

    Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph

    2017-04-01

    The grounding zone, where an ice sheet becomes a floating ice shelf, is known to be a key threshold region for ice flow and stability. A better understanding of ice dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo ice flow, as well as past ice extent. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström Ice Shelf, East Antarctica. Using an on-ice vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of ice dynamics to quantify past and present interactions between ice and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.

  6. Greenland was nearly ice-free for extended periods during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Schaefer, Joerg M.; Finkel, Robert C.; Balco, Greg; Alley, Richard B.; Caffee, Marc W.; Briner, Jason P.; Young, Nicolas E.; Gow, Anthony J.; Schwartz, Roseanne

    2016-12-01

    The Greenland Ice Sheet (GIS) contains the equivalent of 7.4 metres of global sea-level rise. Its stability in our warming climate is therefore a pressing concern. However, the sparse proxy evidence of the palaeo-stability of the GIS means that its history is controversial (compare refs 2 and 3 to ref. 4). Here we show that Greenland was deglaciated for extended periods during the Pleistocene epoch (from 2.6 million years ago to 11,700 years ago), based on new measurements of cosmic-ray-produced beryllium and aluminium isotopes (10Be and 26Al) in a bedrock core from beneath an ice core near the GIS summit. Models indicate that when this bedrock site is ice-free, any remaining ice is concentrated in the eastern Greenland highlands and the GIS is reduced to less than ten per cent of its current volume. Our results narrow the spectrum of possible GIS histories: the longest period of stability of the present ice sheet that is consistent with the measurements is 1.1 million years, assuming that this was preceded by more than 280,000 years of ice-free conditions. Other scenarios, in which Greenland was ice-free during any or all Pleistocene interglacials, may be more realistic. Our observations are incompatible with most existing model simulations that present a continuously existing Pleistocene GIS. Future simulations of the GIS should take into account that Greenland was nearly ice-free for extended periods under Pleistocene climate forcing.

  7. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  8. Glaciotectonic origin of the Massachusetts coastal end moraines and a fluctuating late Wisconsinan ice margin.

    USGS Publications Warehouse

    Oldale, R.N.; O'Hara, C. J.

    1984-01-01

    Late Wisconsinan end moraines on Cape Cod and islands south and west of Cape Cod are believed to be glaciotectonic features formed by advancing ice fronts. Evidence for major ice readvances during general recession includes the moraines themselves, till atop stratified drift, and the numerous basal tills that are inferred to exist beneath Cape Cod Bay. The Thompson Glacier end moraine in the Canadian Arctic Archipelago is considered to be a modern example of how late Wisconsinan end moraines on Cape Cod and the islands were formed. It is overriding its outwash plain, displacing outwash deposits forward and upward beyond the ice front. New sheets are added to the base of the moraine as the ice overrides it. Retreat of the ice from Cape Cod and the islands may have been similar to the retreat of the Lake Michigan lobe, deposits of which contain evidence of at least 12 moraine-building episodes caused by readvancing ice.-from Authors

  9. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.

  10. Can Subglacial Meltwater Films Carve Into the till Beneath? Insights from a Coupled Till-Water Model

    NASA Astrophysics Data System (ADS)

    Kasmalkar, I.; Mantelli, E.; Suckale, J.

    2017-12-01

    Networks of water channels are known to exist beneath regions of the continental ice sheets such as Antarctica and Greenland. These channels are fed by meltwater and form along the interface between the ice and the underlying till layer. Their presence localizes basal strength by reducing pore pressure and hence alters the resistance to ice slip provided by the till. Subglacial channels thus play a major role in determining the rate of ice flow for glaciers and ice streams. It is unclear whether subglacial meltwater can evolve from a thin film into a network of distributed channels by erosion of the sediment bed. Models that involve hard-rock beds can only account for water channels that carve into the ice and not the till. Alternative approaches that include erodible sediment mostly assume viscous behavior in the till layer, which is not well supported by laboratory experiments of till failure. To better understand the physical processes that govern channelization, we couple water flow in a thin film with sediment transport to capture the dynamic interactions between water and till. We present a two-dimensional model which consists of a thin subglacial water film that is in the laminar regime and an erodible till layer that obeys the Shield's criterion. We use analytic techniques to study the long-term behavior of perturbations of the water-till interface. We discuss the stability of the system under such perturbations in the context of channel formation.

  11. Pathways of warm water to the Northeast Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula

    2015-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat transport towards the base of the 79°N-Glacier.

  12. 36Cl, 10Be and 26Al analyses from the GISP2 bedrock core and the stability of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Schaefer, J. M.; Finkel, R. C.; Fifield, L. K.; Balco, G.; Caffee, M.; Alley, R. B.; Briner, J. P.; Young, N. E.; Gow, A. J.; Schwartz, R.

    2017-12-01

    The Greenland Ice Sheet (GIS) contains the equivalent of 7.4 meters (24 feet) of global sea-level rise. Its stability in our warming climate is therefore a pressing concern. However, the scarcity of proxy evidence of the palaeo-stability of the GIS means that its history remains controversial (for example 1 vs. 2). Current model simulations of the past GIS configuration during warm periods remain ambiguous but do show that both the magnitude and the duration of warmth are critical to ice-sheet stability. Much of this uncertainty reflects the fact that the direct evidence, if it exists, is buried beneath the present ice sheet. Here we attempt to overcome this obstacle via cosmogenic nuclide analysis of sub-GIS bedrock. Cosmogenic nuclides directly monitor periods of surface exposure to cosmic ray bombardment and thus ice-free conditions, and the ratios between cosmogenic nuclides of differing half-lives are diagnostic for periods the GIS shielded the bedrock. We focus on the bedrock underneath the 3042 m long GISP2 ice core, retrieved in 1993, and recently published the 10Be (half-life 1.4 Myr) and 26Al (half-life 0.7 Myr) analyses from quartz of this bedrock core 3. The published results show that Greenland was nearly ice-free for extended periods during the Pleistocene (2.6 Myr -11.7 kyr ago) and narrow the spectrum of possible GIS histories: the longest period of stability of the present ice sheet that is consistent with the 10Be and 26Al measurements is 1.1 Myr, assuming that this was preceded by more than 280 kyr of ice-free conditions. More dynamic scenarios, in which Greenland was ice-free during any or all Pleistocene interglacials, would be also consistent with the 10Be and 26Al data. We now present 36Cl (half-life 0.3 Myr) data from feldspars separated from this bedrock core. The measured 36Cl depth profile is consistent with the 10Be and 26Al data, indicating that most of the analyzed 36Cl was produced by neutron spallation during periods of nearly ice-free Greenland. We discuss the implications of these new, direct evidence from the GISP2 bedrock core for the past, present and future GIS stability. References 1 de Vernal, A. & Hillaire-Marcel, C. Science 320, 1622-1625 (2008). 2 Bierman, P. R., et al. Nature 540, 256-258 (2016). 3 Schaefer, J. M. et al. Nature 540, 252-255 (2016).

  13. Phreatomagmatic eruptions under the West Antarctic Ice Sheet: potential hazard for ice sheet stability

    NASA Astrophysics Data System (ADS)

    Iverson, N. A.; Dunbar, N. W.; Lieb-Lappen, R.; Kim, E. J.; Golden, E. J.; Obbard, R. W.

    2014-12-01

    Volcanic tephra layers have been seen in most ice cores in Antarctica. These tephra layers are deposited almost instantaneously across wide areas of ice sheets, creating horizons that can provide "pinning points" to adjust ice time scales that may otherwise be lacking detailed chronology. A combination of traditional particle morphology characterization by SEM with new non-destructive X-ray micro-computed tomography (Micro-CT) has been used to analyze selected coarse grained tephra in the West Antarctica Ice Sheet (WAIS) Divide WDC06A ice core. Micro-CT has the ability to image particles as small as 50µm in length (15µm resolution), quantifying both particle shape and size. The WDC06A contains hundreds of dusty layers of which 36 have so far been identified as primary tephra layers. Two of these tephra layers have been characterized as phreatomagmatic eruptions based on SEM imagery and are blocky and platy in nature, with rare magmatic particles. These layers are strikingly different in composition from the typical phonolitic and trachytic tephra produced from West Antarctic volcanoes. These two layers are coarser in grain size, with many particles (including feldspar crystals) exceeding 100µm in length. One tephra layer found at 3149.138m deep in the ice core is a coarse ~1mm thick basanitic tephra layer with a WDC06-7 ice core age of 45,381±2000yrs. The second layer is a ~1.3 cm thick zoned trachyandesite to trachydacite tephra found at 2569.205m deep with an ice core age 22,470±835yrs. Micro-CT analysis shows that WDC06A-3149.138 has normal grading with the largest particles at the bottom of the sample (~160μm). WDC06A-2569.205 has a bimodal distribution of particles with large particles at the top and bottom of the layer. These large particles are more spherical in shape at the base and become more irregular and finer grained higher in the layer, likely showing changes in eruption dynamics. The distinct chemistry as well as the blocky and large grain size of the two tephra lead us to believe that these eruptions are from volcanoes proximal to WAIS Divide and did not transport far because neither tephra was observed in the Byrd core (<100km away). It is likely that these tephra are sourced from volcanoes beneath the WAIS and have since been buried and if they were to erupt again, may contribute to ice sheet instability.

  14. Crushing of Subglacial Lake Sediment as a Source of Bio-utilisable Gases.

    NASA Astrophysics Data System (ADS)

    Gill Olivas, B.; Telling, J.; Michaud, A. B.; Skidmore, M. L.; Priscu, J. C.; Tranter, M.

    2017-12-01

    Recent research has shown microbial ecosystems exist under glaciers and ice sheets. The sources of energy to support these ecosystems are still not fully understood, particularly beneath the Antarctic Ice Sheet, where direct access to the atmosphere and in-washed organic matter and oxidising agents does not occur. Hence, sub-ice sheet energy sources are restricted to those in subglacial environments, except for ice-margin environments. This study focuses on sediments from Subglacial Lake Whillans (SLW), the first subglacial lake to be directly and cleanly sampled. Sediment from three depths in a shallow core extracted from SLW were used to assess the possible energy contributions from mechanochemical reactions to this subglacial ecosystem. To do this, the samples were crushed under an anoxic atmosphere using a ball mill. The sediments were then transferred into serum bottles under anoxic conditions. They were wetted and the headspace gas was subsequently sampled and analysed during a 40 day incubation. Results show the release of substantial amounts of hydrogen, which could potentially serve as an abiotic source of energy to microbes, in particular, methanogenic archaea. Significant amounts of short chain hydrocarbons (including methane and ethylene), possibly from the reactivation of ancient organic carbon, were also observed. Crushed samples showed a significant concentration of hydrogen peroxide produced on contact with water, as well as significant amounts of Si radicals, showing comminution of these sediments unlocks the potential for a wide range of redox conditions and reactions to develop within glacially eroded sediment under ice. This in turn provides a previously overlooked source of nutrients and energy for microbes to utilise.

  15. PIA21258

    NASA Image and Video Library

    2016-12-20

    These five images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter show different Martian features of progressively greater size and complexity, all thought to result from thawing of seasonal carbon-dioxide ice that covers large areas near Mars' south pole during winter. The sequence illustrates possible stages in development of a type of Martian terrain called "araneiform," from Latin for spider-shaped. They range from a depression with one trough (upper left) to a broad network of "spiders" (lower right). Each image has a scale bar in meters, from 20 meters (66 feet) in the upper-left image to 300 meters (984 feet) in the lower-right one. Each image also includes dark "fans" that result from the same thawing process. Carbon-dioxide ice, better known as "dry ice," does not occur naturally on Earth. On Mars, sheets of it cover the ground during winter in areas near both poles, including the south-polar regions with spidery terrain. The dark fans appear in these areas each spring. Spring sunshine penetrates the ice to warm the ground underneath, causing some carbon dioxide on the bottom of the sheet to thaw into gas. The trapped gas builds pressure until a crack forms in the ice sheet. Gas erupts out, and gas beneath the ice rushes toward the vent, picking up particles of sand and dust. This erodes the ground and also supplies the geyser with particles that fall back to the surface, downwind, and appear as the dark spring fans. These five images are excerpts from HiRISE observations PSP_002718_0950, taken Feb. 24, 2007, at 85 degrees south latitude, 82 degrees east longitude, and ESP_011842_0980, taken Feb. 4, 2009, at 81 degrees south latitude, 76 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21258

  16. Local and synoptic controls on rapid supraglacial lake drainage in West Greenland

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew; Banwell, Alison; Arnold, Neil; Willis, Ian

    2016-04-01

    Many supraglacial lakes within the ablation zone of the Greenland Ice Sheet (GrIS) are known to drain rapidly (in <1 day) in the mid- to late melt season, delivering large meltwater pulses to the subglacial drainage system, thus affecting basal water pressures and ice-sheet dynamics. Although it is now generally recognised that rapid lake drainage is caused by hydrofracture, the precise controls on hydrofracture initiation remain poorly understood: they may be linked to a local critical water-volume threshold, or they may be associated with synoptic-scale factors, such as ice thickness, driving stresses, ice velocities and strain rates. A combination of the local water-volume threshold and one or more synoptic-scale factors may explain the overall patterns of rapid lake drainage, but this requires verification using targeted field- and remotely-based studies that cover large areas of the GrIS and span long timescales. Here, we investigate a range of potential controls on rapid supraglacial lake drainage in the land-terminating Paakitsoq region of the ice sheet, northeast of Jakobshavn Isbræ, for the 2014 melt season. We have analysed daily 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in order to calculate lake areas, depths and volumes, and have developed an automatic lake-tracking algorithm to determine the dates on which all rapid lake drainage events occur. For each rapidly draining lake, the water volumes immediately prior to drainage are compared with other local factors, notably lake-filling rate and ice thickness, and with a variety of synoptic-scale features, such as slope angles, driving stresses, surface velocities, surface strain rates and the incidence of nearby lake-drainage events. We present the outcomes of our statistical analysis to elicit the statistically significant controls on hydrofracture beneath supraglacial lakes.

  17. The role of sediment supply in esker formation and ice tunnel evolution

    NASA Astrophysics Data System (ADS)

    Burke, Matthew J.; Brennand, Tracy A.; Sjogren, Darren B.

    2015-05-01

    Meltwater is an important part of the glacier system as it can directly influence ice sheet dynamics. Although it is important that ice sheet models incorporate accurate information about subglacial meltwater processes, the relative inaccessibility of contemporary ice sheet beds makes direct investigation challenging. Former ice sheet beds contain a wealth of meltwater landforms such as eskers that, if accurately interpreted, can provide detailed insight into the hydrology of former ice sheets. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last Laurentide and Cordilleran Ice Sheets. In south-western Alberta, esker distribution suggests that both water and sediment supply may have been important controls; the longest esker ridge segments are located within meltwater valleys partially filled by glaciofluvial sediments, whereas the shortest esker ridge segments are located in areas dominated by clast-poor till. Through detailed esker ridge planform and crest-type mapping, and near surface geophysics we reveal morpho-sedimentary relationships that suggest esker sedimentation was dynamic, but that esker distribution and architecture were primarily governed by sediment supply. Through comparison of these data with data from eskers elsewhere, we suggest three formative scenarios: 1) where sediment supply and flow powers were high, coarse sediment loads result in rapid deposition, and rates of thermo-mechanical ice tunnel growth is exceeded by the rate of ice tunnel closure due to sediment infilling. High sedimentation rates reduce ice tunnel cross-sectional area, cause an increase in meltwater flow velocity and force ice tunnel growth. Thus, ice tunnel growth is fastest where sedimentation rate is highest; this positive feedback results in a non-uniform ice tunnel geometry, and favours macroform development and non-uniform ridge geometry. 2) Where sediment supply is limited, but flow power high, the rate of sedimentation is less than the rate of thermo-mechanical ice tunnel growth. Here the ice tunnel enlarges faster than it fills with sediment and its evolution is independent of sedimentation, resulting in more uniform ice tunnel geometry. In these cases esker architecture is dominated by extensive vertical accretion of tabular units and ridge geometry is more uniform. 3) Where sediment is truly supply-limited the sedimentation rate is negligible regardless of water supply and, like scenario 2, ice tunnel growth is independent of sediment deposition, forming a relatively uniform ice tunnel (or eroding the bed). Because meltwater flows transport few gravel clasts the ice tunnel is not completely filled with gravel and, instead, saturated and pressurized diamicton or bedrock (if deformable) from beneath the surrounding ice is "squeezed" into the relatively low pressure ice tunnel during waning flow (or after ice tunnel shutdown), resulting in deformation of limited gravels deposited within the ice tunnel and a landform cored with diamicton or deformed bedrock, and with a relatively uniform ridge geometry. Our data demonstrate that an esker map is a minimum map of ice-walled channel location and that continued detailed investigation of morpho-sedimentary relationships is essential to gaining a complete picture of esker forming processes. Validating the morpho-sedimentary relationships identified in south-western Alberta (and other areas) with a larger data set may allow improved remote predictive esker mapping over larger areas and inferences to be made about spatial and temporal variations in esker depositional environments and ice tunnel evolution.

  18. Modeling a Possible Volcanic Origin for Interior Layered Deposits on Mars

    NASA Astrophysics Data System (ADS)

    Chapman, M. G.; Kneissl, T.

    2011-12-01

    This study was undertaken to examine the valid range of temperatures required for sub-ice volcanic origin of interior layered deposits (ILDs) in Valles Marineris. To this end, using GIS the volume estimates of Ophir Chasma and its 4 ILDs were mapped and measured. The GIS volumes in this study are based on high-res HRSC topography overlain on MOLA. We determined the void space of Ophir Chasma sans ILDs to be 92,319 km3. Volumes for each ILD mound were determined to be 6,185 km3, 4,833 km3, 2,628 km3, and 0.2 km3 (negligible); totaling 13,642 km3. A sub-ice volcano requires eruption beneath an existing ice sheet or ponded ice. If during the formation of a sub-ice volcano the associated unstable englacial meltwater lake is drained by jökulhlaups or if the volcano rises above the meltwater, effused subaerial lava will cap the tuff cone forming resistant sheet lavas. Hence, the lava cap horizon can be used to estimate the minimum height of ice. Three resistant ILD caprock locales (found only on the 2 largest ILDs) were mapped and the hypothetical ice volumes measured beneath their elevations are 77,391 km3, 79,899 km3, and 51,695 km3. Following the equation from Chapman et al. (2003), if the known ILDs in Ophir are assumed to be basaltic subice volcanoes, calorimetry can be used to estimate the volumes of meltwater generated by their eruption [Allen, 1980; Björnsson, 1988; Gudmundsson and Björnsson, 1991; Gudmundsson et al., 1997; Höskuldsson and Sparks, 1997]. These estimates are based on (1) the volume and likely mound density, (2) the heat content of basaltic magmas, and (3) the specific heat capacity and the latent heat of fusion for ice. The ice that can be melted by a mass of magma as it solidifies and cools can be calculated by equating the heat content of the magma with the heat used for melting. Two possible end member cases were used. In the first case it is assumed that the chasma contained ice at its melting point of 273 K and in the other case the present day temperature at the latitude of Juventae Chasma of 150 K [Haberle et al., 1999] is assumed. At 273 K the predicted volume of melted ice = 96,465 km3 exceeds the void volume, so at this temperature it would be fairly impossible for ILD sub-ice edifices to form unless the ice greatly exceeded plateau height. At 150 K, the predicted volume of melted ice = 55,755 km3, and this plus the measured volume of the ILD mounds (13,642 km3) = 69,401 km3 or 22,918 km3 less than the volume of the Ophir void. So, at this temperature sub-ice volcano formation is within the realm of possibility. Also, the equivalent meltwater volume of 51,152 km3 is close to that calculated to lie beneath the lowest caprock height. The additional missing 22,918 km3 may represent loss due to ash escaping the chasma, ILD erosion, and sublimation of remaining ice. In conclusion, modeling indicates that the possibility the ILDs may have been sub-ice volcanoes increases in validity as temperature near 150 K. A sub-ice origin also implies prolonged volcanically-induced hydrothermal systems.

  19. Discovery of relict subglacial lakes and their geometry and mechanism of drainage

    PubMed Central

    Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C.

    2016-01-01

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049

  20. Tidal influences on a future evolution of the Filchner-Ronne Ice Shelf cavity in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Mueller, Rachael D.; Hattermann, Tore; Howard, Susan L.; Padman, Laurie

    2018-02-01

    Recent modeling studies of ocean circulation in the southern Weddell Sea, Antarctica, project an increase over this century of ocean heat into the cavity beneath Filchner-Ronne Ice Shelf (FRIS). This increase in ocean heat would lead to more basal melting and a modification of the FRIS ice draft. The corresponding change in cavity shape will affect advective pathways and the spatial distribution of tidal currents, which play important roles in basal melting under FRIS. These feedbacks between heat flux, basal melting, and tides will affect the evolution of FRIS under the influence of a changing climate. We explore these feedbacks with a three-dimensional ocean model of the southern Weddell Sea that is forced by thermodynamic exchange beneath the ice shelf and tides along the open boundaries. Our results show regionally dependent feedbacks that, in some areas, substantially modify the melt rates near the grounding lines of buttressed ice streams that flow into FRIS. These feedbacks are introduced by variations in meltwater production as well as the circulation of this meltwater within the FRIS cavity; they are influenced locally by sensitivity of tidal currents to water column thickness (wct) and non-locally by changes in circulation pathways that transport an integrated history of mixing and meltwater entrainment along flow paths. Our results highlight the importance of including explicit tidal forcing in models of future mass loss from FRIS and from the adjacent grounded ice sheet as individual ice-stream grounding zones experience different responses to warming of the ocean inflow.

  1. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    NASA Astrophysics Data System (ADS)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (< 1.5 cm) a viscoelastic model matches better, while an elastic model is more robust overall. Within landward embayments, where lateral stresses from surrounding protrusions damp the flexural response, a 2-D model captures behaviour that is missed in simple 1-D models. We conclude that improvements in current tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  2. Simulating Ice Dynamics in the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.

    2017-12-01

    Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.

  3. New Aerogeophysical exploration of the Gamburtsev Province (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Ferraccioli, F.; Bell, R. E.; Studinger, M.; Damaske, D.; Jordan, T. A.; Corr, H.; Braaten, D. A.; Gogineni, P. S.; Fahnestock, M. A.; Finn, C.; Rose, K.

    2009-12-01

    The enigmatic Gamburstev Subglacial Mountains (GSM) in the interior of East Antarctica, have remained the least understood mountain range on earth, since their discovery some 50 years ago. An improved knowledge of the GSM region is however essential to underpin reconstructions of the Antarctic cryosphere and climate evolution. The GSM are a key nucleation site for the inception of the East Antarctic Ice Sheet approximately 34 Ma ago, and the adjacent Lambert Glacier played a pivotal role for ice sheet dynamics throughout the Neogene (23-0 Ma). The GSM province may also provide tectonic controls for major subglacial lakes flanking the range. In addition, the ice encasing the GSM province has been inferred to contain the oldest detailed climate record of the planet, a prime target for future deep ice core drilling. With the overarching aim of accomplishing the first systematic study of the cryosphere and lithosphere of the GSM province we launched a new geophysical exploration effort- AGAP (Antarctica’s Gamburtsev Province)-, a flagship programme of the International Polar Year. The aerogeophysical and seismology components of AGAP were accomplished by pooling resources from 7 nations. We deployed 2 Twin Otters, equipped with state-of-the art geophysical instrumentation and operating from two remote field camps on either side of Dome A. Over 120,000 line-km of new airborne radar, laser, aerogravity and aeromagnetic data survey were collected during the 2008/09 field campaign. Our grids of ice surface, ice thickness, subglacial topography, and gravity and magnetic anomalies provide a new geophysical foundation to analyse the GSM province, from the surface of the East Antarctic Ice Sheet down to mantle depths beneath the Precambrian shield. The anomalously high-elevation, alpine-type landscape of the GSM is now mapped with unprecedented detail. Two distinct branches of a subglacial rift system are imaged along the north-western and north-eastern margins of the Gamburtsev’s and provide geological controls for ice flow in the Lambert Glacier region.

  4. Clean, Logistically Light Access to Explore the Closest Places on Earth to Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Elam, W. T.; Kintner, P. M. S.; Tyler, S.; Selker, J. S.

    2016-12-01

    At present, the logistical costs of ice drilling to depths of kilometers severely limit sampling and measurements beneath ice sheets. Thus only a tiny fraction of the 400 known subglacial lakes beneath the Antarctic Ice Sheet can ever be sampled by drilling, and study of large lakes may be limited to observations at one or, at best, a few sites. Antarctic lakes are likely highly diverse in their geochemical and geothermal fluxes, the timing and duration of their glaciations, and other characteristics. They constitute a remarkable collection of natural laboratories for learning biogeochemistries and adaptations of subglacial life on Earth. Moreover, they are arguably Earth-analogs to ice-covered seas on Europa and Enceladus, closer not only in relative terms than other analogs, but also usefully close in absolute terms for learning solar-system-wide features of ice-covered seas. It is therefore essential to sample Antarctic lakes with enough range and density, in space and time, to gain better understanding of their workings than drilling alone can provide. The logistics of thermal melt probes makes them attractive, provided that key limitations can be overcome. In particular, melt probes from the 1960s through the 1990s were unreliable, all halted in their descents by electrical failures at high voltages (which are necessary for efficient power use). Moreover, the hole above a classical melt probe refreezes, so neither samples nor the probe itself can be recovered. Here we report progress in overcoming both of these limitations with modern materials and components for reliable high-voltage operation. We have demonstrated in Greenland a 6.5 cm-diameter melt probe operating at 1050V/2.15 kW (electrical) that descended at 2.4 m/hr to 80 m depth in 2013, and after restarting in 2014, to 400 m depth, where we turned it off. We also operated a probe at 2000V/4.5 kW in 2014, which descended at 6.6 m/hr (according to a validated engineering model). These results are the second greatest depth and greatest speed attained by melt probes. We also report on testing a way to avoid complete refreezing of a melt hole, which enables cable deployment from the surface and thus small probes to reach and be recovered from great depth, as well as Raman Distributed Temperature Sensing of ice sheet temperatures, with several applications.

  5. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    USGS Publications Warehouse

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  6. Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2014-12-01

    Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.

  7. Subglacial carbonate precipitates on central Baffin Island, Arctic Canada may constrain basal conditions for the Foxe sector of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Refsnider, K. A.

    2009-12-01

    Extensive, widespread carbonate deposits on gneissic bedrock have recently been discovered around the Barnes Ice Cap, central Baffin Island. Deposits range from conglomeratic crack-fillings ≤5 cm thick to laminated, striated films plastered on bedrock surfaces, often in the lee of obstacles. A single outcrop of these carbonates was first described by Andrews et al. (1972, Canadian Journal of Earth Sciences, 9, 233-238) and was interpreted as an early Tertiary limestone based on the presence of warm-climate palynomorphs including Liriodendron (tulip tree), Ulmus (elm), and Taxodium (cypress). However, recent fieldwork in the region has demonstrated that these carbonates are far more ubiquitous than previously thought and found on both glacially-polished bedrock surfaces and till boulders that melted out in recent decades from Laurentide ice at the base of the Barnes Ice Cap. In many cases, these carbonates exhibit the characteristic morphologies of subglacial carbonates (flutes, furrows, and striations parallel to the direction of ice flow, columnar spicules, and tufa-dam-like forms). A few deposits include angular sands, gravels, and pebbles. The nearest carbonate bedrock is Paleozoic limestone flooring Foxe Basin 130 km west of the Barnes Ice Cap summit. While subglacial carbonate deposits have been documented adjacent to retreating mountain and outlet glaciers and in areas previously covered by Pleistocene ice sheets, few localities are distant from carbonate bedrock. Thus, the carbon required for carbonate deposition in the Barnes region was either (1) derived from Paleozoic limestone and dissolved in subglacial water that was subject to long-distance transport, or (2) there was sufficient trapped atmospheric CO2 in the ice to yield alkaline basal meltwater which hydrolyzed calcium-bearing silicates in the local bedrock. Given the volume of carbonate deposited at some sites, we find the latter model unlikely. If the former model is applicable, these carbonates will provide considerable insight into subglacial processes beneath the Foxe sector of the Laurentide Ice Sheet and possibly constrain the former ice thicknesses above these sites. Quantitative x-ray diffraction defines the mineralogy of both the carbonate and clastic components. Carbon and strontium isotopes in the carbonate precipitates, Foxe Basin Paleozoic bedrock, and local bedrock should define the source of the carbon and calcium in the deposits. Oxygen isotopes of Barnes Ice Cap Laurentide ice and the carbonates provide a unique opportunity to compare the isotopic composition of subglacial carbonates with the isotopic composition of the actual ice sheet under which they were precipitated.

  8. NASA Launches Eighth Year of Antarctic Ice Change Airborne Survey

    NASA Image and Video Library

    2017-12-08

    At the southern end of the Earth, a NASA plane carrying a team of scientists and a sophisticated instrument suite to study ice is returning to surveying Antarctica. For the past eight years, Operation IceBridge has been on a mission to build a record of how polar ice is evolving in a changing environment. The information IceBridge has gathered in the Antarctic, which includes data on the thickness and shape of snow and ice, as well as the topography of the land and ocean floor beneath the ocean and the ice, has allowed scientists to determine that the West Antarctic Ice Sheet may be in irreversible decline. Researchers have also used IceBridge data to evaluate climate models of Antarctica and map the bedrock underneath Antarctic ice. Read more:http://go.nasa.gov/2dxczkd NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. A seismic transect across West Antarctica: Evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome

    NASA Astrophysics Data System (ADS)

    Lloyd, Andrew J.; Wiens, Douglas A.; Nyblade, Andrew A.; Anandakrishnan, Sridhar; Aster, Richard C.; Huerta, Audrey D.; Wilson, Terry J.; Dalziel, Ian W. D.; Shore, Patrick J.; Zhao, Dapeng

    2015-12-01

    West Antarctica consists of several tectonically diverse terranes, including the West Antarctic Rift System, a topographic low region of extended continental crust. In contrast, the adjacent Marie Byrd Land and Ellsworth-Whitmore mountains crustal blocks are on average over 1 km higher, with the former dominated by polygenetic shield and stratovolcanoes protruding through the West Antarctic ice sheet and the latter having a Precambrian basement. The upper mantle structure of these regions is important for inferring the geologic history and tectonic processes, as well as the influence of the solid earth on ice sheet dynamics. Yet this structure is poorly constrained due to a lack of seismological data. As part of the Polar Earth Observing Network, 13 temporary broadband seismic stations were deployed from January 2010 to January 2012 that extended from the Whitmore Mountains, across the West Antarctic Rift System, and into Marie Byrd Land with a mean station spacing of ~90 km. Relative P and S wave travel time residuals were obtained from these stations as well as five other nearby stations by cross correlation. The relative residuals, corrected for both ice and crustal structure using previously published receiver function models of crustal velocity, were inverted to image the relative P and S wave velocity structure of the West Antarctic upper mantle. Some of the fastest relative P and S wave velocities are observed beneath the Ellsworth-Whitmore mountains crustal block and extend to the southern flank of the Bentley Subglacial Trench. However, the velocities in this region are not fast enough to be compatible with a Precambrian lithospheric root, suggesting some combination of thermal, chemical, and structural modification of the lithosphere. The West Antarctic Rift System consists largely of relative fast uppermost mantle seismic velocities consistent with Late Cretaceous/early Cenozoic extension that at present likely has negligible rift related heat flow. In contrast, the Bentley Subglacial Trench, a narrow deep basin within the West Antarctic Rift System, has relative P and S wave velocities in the uppermost mantle that are ~1% and ~2% slower, respectively, and suggest a thermal anomaly of ~75 K. Models for the thermal evolution of a rift basin suggest that such a thermal anomaly is consistent with Neogene extension within the Bentley Subglacial Trench and may, at least in part, account for elevated heat flow reported at the nearby West Antarctic Ice Sheet Divide Ice Core and at Subglacial Lake Whillans. The slowest relative P and S wave velocity anomaly is observed extending to at least 200 km depth beneath the Executive Committee Range in Marie Byrd Land, which is consistent with warm possibly plume-related, upper mantle. The imaged low-velocity anomaly and inferred thermal perturbation (~150 K) are sufficient to support isostatically the anomalous long-wavelength topography of Marie Byrd Land, relative to the adjacent West Antarctic Rift System.

  10. Negative magnetic anomaly over Mt. Resnik, a subaerially erupted volcanic peak beneath the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.; Morse, D.L.; Blankenship, D.D.

    2006-01-01

    Mt. Resnik is one of the previously reported 18 subaerially erupted volcanoes (in the West Antarctic rift system), which have high elevation and high bed relief beneath the WAIS in the Central West Antarctica (CWA) aerogeophysical survey. Mt. Resnik lies 300 m below the surface of the West Antarctic Ice Sheet (WAIS); it has 1.6 km topographic relief, and a conical form defined by radar ice-sounding of bed topography. It has an associated complex negative magnetic anomaly revealed by the CWA survey. We calculated and interpreted magnetic models fit to the Mt. Resnik anomaly as a volcanic source comprising both reversely and normally magnetized (in the present field direction) volcanic flows, 0.5-2.5-km thick, erupted subaerially during a time of magnetic field reversal. The Mt. Resnik 305-nT anomaly is part of an approximately 50- by 40-km positive anomaly complex extending about 30 km to the west of the Mt. Resnik peak, associated with an underlying source complex of about the same area, whose top is at the bed of the WAIS. The bed relief of this shallow source complex has a maximum of only about 400 m, whereas the modeled source is >3 km thick. From the spatial relationship we interpret that this source and Mt Resnik are approximately contemporaneous. Any subglacially (older?) erupted edifices comprising hyaloclastite or other volcanic debris, which formerly overlaid the source to the west, were removed by the moving WAIS into which they were injected as is the general case for the ???1000 volcanic centers at the base of the WAIS. The presence of the magnetic field reversal modeled for Mt. Resnik may represent the Bruhnes-Matayama reversal at 780 ka (or an earlier reversal). There are ???100 short-wavelength, steep-gradient, negative magnetic anomalies observed over the West Antarctic Ice Sheet (WAIS), or about 10% of the approximately 1000 short-wavelength, shallow-source, high-amplitude (50- >1000 nT) "volcanic" magnetic anomalies in the CWA survey. These negative anomalies indicate volcanic activity during a period of magnetic reversal and therefore must also be at least 780 ka. The spatial extent and volume of volcanism can now be reassessed for the 1.2 ?? 106 km2 region of the WAIS characterized by magnetic anomalies defining interpreted volcanic centers associated with the West Antarctic rift system. The CWA covers an area of 3.54 ?? 105 km2; forty-four percent of that area exhibits short-wavelength, high-amplitude anomalies indicative of volcanic centers and subvolcanic intrusions. This equates to an area of 0.51 ?? 105 km2 and a volume of 106 km3 beneath the ice-covered West Antarctic rift system, of sufficient extent to be classified as a large igneous province interpreted to be of Oligocene to recent age.

  11. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    NASA Astrophysics Data System (ADS)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  12. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our study area. However, analysis of dated internal layers over several bright, flat, "lake-like" reflectors reveals a very different age versus depth relationship in which deeper layers actually thicken with depth. This thickening of deep layers results from ice flowing in from the sides to accommodate significant liquid water production at the base of the ice sheet. This melt is occurring today and can be quantified. With our knowledge of melt rates we can begin to estimate inputs and assess hydrologic parameters for the subglacial lake systems of East Antarctica.

  13. Life in Ice: Implications to Astrobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a possible natural phenomenon of the solar system that may have played a profoundly important role in the Origin of Life on Earth and the Distribution of Life in the Cosmos. The paper concludes with a consideration of the protective properties of ice by absorption of UV-B, UV-C, h-rays, gamma-rays and the high energy proton environment of the Jupiter Radiation Belt. A proposed instrument that may provide additional data on the potential survivability of microbial extremophiles encased in ice and subjected to the simulated space environment will be briefly described.

  14. Microbial activity discovered in previously ice-entombed Arctic ecosystems

    NASA Astrophysics Data System (ADS)

    Welker, J. M.; Fahnestock, J. T.; Henry, G. H. R.; 0'Dea, K. W.; Piper, R. E.

    One of the more intriguing discoveries in the biogeochemical sciences in recent years is the tremendous capacity of microbial populations to occupy and flourish in extreme habitats [Rothschild and Mancinelli 2001]. Microbial populations survive and multiply under a diversity of harsh conditions, including the hot springs of Yellowstone National Park, Wyoming, and on the ocean floor around thermal vents. At the other extreme, active microbial communities occupy some of the coldest and driest habitats on Earth. For instance, a variety of bacterial and fungal species have been found in the Dry Valleys of Antarctica, and there is evidence that microbes are also present beneath the Antarctic Ice Sheet in Lake Vostok, a system that has not been exposed to the atmosphere for thousands of years.

  15. The role of subglacial microbes in carbon cycling and methane release in the past and present

    NASA Astrophysics Data System (ADS)

    Stibal, M.; Bech Mikkelsen, A.; Wadham, J. L.; Telling, J.; Hawkings, J.; Lis, G. P.; Lawson, E. C.; Hasan, F.; Dubnick, A.; Elberling, B.; Jacobsen, C. S.

    2012-12-01

    Subglacial environments are largely anoxic, contain organic carbon (OC) overridden by glacier ice during periods of advance, and harbour active microbial communities. This creates favourable conditions for a variety of microbial metabolisms, including methanogenesis. Yet little is known of the past and present potentials of subglacial microbes to take part in carbon cycling including methane production. Here we present data on the abundance and diversity of prokaryotic microbes, the activity of methanogenic archaea and the amount and character of OC in subglacial sediment and runoff from the Greenland Ice Sheet and compare them to those from other Arctic glaciers. The investigated Greenland subglacial sediment was of Holocene-aged soil origin and contained less bioavailable OC compared to subglacial sediments of lacustrine origin. The total microbial abundance and diversity was relatively low and the community was dominated by Proteobacteria. The identified clones were related to bacteria with both aerobic and anaerobic metabolisms, indicating the presence of both oxic and anoxic conditions in the sediments. Significant numbers of methanogens (up to 7×104 cells g-1) were detected and clones of Methanomicrobiales were identified in the clone library. Long lag periods (up to >200 days) were observed before significant methane concentrations (~0.2 pmol g-1 day-1 at 1C) were measured in long-term incubation experiments. These rates were lower than those measured in subglacial sediments containing more bioavailable OC. We use the measured rates of methanogenesis to estimate the potential for methane production beneath the Laurentide/Inuitian/Cordilleran and Fennoscandian Ice Sheets during a typical 85 ka Quaternary glacial/interglacial cycle. We predict that contrasting rates of methane production are likely to occur beneath glaciers that overran different types of substrate. Methane production from overridden soils such as those in Greenland is likely to be lower than that from lacustrine-derived sediments, possibly due to a difference in organic substrate lability. This finding highlights the importance of considering the character of different OC pools when calculating present and predicting future subglacial CH4 production rates. We also examine the modern potential of subglacial microbes, including methanogens, to be exported to downstream ecosystems in an active state, and suggest that due to the accelerated melting of glaciers and ice sheets worldwide large amounts of active microbes are transported to downstream ecosystems where they can resume their activity.

  16. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme, there are a number of shallow-source, volcanic appearing magnetic anomalies overlying the very smooth bed topography in the survey area beneath Ice Stream D (Bindshadler Ice Stream); the glacial bed probably comprises a very thin layer of unconsolidated sediments (till). Probably, the volcanic edifices here were removed at a more rapid rate because of fast glacial flow. A few of the very shallow-source "volcanic" anomalies overlie the ice shelf just downstream of the grounding line of Ice Stream D, suggesting a causal relationship, if the volcanism is recent. ?? 2004 Elsevier B.V. All rights reserved.

  17. Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    USGS Publications Warehouse

    Naish, T.R.; Powell, R.D.; Barrett, P.J.; Levy, R.H.; Henrys, S.; Wilson, G.S.; Krissek, L.A.; Niessen, F.; Pompilio, M.; Ross, J.; Scherer, R.; Talarico, F.; Pyne, A.; ,

    2007-01-01

    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land.

  18. Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA)

    NASA Astrophysics Data System (ADS)

    Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Drinkwater, Mark R.

    2017-12-01

    A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modeling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward-modeling GIA, we estimate GIA from multiple space-geodetic observations: Gravity Recovery and Climate Experiment (GRACE), Envisat/ICESat and Global Positioning System (GPS). Making use of the different sensitivities of the respective satellite observations to current and past surface-mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice-mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several centimetres per year have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contributions summarizing the work carried out within a European Space Agency funded study, REGINA (www.regina-science.eu).

  19. Radar backscattering from snow facies of the Greenland ice sheet: Results from the AIRSAR 1991 campaign

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Jezek, K.; Vanzyl, J. J.; Drinkwater, Mark R.; Lou, Y. L.

    1993-01-01

    In June 1991, the NASA/JPL airborne SAR (AIRSAR) acquired C- (lambda = 5.6cm), L- (lambda = 24cm), and P- (lambda = 68m) band polarimetric SAR data over the Greenland ice sheet. These data are processed using version 3.55 of the AIRSAR processor which provides radiometrically and polarimetrically calibrated images. The internal calibration of the AIRSAR data is cross-checked using the radar response from corner reflectors deployed prior to flight in one of the scenes. In addition, a quantitative assessment of the noise power level at various frequencies and polarizations is made in all the scenes. Synoptic SAR data corresponding to a swath width of about 12 by 50 km in length (compared to the standard 12 x 12 km size of high-resolution scenes) are also processed and calibrated to study transitions in radar backscatter as a function of snow facies at selected frequencies and polarizations. The snow facies on the Greenland ice sheet are traditionally categorized based on differences in melting regime during the summer months. The interior of Greenland corresponds to the dry snow zone where terrain elevation is the highest and no snow melt occurs. The lowest elevation boundary of the dry snow zone is known traditionally as the dry snow line. Beneath it is the percolation zone where melting occurs in the summer and water percolates through the snow freezing at depth to form massive ice lenses and ice pipes. At the downslope margin of this zone is the wet snow line. Below it, the wet snow zone corresponds to the lowest elevations where snow remains at the end of the summer. Ablation produces enough meltwater to create areas of snow saturated with water, together with ponds and lakes. The lowest altitude zone of ablation sees enough summer melt to remove all traces of seasonal snow accumulation, such that the surface comprises bare glacier ice.

  20. What can Subglacial Sediment Tell us About the Underlying Geology and the Dynamic of the West-Antarctic Ice Sheet?

    NASA Astrophysics Data System (ADS)

    Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.

    2003-12-01

    The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.

  1. Recent advances in understanding Antarctic subglacial lakes and hydrology

    PubMed Central

    Siegert, Martin J.; Ross, Neil; Le Brocq, Anne M.

    2016-01-01

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from ‘active’ lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further ‘active’ subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many ‘active’ lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). PMID:26667914

  2. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    PubMed

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface). © 2015 The Authors.

  3. Bathymetry and ocean properties beneath Pine Island Glacier revealed by Autosub3 and implications for recent ice stream evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Dutrieux, P.; McPhail, S.; Perrett, J.; Webb, A.; White, D.; Jacobs, S. S.

    2009-12-01

    The Antarctic ice sheet, which represents the largest of all potential contributors to sea level rise, appears to be losing mass at a rate that has accelerated over recent decades. Ice loss is focussed in a number of key drainage basins where dynamical changes in the outlet glaciers have led to increased discharge. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid over their floating termini, is generally taken as an indicator that the changes have been driven from the ocean. Some of the most significant changes have been observed on Pine Island Glacier, where thinning, acceleration and grounding line retreat have all been observed, primarily through satellite remote sensing. Even during the relatively short satellite record, rates of change have been observed to increase. Between 20th and 30th January 2009 the Autosub3 autonomous underwater vehicle was deployed from host ship RVIB Nathaniel B Palmer on six sorties into the ocean cavity beneath Pine Island Glacier. Total track length was 887 km (taking 167 hours) of which 510 km (taking 94 hours) were beneath the glacier. Some of the main aims were to map both the seabed beneath and the underside of the glacier and to investigate how warm Circumpolar Deep Water (CDW) flows beneath Pine Island Glacier and determines its melt rate. Among the instruments carried by Autosub-3 were a Seabird CTD, with dual conductivity and temperature sensors plus a dissolved oxygen sensor and a transmissometer, a multi-beam echosounder that could be configured to look up or down, and two Acoustic Doppler Current Profilers (ADCPs): an upward-looking 300 kHz instrument and a downward-looking 150 kHz instrument, providing a record of ice draft and seabed depth along the vehicle track. The ADCP data reveal an apparently continuous ridge with an undulating crest that extends across the cavity about 30km in from the current ice front. This topographic feature blocks CDW inflow from the inner cavity and impacts the degree to which it mixes with the cooler melt water outflow. Swath soundings indicate that this ridge was a former grounding line, while satellite imagery from the early 1970’s hints that Pine Island Glacier might still have been in contact with the ridge at that time. These findings suggest that the changes observed by satellite over the past two decades are the continuation of a longer period of grounding line retreat.

  4. Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads

    NASA Astrophysics Data System (ADS)

    Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.

    2018-01-01

    Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.

  5. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  6. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    NASA Astrophysics Data System (ADS)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the bed is overall weaker. Yet, this is where most of the bed weakening occurred between 1996 and 2014. We show that the extent of this weakening can largely be explained by local assimilation of subglacial melt water into the till layer, consistent with a distributed subglacial water system. We conclude on the implication for the future dynamical behaviour of PIG tributaries.

  7. Impact of Basal Conditions on Grounding-Line Retreat

    NASA Astrophysics Data System (ADS)

    Koellner, S. J.; Parizek, B. R.; Alley, R. B.; Muto, A.; Holschuh, N.; Nowicki, S.

    2017-12-01

    An often-made assumption included in ice-sheet models used for sea-level projections is that basal rheology is constant throughout the domain of the simulation. The justification in support of this assumption is that physical data for determining basal rheology is limited and a constant basal flow law can adequately approximate current as well as past behavior of an ice-sheet. Prior studies indicate that beneath Thwaites Glacier (TG) there is a ridge-and-valley bedrock structure which likely promotes deformation of soft tills within the troughs and sliding, more akin to creep, over the harder peaks; giving rise to a spatially variable basal flow law. Furthermore, it has been shown that the stability of an outlet glacier varies with the assumed basal rheology, so accurate projections almost certainly need to account for basal conditions. To test the impact of basal conditions on grounding-line evolution forced by ice-shelf perturbations, we modified the PSU 2-D flowline model to enable the inclusion of spatially variable basal rheology along an idealized bedrock profile akin to TG. Synthetic outlet glacier "data" were first generated under steady-state conditions assuming a constant basal flow law and a constant basal friction coefficient field on either a linear or bumpy sloping bed. In following standard procedures, a suite of models were then initialized by assuming different basal rheologies and then determining the basal friction coefficients that produce surface velocities matching those from the synthetic "data". After running each of these to steady state, the standard and full suite of models were forced by drastically reducing ice-shelf buttressing through side-shear and prescribed basal-melting perturbations. In agreement with previous findings, results suggest a more plastic basal flow law enhances stability in response to ice-shelf perturbations by flushing ice from farther upstream to sustain the grounding-zone mass balance required to prolong the current grounding-line position. Mixed rheology beds tend to mimic the retreat of the higher-exponent bed, a behavior enhanced over bumps as the stabilizing ridges tap into ice from local valleys. Thus, accounting for variable basal conditions in ice-sheet model projections is critical for improving both the timing and magnitude of retreat.

  8. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  9. The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic Ice Sheet (WAIS) Divide Ice Core Site from the Present Day to the Last Glacial Period.

    NASA Astrophysics Data System (ADS)

    Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.

    2017-12-01

    We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and ice collected at the West Antarctic ice sheet (WAIS) divide ice core site to quantify the preservation and recycling of snow nitrate. Ice-core samples cover a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of ice-core records of nitrate in terms of past atmospheric composition.

  10. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419

  11. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  12. Glacial uplift: fluid injection beneath an elastic sheet on a poroelastic substrate

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Hewitt, Duncan; Chini, Greg

    2016-11-01

    Supraglacial lakes can drain to the base of glaciers extremely rapidly, causing localised uplift of the surrounding glacier and affecting its sliding velocity. The means by which large volumes of drained water interact with and leak into the subglacial hydrological system is unclear, as is the role of the basal till. A theoretical study of the spread of fluid injected below an elastic sheet (the ice) is presented, where the ice lies above, and initially compresses, a deformable poroelastic layer. As pressurized fluid is injected, the deformable layer swells to accommodate more fluid. If sufficient fluid is injected, a 'blister' of fluid forms above the layer, causing the overburden to lift off the base. The flow is controlled by the local pressure drop across the tip of this blister, which depends subtly on both the flow of fluid through the porous layer below the tip, and on poroelastic deformation in the till ahead of the tip. The spreading behaviour and dependence on key parameters is analysed. Predictions of the model are compared to field measurements of uplift from draining glacial lakes in Greenland.

  13. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  14. How might the North American ice sheet influence the northwestern Eurasian climate?

    NASA Astrophysics Data System (ADS)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the altitude of the American ice sheet leads to less total precipitation and snowfall and to colder temperatures over both the Scandinavian and the Barents and Kara sea sectors. We then compute the resulting annual surface mass balance over the Fennoscandian region from the simulated temperature and precipitation fields used to force an ice-sheet model. It clearly appears that the SMB is dominated by the ablation signal. In response to the summer cooling induced by the American ice-sheet albedo, high positive SMB values are obtained over the Eurasian region, leading thus to the growth of an ice sheet. On the contrary, the gradual increase of the American ice-sheet altitude induces more ablation over the Eurasian sector, hence limiting the growth of Fennoscandia. To test the robustness of our results with respect to the Eurasian ice sheet state, we carried out two additional LMDZ experiments with new boundary conditions involving both the American (flat or full LGM) and high Eurasian ice sheets. The most striking result is that the Eurasian ice sheet is maintained under full-LGM North American ice-sheet conditions, but loses ~ 10 % of its mass compared to the case in which the North American ice sheet is flat. These new findings qualitatively confirm the conclusions from our first series of experiments and suggest that the development of the Eurasian ice sheet may have been slowed down by the growth of the American ice sheet, offering thereby a new understanding of the evolution of Northern Hemisphere ice sheets throughout glacial-interglacial cycles.

  15. Hydrogeology of the Waverly-Sayre area in Tioga and Chemung ounties, New York and Bradford County, Pennsylvania

    USGS Publications Warehouse

    Reynolds, Richard J.

    2002-01-01

    The hydrogeology of a 135-square-mile area centered at Waverly, N.Y. and Sayre, Pa. is summarized in a set of five maps and a sheet of geologic sections, all at 1:24,000 scale, that depict locations of wells and test holes (sheet 1), surficial geology (sheet 2), altitude of the water table (sheet 3), saturated thickness of the surficial aquifer (sheet 4), thickness of the lacustrine confining unit (sheet 5), and geologic sections (sheet 6). The valley-fill deposits that form the aquifer system in the Waverly-Sayre area occupy an area of approximately 30 square miles, within the valleys of the Susquehanna River, Chemung River, and Cayuta Creek.The saturated thickness of the surficial aquifer, which consists of alluvium, valley-train outwash, and underlying ice-contact deposits, ranges from zero to 90 feet and is greatest in areas where (1) the outwash is underlain by ice-contact sand and gravel or (2) the outwash is overlain by alluvium and alluvial fans. Estimated transmissivity of the surficial aquifer ranges from 5,600 to 100,270 feet squared per day, and estimated hydraulic conductivity ranges from 50 feet per day for ice-contact deposits to 1,300 feet per day for well-sorted, valley-train outwash.The surficial aquifer is underlain by deposits of lacustrine sand, silt, and clay in the main valleys; these deposits reach thicknesses of as much as 150 ft and form a thick confining unit. Beneath the lacustrine silt and clay confining unit is a thin, discontinuous sand and gravel aquifer whose thickness averages 5 feet but may be as much as 30 feet locally. This confined aquifer supplies many domestic well in the area; yields average about 22 gallons per minute for 6-inch-diameter, open-ended wells. Average annual recharge to the aquifer system is estimated to be approximately 52.5 Mgal/d (million gallons per day), of which 29.7 Mgal/d is from direct precipitation, 7.6 Mgal/d is from unchanneled upland runoff that infiltrates the stratified drift along the valley wall, and 15.2 Mgal/d is from infiltration from tributary streams on the valley floor.

  16. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.

  17. Validation of Modelled Ice Dynamics of the Greenland Ice Sheet using Historical Forcing

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Price, S. F.; Howat, I. M.; Bonin, J. A.; Chambers, D. P.; Tezaur, I.; Kennedy, J. H.; Lenaerts, J.; Lipscomb, W. H.; Neumann, T.; Nowicki, S.; Perego, M.; Saba, J. L.; Salinger, A.; Guerber, J. R.

    2015-12-01

    Although ice sheet models are used for sea level rise projections, the degree to which these models have been validated by observations is fairly limited, due in part to the limited duration of the satellite observation era and the long adjustment time scales of ice sheets. Here we describe a validation framework for the Greenland Ice Sheet applied to the Community Ice Sheet Model by forcing the model annually with flux anomalies at the major outlet glaciers (Enderlin et al., 2014, observed from Landsat/ASTER/Operation IceBridge) and surface mass balance (van Angelen et al., 2013, calculated from RACMO2) for the period 1991-2012. The ice sheet model output is compared to ice surface elevation observations from ICESat and ice sheet mass change observations from GRACE. Early results show promise for assessing the performance of different model configurations. Additionally, we explore the effect of ice sheet model resolution on validation skill.

  18. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca. 1650-1850 C.E.). Across Alaska, we found a relationship between methane stable isotopes, radiocarbon age, and distance to faults. Faults appear to allow the escape of deeper, more 14C-depleted methane to the atmosphere, whereas seeps away from faults entrained 14C-enriched methane formed in shallower sediments from microbial decomposition of younger organic matter. Additionally, we observed younger subcap methane seeps in lakes of Greenland's Sondrestrom Fjord that were associated with ice-sheet retreat since the LIA. These correlations suggest that in a warming climate, continued disintegration of glaciers, permafrost, and parts of the polar ice sheets will weaken subsurface seals and further open conduits, allowing a transient expulsion of methane currently trapped by the cryosphere cap.

  19. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    PubMed Central

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  20. Coupled ice sheet-ocean modelling to investigate ocean driven melting of marine ice sheets in Antarctica

    NASA Astrophysics Data System (ADS)

    Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben

    2017-04-01

    Ocean induced melting below the ice shelves of marine ice sheets is a major source of uncertainty for predictions of ice mass loss and Antarctica's resultant contribution to future sea level rise. The floating ice shelves provide a buttressing force against the flow of ice across the grounding line into the ocean. Thinning of these ice shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded ice. Fully coupled modelling of ice sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic ice sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and ice sheet models is needed to provide more realistic melt rates at the base of ice shelves and hence make better predictions of the behaviour of the grounding line and the shape of the ice-shelf cavity as the ice sheet evolves. The Framework for Ice Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled ice sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/Ice in idealised experiments Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning ice and grounding line retreat.

  1. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA

    USGS Publications Warehouse

    Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, Brandon; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.

    2010-01-01

    While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.

  2. Tomographic evidence for recent extension in the Bentley Subglacial Trench and a hotspot beneath Marie Byrd Land

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D. A.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.

    2013-12-01

    Here we present the first regional P and S wave relative velocity models of the upper mantle beneath much of West Antarctica using P and S wave relative travel time residuals from teleseismic events recorded by seismographs from the POLENET/ANET project. 21 of the seismographs form a sparse backbone network co-located with continuously recording GPS stations at rock sites throughout West Antarctica, and 17 stations formed a seismic transect extending from the Whitmore Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land (MBL) with a station spacing of 90-100 km. Corrections for heterogeneities above the Moho, including the ice sheet, are applied to the relative travel time residuals using the receiver function models of Chaput et al., [submitted, 2013]. Both P and S wave velocity models indicate velocities faster than the mean of the model beneath the Whitmore Mountains that may be interpreted as thicker, colder lithosphere relative to the rest of West Antarctica. Slow velocity anomalies are observed beneath the Bentley Subglacial Trench (BST) and MBL. Slow velocities extending from the Moho to the transition zone beneath MBL are centered beneath the Mt Sidley volcano and coincide with high topography that is not isostatically supported by the crust [Chaput et al., submitted, 2013]. The slowest velocities occur at 200-300 km depth and are consistent with warm, low viscosity mantle that provides topographic support for the elevated MBL volcanic dome. Poor vertical resolution, typical of body wave tomography, hampers the models ability to resolve whether the anomaly beneath MBL is strictly an upper mantle hotspot or a classic mantle plume that extends into the lower mantle. The shallow (≤ 100 km depth) slow anomaly beneath the BST coincides with a region of thin crust and likely reflects a localized region of Cenozoic extension in the WARS that may have undergone a last phase of extension in the Neogene [Garnot et al., 2013]. Anomalously high heat flow reported by Fudge et al.[2012] at the WAIS divide ice core is also consistent with recent Neogene extension and a thermal perturbation suggested by both P and S tomography models. In general, the strong heterogeneities in our models are predominantly interpreted as reflecting upper mantle temperature variations in addition to possible mantle partial melting beneath MBL.

  3. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    PubMed Central

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  4. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  5. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Li, Zhiwei; Li, Fei; Yang, Yuande; Hao, Weifeng; Bao, Feng

    2018-03-01

    We report on a successful application of the horizontal-to-vertical spectral ratio (H / V) method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0) related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure ice sheet thickness in Antarctica.

  6. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    PubMed

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  7. Airborne geophysical investigations of basal conditions at flow transitions of outlet glaciers on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Palmer, S. J.; Dowdeswell, J. A.; Christoffersen, P.; Siegert, M. J.; Blankenship, D. D.; Young, D. A.; Greenbaum, J.

    2011-12-01

    Recent observations have shown that the fast flowing marine-terminating outlet glaciers which drain the Greenland Ice Sheet (GrIS) have thinned in places at rates in excess of 10 m yr-1. The 21 largest outlet glaciers in Greenland accelerated by 57 % between 1996 and 2005, leading to a 100 Gt yr-1 increase in mass loss due to ice discharge over the same period and a 150 % increase of the GrIS's contribution to sea level. Observations that thinning rates are greater than those expected from changes in surface mass balance alone suggest thinning of some GrIS marine-terminating outlet glaciers can be attributed to changes in ice dynamics. An important question for both scientists and policy makers is how the GrIS will react to projected temperature increases, particularly in the context that the Arctic is likely to warm at a greater rate than the global average due to the ice-albedo feedback. As the combined width of all major marine-terminating glaciers draining the GrIS (as measured at the narrowest point in each case) is less 200 km, an understanding of their dynamics is crucial in predicting the effect of future warming on the ice sheet as a whole. During April 2011, we used a Basler BT-67 aircraft equipped with a suite of geophysical instruments to investigate three major glacier systems in Greenland. Data were acquired at the Sermeq Kujatdl and Rink Glacier systems in West Greenland; and Daugaard Jensen Glacier in East Greenland. The study areas were selected because they are major drainage basins (c. 103-105 km2) which provide a high ice flux to the sea (c. 10-20 km3 yr-1); and are located in different regions of the GrIS with correspondingly different atmospheric and oceanic settings. Here we present results from the High Capability Radar Sounder instrument, a phase coherent VHF ice-penetrating radar which operates in frequency-chirped mode from 52.5 to 67.5 MHz. We use these data to determine ice thickness along flightlines both parallel and perpendicular to ice flow at each glacier basin, including measurements of heavily crevassed fast-flowing areas. We plan to use our results to characterize the substrate beneath the ice, and to reveal any basal character changes associated with the transition zones between inland ice and fast-flowing outlet glaciers.

  8. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  9. The forgotten component of sub-glacial heat flow: Upper crustal heat production and resultant total heat flux on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Burton-Johnson, Alex; Halpin, Jacqueline; Whittaker, Joanne; Watson, Sally

    2017-04-01

    Seismic and magnetic geophysical methods have both been employed to produce estimates of heat flux beneath the Antarctic ice sheet. However, both methods use a homogeneous upper crustal model despite the variable concentration of heat producing elements within its composite lithologies. Using geological and geochemical datasets from the Antarctic Peninsula we have developed a new methodology for incorporating upper crustal heat production in heat flux models and have shown the greater variability this introduces in to estimates of crustal heat flux, with implications for glaciological modelling.

  10. Glaciological constraints on current ice mass changes from modelling the ice sheets over the glacial cycles

    NASA Astrophysics Data System (ADS)

    Huybrechts, P.

    2003-04-01

    The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.

  11. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    NASA Astrophysics Data System (ADS)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment liquefaction and deformation typical of earthquake generated seismites. Deformation, confined to an area of not more than 4 km wide adjacent to the major fault zone, implies earthquake magnitudes of at least 6 (M o). The high authigenic chlorite content of deformed Tubeiliyat sandstones compared to undeformed ones is attributed to a post-seismic hydrothermal system driven by compactional dewatering and hydrofracturing of the bedrock which acted as a groundwater recharge area, supplied by subglacial meltwater from beneath the ice sheet. Fluid movement along glacial seismotectonically reactivated faults infiltrated the adjacent Tubeiliyat sandstones under pressure and elevated geothermal gradient, where chlorite was precipitated from solution.

  12. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  13. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  14. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter, and their total discharge decreased. Underlying geology and topography clearly influenced ice stream activity, but - at the ice sheet scale - their drainage network adjusted and was strongly linked to changes in ice sheet volume. It is unclear whether these findings are directly translatable to modern ice sheets but, contrary to the view that sees ice streams as unstable entities that can draw-down large sectors of an ice sheet and accelerate its demise, we conclude that they reduced in effectiveness during deglaciation of the Laurentide Ice Sheet, with final deglaciation accomplished most effectively by surface melting. This raises some interesting questions about the source and nature of major meltwater pulses and iceberg discharge events in the sea-level record.

  15. Sensitivity of simulated englacial isochrones to uncertain subglacial boundary conditions in central West Antarctica: Implications for detecting changes in ice dynamics

    NASA Astrophysics Data System (ADS)

    Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.

    2017-04-01

    Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.

  16. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 1. Hydrology Model

    NASA Technical Reports Server (NTRS)

    Colgan, William; Rajaram, Harihar; Anderson, Robert; Steffen. Konrad; Phillips, Thomas; Zwally, H. Jay; Abdalati, Waleed

    2012-01-01

    We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a approx.17 km stretch of the approx.50 km of flowline within the ablation zone. Beneath the majority of the flowline, subglacial conduit storage closes (i.e. obtains minimum radius) during the winter and opens (i.e. obtains maximum radius) during the summer. Along certain stretches of the flowline, the model predicts that subglacial conduit storage remains open throughout the year. A calculated mean glacier water residence time of approx.2.2 years implies that significant amounts of water are stored in the glacier throughout the year. We interpret this residence time as being indicative of the timescale over which the glacier hydrologic system is capable of adjusting to external surface meltwater forcings. Based on in situ ice velocity observations, we suggest that the summer speed-up event generally corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage. Conversely, the slowdown during fall generally corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage.

  17. History of the Greenland Ice Sheet: paleoclimatic insights

    USGS Publications Warehouse

    Alley, Richard B.; Andrews, John T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, Kurt M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; Muhs, D.R.; Otto-Bliesner, B. L.; Polyak, L.; White, J.W.C.

    2010-01-01

    Paleoclimatic records show that the GreenlandIce Sheet consistently has lost mass in response to warming, and grown in response to cooling. Such changes have occurred even at times of slow or zero sea-level change, so changing sea level cannot have been the cause of at least some of the ice-sheet changes. In contrast, there are no documented major ice-sheet changes that occurred independent of temperature changes. Moreover, snowfall has increased when the climate warmed, but the ice sheet lost mass nonetheless; increased accumulation in the ice sheet's center has not been sufficient to counteract increased melting and flow near the edges. Most documented forcings and ice-sheet responses spanned periods of several thousand years, but limited data also show rapid response to rapid forcings. In particular, regions near the ice margin have responded within decades. However, major changes of central regions of the ice sheet are thought to require centuries to millennia. The paleoclimatic record does not yet strongly constrain how rapidly a major shrinkage or nearly complete loss of the ice sheet could occur. The evidence suggests nearly total ice-sheet loss may result from warming of more than a few degrees above mean 20th century values, but this threshold is poorly defined (perhaps as little as 2 °C or more than 7 °C). Paleoclimatic records are sufficiently sketchy that the ice sheet may have grown temporarily in response to warming, or changes may have been induced by factors other than temperature, without having been recorded.

  18. Potential Climatic Effects on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.

    1984-01-01

    The Greenland Ice Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of ice. Most of the ice sheet receives an excess of snow accumulation over the amount of ice lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the margin of the ice sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland Ice Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, ice sheet flow, and application of remote sensing to tracking of the ice sheet are discussed.

  19. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  20. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  1. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  2. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE PAGES

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...

    2018-04-19

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  3. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  4. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic and North Atlantic basin and their influence on the ocean stratification and ocean circulation are analysed. The changes in the surface climate and the atmospheric circulation associated with the impact of the Greenland ice sheet changes are quantified. The interaction between the Greenland ice sheet and Arctic sea ice is also examined.

  5. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  6. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica rooted in ground material and exposed along a shear plane in the GrIS are ~170-390 cal yr BP. Four ages of plant fragments within ice in a shear plane in the NIC margin are ~600-950 cal yr BP. Since these organic remains have been transported from beneath the GrIS and NIC, respectively, they indicate times of smaller than present ice extents. Together these plants provide evidence that the northwestern GrIS was smaller than at present at ~4600-4800 and ~170-390 cal yr BP. Advance to the modern GrIS extent was likely underway at of after ~170 cal yr BP. NIC was smaller than at present at ~600-950 cal yr. Our ongoing research is investigating the climatic conditions during these times and the relationship of these restricted ice extents to those documented elsewhere on Greenland as well as on Baffin Island.

  7. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    PubMed

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  8. Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data

    NASA Astrophysics Data System (ADS)

    Wu, I.; Chao, B. F.; Chen, Y.

    2009-12-01

    We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.

  9. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    USGS Publications Warehouse

    ten Brink, Uri S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  10. The Distribution of Antarctic Subglacial Lake Environments With Implications for Their Origin and Evolution

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Young, D. A.; Carter, S. P.

    2006-12-01

    Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the evolving ice sheet control the location of subglacial lakes or does the fixed lithospheric character necessary for lake formation constrain the evolution of ice sheet catchments? To begin to answer these questions, we assess the distributions of classes of lakes defined by their reflection character. These classes include bright specular ("definite") lakes, dim specular lakes and bright non-specular ("fuzzy") lakes. Interestingly, it is the fuzzy lakes that do not strongly correlate with ice divides. We show specific examples of off-divide lake system hydrology from the Byrd Glacier catchment in East Antarctica and Kamb Ice Stream in West Antarctica.

  11. Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.

    2017-12-01

    Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout Quaternary glacial cycles. The presented conceptual model for the evolution of giant craters can also serve as an analogue for future destabilization of glacially influenced hydrate reservoirs.

  12. Interhemispheric ice-sheet synchronicity during the last glacial maximum

    USGS Publications Warehouse

    Weber, Michael E.; Clark, Peter U.; Ricken, Werner; Mitrovica, Jerry X.; Hostetler, Steven W.; Kuhn, Gerhard

    2011-01-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  13. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum.

    PubMed

    Weber, Michael E; Clark, Peter U; Ricken, Werner; Mitrovica, Jerry X; Hostetler, Steven W; Kuhn, Gerhard

    2011-12-02

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

  14. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  15. Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.

    2017-12-01

    Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.

  16. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  17. Estimating the impact of internal climate variability on ice sheet model simulations

    NASA Astrophysics Data System (ADS)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2016-12-01

    Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.

  18. Probability based hydrologic catchments of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  19. A Transient Initialization Routine of the Community Ice Sheet Model for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    van der Laan, Larissa; van den Broeke, Michiel; Noël, Brice; van de Wal, Roderik

    2017-04-01

    The Community Ice Sheet Model (CISM) is to be applied in future simulations of the Greenland Ice Sheet under a range of climate change scenarios, determining the sensitivity of the ice sheet to individual climatic forcings. In order to achieve reliable results regarding ice sheet stability and assess the probability of future occurrence of tipping points, a realistic initial ice sheet geometry is essential. The current work describes and evaluates the development of a transient initialization routine, using NGRIP 18O isotope data to create a temperature anomaly field. Based on the latter, surface mass balance components runoff and precipitation are perturbed for the past 125k years. The precipitation and runoff fields originate from a downscaled 1 km resolution version of the regional climate model RACMO2.3 for the period 1961-1990. The result of the initialization routine is a present-day ice sheet with a transient memory of the last glacial-interglacial cycle, which will serve as the future runs' initial condition.

  20. Polar ice-sheet contributions to sea level during past warm periods

    NASA Astrophysics Data System (ADS)

    Dutton, A.

    2015-12-01

    Recent sea-level rise has been dominated by thermal expansion and glacier loss, but the contribution from mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions under future sustained warming. Due to limitations of existing ice sheet models and the lack of relevant analogues in the historical record, projecting the timing and magnitude of polar ice sheet mass loss in the future remains challenging. One approach to improving our understanding of how polar ice-sheet retreat will unfold is to integrate observations and models of sea level, ice sheets, and climate during past intervals of warmth when the polar ice sheets contributed to higher sea levels. A recent review evaluated the evidence of polar ice sheet mass loss during several warm periods, including interglacials during the mid-Pliocene warm period, Marine Isotope Stage (MIS) 11, 5e (Last Interglacial), and 1 (Holocene). Sea-level benchmarks of ice-sheet retreat during the first of these three periods, when global mean climate was ~1 to 3 deg. C warmer than preindustrial, are useful for understanding the long-term potential for future sea-level rise. Despite existing uncertainties in these reconstructions, it is clear that our present climate is warming to a level associated with significant polar ice-sheet loss in the past, resulting in a conservative estimate for a global mean sea-level rise of 6 meters above present (or more). This presentation will focus on identifying the approaches that have yielded significant advances in terms of past sea level and ice sheet reconstruction as well as outstanding challenges. A key element of recent advances in sea-level reconstructions is the ability to recognize and quantify the imprint of geophysical processes, such as glacial isostatic adjustment (GIA) and dynamic topography, that lead to significant spatial variability in sea level reconstructions. Identifying specific ice-sheet sources that contributed to higher sea levels is a challenge that is currently hindered by limited field evidence at high latitudes. Finally, I will explore the concept of how increasing the quantity and quality of paleo sea level and ice sheet reconstructions can lead to improved quantification of contemporary changes in ice sheets and sea level.

  1. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    PubMed

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  2. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  3. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    NASA Astrophysics Data System (ADS)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  4. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  5. Greenland ice sheet motion insensitive to exceptional meltwater forcing.

    PubMed

    Tedstone, Andrew J; Nienow, Peter W; Sole, Andrew J; Mair, Douglas W F; Cowton, Thomas R; Bartholomew, Ian D; King, Matt A

    2013-12-03

    Changes to the dynamics of the Greenland ice sheet can be forced by various mechanisms including surface-melt-induced ice acceleration and oceanic forcing of marine-terminating glaciers. We use observations of ice motion to examine the surface melt-induced dynamic response of a land-terminating outlet glacier in southwest Greenland to the exceptional melting observed in 2012. During summer, meltwater generated on the Greenland ice sheet surface accesses the ice sheet bed, lubricating basal motion and resulting in periods of faster ice flow. However, the net impact of varying meltwater volumes upon seasonal and annual ice flow, and thus sea level rise, remains unclear. We show that two extreme melt events (98.6% of the Greenland ice sheet surface experienced melting on July 12, the most significant melt event since 1889, and 79.2% on July 29) and summer ice sheet runoff ~3.9 σ above the 1958-2011 mean resulted in enhanced summer ice motion relative to the average melt year of 2009. However, despite record summer melting, subsequent reduced winter ice motion resulted in 6% less net annual ice motion in 2012 than in 2009. Our findings suggest that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios.

  6. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  7. Dynamic Antarctic ice sheet during the early to mid-Miocene

    PubMed Central

    DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-01-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate–ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet–climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52–0.66‰, or a sea level equivalent change of 30–36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability. PMID:26903645

  8. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  9. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing

    PubMed Central

    Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.

    2012-01-01

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078

  10. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

    PubMed

    Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M

    2012-10-02

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.

  11. The Response of Ice Sheets to Climate Variability

    NASA Astrophysics Data System (ADS)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  12. Simulation of the Greenland Ice Sheet over two glacial-interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet-ice-shelf model

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Reerink, Thomas J.; van de Wal, Roderik S. W.; Helsen, Michiel M.

    2018-05-01

    Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM) the Greenland ice sheet (GrIS) expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS) and Innuitian Ice Sheet (IIS), it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial-interglacial cycles (240 ka BP to the present day) using the ice-sheet-ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL) forcing generated by a glacial isostatic adjustment (GIA) model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG) and LGM the ice sheet added 1.46 and -2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (˜ 1.26 m) than most previous studies whereas the contribution to the LIG highstand is lower (˜ 0.7 m). The spatial and temporal behaviour of the northern margin was highly variable in all simulations, controlled by the sub-ice-shelf melting which was dictated by the RSL forcing and the glacial history of the IIS and LIS. In contrast, the southwestern part of the ice sheet was insensitive to these forcings, with a uniform response in all simulations controlled by the surface air temperature, derived from ice cores.

  13. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change

    USGS Publications Warehouse

    Ullman, David J.; Carlson, Anders E.; Hostetler, Steven W.; Clark, Peter U.; Cuzzone, Joshua; Milne, Glenn A.; Winsor, Kelsey; Caffee, Marc A.

    2016-01-01

    Despite elevated summer insolation forcing during the early Holocene, global ice sheets retained nearly half of their volume from the Last Glacial Maximum, as indicated by deglacial records of global mean sea level (GMSL). Partitioning the GMSL rise among potential sources requires accurate dating of ice-sheet extent to estimate ice-sheet volume. Here, we date the final retreat of the Laurentide Ice Sheet with 10Be surface exposure ages for the Labrador Dome, the largest of the remnant Laurentide ice domes during the Holocene. We show that the Labrador Dome deposited moraines during North Atlantic cold events at ∼10.3 ka, 9.3 ka and 8.2 ka, suggesting that these regional climate events helped stabilize the retreating Labrador Dome in the early Holocene. After Hudson Bay became seasonally ice free at ∼8.2 ka, the majority of Laurentide ice-sheet melted abruptly within a few centuries. We demonstrate through high-resolution regional climate model simulations that the thermal properties of a seasonally ice-free Hudson Bay would have increased Laurentide ice-sheet ablation and thus contributed to the subsequent rapid Labrador Dome retreat. Finally, our new 10Be chronology indicates full Laurentide ice-sheet had completely deglaciated by 6.7 ± 0.4 ka, which re quires that Antarctic ice sheets contributed 3.6–6.5 m to GMSL rise since 6.3–7.1 ka.

  14. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica

    USGS Publications Warehouse

    Studinger, M.; Bell, R.E.; Karner, G.D.; Tikku, A.A.; Holt, J.W.; Morse, D.L.; David, L.; Richter, T.G.; Kempf, S.D.; Peters, M.E.; Blankenship, D.D.; Sweeney, R.E.; Rystrom, V.L.

    2003-01-01

    Lake Vostok, located beneath more than 4 km of ice in the middle of East Antarctica, is a unique subglacial habitat and may contain microorganisms with distinct adaptations to such an extreme environment. Melting and freezing at the base of the ice sheet, which slowly flows across the lake, controls the flux of water, biota and sediment particles through the lake. The influx of thermal energy, however, is limited to contributions from below. Thus the geological origin of Lake Vostok is a critical boundary condition for the subglacial ecosystem. We present the first comprehensive maps of ice surface, ice thickness and subglacial topography around Lake Vostok. The ice flow across the lake and the landscape setting are closely linked to the geological origin of Lake Vostok. Our data show that Lake Vostok is located along a major geological boundary. Magnetic and gravity data are distinct east and west of the lake, as is the roughness of the subglacial topography. The physiographic setting of the lake has important consequences for the ice flow and thus the melting and freezing pattern and the lake's circulation. Lake Vostok is a tectonically controlled subglacial lake. The tectonic processes provided the space for a unique habitat and recent minor tectonic activity could have the potential to introduce small, but significant amounts of thermal energy into the lake. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  16. How and when to terminate the Pleistocene ice ages?

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Takahashi, K.; Raymo, M. E.; Okuno, J.; Blatter, H.

    2015-12-01

    Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines timing and strength of terminations are far from clearly understood. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. We discuss further the mechanism which determine the timing of ice age terminations by examining the role of astronomical forcing and change of atmospheric carbon dioxide contents through sensitivity experiments and comparison of several ice age cycles with different settings of astronomical forcings.

  17. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    USGS Publications Warehouse

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    Beginning roughly 2.6 million years ago, global climate entered a cooling phase known as the Pleistocene Epoch. As snow in northern latitudes compacted into ice several kilometers thick, it flowed as glaciers southward across the North American continent. These glaciers extended across the northern United States, dramatically altering the landscape they covered. East of the Rocky Mountains, the ice coalesced into continental glaciers (called the Laurentide Ice Sheet) that at times blanketed much of the north-central and northeastern United States. To the west of the Laurentide Ice Sheet, glaciers formed in the mountains of western Canada and the United States and coalesced into the Cordilleran ice sheet; this relatively smaller ice mass extended into the conterminous United States in the northernmost areas of western Montana, Idaho, and Washington. Throughout the Pleistocene, landscape alteration occurred by (1) glacial erosion of the rocks and sediments; (2) redeposition of the eroded earth materials in a form substantially different from their source rocks, in terms of texture and overall character; and (3) disruption of preexisting drainage patterns by the newly deposited sediments. In many cases, pre-glacial drainage systems (including, for example, the Mississippi River) were rerouted because their older drainage courses became blocked with glacial sediment.The continental glaciers advanced and retreated many times across those areas. During each ice advance, or glaciation, erosion and deposition occurred, and the landscape was again altered. Through successive glaciations, the landscape and the bedrock surface gradually came to resemble their present configurations. As continental ice sheets receded and the Pleistocene ended, erosion and deposition of sediment (for example in stream valleys) continued to shape the landscape up to the present day (albeit to a lesser extent than during glaciation). The interval of time since the last recession of the glaciers is called the Holocene and, together with the Pleistocene, constitutes the Quaternary Period of geologic time; this publication characterizes the three-dimensional geometry of the Quaternary sediments and the bedrock surface that lies beneath.The pre-glacial landscape was underlain mostly by weathered bedrock generally similar in nature to that found in many areas of the non-glaciated United States. Glacial erosion and redeposition of earth materials produced a young, mineral-rich soil that formed the basis for the highly productive agricultural economy in the U.S. midcontinent. Extensive buried sands and gravels within the glacial deposits also provided a stimulus to other economic sectors by serving as high-quality aquifers supplying groundwater to the region’s industry and cities. An understanding of the three-dimensional distribution of these glacial sediments has direct utility for addressing various societal issues including groundwater quality and supply, and landscape and soil response to earthquake-induced shaking.The Quaternary sediment thickness map and bedrock topographic map shown here provide a regional overview and are intended to supplement the more detailed work on which they are based. Detailed mapping is particularly useful in populated areas for site-specific planning. In contrast, regional maps such as these serve to place local, detailed mapping in context; to permit the extrapolation of data into unmapped areas; and to depict large-scale regional geologic features and patterns that are beyond the scope of local, detailed mapping. They also can enhance the reader’s general understanding of the region’s landscape and geologic history and provide a source of information for regional decision making that could benefit by improved predictability of bedrock depth beneath the unconsolidated Quaternary sediments. To enable these maps to be analyzed in conjunction with other types of information, this publication also includes the map data in GIS compatible format.

  18. Psychrophiles and astrobiology: microbial life of frozen worlds

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2003-01-01

    Most bodies of our Solar System are "Frozen Worlds" where the prevailing surface temperature remains at or below freezing. On Earth there are vast permanently frozen regions of permafrost, polar ice sheets, and glaciers and the deep oceans and deep-sea marine sediments have remained at 2 - 4°C for eons. Psychrophilic and psychrotrophic microbiota that inhabit these regimes provide analogs for microbial life that might inhabit ice sheets and permafrost of Mars, comets, or the ice/water interfaces or sediments deep beneath the icy crusts of Europa, Callisto, or Ganymede. Cryopreserved micro-organisms can remain viable (in a deep anabiotic state) for millions of years frozen in permafrost and ice. Psychrophilic and psychrotrophic (cold-loving) microbes can carry out metabolic processes in water films and brine, acidic, or alkaline chanels in permafrost or ice at temperatures far below 0°C. These microbes of the cryosphere help define the thermal and temporal limits of life on Earth and may provide clues to where and how to search for evidence of life elsewhere in the Cosmos. Astrobiologists at the NASA Marshall Space Flight Center have collected microbial extremophiles from the Pleistocene ice wedges and frozen thermokarst ponds from the Fox Permafrost Tunnel of Alaska. Microbes have also been isolated from samples of Magellanic Penguin guano from Patagonia; deep-sea marine muds near hydrothermal vents; snow and permafrost from Siberia, and deep ice cores, ice-bubble and cryoconite rocks of the Central Antarctic Ice Sheet. These samples have yielded microbial extremophiles representing a wide variety of anaerobic bacteria and archaea. These microbes have been isolated, cultured, characterized and analyzed by phylogenetic and genomic methods. Images were obtained by Phase Contrast, Environmental, Field Emission Scanning and Transmission Electron Microscopes to study the ultra-microstructure and elemental distribution in the composition of these micro-organisms. We consider the Astrobiological significance of the Fox Tunnel with its rich assemblage of frozen microbes as proxy for developing techniques that may help optimize the search for evidence of life in the permafrost of Mars. We provide images of a novel anaerobic, heterotrophic, psychrotrophic bacterium (str.FTR1) isolated in pure culture from the Fox Tunnel. We also describe novel psychrotrophs isolated from guano of the Magellanic penguin (Spheniscus magellanicus) from the southern tip of Patagonia. These strains PmagG1 and PPP2) represent new species and genera of anaerobic microbes that grow at very low temperatures. The lowest limit for growth without morphological changes of str.PmagG1 is -4°C.

  19. Capabilities and performance of Elmer/Ice, a new generation ice-sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-03-01

    The Fourth IPCC Assessment Report concluded that ice-sheet flow models are unable to forecast the current increase of polar ice sheet discharge and the associated contribution to sea-level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice-flow models, and as a result, a significant number of new ice-sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. Here, we summarise almost 10 yr of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planned for the future.

  20. Ice-sheet thinning and acceleration at Camp Century, Greenlan

    NASA Astrophysics Data System (ADS)

    Colgan, W. T.

    2017-12-01

    Camp Century, Greenland (77.18 °N, 61.12 °W, 1900 m), is located approximately 150 km inland from the ice-sheet margin in Northwest Greenland. In-situ and remotely-sensed measurements of ice-sheet elevation at Camp Century exhibit a thinning trend between 1964 and the present. A comparison of 1966 and 2017 firn density profiles indicates that a portion of this ice-sheet thinning is attributable to increased firn compaction rate. In-situ measurements of increasing ice surface velocity over the 1977-2017 period indicate that enhanced horizontal divergence of ice flux is also contributing to ice dynamic thinning at Camp Century. This apparent ice dynamic thinning could potentially result from a migrating local flow divide or decreasing effective ice viscosity. In a shorter-term context, observations of decadal-scale ice-sheet thinning and acceleration at Camp Century highlights underappreciated transience in inland ice form and flow during the satellite era. In a longer-term context, these multi-decadal observations contrast with inferences of millennial-scale ice-sheet thickening and deceleration at Camp Century.

  1. Sensitivities of Greenland ice sheet volume inferred from an ice sheet adjoint model

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2009-04-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. Since its introduction by MacAyeal (1992), the adjoint method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters such as basal conditions. However, no attempt has been made to extend this method to comprehensive ice sheet models. As a first step toward the use of adjoints of comprehensive three-dimensional ice sheet models we have generated an adjoint of the ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated by means of the automatic differentiation (AD) tool TAF. The AD tool generates exact source code representing the tangent linear and adjoint model of the nonlinear parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic with respect to the controls, and can be efficiently calculated via the adjoint. By way of example, we determine the sensitivity of the total Greenland ice volume to various control variables, such as spatial fields of basal flow parameters, surface and basal forcings, and initial conditions. Reliability of the adjoint was tested through finite-difference perturbation calculations for various control variables and perturbation regions. Besides confirming qualitative aspects of ice sheet sensitivities, such as expected regional variations, we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ``real'' in the sense of actual model behavior. An example is inferred regions where sensitivities of ice sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice sheet volume. Similarly, positive ice temperature sensitivities in certain parts of the ice sheet are found (in most regions it is negativ, i.e. an increase in temperature decreases ice sheet volume), the detection of which seems highly unlikely if only conventional perturbation experiments had been used. An effort to generate an efficient adjoint with the newly developed open-source AD tool OpenAD is also under way. Available adjoint code generation tools now open up a variety of novel model applications, notably with regard to sensitivity and uncertainty analyses and ice sheet state estimation or data assimilation.

  2. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  3. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  4. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  5. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  6. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.

  7. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  8. Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, D. J.; Johnson, J. V.

    2013-07-01

    We introduce a novel, higher order, finite element ice sheet model called VarGlaS (Variational Glacier Simulator), which is built on the finite element framework FEniCS. Contrary to standard procedure in ice sheet modelling, VarGlaS formulates ice sheet motion as the minimization of an energy functional, conferring advantages such as a consistent platform for making numerical approximations, a coherent relationship between motion and heat generation, and implicit boundary treatment. VarGlaS also solves the equations of enthalpy rather than temperature, avoiding the solution of a contact problem. Rather than include a lengthy model spin-up procedure, VarGlaS possesses an automated framework for model inversion. These capabilities are brought to bear on several benchmark problems in ice sheet modelling, as well as a 500 yr simulation of the Greenland ice sheet at high resolution. VarGlaS performs well in benchmarking experiments and, given a constant climate and a 100 yr relaxation period, predicts a mass evolution of the Greenland ice sheet that matches present-day observations of mass loss. VarGlaS predicts a thinning in the interior and thickening of the margins of the ice sheet.

  9. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  10. Relative sea-level rise around East Antarctica during Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Escutia, Carlota; Houben, Alexander J. P.; Vermeersen, Bert L. A.; Bijl, Peter K.; Brinkhuis, Henk; Deconto, Robert M.; Galeotti, Simone; Passchier, Sandra; Pollard, David; Brinkhuis, Henk; Escutia, Carlota; Klaus, Adam; Fehr, Annick; Williams, Trevor; Bendle, James A. P.; Bijl, Peter K.; Bohaty, Steven M.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, Jose Abel; Gonzàlez, Jhon J.; Hayden, Travis G.; Iwai, Masao; Jimenez-Espejo, Francisco J.; Katsuki, Kota; Kong, Gee Soo; McKay, Robert M.; Nakai, Mutsumi; Olney, Matthew P.; Passchier, Sandra; Pekar, Stephen F.; Pross, Jörg; Riesselman, Christina; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash Kumar; Stickley, Catherine E.; Sugisaki, Saiko; Tauxe, Lisa; Tuo, Shouting; van de Flierdt, Tina; Welsh, Kevin; Yamane, Masako

    2013-05-01

    During the middle and late Eocene (~ 48-34Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarctica induced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rose despite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an ice-sheet grounding line.

  11. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less

  12. Ice in the northern lowlands and southern highlands of Mars and its enrichment beneath the Elysium Lavas

    NASA Technical Reports Server (NTRS)

    Cave, Julie A.

    1992-01-01

    The simultaneously examination of ejecta mobility, crater morphology, and surface features has enabled several conclusions to be drawn regarding the location of subsurface ice in the region. The ice distribution is shown to be highly dependent upon latitude and geological situation; in particular, pronounced differences in the distribution between the highland and lowlands are seen, and concentrations of ice were detected beneath the Elysium lavas.

  13. Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.

    2017-12-01

    The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.

  14. Modelled Growth and Decay of the Cordilleran Ice Sheet Through the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.; Banwell, A.

    2015-12-01

    The Cordilleran Ice Sheet in western North America had an enigmatic evolution during the last glacial cycle, developing out of sync with the larger Laurentide and global glaciation. The geological record suggests that the ice sheet emerged late, ca. 45 ka, growing to be a fully-established ice sheet in isotope stages 3 and 2 and deglaciating late in the glacial cycle. This has been a challenge to model, and is a paleoclimatic curiosity, because the western Cordillera of North America is heavily glacierized today, and one would intuitively expect it to act as an inception centre for the Pleistocene ice sheets. The region receives heavy precipitation, and modest cooling should induce large-scale glacier expansion. Indeed, a Cordilleran Ice Sheet quickly nucleates in isotope substage 5d in most ice sheet modeling studies to date, and is a resilient feature throughout the glaciation. The fact that a full-scale Cordilleran Ice Sheet did not develop until relatively late argues for either: (a) ice sheet models that have been inadequate in resolving the process of alpine-style glaciation, i.e., the coalescence of alpine icefields, or (b) a climatic history in western North America that deviated strongly from the hemispheric-scale cooling which drove the growth of the Laurentide and Scandinavian Ice Sheets, as recorded in Greenland. We argue that reasonable reconstructions of Cordilleran Ice Sheet growth and decay implicate a combination of these two considerations. Sufficient model resolution is required to capture the valley-bottom melt that suppresses icefield coalescence, while early-glacial cooling must have been modest in the Pacific sector of North America. We argue for a persistent warm, dry climate relative to that in eastern North America and the Atlantic sector, likely associated with positive feedbacks between atmospheric circulation and the nascent Laurentide Ice Sheet (i.e., peristent circulation patterns similar to those of 2014-2015). This must have been disrupted as the Laurentide thickened and advanced southward, allowing the Cordilleran Ice Sheet to emerge from numerous isolated icefield complexes.

  15. Extensive massive basal-ice structures in West Antarctica relate to ice-sheet anisotropy and ice-flow

    NASA Astrophysics Data System (ADS)

    Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.

    2016-12-01

    Complex structures identified within both the East Antarctic and Greenland ice sheets are thought to be generated by the action of basal water freezing to the ice-sheet base, evolving under ice flow. Here, we use ice-penetrating radar to image an extensive series of similarly complex basal ice facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an area of cold-based and relatively slow-flowing ice. We show that major folding and overturning of the unit perpendicular to ice flow elevates deep, warm ice into the mid ice-sheet column. Fold axes align with present ice flow, and axis amplitudes increase down-ice, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric ice. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing ice-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd ice-core site, we show the basal ice dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-ice in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on ice sheet rheology, means that the nature of ice flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical ice sheet model.

  16. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  17. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  18. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  19. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  20. Capabilities and performance of the new generation ice-sheet model Elmer/Ice

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.

    2012-12-01

    Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.

  1. Deglaciation of Fennoscandia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.

    2016-09-01

    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.

  2. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  3. Balance of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  4. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.

    2016-05-01

    Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.

  5. Seismic evidence for the erosion of subglacial sediments by rapidly draining supraglacial lakes on the West Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Booth, Adam; Hubbard, Alun; Dow, Christine; Doyle, Samuel; Clark, Roger; Gusmeroli, Alessio; Lindbäck, Katrin; Pettersson, Rickard; Jones, Glenn; Murray, Tavi

    2013-04-01

    As part of a multi-disciplinary, multi-national project investigating the ice-dynamic implications of rapidly draining supraglacial lakes on the West Greenland Ice Sheet, we have conducted a series of seismic reflection experiments immediately following the rapid drainage of Lake F in the land-terminating Russell Glacier catchment to [1] isolate the principal mode of basal motion, and [2] identify and characterise the modification of that mode as forced by ingress of surface-derived meltwaters. Lake F had a surface area of ~3.84 km2 and drained entirely in less than two hours at a maximum rate of ~ 3300 m3 s-1, marked by local ice extension and uplift of up to 1 m. Two seismic profiles (A and B) were acquired and optimised for amplitude versus angle (AVA) characterisation of the substrate. All seismic data were recorded with a Geometrics GEODE system, using 48 vertically-orientated 100-Hz geophones installed at 10 m intervals. 250 g pentalite charges were fired in shallow auger holes at 80 m intervals along each line, providing six-fold coverage. Profile A targets the subglacial hydrological basin into which the Lake-F waters drained, and reveals a uniform, flat glacier bed beneath ~1.3 km of ice, characterised by the presence of a very stiff till with an acoustic impedance of 4.17 ± 0.11 x 106 kg m-2 s1 and a Poisson's ratio of 0.06 ± 0.05. In profile B, to the southeast of Lake F in an isolated subglacial hydrological basin, ice thickness is 1.0-1.1 km and a discrete sedimentary basin is evident; within this feature, we interpret a stratified subglacial till deposit, having lodged till (acoustic impedance = 4.26 ± 0.59×106 kgm-2 s-1) underlying a water-saturated dilatant till layer (thickness

  6. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.

  7. Dynamic Inland Propagation of Thinning Due to Ice Loss at the Margins of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Wang, Wei Li; Li, Jun J.; Zwally, H. Jay

    2012-01-01

    Mass-balance analysis of the Greenland ice sheet based on surface elevation changes observed by the European Remote-sensing Satellite (ERS) (1992-2002) and Ice, Cloud and land Elevation Satellite (ICESat) (2003-07) indicates that the strongly increased mass loss at lower elevations (<2000 m) of the ice sheet, as observed during 2003-07, appears to induce interior ice thinning at higher elevations. In this paper, we perform a perturbation experiment with a three-dimensional anisotropic ice-flow model (AIF model) to investigate this upstream propagation. Observed thinning rates in the regions below 2000m elevation are used as perturbation inputs. The model runs with perturbation for 10 years show that the extensive mass loss at the ice-sheet margins does in fact cause interior thinning on short timescales (i.e. decadal). The modeled pattern of thinning over the ice sheet agrees with the observations, which implies that the strong mass loss since the early 2000s at low elevations has had a dynamic impact on the entire ice sheet. The modeling results also suggest that even if the large mass loss at the margins stopped, the interior ice sheet would continue thinning for 300 years and would take thousands of years for full dynamic recovery.

  8. Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Jezek, Kenneth C.

    2001-01-01

    An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.

  9. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  10. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water production from CMIP5 data with the model by assuming that the Greenland Ice Sheet is covered in black carbon (lowering the albedo) and perpetually covered by optically thick clouds (increasing long wave radiation). This upper bound roughly triples surface meltwater production, resulting in 30 cm of sea level rise by 2100. These model estimates, combined with prior research suggesting an additional 40-100 cm of sea level rise associated with dynamical discharge, suggest that the Greenland Ice Sheet is poised to contribute significantly to sea level rise in the coming century.

  11. Recent Changes in the Greenland Ice Sheet as Seen from Space

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    2011-01-01

    Many changes in the Greenland Ice Sheet have been reported in the recent scientific literature and have been attributed to various responses of the ice sheet due to regional (and global) warming. Because melting of the ice sheet would contribute approximately 7 m to sea-level rise, the lives and habitat of hundreds of millions of people worldwide would be directly and indirectly affected if continued ice-sheet melting occurs. As mean-annual global temperatures have increased, there has been an increasing focus on studying the Greenland Ice Sheet using available satellite data, and numerous expeditions have been undertaken. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 C to 0.72+/-0.10 C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to more extensive melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue of increasing concern to billions of people worldwide. The surface temperature of the ice sheet has been studied in even greater detail using Moderate-Resolution Imaging Spectroradiometer (MODIS) data in the six individual drainage basins as well as for the ice sheet as a whole. Surface temperature trends in the decade of the 2000s have not been strong, according to the MODIS measurements. In addition to surface-temperature increases over the last few decades as measured by AVHRR, other changes have been observed such as accelerated movement of many of Greenland's outlet glaciers and sudden draining of supraglacial lakes. Decreasing mass of the ice sheet since (at least) 2002 has been measured using Gravity Recovery and Climate Experiment (GRACE) data, along with an build-up of ice at the higher elevations and a decrease of ice at the lower elevations as measured using airborne Lidar and Ice, Cloud and Land Elevation Satellite (ICESat) data. The seminar will address the above issues using a variety of NASA satellite data and ground observations.

  12. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  13. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    NASA Astrophysics Data System (ADS)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; Price, Stephen; Hoffman, Matthew; Lipscomb, William H.; Fyke, Jeremy; Vargo, Lauren; Boghozian, Adrianna; Norman, Matthew; Worley, Patrick H.

    2017-06-01

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptops to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Ultimately, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.

  14. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  15. Marine evidence of a deconvolving Antarctic Ice Sheet during post-LGM retreat of the Ross Sea sector

    NASA Astrophysics Data System (ADS)

    Prothro, L. O.; Yokoyama, Y.; Simkins, L. M.; Anderson, J. B.; Majewski, W.; Yamane, M.; Ohkouchi, N.

    2017-12-01

    Predictive models of ice sheet and sea level change are dependent on observational data of ice-sheet behavior for model testing and tuning. The geologic record contains a wealth of information about ice-sheet dynamics, with fewer logistical, spatial, and temporal limitations than are involved in data acquisition along contemporary ice margins. However, past ice-sheet behavior is still largely uncertain or contested due to issues with obtaining meaningful radiocarbon dates. We minimize bias from glacially-reworked carbon and limitations from unknown geomorphic context and uncertainty in sediment facies identification by using careful sedimentary analyses within a geomorphic framework, as well as selection of appropriate dating methods. Our study area, the Ross Sea sector of Antarctica, is the primary drainage outlet for 25% of the continent's grounded ice. During the Last Glacial Maximum, the low-profile, marine-based West Antarctic Ice Sheet (WAIS) and the steeper profile, largely land-based East Antarctic Ice Sheet (EAIS) converged in the Ross Sea to flow out to or near the continental shelf edge. Geomorphic and sedimentary data reveal that during their subsequent retreat to form the Ross Sea Embayment, the two ice sheets behaved differently, with the WAIS rapidly retreating tens of kilometers followed by extended pauses, while the EAIS retreated steadily, with shorter (decadal- to century-long) pauses. This behavior leads us to believe that the two ice sheets may have contributed diachronously to sea level. By acquiring accurate timing of grounding line retreat, we are able to calculate volumes of ice lost throughout deglaciation, as well as associated sea level contributions. In addition, we attempt to rectify the contradicting marine and terrestrial interpretations of retreat patterns from the Ross Sea continental shelf.

  16. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    NASA Astrophysics Data System (ADS)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  17. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    PubMed

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  18. Microbiological and Biogeochemical Investigations of the Accreted Ice Above Subglacial Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Christner, B. C.; Foreman, C. F.; Arnold, B. R.; Welch, K. A.; Lyons, W. B.; Priscu, J. C.

    2004-12-01

    Subglacial Lake Vostok is located ~4 km beneath the surface of the East Antarctic ice sheet and has been isolated from the atmosphere for at least 15 million years. The lake has a surface area near 14,000 km2 and a depth exceeding 1000 m. While the nature of the environment within Subglacial Lake Vostok remains uncertain, if a sustained microbial ecosystem is present, life in this subsurface environment operates under arguably the most extreme conditions in the biosphere (i.e., high pressure, constant cold, high oxygen concentrations, and no light). The lake represents an analogue for ecosystems that may exist in Europa's ice-covered ocean and also provides an Earthly-based model for the evaluation of technology to search for life in icy extraterrestrial subsurface environments. Concerns for environmental protection have prevented direct sampling of the lake water thus far, as a prudent sampling plan that will not contaminate this pristine environment has yet to be developed and tested. However, an ice core has been retrieved at Vostok Station in which the bottom ~85 meters consists of lake water that has accreted to the bottom of the ice sheet, providing frozen samples of water from the lakes' surface. The ice from 3539 to 3609 mbs (accretion ice I) contains visible inclusions due to accretion in the shallow embayment or western grounding line, whereas ice from 3610-3623 mbs (accretion ice II) is very clean, forming above the deep eastern basin of the main lake. Using a multifaceted protocol to monitor cellular and molecular decontamination of ice cores, we show that the microbiology and geochemistry (i.e., dissolve organic carbon, nutrients, and ions) of accretion ice is very different from the overlying glacial ice. The numbers of cells are 2- to 7-fold higher in accretion ice I than in the overlying glacial ice, and decrease with increasing depth in accretion ice II. Cell viability in accretion ice samples has been confirmed by the measurable respiration of 14C-glucose at 10oC and recovery of bacterial isolates by enrichment culturing. Direct amplification and phylogenetic analysis of 16S rDNA sequences related to β -, γ -, and δ -proteobacterial species from samples originating from the open lake basin (i.e., accretion ice II) suggest dissimilatory metal oxidation/reduction and methylotrophic metabolic lifestyles may exist. Together, these data imply a priori that Subglacial Lake Vostok is a viable ecosystem.

  19. Interaction of ice sheets and climate during the past 800 000 years

    NASA Astrophysics Data System (ADS)

    Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.

    2014-12-01

    During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.

  20. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  1. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  2. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-05

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. Copyright © 2016, American Association for the Advancement of Science.

  3. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    NASA Astrophysics Data System (ADS)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  4. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    PubMed

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  5. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  6. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  7. Landforms, sediments and dates to constrain rates and style of marine-influenced ice sheet decay; the BRITICE-CHRONO project.

    NASA Astrophysics Data System (ADS)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the future mass of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level, and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information on ice retreat could be a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. Geomorphological mapping across the British Isles and the surrounding continental shelf has revealed the nature and distribution of glacial landforms. Here we demonstrate how such data have been used to build a pattern of ice margin retreat. The BRITICE-CHRONO consortium of Quaternary scientists and glaciologists, are now working on a project running from 2012 - 2017 to produce an ice sheet wide database of geochronometric dates to constrain and then understand ice margin retreat. This is being achieved by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be used to build an ice sheet-wide empirical reconstruction of retreat. Simulations using two numerical ice sheet models, fitted against the margin data, will help us understand the nature and significance of sea-level rise and ocean/atmosphere forcing on influencing the rate of retreat and ice sheet demise and the effect that bed topography has in controlling this.

  8. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    NASA Astrophysics Data System (ADS)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.

  9. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    NASA Technical Reports Server (NTRS)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  10. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  11. Modeling North American Ice Sheet Response to Changes in Precession and Obliquity

    NASA Astrophysics Data System (ADS)

    Tabor, C.; Poulsen, C. J.; Pollard, D.

    2012-12-01

    Milankovitch theory proposes that changes in insolation due to orbital perturbations dictate the waxing and waning of the ice sheets (Hays et al., 1976). However, variations in solar forcing alone are insufficient to produce the glacial oscillations observed in the climate record. Non-linear feedbacks in the Earth system likely work in concert with the orbital cycles to produce a modified signal (e.g. Berger and Loutre, 1996), but the nature of these feedbacks remain poorly understood. To gain a better understand of the ice dynamics and climate feedbacks associated with changes in orbital configuration, we use a complex Earth system model consisting of the GENESIS GCM and land surface model (Pollard and Thompson, 1997), the Pennsylvania State University ice sheet model (Pollard and DeConto, 2009), and the BIOME vegetation model (Kaplan et al., 2001). We began this study by investigating ice sheet sensitivity to a range of commonly used ice sheet model parameters, including mass balance and albedo, to optimize simulations for Pleistocene orbital cycles. Our tests indicate that choice of mass balance and albedo parameterizations can lead to significant differences in ice sheet behavior and volume. For instance, use of an insolation-temperature mass balance scheme (van den Berg, 2008) allows for a larger ice sheet response to orbital changes than the commonly employed positive degree-day method. Inclusion of a large temperature dependent ice albedo, representing phenomena such as melt ponds and dirty ice, also enhances ice sheet sensitivity. Careful tuning of mass balance and albedo parameterizations can help alleviate the problem of insufficient ice sheet retreat during periods of high summer insolation (Horton and Poulsen, 2007) while still accurately replicating the modern climate. Using our optimized configuration, we conducted a series of experiments with idealized transient orbits in an asynchronous coupling scheme to investigate the influence of obliquity and precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.

  12. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  13. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    NASA Astrophysics Data System (ADS)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  14. Imaging Basal Crevasses at the Grounding Line of Whillans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Dawson, E. C.; Christianson, K.

    2015-12-01

    We acquired gridded ground-based radar data at the WIS grounding zone where the transition from limited- or no-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across a region only a few kilometers wide. This transition is either an elastic-flexural transition from bedrock to hydrostatically-supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these. In either case, the stress field of the ice changes as it flows across the grounding zone, often resulting in brittle deformation, which is manifested as basal crevassing at the ice-sheet base and sometimes as strand cracks at the surface. The position and morphology of these features reveal important information about the stress state across this transition where ice and ocean interact. Our surveys indicate a complex pattern of basal crevassing with many imaged in two or more profile segments as a linear feature at the bed, usually trending oblique to flow and often extending for several kilometers. Due to the wide beam pattern of our antennas, we image many of the crevasses from off-nadir reflections. Thus their arrival times are later than the primary basal reflection and segments of the crevasse appear "below" the bed, when in fact they are merely trending oblique to the profile. Often these returns have a reversed phase relative to the bed echo because the high dielectric contrast of seawater and a favorable geometry enable reflections with little loss (but a second phase reversal) from the ice-water interface near the crevasse base. In a few cases, these crevasse echoes from targets trending oblique to the profile appear to mimic the geometry of a sub-ice sediment "wedge", while in reality the radar never penetrates below the basal interface. Only about 25% of the crevasses appear to extend any significant distance upward into the basal ice, typically at low angles. A subset of these are doubly imaged by direct returns as well as by delayed reflections from the bright planar basal interface, giving curious mirror-like signatures. Our results indicate that basal crevasses offer a rich dataset for diagnosing basal stress state across ice-sheet grounding zones and that special care is needed when interpreting subglacial returns in radar data.

  15. IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.

    2017-12-01

    The Greenland ice-sheet is a major contributor to current and future sea level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer air and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean interaction occurs, and must use rather crude parameterizations to represent this process. Additionally, the ice-sheet area grounded below sea level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to sea level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled interactively to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.

  16. Influence of temperature fluctuations on equilibrium
    ice sheet volume

    NASA Astrophysics Data System (ADS)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  17. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  18. Using paleoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    King, M. A.; Phipps, S. J.; Roberts, J. L.; White, D.

    2016-12-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modeling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how paleoclimate data can improve our ability to predict the future evolution of the AIS. A large, perturbed-physics ensemble is generated, spanning uncertainty in the parameterizations of four key physical processes within ice sheet models: ice rheology, ice shelf calving, and the stress balances within ice sheets and ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Paleoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  19. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    NASA Astrophysics Data System (ADS)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  20. Holocene temperature history at the west Greenland Ice Sheet margin reconstructed from lake sediments

    NASA Astrophysics Data System (ADS)

    Axford, Y.; Losee, S.; Briner, J. P.; Francis, D.; Langdon, P. G.; Walker, I.

    2011-12-01

    Paleoclimate proxy data can help reduce uncertainties regarding how the Greenland Ice Sheet, and thus global sea level, will respond to future climate change. Studies of terrestrial deposits along Greenland's margins offer opportunities to reconstruct both past temperature changes and the associated changes in Greenland Ice Sheet extent, thus empirically characterizing the ice sheet's response to temperature change. Here we present Holocene paleoclimate reconstructions developed from sediment records of five lakes along the western ice sheet margin, near Jakobshavn Isbræ and Disko Bugt. Insect (Chironomidae, or non-biting midge) remains from North Lake provide quantitative estimates of summer temperatures over the past ca. 7500 years at multi-centennial resolution, and changes in sediment composition at all five lakes offer evidence for glacier fluctuations, changes in lake productivity, and other environmental changes throughout the Holocene. Aims of this study include quantification of warmth in the early to mid Holocene, when summer solar insolation forcing exceeded present-day values at northern latitudes and the local Greenland Ice Sheet margin receded inboard of its present position, and the magnitude of subsequent Neoglacial and Little Ice Age cooling that drove ice sheet expansion. We find that the Jakobshavn Isbrae region experienced the warmest temperatures of the Holocene (with summers 2 to 3.5 degrees C warmer than present) between ~6000 and 4000 years ago. Neoglacial cooling began rather abruptly ~4000 years ago and intensified 3000 years ago. Our proxy data suggest that the coldest summers of the Holocene occurred during the 18th and 19th centuries in the Jakobshavn region. These results agree well with previous glacial geologic studies reconstructing local ice margin positions through the Holocene. Such reconstructions of paleoclimate and past ice sheet extent provide targets for testing and improving ice sheet models.

  1. Role of ice-ocean interaction on glacier instability: Results from numerical modeling applied to Petermann Glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F.; Hubbard, A.; Vieli, A.; van der Veen, C. J.; Box, J. E.; Bates, R.; Luckman, A. J.

    2009-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modeling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  2. Role of ice-ocean interaction on glacier instability: Results from numerical modelling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, Faezeh M.; Hubbard, Alun; van der Veen, Kees; Vieli, Andreas

    2010-05-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modelling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  3. Collapse of polar ice sheets during the stage 11 interglacial.

    PubMed

    Raymo, Maureen E; Mitrovica, Jerry X

    2012-03-14

    Contentious observations of Pleistocene shoreline features on the tectonically stable islands of Bermuda and the Bahamas have suggested that sea level about 400,000 years ago was more than 20 metres higher than it is today. Geochronologic and geomorphic evidence indicates that these features formed during interglacial marine isotope stage (MIS) 11, an unusually long interval of warmth during the ice age. Previous work has advanced two divergent hypotheses for these shoreline features: first, significant melting of the East Antarctic Ice Sheet, in addition to the collapse of the West Antarctic Ice Sheet and the Greenland Ice Sheet; or second, emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here we show that the elevations of these features are corrected downwards by ∼10 metres when we account for post-glacial crustal subsidence of these sites over the course of the anomalously long interglacial. On the basis of this correction, we estimate that eustatic sea level rose to ∼6-13 m above the present-day value in the second half of MIS 11. This suggests that both the Greenland Ice Sheet and the West Antarctic Ice Sheet collapsed during the protracted warm period while changes in the volume of the East Antarctic Ice Sheet were relatively minor, thereby resolving the long-standing controversy over the stability of the East Antarctic Ice Sheet during MIS 11.

  4. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    NASA Technical Reports Server (NTRS)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  5. The Bossons glacier protects Europe's summit from erosion

    NASA Astrophysics Data System (ADS)

    Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.

    2013-08-01

    The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.

  6. Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.

    2013-12-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  7. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  8. LIVVkit: An extensible, python-based, land ice verification and validation toolkit for ice sheet models

    DOE PAGES

    Kennedy, Joseph H.; Bennett, Andrew R.; Evans, Katherine J.; ...

    2017-03-23

    To address the pressing need to better understand the behavior and complex interaction of ice sheets within the global Earth system, significant development of continental-scale, dynamical ice sheet models is underway. Concurrent to the development of the Community Ice Sheet Model (CISM), the corresponding verification and validation (V&V) process is being coordinated through a new, robust, Python-based extensible software package, the Land Ice Verification and Validation toolkit (LIVVkit). Incorporated into the typical ice sheet model development cycle, it provides robust and automated numerical verification, software verification, performance validation, and physical validation analyses on a variety of platforms, from personal laptopsmore » to the largest supercomputers. LIVVkit operates on sets of regression test and reference data sets, and provides comparisons for a suite of community prioritized tests, including configuration and parameter variations, bit-for-bit evaluation, and plots of model variables to indicate where differences occur. LIVVkit also provides an easily extensible framework to incorporate and analyze results of new intercomparison projects, new observation data, and new computing platforms. LIVVkit is designed for quick adaptation to additional ice sheet models via abstraction of model specific code, functions, and configurations into an ice sheet model description bundle outside the main LIVVkit structure. Furthermore, through shareable and accessible analysis output, LIVVkit is intended to help developers build confidence in their models and enhance the credibility of ice sheet models overall.« less

  9. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE PAGES

    Favier, Lionel; Pattyn, Frank; Berger, Sophie; ...

    2016-11-09

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  10. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favier, Lionel; Pattyn, Frank; Berger, Sophie

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  11. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  12. Study of elevation changes along a profile crossing the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hvidegaard, S. M.; Sandberg, L.

    2009-04-01

    In recent years much research has focused on determining how the Greenland Ice Sheet is responding to the observed climate changes. There is wide agreement on the fact that the Ice Sheet is currently loosing mass, and studies have shown that the mass loss is found near the ice edge and that no significant changes are found in the central part of the Ice Sheet. As a part of European Space Agency's CryoSat Validation Experiment (CryoVEx) running from 2004 to 2008, the National Space Institute (DTU Space) measured the elevations along a profile crossing the Greenland Ice Sheet. The elevation observations were carried out in 2004, 2006 and 2008 using airborne laser altimetry from a Twin Otter aircraft. The observed profile follows the old EGIG line (Expédition Glaciologique au Groenland, measured in the 1950's) situated between 69-71N, heading nearly east-west. This unique dataset gives the opportunity to study elevation changes along the profile crossing the ice sheet. With this work, we outline the observed elevation changes from the different zones of the ice sheet. We furthermore compare elevation changes based on coincident ICESat and airborne laser altimeter data.

  13. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  14. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    USGS Publications Warehouse

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  15. Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales

    NASA Astrophysics Data System (ADS)

    Cuzzone, Joshua K.; Morlighem, Mathieu; Larour, Eric; Schlegel, Nicole; Seroussi, Helene

    2018-05-01

    Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability to capture sharp thermal gradients in an ice sheet particularly close to the bed, when compared to models using a linear vertical interpolation. This is corroborated in a thermal steady-state simulation of the Greenland ice sheet using a higher-order model. In general, we find that using a higher-order vertical interpolation decreases the need for a high number of vertical layers, while dramatically reducing model runtime for transient simulations. Results indicate that when using a higher-order vertical interpolation, runtimes for a transient ice sheet relaxation are upwards of 5 to 7 times faster than using a model which has a linear vertical interpolation, and this thus requires a higher number of vertical layers to achieve a similar result in simulated ice volume, basal temperature, and ice divide thickness. The findings suggest that this method will allow higher-order models to be used in studies investigating ice sheet behavior over paleoclimate timescales at a fraction of the computational cost than would otherwise be needed for a model using a linear vertical interpolation.

  16. Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream.

    PubMed

    Petrini, Michele; Colleoni, Florence; Kirchner, Nina; Hughes, Anna L C; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G; Forte, Emanuele; Colucci, Renato R; Noormets, Riko

    2018-05-08

    The Barents Sea Ice Sheet was a marine-based ice sheet, i.e., it rested on the Barents Sea floor during the Last Glacial Maximum (21 ky BP). The Bjørnøyrenna Ice Stream was the largest ice stream draining the Barents Sea Ice Sheet and is regarded as an analogue for contemporary ice streams in West Antarctica. Here, the retreat of the Bjørnøyrenna Ice Stream is simulated by means of two numerical ice sheet models and results assessed against geological data. We investigate the sensitivity of the ice stream to changes in ocean temperature and the impact of grounding-line physics on ice stream retreat. Our results suggest that the role played by sub-shelf melting depends on how the grounding-line physics is represented in the models. When an analytic constraint on the ice flux across the grounding line is applied, the retreat of Bjørnøyrenna Ice Stream is primarily driven by internal ice dynamics rather than by oceanic forcing. This suggests that implementations of grounding-line physics need to be carefully assessed when evaluating and predicting the response of contemporary marine-based ice sheets and individual ice streams to ongoing and future ocean warming.

  17. Ice cores and SeaRISE: What we do (and don't) know

    NASA Technical Reports Server (NTRS)

    Alley, Richard B.

    1991-01-01

    Ice core analyses are needed in SeaRISE to learn what the West Antarctic ice sheet and other marine ice sheets were like in the past, what climate changes led to their present states, and how they behave. The major results of interest to SeaRISE from previous ice core analyses in West Antarctic are that the end of the last ice age caused temperature and accumulation rate increases in inland regions, leading to ice sheet thickening followed by thinning to the present.

  18. Radiostratigraphy and age structure of the Greenland Ice Sheet

    PubMed Central

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu

    2015-01-01

    Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664

  19. Sensitivity of Pliocene ice sheets to orbital forcing

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Hill, D.J.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.

    2011-01-01

    The stability of the Earth's major ice sheets is a critical uncertainty in predictions of future climate and sea level change. One method of investigating the behaviour of the Greenland and the Antarctic ice sheets in a warmer-than-modern climate is to look back at past warm periods of Earth history, for example the Pliocene. This paper presents climate and ice sheet modelling results for the mid-Pliocene warm period (mPWP; 3.3 to 3.0 million years ago), which has been identified as a key interval for understanding warmer-than-modern climates (Jansen et al., 2007). Using boundary conditions supplied by the United States Geological Survey PRISM Group (Pliocene Research, Interpretation and Synoptic Mapping), the Hadley Centre coupled ocean–atmosphere climate model (HadCM3) and the British Antarctic Survey Ice Sheet Model (BASISM), we show large reductions in the Greenland and East Antarctic Ice Sheets (GrIS and EAIS) compared to modern in standard mPWP experiments. We also present the first results illustrating the variability of the ice sheets due to realistic orbital forcing during the mid-Pliocene. While GrIS volumes are lower than modern under even the most extreme (cold) mid-Pliocene orbit (losing at least 35% of its ice mass), the EAIS can both grow and shrink, losing up to 20% or gaining up to 10% of its present-day volume. The changes in ice sheet volume incurred by altering orbital forcing alone means that global sea level can vary by more than 25 m during the mid-Pliocene. However, we have also shown that the response of the ice sheets to mPWP orbital hemispheric forcing can be in anti-phase, whereby the greatest reductions in EAIS volume are concurrent with the smallest reductions of the GrIS. If this anti-phase relationship is in operation throughout the mPWP, then the total eustatic sea level response would be dampened compared to the ice sheet fluctuations that are theoretically possible. This suggests that maximum eustatic sea level rise does not correspond to orbital maxima, but occurs at times where the anti-phasing of Northern and Southern Hemisphere ice sheet retreat is minimised.

  20. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  1. BRITICE-CHRONO: Constraining rates and style of marine-influenced ice sheet decay to provide a data-rich playground for ice sheet modellers

    NASA Astrophysics Data System (ADS)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the fate of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information could become a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. BRITICE-CHRONO is a large (>45 researchers) NERC-funded consortium project comprising Quaternary scientists and glaciologists who will search the seafloor around Britain and Ireland and parts of the landmass in order to find and extract samples of sand, rock and organic matter that can be dated (OSL; Cosmogenic; 14C) to reveal the timing and rate of change of the collapsing British-Irish Ice Sheet. The purpose is to produce a high resolution dataset on the demise on an ice sheet - from the continental shelf edge and across the marine to terrestrial transition. Some 800 new date assessments will be added to those that already exist. This poster reports on the hypotheses that underpin the work. Data on retreat will be collected by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be used to build an ice sheet-wide empirical reconstruction of retreat incorporating Bayesian analysis to assess uncertainty. We invite and encourage ice sheet modellers to use our data for modelling experiments and in particular to explore the role of bed topography in modulating ice retreat.

  2. A calving law for ice sheet models; Investigating the role of surface melt on dynamics of Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; van der Veen, C. J.; Vieli, A.

    2008-12-01

    alving of icebergs accounts for perhaps as much as half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. We have formulated a calving model that can be readily incorporated into time-evolving numerical ice-flow models. Our model is based on downward penetration of water-filled surface crevasses and upward propagation of basal crevasses. A calving event occurs when the depth of the surface crevasse (which increases as melting progresses through the summer) reaches the height of the basal crevasse. Our numerical ice sheet model is able to reproduce observed seasonal changes of Greenland outlet glaciers, such as fluctuations in flow speed and terminus positions. We have applied the model to Helheim Glacier on the east coast, and Petermann Glacier in the northwest. Our model suggests that rapid retreat of the claving front is highly affected by the amplified calving rate due to increasing water level in surface crevasses during warmer summers. Our results show little response to seasonally enhanced basal lubrication from surface melt. This modeling study provides insights into the role of surface and basal hydrology to ice sheet dynamics and on how to incorporate calving in ice sheet models and therefore advances our ability to predict future ice sheet change.

  3. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    NASA Astrophysics Data System (ADS)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  4. BABOC: A new project aimed at analysing geological boundary conditions for the East Antarctic Ice Sheet in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Ferraccioli, Fausto; Balbi, Pietro; Jordan, Tom; Young, Duncan; Blankenship, Don; Bozzo, Emanuele; Siegert, Martin

    2013-04-01

    The Wilkes Subglacial Basin extends for ca 1,400 km from George V Land into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet (EAIS). The region is of major significance for assessing the long-term stability of the EAIS, as it lies well below sea level and its bedrock deepens inland. This makes it potentially prone to marine ice sheet instability, much like areas of the West Antarctic Ice Sheet (WAIS) that are presently experiencing significant mass loss. This sector of the EAIS has also recently become a major focus of research within IODP Leg 318 that aims to better comprehend the initial stages of glaciation in East Antarctica and the subsequent history and stability of the ice sheet in response to major paleoclimatic changes (Escutia et al., 2010 IODP Rep.). Understanding geological boundary conditions in this region is therefore important to assess their influence on ice sheet dynamics and stability. Early geophysical models inferred the existence of a major extensional sedimentary basin beneath the region, which if true, could be similar to some areas of the WAIS, There thick subglacial sediments deposited within deep rift basins or forming thin marine sedimentary drapes have been inferred to exert a key influence on the onset and maintenance of fast-glacial flow. However, later geophysical models indicated that the Wilkes Basin contains little or no sediment, is not rift-related and formed in response to Cenozoic flexural uplift of the Transantarctic Mountains (TAM). A major joint Italian-UK aerogeophysical exploration campaign over parts of the Wilkes Basin is super-seeding these earlier geophysical views of the basin: i) Precambrian and Paleozoic basement faults can now be recognised as exerting fundamental controls on the location of the topographic margins of the basin; ii) the crust underlying the basin is thinner compared to the TAM, but is unlikely to be Cretaceous or Cenozoic-age rifted crust and; iii) its bedrock is composed of a variety of rocks of different ages and bulk composition, including inferred Proterozoic basement, Neoproterozoic and Cambrian sediments intruded by Cambrian arc rocks, and cover rocks formed primarily by Beacon sediments intruded by Ferrar sills of Jurassic age. Within the framework of the collaborative Italian-US-UK BABOC project a new initiative has been launched to analyse and model variable geological boundary conditions in the Wilkes Basin, by analysing both new and existing geophysical data. A couple of new flights over the region were flown by the ICECAP team for BABOC during the 2010-11 field campaign from Mario Zucchelli Station. ICECAP independently acquired a suite of extensive aerogeophysical observations over three campaigns, centred in particular over the southern part of the basin, and some new profiles over the northern coastal margin of the basin. We present an initial analyses and interpretation of the potential field signatures over the different parts of the basin and assess regional geological controls on the subglacial topography of the basin.

  5. Analysing aeromagnetic, airborne gravity and radar data to unveil variable basal boundary conditions for the East Antarctic Ice Sheet in the Wilkes Subglacial Basin

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Ferraccioli, Fausto; Young, Duncan; Balbi, Pietro; Blankenship, Don; Jordan, Tom; Bozzo, Emanuele; Siegert, Martin

    2014-05-01

    The Wilkes Subglacial Basin (WSB) extends for ca 1,400 km from George V Land into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet (EAIS). The region is of major significance for assessing the long-term stability of the EAIS, as it lies well below sea level and its bedrock deepens inland. This makes it potentially more prone to marine ice sheet instability, much like areas of the West Antarctic Ice Sheet (WAIS) that are presently experiencing significant mass loss. This sector of the EAIS has also become a focus of current research within IODP Leg 318 that aims to better comprehend the initial stages of glaciation and the history and stability of the EAIS since the Eocene-Oligocene boundary. Understanding geological boundary conditions onshore is important to assess their influence on ice sheet dynamics and long-term stability and interpret the paleo-ice sheet record. Early geophysical models inferred the existence of a major extensional sedimentary basin beneath the WSB. This could in principle be similar to some areas of the WAIS, where subglacial sediments deposited within rift basins or forming thin marine sedimentary drapes have been inferred to exert a key influence on both the onset and maintenance of fast-glacial flow. However, later geophysical models indicated that the WSB contains little or no sediment, is not rift-related, and formed in response to Cenozoic flexural uplift of the Transantarctic Mountains (TAM). A major joint Italian-UK aerogeophysical exploration campaign over parts of the WSB is super-seeding all these earlier geophysical views of the basin (Ferraccioli et al., 2009, Tectonophysics). Precambrian and Paleozoic basement faults can now be recognised as exerting fundamental controls on the location of both the topographic margins of the basin and it sub-basins; ii) the crust underlying the basin is thinner compared to the TAM (Jordan et al., 2013, Tectonophysics), but is unlikely to be strongly affected by Cretaceous or Cenozoic-age rifting, in contrast to the WAIS, which is largely underlain by the West Antarctic Rift System; iii) its bedrock is composed of rocks of different ages and composition, including Proterozoic basement, Neoproterozoic and Cambrian sediments intruded by Cambrian arc rocks, and cover rocks formed primarily by Beacon sediments intruded by Jurassic Ferrar sills (e.g. Cook et al., 2013 Nature Geoscience). Within the framework of the collaborative Italian-US-UK BABOC project a new international initiative has been launched to analyse and model variable geological boundary conditions in the WSB using geophysical data. A large amount of new ICECAP aerogeophysical observations have been acquired over four campaigns over the region since the International Polar Year, in particular over the southern part of the basin, and some profiles over the northern coastal margin of the basin. We will present an initial interpretation of the potential field signatures and radar data over the northern and central parts of the basin to help establish tectonic and lithological controls on the subglacial topography and different EAIS flow regimes within the WSB.

  6. How Fast? How Far? How Much? What We Need to Learn from the Past Behavior of Ice Sheets, and What They Might Not Tell Us

    NASA Astrophysics Data System (ADS)

    Alley, R. B.

    2016-12-01

    Paleoclimatic data support physical understanding that changes in ice sheets are primarily caused by changes in ocean temperature and in melting from above. With interesting qualifications, ice sheets tend to grow as accumulation rate in central regions drops into an ice age, and to shrink as accumulation rate rises. Changes in sea level may be influential but generally are too small and slow to be of primary importance. Thus, future atmospheric warming, oceanic warming and changes in oceanic circulation are especially important to future ice-sheet behavior. Paleoclimatic data support models and physical understanding that sustained warming beyond thresholds will cause progressively larger sea-level rise, up to quite high values, although the thresholds remain poorly quantified. Several indirect lines of evidence indicate great shrinkage or loss of parts or all of the Greenland ice sheet and marine sectors of the Antarctic ice sheet under warmth corresponding to CO2 levels similar to the modern or committed level. Despite this evidence, the state of the ice sheets during the most recent times warmer than today, including MIS 5e, remains unclear. The Greenland ice sheet did survive MIS 5e, but that may reflect warmth sufficient to remove the ice sheet but not sustained long enough to do so; greater warming in the future could cause much faster sea-level rise than generated in the past. Several indirect lines of evidence indicate that the marine basins of the West Antarctic Ice Sheet deglaciated during MIS 5e, and targeted field data could clarify this greatly. Physical understanding suggests, however, that even if this deglaciation did occur, it may have been slower than is possible in an even warmer future world; past rates of sea-level rise may define minimum rather than likely future rates.

  7. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    NASA Astrophysics Data System (ADS)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  8. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-08

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles.

  9. Ice sheet altimetry

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.

    1981-01-01

    Generalized surface slopes were computed for the Antarctic and Greenland ice sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the ice sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the ice sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two ice sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize ice sheet topography as a function of geographic area and elevation.

  10. Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

    NASA Astrophysics Data System (ADS)

    Alley, Richard B.; Anandakrishnan, Sridhar; Christianson, Knut; Horgan, Huw J.; Muto, Atsu; Parizek, Byron R.; Pollard, David; Walker, Ryan T.

    2015-05-01

    Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

  11. The role of ice shelves in the Holocene evolution of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Bernales, Jorge; Rogozhina, Irina; Thomas, Maik

    2014-05-01

    Using the continental-scale ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]), we assess the influence of ice shelves on the Holocene evolution and present-day geometry of the Antarctic ice sheet. We have designed a series of paleoclimate simulations driven by a time-evolved climate forcing that couples the surface temperature record from the Vostok ice core with precipitation pattern using an empirical relation of Dahl-Jensen et al., (1998) [3]. Our numerical experiments show that the geometry of ice shelves is determined by the evolution of climate and ocean conditions over time scales of 15 to 25 kyr. This implies that the initial configuration of ice shelves at the Last Glacial Maximum (LGM, about 21 kyr before present) has a significant effect on the modelled Early Holocene volume of ice shelves (up to 20%) that gradually diminishes to a negligible level for the present-day ice shelf configuration. Thus, the present-day geometry of the Antarctic ice shelves can be attained even if an ice-shelf-free initial condition is chosen at the LGM. However, the grounded ice volume, thickness and dynamic states are found to be sensitive to the ice shelf dynamics over a longer history spanning several tens of thousands of years. A presence of extensive marine ice at the LGM, supported by sediment core reconstructions (e.g. Naish et al., 2009 [4]), has a clear buttressing effect on the grounded ice that remains significant over a period of 30 to 50 kyr. If ice-shelf-free conditions are prescribed at the LGM, the modelled Early Holocene and present-day grounded ice volumes are underestimated by up to 10%, as opposed to simulations incorporating ice shelf dynamics over longer periods. The use of ice-shelf-free LGM conditions thus results in 50 to over 200 meters thinner ice sheet across much of East Antarctica. References [1] Greve, R. (1997). Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. Journal of Climate, 10(5), 901-918. [2] Sato, T., and Greve, R. (2012). Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Annals of Glaciology, 53(60), 221-228. [3] Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., and Balling, N. (1998). Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271. [4] Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., ... and Schmitt, D. (2009). Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-328.

  12. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  13. Atmospherically-driven collapse of a marine-based ice stream

    NASA Astrophysics Data System (ADS)

    Greenwood, S. L.; Clason, C. C.

    2016-12-01

    Marine-terminating glaciers and the sectors of ice sheets that are grounded below sea level are widely considered to be vulnerable to unstable retreat. The southern sector of the retreating Fennoscandian Ice Sheet comprised a large, aqueous-terminating ice sheet catchment grounded well below sea level throughout its deglaciation. However, the behaviour, timing of and controls upon ice sheet retreat through the Baltic and Bothnian basins have thus far been inferred only indirectly from peripheral, terrestrial-based geological archives. Recent acquisition of high-resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo-ice sheet behaviour. Multibeam data reveal a rich glacial landform legacy of the Bothnian Sea deglaciation. A late-stage palaeo-ice stream formed a narrow corridor of fast flow. Its pathway is overprinted by a vast field of basal crevasse squeeze ridges, while abundant traces of high subglacial meltwater volumes call for considerable input of surface meltwater to the subglacial system. We interpret a short-lived ice stream event under high extension, precipitating large-scale hydrofracture-driven collapse of the ice sheet sector under conditions of high surface melting. Experiments with a physically-based numerical flowline model indicate that the rate and pattern of Bothnian Sea ice stream retreat are most sensitive to surface mass balance change and crevasse propagation, while remarkably insensitive to submarine melting and sea level change. We interpret strongly atmospherically-driven retreat of this marine-based ice sheet sector.

  14. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  15. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Feldmann, Johannes; Levermann, Anders

    2017-08-01

    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  16. Reconstructions of the Weichselian ice sheet, a comparative study of a thermo-mechanical approach to GIA driven models.

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Lund, Björn; Näslund, Jens-Ove; Fastook, James

    2014-05-01

    Observations of glacial isostatic adjustment (GIA) have been used both to study the mechanical properties of the Earth and to invert for Northern Hemisphere palaeo-ice-sheets. This is typically done by solving the sea-level equation using simplified scaling laws to control ice-sheet thickness. However, past ice-sheets can also be reconstructed based on thermo-mechanical modelling driven by palaeo-climate data, invoking simple analytical models to account for the Earth's response. Commonly, both approaches use dated geological markers to constrain the ice-sheet margin location. Irrespective of the approach, the resulting ice-sheet reconstruction depends on the earth response, although the interdependence between the ice model and the earth model differs and therefore the two types of reconstructions could provide complementary information on Earth properties. We compare a thermo-mechanical reconstruction of the Weichselian ice-sheet using the UMISM model (Näslund, 2010) to two GIA driven reconstructions, ANU (Lambeck et al., 2010) and ICE-5G (Peltier & Fairbanks, 2006), commonly used in GIA modelling. We evaluate the three reconstructions both in terms of ice-sheet configurations and predicted Fennoscandian surface deformation ICE-5G comprise the largest reconstructed ice-sheet whereas ANU and UMISM are more similar in volume and areal extent. Significant differences still exists between ANU and UMISM, especially during the final deglaciation phase. Prior to the final retreat of the ice-sheet, ICE-5G is displays a massive and more or less constant ice-sheet configuration, while both ANU and UMISM fluctuates with at times almost ice-free conditions, such as during MIS3. This results in ICE-5G being close to isostatic equilibrium at LGM, whereas ANU and UMISM are not. Hence, the pre-LGM evolution of the Weichselian ice-sheet needs to be considered in GIA studies. For example, perturbing the ANU or UMISM reconstructions we find that changes more recent than 36 kyr BP may change the predicted uplift velocities by more than 0.1 mm/yr, while changes more recent than 55 kyr BP may change the predicted uplift 10 kyr ago by more than 5 m. Despite their differences we find that all three reconstructions can equally well fit observations of the present day uplift in Fennoscandia, as well as the observed sea-level curve along the Ångerman river, Sweden, albeit with different optimal earth models. However, only for ANU can a single optimal earth model be determined as a bifurcation in the optimal viscosity arises from the generally faster present day rebound rates in ICE-5G and UMISM, resulting in a range of well-fitting earth models for the latter reconstructions. Studying models with a reasonable fit to observed present day uplift velocities we find general trends of over- and under-prediction, indicating that all three ice-sheet reconstructions need improvement. In general, all three reconstructions tend to over-predict the uplift rates in southwestern Fennoscandia, whereas over Finland ICE-5G generally over-predicts and ANU generally under-predicts the uplift rates. UMISM tend to under-predict the velocities over central to northern Sweden and similar trends can also be seen in ANU and ICE-5G.

  17. Thinning of the ice sheet in northwest Greenland over the past forty years.

    PubMed

    Paterson, W S; Reeh, N

    2001-11-01

    Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.

  18. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  19. Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2017-04-01

    Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the timing of coalescence and separation of the Scandinavian and Svalbard-Barents-Kara ice sheets) but also in well-studied areas due to conflicting yet apparently equally robust data. In the four years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly ( 1000 new dates). Here, we present work towards the updated version of results, DATED-2, that attempts to further reduce and explicitly report all uncertainties inherent in ice sheet reconstructions. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142

  20. Sea-level response to abrupt ocean warming of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2016-04-01

    Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher sensitivity compared to power-law sliding. On longer time scales, West-antarctic inter-basin connections favor nonlinear response.

  1. The Research on Elevation Change of Antarctic Ice Sheet Based on CRYOSAT-2 Alimeter

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Wan, J.; Liu, S.; Li, Y.

    2018-04-01

    In this paper, the Cryosat-2 altimeter data distributed by the ESA, and these data are processed to extract the information of the elevation change of the Antarctic ice sheet from 2010 to 2017. Firstly, the main pretreatment preprocessing for Cryosat-2 altimetry data is crossover adjustment and elimination of rough difference. Then the grid DEM of the Antarctic ice sheet was constructed by using the kriging interpolation method,and analyzed the spatial characteristic time characteristics of the Antarctic ice sheet. The latitude-weighted elevation can be obtained by using the elevation data of each cycle, and then the general trend of the Antarctic ice sheet elevation variation can be seen roughly.

  2. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.

  3. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  4. State of balance of the cryosphere

    NASA Technical Reports Server (NTRS)

    Van Der Veen, C. J.

    1991-01-01

    Available observations and mass balance estimates of the cryosphere are summarized. Problems discussed include mountain glaciers, the Greenland ice sheet, the Antarctic ice sheet, conventional glacier measurement techniques, and satellite applications in glacier mass balance studies. It is concluded that the interior part of the Greenland ice sheet is thickening or in near equilibrium. Estimates of the mass balance of the Antarctic ice sheet suggest that it is positive, although the error limits allow for a slightly negative balance.

  5. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during the last 40 years. Through the use of ISSM, we examine possible mechanism explaining the observed changes. The improved understanding gained through this research will contribute better projections of future ice loss from this most vulnerable region of the GrIS.

  6. Why Europa's icy shell may convect, but ice sheets do not: a glaciological perspective

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.

    2016-12-01

    Jupiter's moon Europa is covered in an icy shell that lies over a liquid ocean. Geological evidence and numerical models suggest that Europa's icy shell convects, providing the possibility that Europa may experience a form of plate tectonics and could even harbor life in its subsurface ocean. The hypothesis that Europa convects is supported by both models and geological evidence. Surprisingly, when we apply similar calculations and (assumptions) used by planetary scientists to infer convection in icy moons like Europa we find that these models also predict that vigorous convection should also occur in portions of our own terrestrial ice sheets and ice shelves where we have firm evidence to the contrary. We can explain the lack of convection within our own ice sheets by recognizing that instead of the diffusion creep limited rheology frequently invoked by planetary scientists, terrestrial ice undergoes power-law creep down to very low strain rates. Glaciological studies find that power-law creep is required to explain the structure of vertical strain rate near ice sheet divides and shape of the ice sheets near an ice divide. However, when we now apply a rheology that is consistent with terrestrial ice sheet dynamics to icy moon conditions, we find conditions are far less favorable for convection in icy moons, with only a very limited parameter regime where convection can occur. Given the many unknowns (grain size, impurities etc.) it is challenging to draw strong conclusions about the behavior of icy moons . Nonetheless, the lack of convection in terrestrial ice sheets provides an important constraint on the dynamics of icy moons and models that explain convection of icy moons should also explain the lack of convection on terrestrial ice sheets.

  7. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has the potential to influence ice sheet flow. Crevassing and disrupted internal layers are present in the deep ice found in the inland extent of the Lambert Graben. Preliminary analysis indicates both a more dynamic East Antarctic ice sheet and a more complex tectonic evolution for East Antarctica.

  8. Towards Greenland Glaciation: cumulative or abrupt transition?

    NASA Astrophysics Data System (ADS)

    Ramstein, Gilles; Tan, Ning; Ladant, Jean-baptiste; Dumas, Christophe; Contoux, Camille

    2017-04-01

    During the mid-Pliocene warming period (3-3.3 Ma BP), the global annual mean temperatures inferred by data and model studies were 2-3° warmer than pre-industrial values. Accordingly, Greenland ice sheet volume is supposed to reach at the most, only half of that of present-day [Haywood et al. 2010]. Around 2.7-2.6 Ma BP, just ˜ 500 kyr after the warming peak of mid-Pliocene, the Greenland ice sheet has reached its full size [Lunt et al. 2008]. A crucial question concerns the evolution of the Greenland ice sheet from half to full size during the 3 - 2.5 Ma period. Data show a decreasing trend of atmospheric CO2 concentration from 3 Ma to 2.5 Ma [Seki et al.2010; Bartoli et al. 2011; Martinez et al. 2015]. However, a recent study [Contoux et al. 2015] suggests that a lowering of CO2 is not sufficient to initiate a perennial glaciation on Greenland and must be combined with low summer insolation to preserve the ice sheet during insolation maxima. This suggests rather a cumulative process than an abrupt event. In order to diagnose the evolution of the ice sheet build-up, we carry on, for the first time, a transient simulation of climate and ice sheet evolutions from 3 Ma to 2.5 Ma. This strategy enables us to investigate the waxing and waning of the ice sheet during several orbital cycles. We use a tri-dimensional interpolation method designed by Ladant et al. (2014), which allows the evolution of CO2 concentration and of orbital parameters, and the evolution of the Greenland ice sheet size to be taken into account. By interpolating climatic snapshot simulations ran with various possible combinations of CO2, orbits and ice sheet sizes, we can build a continuous climatic forcing that is then used to provide 500 kyrs-long ice sheet simulations. With such a tool, we may offer a physically based answer to different CO2 reconstructions scenarios and analyse which one is the most consistent with Greenland ice sheet buildup.

  9. A Warmer Atmosphere on Mars near the Noachian-Hesperian Boundary: Evidence from Basal Melting of the South Polar Ice Cap (Dorsa Argentea Formation)

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.; Marchant, D. R.; Forget, F.; Madeleine, J.-B.

    2012-05-01

    Eskers in the Dorsa Argentea Formation imply the presence of an ice sheet with a wet bed. With an ice sheet model, we examine a range of geothermal heat fluxes and warmer climates to determine what conditions could produce such an ice sheet.

  10. A wet-geology and cold-climate Mars model: Punctuation of a slow dynamic approach to equilibrium

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1993-01-01

    It was suggested that Mars may have possessed a relatively warm humid climate and a vigorous hydrological cycle involving meteoric precipitation, oceans, and continental ice sheets. Baker hypothesized that these geologically active conditions may have been repeated several times; each of these dynamic epochs was followed by a collapse of the climate and hydrologic cycle of Mars into essentially current conditions, completing what is termed a 'Baker cycle'. The purpose is to present an endmember possibility that Martian glacial landscapes, including some that were previously considered to have formed under warm climatic conditions, might be explained by processes compatible with an extremely cold surface. Two aspects of hypothesized Martian glacial terrains were cited as favoring a warm climate during Baker cycles: (1) the formation of some landscapes, including possible eskers, tunnel channels, drumlins, and outwash plains, appears to have required liquid water, and (2) a liquid-surfaced ocean was probably necessary to feed the glaciers. The requirement for liquid water, if these features were correctly interpreted, is difficult to avoid; it is entirely possible that a comparatively warm climate was involved, but it is not clear that formation of landforms by wet-based glaciers actually requires a warm climate. Even less certain is the supposed requirement for liquid oceans. Formation of glaciers only requires a source of water or ice to supply an amount of precipitation that exceeds losses due to melting and sublimation. At Martian temperatures precipitation is very low, but so are melting and sublimation, so a large body of ice that is unstable with respect to sublimation may take the role of Earth's oceans in feeding the glaciers. Recent models suggest that even current Martian polar caps, long thought to be static bodies of ice and dust, might actually be slow-moving, cryogenic continental glaciers. Is it possible that subglacial processes beneath cryogenic (but wetbased) ice sheets formed the hypothesized Martian glacial landscapes?

  11. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  12. Multi-MICE: Nuclear Powered Mobile Probes to Explore Deep Interiors of the Ice Sheets on Mars and the Jovian Moons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maise, George; Powell, James; Paniagua, John

    2007-01-30

    The multi-kilometer thick Polar Caps on Mars contain unique and important data about the multi-million year history of its climate, geology, meteorology, volcanology, cosmic ray and solar activity, and meteor impacts. They also may hold evidence of past life on Mars, including microbes, microfossils and biological chemicals. The objective of this paper is to describe a probe that can provide access to the data locked in the Polar Caps. The MICE (Mars Ice Cap Explorer) system would explore the Polar Cap interiors using mobile probes powered by compact, lightweight nuclear reactors. The probes would travel 100's of meters per daymore » along melt channels in the ice sheets created by hot water jets from the 500 kW(th) nuclear reactors, ascending and descending, either vertically or at an angle to the vertical, reaching bedrock at kilometers beneath the surface. The powerful reactor will be necessary to provide sufficient hot water at high velocity to penetrate the extensive horizontal dust/sand layers that separate layers of ice in the Mars Ice Caps. MICE reactors can operate at 500 kW(th) for more than 4 years, and much longer in practice, since power level will be much lower when the probes are investigating locations in detail at low or zero speed. Multiple probes, e.g. six, would be deployed in an interactive network, continuously communicating by RF and acoustic signals with each other and with the surface lander spacecraft. In turn, the lander would continuously communicate in real time, subject to speed of light delays, with scientists on Earth to transmit data and receive instructions for the MICE probes. Samples collected by the probes could be brought to the lander, for return to the Earth at the end of the mission.« less

  13. Lake Vostok: An earthly analogue for the geomicrobiology on Europa

    NASA Astrophysics Data System (ADS)

    Priscu, J. C.; Christner, B. C.

    2007-12-01

    The recent discovery of more than 150 subglacial lakes beneath the Antarctic ice sheet has important implications in our search for liquid water and associated life on other icy worlds. The largest of these lakes is Lake Vostok, which has a surface area of 14000 square km and a depth of 1000 m, making it one of the largest lakes on Earth. Although we have yet to sample directly the liquid water from any of the Antarctic subglacial lakes, refrozen lakewater (accretion ice) has been sampled just above the surface of Lake Vostok. Genomic and geochemical analysis of this ice reveals that the surface lake water supports a microbial assemblage with a density approaching 1000 cells per milliliter. Sequencing and phylogenetic analysis of the 900 to 1000 base pair small subunit rRNA gene sequences obtained revealed a low diversity of clones that classify within the beta, gamma and delta subdivisions of the phylum Proteobacteria. Nearest phylogenetic neighbor analysis of these gene sequences imply that the lake contains an aerobic and anaerobic consortium of bacteria with metabolisms dedicated to iron and sulfur respiration or oxidation indicating that these metals play a role in the bioenergetics of microorganisms that occur in Lake Vostok. Sequence analysis further revealed that heterotrophic life in the lake can be sustained by chemolithotrophic production of new carbon supplemented by dissolved organic carbon released from the overlying ice sheet. Data obtained from orbiters have revealed that a deep ocean of liquid water lies under a thick chaotic ice cover on Europa where organic matter derived from comets and oxidants provided by radiation from Jupiter's magnetosphere may provide a habitat for life and a reservoir of endogenous and exogenous substances much like we observe in Lake Vostok. Future studies of Antarctic subglacial lake environments will play a crucial role in our understanding of life on Europa and other frozen worlds.

  14. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  15. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  16. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  17. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions

    PubMed Central

    Hillenbrand, Claus-Dieter; Smith, James A.; Hodell, David A.; Greaves, Mervyn; Poole, Christopher R.; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E.; Klages, Johann P.; Roberts, Stephen J.; Gohl, Karsten; Larter, Robert D.; Kuhn, Gerhard

    2017-01-01

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) upwelling onto the West Antarctic continental shelf causes melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet loss today. Here we present the first multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the last 11,000 years. The chemical composition of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector both until 7,500 years ago, when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream, and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models. PMID:28682333

  18. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.

    PubMed

    Hillenbrand, Claus-Dieter; Smith, James A; Hodell, David A; Greaves, Mervyn; Poole, Christopher R; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E; Elderfield, Henry; Klages, Johann P; Roberts, Stephen J; Gohl, Karsten; Larter, Robert D; Kuhn, Gerhard

    2017-07-05

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.

  19. Radiocarbon chronology of the last deglaciation in the Baffin Bay reveals asynchronous melting of Arctic and Laurentide ice sheets

    NASA Astrophysics Data System (ADS)

    Jackson, Rebecca; Kucera, Michal; Vogt, Christoph; Wacker, Lukas

    2016-04-01

    The transition from the last ice age into the Holocene interglacial was characterised by rapid retreat of North American ice sheets, discharging large quantities of meltwater into the Labrador Sea. Whereas the meltwater chronology of the Laurentide Ice Sheet is well documented, the deglacial history of the American Arctic ice sheets (Inuit Ice sheet and northern Greenland Ice Sheet) draining into the Labrador Sea via the Baffin Bay is less well constrained. Here we present the first high-resolution radiocarbon-dated deglacial records from the Canadian and Greenland margins of the central Baffin Bay. Sedimentological and geochemical data confirm the presence during Termination I of two events of enhanced delivery of detrital carbonate (Baffin Bay Detrital Carbonate Events) dated to 14.2-13.7 ka BP and 12.7-11 ka BP. The events are synchronous across the Baffin Bay and their mineralogical signature indicates a common source of detrital carbonate from the Canadian Arctic, with a synchronous clastic source proximal to Greenland. The events postdate Heinrich layers and their onset is not linked to Greenland temperature change. This indicates that the deglaciation of American Arctic ice sheets and associated meltwater discharge were decoupled from the dominant North Atlantic climate mode.

  20. An ice sheet model validation framework for the Greenland ice sheet.

    PubMed

    Price, Stephen F; Hoffman, Matthew J; Bonin, Jennifer A; Howat, Ian M; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P; Evans, Katherine J; Kennedy, Joseph H; Lenaerts, Jan; Lipscomb, William H; Perego, Mauro; Salinger, Andrew G; Tuminaro, Raymond S; van den Broeke, Michiel R; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  1. Ice-sheet contributions to future sea-level change.

    PubMed

    Gregory, J M; Huybrechts, P

    2006-07-15

    Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.

  2. Mapping Solid and Liquid Meltwater Retention on the Greenland and Antarctic Ice Sheets from Space

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T.; Forster, R. R.; Long, D. G.

    2017-12-01

    We use satellite and airborne microwave radiometry to explore the potential for mapping both solid (infiltration ice) and liquid (firn aquifers) meltwater retention on ice sheets. Meltwater retention in firn is currently poorly understood, especially on an ice sheet-scale, however, critical to understanding the ultimate fate of liquid meltwater produced at the surface of ice sheets. Is it contributing to sea level? Or, is it being buffered prior to escaping into the ocean? We previously developed a simple satellite retrieval technique to map firn aquifers on the Greenland ice sheet using distinct L-band brightness temperature signatures that decrease on timescales of months following surface freeze-up, however, similar L-band brightness temperature signatures that decrease on timescales ranging from weeks to days are also present throughout the percolation facies of both the Greenland and Antarctic ice sheets. We hypothesize this characteristic family of temporal signatures represents meltwater retention within firn, where slowly decreasing signatures are characteristic of meltwater retention within perennial firn aquifers, and rapidly decreasing signatures are characteristic of meltwater retention as superimposed ice. Decreasing signatures on timescales between likely represent a continuum of firn characteristics, such as transient firn aquifers, perched firn aquifers, ice layers, ice pipes and lenses, and iced firn. To investigate these temporal signatures, we use L-band (1.4 GHz) brightness temperature observations collected over the Greenland and Antarctic ice sheets by the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite, and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite. We will also investigate spectral signatures using multi-frequency L-band brightness temperature data (0.5-2 GHz) to be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State University developed Ultra-Wideband Software-Defined Microwave Radiometer (UWBRAD) as part of our airborne field campaign to be conducted in September 2017.

  3. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    NASA Astrophysics Data System (ADS)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  4. Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record

    NASA Astrophysics Data System (ADS)

    Pope, Ed L.; Talling, Peter J.; Hunt, James E.; Dowdeswell, Julian A.; Allin, Joshua R.; Cartigny, Matthieu J. B.; Long, David; Mozzato, Alessandro; Stanford, Jennifer D.; Tappin, David R.; Watts, Millie

    2016-10-01

    The full-glacial extent and deglacial behaviour of marine-based ice sheets, such as the Barents Sea Ice Sheet, is well documented since the Last Glacial Maximum about 20,000 years ago. However, reworking of older sea-floor sediments and landforms during repeated Quaternary advances across the shelf typically obscures their longer-term behaviour, which hampers our understanding. Here, we provide the first detailed long-term record of Barents Sea Ice Sheet advances, using the timing of debris-flows on the Bear Island Trough-Mouth Fan. Ice advanced to the shelf edge during four distinct periods over the last 140,000 years. By far the largest sediment volumes were delivered during the oldest advance more than 128,000 years ago. Later advances occurred from 68,000 to 60,000, 39,400 to 36,000 and 26,000 to 20,900 years before present. The debris-flows indicate that the dynamics of the Saalian and the Weichselian Barents Sea Ice Sheet were very different. The repeated ice advance and retreat cycles during the Weichselian were shorter lived than those seen in the Saalian. Sediment composition shows the configuration of the ice sheet was also different between the two glacial periods, implying that the ice feeding the Bear Island Ice stream came predominantly from Scandinavia during the Saalian, whilst it drained more ice from east of Svalbard during the Weichselian.

  5. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  6. Ice-Sheet Dynamics and Millennial-Scale Climate Variability in the North Atlantic across the Middle Pleistocene Transition (Invited)

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Nicholl, J.

    2013-12-01

    During the Middle Pleistocene Transition (MPT), the climate system evolved from a more linear response to insolation forcing in the '41-kyr world' to one that was decidedly non-linear in the '100-kyr world'. Smaller ice sheets in the early Pleistocene gave way to larger ice sheets in the late Pleistocene with an accompanying change in ice sheet dynamics. We studied Sites U1308 (49° 52.7'N, 24° 14.3'W; 3871 m) and U1304 (53° 3.4'N, 33° 31.8'W; 3024 m) in the North Atlantic to determine how ice sheet dynamics and millennial-scale climate variability evolved as glacial boundary conditions changed across the MPT. The frequency of ice-rafted detritus (IRD) in the North Atlantic was greater during glacial stages prior to 650 ka (MIS 16), reflecting more frequent crossing of an ice volume threshold when the climate system spent more time in the 'intermediate ice volume' window, resulting in persistent millennial scale variability. The rarity of Heinrich Events containing detrital carbonate and more frequent occurrence of IRD events prior to 650 ka may indicate the presence of 'low-slung, slippery ice sheets' that flowed more readily than their post-MPT counterparts (Bailey et al., 2010). Ice volume surpassed a critical threshold across the MPT that permitted ice sheets to survive boreal summer insolation maxima, thereby increasing ice volume and thickness, lengthening glacial cycles, and activating the dynamical processes responsible for Laurentide Ice Sheet instability in the region of Hudson Strait (i.e., Heinrich events). The excess ice volume during post-MPT glacial maxima provided a large, unstable reservoir of freshwater to be released to the North Atlantic during glacial terminations with the potential to perturb Atlantic Meridional Overtunring Circulation. We speculate that orbital- and millennial-scale variability co-evolved across the MPT and the interaction of processes on orbital and suborbital time scales gave rise to the changing patterns of glacial-interglacial cycles through the Quaternary. Bailey, I., Bolton, C.T., DeConto, R.M., Pollard, D., Schiebel, R. and Wilson, P.A. (2010) A low threshold for North Atlantic ice rafting from "low-slung slippery" late Pliocene ice sheets. Paleoceanography, 25, PA1212-[14pp]. (doi:10.1029/2009PA001736).

  7. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  8. Geological and geomorphological insights into Antarctic ice sheet evolution.

    PubMed

    Sugden, David E; Bentley, Michael J; O Cofaigh, Colm

    2006-07-15

    Technical advances in the study of ice-free parts of Antarctica can provide quantitative records that are useful for constraining and refining models of ice sheet evolution and behaviour. Such records improve our understanding of system trajectory, influence the questions we ask about system stability and help to define the ice-sheet processes that are relevant on different time-scales. Here, we illustrate the contribution of cosmogenic isotope analysis of exposed bedrock surfaces and marine geophysical surveying to the understanding of Antarctic ice sheet evolution on a range of time-scales. In the Dry Valleys of East Antarctica, 3He dating of subglacial flood deposits that are now exposed on mountain summits provide evidence of an expanded and thicker Mid-Miocene ice sheet. The survival of surface boulders for approximately 14Myr, the oldest yet measured, demonstrates exceptionally low rates of subsequent erosion and points to the persistence and stability of the dry polar desert climate since that time. Increasingly, there are constraints on West Antarctic ice sheet fluctuations during Quaternary glacial cycles. In the Sarnoff Mountains of Marie Byrd Land in West Antarctica, 10Be and 26Al cosmogenic isotope analysis of glacial erratics and bedrock reveal steady thinning of the ice sheet from 10400 years ago to the present, probably as a result of grounding line retreat. In the Antarctic Peninsula, offshore analysis reveals an extensive ice sheet at the last glacial maximum. Based on radiocarbon dating, deglaciation began by 17000cal yr BP and was complete by 9500cal yr BP. Deglaciation of the west and east sides of the Antarctic Peninsula ice sheet occurred at different times and rates, but was largely complete by the Early Holocene. At that time ice shelves were less extensive on the west side of the Antarctic Peninsula than they are today. The message from the past is that individual glacier drainage basins in Antarctica respond in different and distinctive ways to global climate change, depending on the link between regional topography and climate setting.

  9. Geochemistry of glacial sediments in the area of the Bend massive sulfide deposit, north-central Wisconsin

    USGS Publications Warehouse

    Woodruff, L.G.; Attig, J.W.; Cannon, W.F.

    2004-01-01

    Geochemical exploration in northern Wisconsin has been problematic because of thick glacial overburden and complex stratigraphic record of glacial history. To assess till geochemical exploration in an area of thick glacial cover and complex stratigraphy samples of glacial materials were collected from cores from five rotasonic boreholes near a known massive sulfide deposit, the Bend deposit in north-central Wisconsin. Diamond drilling in the Bend area has defined a long, thin zone of mineralization at least partly intersected at the bedrock surface beneath 30-40 m of unconsolidated glacial sediments. The bedrock surface has remnant regolith and saprolite resulting from pre-Pleistocene weathering. Massive sulfide and mineralized rock collected from diamond drill core from the deposit contain high (10s to 10,000s ppm) concentrations of Ag, As, Au, Bi, Cu, Hg, Se, Te, and Tl. Geochemical properties of the glacial stratigraphic units helped clarify the sequence and source areas of several glacial ice advances preserved in the section. At least two till sheets are recognized. Over the zone of mineralization, saprolite and preglacial alluvial and lacustrine samples are preserved on the bedrock surface in a paleoriver valley. The overlying till sheet is a gray, silty carbonate till with a source hundreds of kilometers to the northwest of the study area. This gray till is overlain by red, sandy till with a source to the north in Proterozoic rocks of the Lake Superior area. The complex glacial stratigraphy confounds down-ice geochemical till exploration. The presence of remnant saprolite, preglacial sediment, and far-traveled carbonate till minimized glacial erosion of mineralized material. As a result, little evidence of down-ice glacial dispersion of lithologic or mineralogic indicators of Bend massive sulfide mineralization was found in the samples from the rotasonic cores. This study points out the importance of determining glacial stratigraphy and history, and identifying favorable lithologies required for geochemical exploration. Drift prospecting in Wisconsin and other areas near the outer limits of the Pleistocene ice sheets may not be unsuccessful, in part, because of complex stratigraphic sequences of multiple glaciations where deposition dominates over erosion. ?? 2004 Elsevier B.V. All rights reserved.

  10. Icy Layers and Climate Fluctuations near the Martian North Pole

    NASA Image and Video Library

    2010-03-31

    The Martian north polar layered deposits are an ice sheet much like the Greenland ice sheet on the Earth in this image from NASA Mars Reconnaissance Orbiter. This Martian ice sheet contains many layers that record variations in the Martian climate.

  11. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    NASA Astrophysics Data System (ADS)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  12. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  13. Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise: North American MWP1a Contribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregoire, Lauren J.; Otto-Bliesner, Bette; Valdes, Paul J.

    Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions ofmore » 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.« less

  14. Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise: North American MWP1a Contribution

    DOE PAGES

    Gregoire, Lauren J.; Otto-Bliesner, Bette; Valdes, Paul J.; ...

    2016-08-23

    Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions ofmore » 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.« less

  15. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  16. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion.

    PubMed

    Aitken, A R A; Roberts, J L; van Ommen, T D; Young, D A; Golledge, N R; Greenbaum, J S; Blankenship, D D; Siegert, M J

    2016-05-19

    Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.

  17. Antarctic Ice Sheet Discharge Driven by Atmosphere-Ocean Feedbacks Across the Last Glacial Termination

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.

    2016-12-01

    Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg, A. et al. Scientific Reports 6(2016). 10 Hughen, K. A., et al., Radiocarbon 46, 1161-1187 (2004). 11 Anderson, R. F. et al. Science 323, 1443-1448, doi:10.1126/science.1167441 (2009).

  18. Global ice-sheet system interlocked by sea level

    NASA Astrophysics Data System (ADS)

    Denton, George H.; Hughes, Terence J.; Karlén, Wibjörn

    1986-07-01

    Denton and Hughes (1983, Quaternary Research20, 125-144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results ( Manabe and Broccoli, 1985, Journal of Geophysical Research90, 2167-2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate ( Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In "The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present" (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303-318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide ( W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature ( London) 315, 21-26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.

  19. Greenland-Wide Seasonal Temperatures During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.

    2018-02-01

    The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.

  20. The Pliocene-Pleistocene transition and the onset of the Northern Hemisphere glacial inception

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Calov, R.; Ganopolski, A.

    2011-12-01

    The Pliocene-Pleistocene transition (PPT, ca. 3.3-2.4 Ma BP) marks a shift in the Earth's climate and is believed to coincide with the inception of the Northern Hemisphere (NH) ice sheets. This transition is not only characterized by a gradual reduction in atmospheric CO2 concentration, paleo records also show a strengthening in the amplitude of δ18O data and intensified ice rafted debris deposition in the North Atlantic. Previous modeling studies have demonstrated that the drop in atmospheric CO2 plays an important role in the glaciation of the NH ice sheets, and more specifically, it is considered to be the primary cause of the glaciation of Greenland. Here we apply a novel approach to produce transient simulations of the entire PPT, in order to study the glaciation of Greenland and the NH ice sheets and additionally, to investigate which conditions are necessary for full-scale glaciation. The fully-coupled Earth system model of intermediate complexity CLIMBER-2 is used to explore the effects of a suite of orbital and CO2 forcing scenarios on total NH glaciation. CLIMBER-2 includes low-resolution sub-models of the atmosphere, vegetation, ocean and ice sheets - the latter is designed to simulate the big NH ice sheets with a rather low resolution (and high computational efficiency). As a refinement, the results of the global simulations are then used to force regional simulations of the Greenland Ice Sheet (GIS) using the higher resolution (20 km) regional climate-ice sheet model, REMBO-SICOPOLIS. We present results of transient simulations driven by orbital forcing and several CO2 reduction scenarios that are consistent with best estimates from data for this time period. We discuss the growth and persistence of the NH ice sheets in terms of the forcing and feedbacks involved. Additionally, we present a set of simulations with the growth of the NH ice sheets disabled, in order to quantify the effect the large ice sheets have on global and regional temperature anomalies. By simulating the Greenland Ice Sheet (GIS) in our high resolution coupled global-regional approach, we identify with greater precision, the conditions neccesary for inception of the GIS and link these to global climatic changes.

  1. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  2. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  3. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    PubMed

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  4. Exploring changes in vertical ice extent along the margin of the East Antarctic Ice Sheet in western Dronning Maud Land - initial results of the MAGIC-DML collaboration

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.; Newall, J. C.; Fredin, O.; Glasser, N. F.; Fabel, D.; Rogozhina, I.; Bernales, J.; Prange, M.; Sams, S.; Eisen, O.; Hättestrand, C.; Harbor, J.; Stroeven, A. P.

    2017-12-01

    Numerical ice sheet models constrained by theory and refined by comparisons with observational data are a central component of work to address the interactions between the cryosphere and changing climate, at a wide range of scales. Such models are tested and refined by comparing model predictions of past ice geometries with field-based reconstructions from geological, geomorphological, and ice core data. However, on the East Antarctic Ice sheet, there are few empirical data with which to reconstruct changes in ice sheet geometry in the Dronning Maud Land (DML) region. In addition, there is poor control on the regional climate history of the ice sheet margin, because ice core locations, where detailed reconstructions of climate history exist, are located on high inland domes. This leaves numerical models of regional glaciation history in this near-coastal area largely unconstrained. MAGIC-DML is an ongoing Swedish-US-Norwegian-German-UK collaboration with a focus on improving ice sheet models by combining advances in numerical modeling with filling critical data gaps that exist in our knowledge of the timing and pattern of ice surface changes on the western Dronning Maud Land margin. A combination of geomorphological mapping using remote sensing data, field investigations, cosmogenic nuclide surface exposure dating, and numerical ice-sheet modeling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of western Dronning Maud Land. We will present an overview of the project, as well as field observations and preliminary in situ cosmogenic nuclide measurements from the 2016/17 expedition.

  5. Jurassic high heat production granites associated with the Weddell Sea rift system, Antarctica

    NASA Astrophysics Data System (ADS)

    Leat, Philip T.; Jordan, Tom A.; Flowerdew, Michael J.; Riley, Teal R.; Ferraccioli, Fausto; Whitehouse, Martin J.

    2018-01-01

    The distribution of heat flow in Antarctic continental crust is critical to understanding continental tectonics, ice sheet growth and subglacial hydrology. We identify a group of High Heat Production granites, intruded into upper crustal Palaeozoic metasedimentary sequences, which may contribute to locally high heat flow beneath the West Antarctic Ice Sheet. Four of the granite plutons are exposed above ice sheet level at Pagano Nunatak, Pirrit Hills, Nash Hills and Whitmore Mountains. A new Usbnd Pb zircon age from Pirrit Hills of 178.0 ± 3.5 Ma confirms earlier Rbsbnd Sr and Usbnd Pb dating and that the granites were emplaced approximately coincident with the first stage of Gondwana break-up and the developing Weddell rift, and 5 m.y. after eruption of the Karoo-Ferrar large igneous province. Aerogeophysical data indicate that the plutons are distributed unevenly over 40,000 km2 with one intruded into the transtensional Pagano Shear Zone, while the others were emplaced within the more stable Ellsworth-Whitmore mountains continental block. The granites are weakly peraluminous A-types and have Th and U abundances up to 60.7 and 28.6 ppm respectively. Measured heat production of the granite samples is 2.96-9.06 μW/m3 (mean 5.35 W/m3), significantly higher than average upper continental crust and contemporaneous silicic rocks in the Antarctic Peninsula. Heat flow associated with the granite intrusions is predicted to be in the range 70-95 mW/m2 depending on the thickness of the high heat production granite layer and the regional heat flow value. Analysis of detrital zircon compositions and ages indicates that the high Th and U abundances are related to enrichment of the lower-mid crust that dates back to 200-299 Ma at the time of the formation of the Gondwanide fold belt and its post-orogenic collapse and extension.

  6. Sensitivity of grounding line dynamics to viscoelastic deformation of the solid Earth: Inferences from a fully coupled ice sheet - solid Earth model

    NASA Astrophysics Data System (ADS)

    Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.

    2013-12-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  7. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated from DISP images and that from ASTER images were analyzed, and the changes and evolution of Amery ice shelf were then evaluated, following by the discussion of the possible drives.

  8. The Antarctic Ice Sheet during the last Interglaciation: Insights from my Thesis

    NASA Astrophysics Data System (ADS)

    Whipple, Matthew; Lunt, Dan; Singarayer, Joy; Bradley, Sarah; Milne, Glenn; Wolff, Eric; Siddall, Mark

    2015-04-01

    The last interglaciation represents a period of warmer climates and higher sea levels, and a useful analogue to future climate. While many studies have focussed on the response of the Greenland Ice sheet, far less is known about the response of the Antarctic ice sheet. Here, I present the summarised results of my PhD thesis "Constraints on the minimum extent of the Antarctic ice sheet during the last interglaciation". Firstly, I cover the timings of interglaciation in Antarctica, and their differences with respect to the Northern Hemisphere timings, based on paleo sea level indicators, and oceanic temperature records. I move on to cover climate forcings, and how they influence the ice sheet, relative to present, and early Holocene. Secondly, I present thesis results, from looking at ice core stable water isotopes. These are compared with Isostatic and Climatic modelling results, for various different Ice sheet scenarios, as to the resulting Climate, from changes in Elevation, Temperature, Precipitation, and Sublimation, all contributing to the recorded stable water isotope record. Thirdly, I move on to looking at the mid-field relative sea level records, from Australia and Argentina. Using isostatic modelling, these are used to assess the relative contribution of the Eastern and Western Antarctic Ice sheets. Although data uncertainties result in us being to identify the contribution from West Antarctica. Overall, using model-data comparison, we find a lack of evidence for a substantial retreat of the Wilkes Subglacial basin. No data location is close enough to determine the existence of the marine based West Antarctic Ice sheet. Model uncertainty is unable to constrain evidence of variations in ice thickness in East Antarctica.

  9. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  10. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  11. Impacts of polar ice sheets on the East Asian monsoon during the MIS-13 interglacial

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Yin, Qiuzhen; Nikolova, Irina; Guo, Zhengtang; Berger, Andre

    2017-04-01

    Among all the interglacials of the last one million years, Marine Isotope Stage (MIS) 13 has the highest δ18O value over the past 800 ka in the deep-sea sediments. This would indicate that MIS-13 is the coolest interglacial if assuming δ18O mainly represents global ice volume. The Antarctic ice core records show also that MIS-13 is the coolest interglacial over Antarctica with almost the lowest greenhouse gases concentrations (GHG). However, many proxy records from the northern hemisphere (NH) indicate that MIS-13 is at least as warm as or even warmer than the recent interglacials, with extremely strong summer monsoon and a possible melting of Greenland ice sheet. In this study, based on proxy reconstructions, different scenarios regarding the size of the Greenland and Antarctic ice sheets are made, and the response of the East Asian summer monsoon to these scenarios are tested by using the models HadCM3 and LOVECLIM as well as factor separation analysis and under the astronomical and GHG configurations of MIS-13. The results show that the influence of the disappearance of Greenland ice sheet on the surface temperature is quite localized, mainly over the northern high latitudinal regions, however, the influence of the bigger southern Hemisphere (SH) ice sheet on the surface temperature is very global, especially in the southern hemisphere. This ice sheet condition has an impact on the precipitation pattern over tropical-subtropical regions. It causes much more summer precipitation over all the East Asian monsoon region, in consistent with the paleosol record from southern China. The scenario of melted Greenland ice sheet and of larger SH ice sheets provides one of the explanations of the strong monsoon rainfall documented by the proxy data.

  12. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management

    PubMed Central

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-01-01

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. PMID:25920733

  13. Chest wall abscesses due to continuous application of silicone gel sheets for keloid management.

    PubMed

    Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S

    2015-04-28

    A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. 2015 BMJ Publishing Group Ltd.

  14. Modelling the influence of tides on ice-shelf melt rates in the Amundsen Sea, Antarctica.

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Molines, Jean-Marc; Le Sommer, Julien; Mathiot, Pierre; Chanut, Jérome; Madec, Gurvan

    2017-04-01

    Variations in melt beneath ice- shelves may trigger ice-sheet instabilities, in particular in West Antarctica. Therefore, improving the understanding and modelling of ice-shelf basal melt rates has been a major focus over the last decades. In this presentation, we provide further insight into the role of tides on basal melt rates, and we assess several methods to account for tides in models that do not include an explicit representation of tides. First, we use an explicit representation of tides in a regional configuration of the NEMO-3.6 model deployed over the Amundsen Sea. We show that most of the tidal influence on ice-shelf melt is explained by four tidal constituents. Tides enhance melt by more than 30% in some cavities like Abbot, Cosgrove and Dotson, but by less than 10% in others like Thwaites and Pine Island. Over the entire Amundsen Sea sector, tides enhance melt by 92 Gt/yr, which is mostly induced by tidal velocities along ice drafts (+148 Gt/yr), partly compensated by tide-induced change in thermal forcing (-31 Gt/yr) and co-variations between tidal velocities and thermal forcing (-26 Gt/yr). In the second part of this presentation, we show that using uniform tidal velocities to account for tides effects in ocean models with no explicit tides produces large biases in melt rates. By contrast, prescribing non-uniform tidal velocities allows an accurate representation of the dynamical effects of tides on melt rates.

  15. The Sensitivity of the Greenland Ice Sheet to Glacial-Interglacial Oceanic Forcing

    NASA Astrophysics Data System (ADS)

    Tabone, I.; Blasco Navarro, J.; Robinson, A.; Alvarez-Solas, J.; Montoya, M.

    2017-12-01

    Up to now, the scientific community has mainly focused on the sensitivity of the Greenland Ice Sheet (GrIS) to atmospheric variations. However, several studies suggest that the enhanced ice mass loss experienced by the GrIS in the past decades is directly connected to the increasing North Atlantic temperatures. Melting of GrIS outlet glaciers triggers grounding-line retreat increasing ice discharge into the ocean. This new evidence leads to consider the ocean as a relevant driver to be taken into account when modeling the evolution of the GrIS. The ice-ocean interaction is a primary factor controling not only the likely future retreat of GrIS outlet glaciers, or the huge ice loss in past warming climates, but also, and more strongly, the past GrIS glacial expansion. The latter assumption is supported by reconstructions which propose the GrIS to be fully marine-based during glacials, and thus more exposed to the influence of the ocean. Here, for the first time, we investigate the response of the GrIS to past oceanic changes using a three-dimensional hybrid ice-sheet/ice-shelf model, which combines the Shallow Ice Approximation (SIA) for slow grounded ice sheets and the Shallow Shelf Approximation (SSA) in ice shelves and ice streams. The model accounts for a time-dependent parametrisation of the marine basal melting rate, which is used to reproduce past oceanic variations. In this work simulations of the last two glacial cycles are performed. Our results show that the GrIS is very sensitive to the ocean-triggered submarine melting (freezing). Mild oceanic temperature variations lead to a rapid retreat (expansion) of the GrIS margins, which, inducing a dynamic adjustment of the grounded ice sheet, drive the evolution of the whole ice sheet. Our results strongly suggest the need to consider the ocean as an active forcing in paleo ice sheet models.

  16. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  17. Programme for Monitoring of the Greenland Ice Sheet - Ice Surface Velocities

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Ahlstrom, A. P.; Boncori, J. M.; Dall, J.

    2011-12-01

    In 2007, the Danish Ministry of Climate and Energy launched the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) as an ongoing effort to assess changes in the mass budget of the Greenland Ice Sheet. Iceberg calving from the outlet glaciers of the Greenland Ice Sheet, often termed the ice-dynamic mass loss, is responsible for an important part of the mass loss during the last decade. To quantify this part of the mass loss, we combine airborne surveys yielding ice-sheet thickness along the entire margin, with surface velocities derived from satellite synthetic-aperture radar (SAR). In order to derive ice sheet surface velocities from SAR a processing chain has been developed for GEUS by DTU Space based on a commercial software package distributed by GAMMA Remote Sensing. The processor, named SUSIE (Scripts and Utilities for SAR Ice-motion Estimation), can use both differential SAR interferometry and offset-tracking techniques to measure the horizontal velocity components, providing also an estimate of the corresponding measurement error. So far surface velocities have been derived for a number of sites including Nioghalvfjerdsfjord Glacier, the Kangerlussuaq region, the Nuuk region, Helheim Glacier and Daugaard-Jensen Glacier using data from ERS-1/ERS-2, ENVISAT ASAR and ALOS Palsar. Here we will present these first results.

  18. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  19. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets

    NASA Astrophysics Data System (ADS)

    Wittlinger, Gérard; Farra, Véronique

    2015-03-01

    We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.

  20. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound, assuming negligible longwave radiation and albedo near the maximum observed for freshly fallen snow. Even under this scenarios preliminary estimates suggest tens of centimeters of sea level rise by 2100.

  1. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams.

    PubMed

    Bell, Robin E; Studinger, Michael; Shuman, Christopher A; Fahnestock, Mark A; Joughin, Ian

    2007-02-22

    Water plays a crucial role in ice-sheet stability and the onset of ice streams. Subglacial lake water moves between lakes and rapidly drains, causing catastrophic floods. The exact mechanisms by which subglacial lakes influence ice-sheet dynamics are unknown, however, and large subglacial lakes have not been closely associated with rapidly flowing ice streams. Here we use satellite imagery and ice-surface elevations to identify a region of subglacial lakes, similar in total area to Lake Vostok, at the onset region of the Recovery Glacier ice stream in East Antarctica and predicted by ice-sheet models. We define four lakes through extensive, flat, featureless regions of ice surface bounded by upstream troughs and downstream ridges. Using ice velocities determined using interferometric synthetic aperture radar (InSAR), we find the onset of rapid flow (moving at 20 to 30 m yr(-1)) of the tributaries to the Recovery Glacier ice stream in a 280-km-wide segment at the downslope margins of these four subglacial lakes. We conclude that the subglacial lakes initiate and maintain rapid ice flow through either active modification of the basal thermal regime of the ice sheet by lake accretion or through scouring bedrock channels in periodic drainage events. We suggest that the role of subglacial lakes needs to be considered in ice-sheet mass balance assessments.

  2. Insolation-driven 100 kyr glacial cycles and millennial climate change

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.

    2013-12-01

    The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)

  3. Understanding ice sheet evolution to avoid massive sea level rise instead of experiencing it (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Rignot, Eric

    2017-04-01

    With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.

  4. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  5. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    NASA Astrophysics Data System (ADS)

    Gagliardini, O.; Zwinger, T.; Gillet-Chaulet, F.; Durand, G.; Favier, L.; de Fleurian, B.; Greve, R.; Malinen, M.; Martín, C.; Råback, P.; Ruokolainen, J.; Sacchettini, M.; Schäfer, M.; Seddik, H.; Thies, J.

    2013-08-01

    The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  6. An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model

    NASA Technical Reports Server (NTRS)

    Pollard, D.

    1978-01-01

    The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.

  7. Laurentide ice-sheet instability during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Ullman, David J.; Carlson, Anders E.; Anslow, Faron S.; Legrande, Allegra N.; Licciardi, Joseph M.

    2015-07-01

    Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet--the largest glacial ice mass in the Northern Hemisphere--during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model with climate data from simulations with a fully coupled atmosphere-ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.

  8. Evidence for a substantial West Antarctic ice sheet contribution to meltwater pulses and abrupt global sea level rise

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.

    2015-12-01

    During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.

  9. Modeling the fracture of ice sheets on parallel computers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waisman, Haim; Bell, Robin; Keyes, David

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less

  10. Abrupt shift in the observed runoff from the southwestern Greenland ice sheet

    PubMed Central

    Ahlstrøm, Andreas P.; Petersen, Dorthe; Langen, Peter L.; Citterio, Michele; Box, Jason E.

    2017-01-01

    The recent decades of accelerating mass loss of the Greenland ice sheet have arisen from an increase in both surface meltwater runoff and ice flow discharge from tidewater glaciers. Despite the role of the Greenland ice sheet as the dominant individual cryospheric contributor to sea level rise in recent decades, no observational record of its mass loss spans the 30-year period needed to assess its climatological state. We present for the first time a 40-year (1975–2014) time series of observed meltwater discharge from a >6500-km2 catchment of the southwestern Greenland ice sheet. We find that an abrupt 80% increase in runoff occurring between the 1976–2002 and 2003–2014 periods is due to a shift in atmospheric circulation, with meridional exchange events occurring more frequently over Greenland, establishing the first observation-based connection between ice sheet runoff and climate change. PMID:29242827

  11. Uncertainty quantification of Antarctic contribution to sea-level rise using the fast Elementary Thermomechanical Ice Sheet (f.ETISh) model

    NASA Astrophysics Data System (ADS)

    Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel

    2017-04-01

    Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.

  12. The Ice Sheet Mass Balance Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Shepherd, A.; Ivins, E. R.

    2015-12-01

    Fluctuations in the mass of ice stored in Antarctica and Greenland are of considerable societal importance. The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a joint-initiative of ESA and NASA aimed at producing a single estimate of the global sea level contribution to polar ice sheet losses. Within IMBIE, estimates of ice sheet mass balance are developed from a variety of satellite geodetic techniques using a common spatial and temporal reference frame and a common appreciation of the contributions due to external signals. The project brings together the laboratories and space agencies that have been instrumental in developing independent estimates of ice sheet mass balance to date. In its first phase, IMBIE involved 27 science teams, and delivered a first community assessment of ice sheet mass imbalance to replace 40 individual estimates. The project established that (i) there is good agreement between the three main satellite-based techniques for estimating ice sheet mass balance, (ii) combining satellite data sets leads to significant improvement in certainty, (iii) the polar ice sheets contributed 11 ± 4 mm to global sea levels between 1992 and 2012, and (iv) that combined ice losses from Antarctica and Greenland have increased over time, rising from 10% of the global trend in the early 1990's to 30% in the late 2000's. Demand for an updated assessment has grown, and there are now new satellite missions, new geophysical corrections, new techniques, and new teams producing data. The period of overlap between independent satellite techniques has increased from 5 to 12 years, and the full period of satellite data over which an assessment can be performed has increased from 19 to 40 years. It is also clear that multiple satellite techniques are required to confidently separate mass changes associated with snowfall and ice dynamical imbalance - information that is of critical importance for climate modelling. This presentation outlines the approach for the second phase of IMBIE, including the project organisation, the work programme and schedule, the main science goals, and its current status, and reviews the recent and historical contributions that the Antarctic and Greenland ice sheets have made to global sea level rise.

  13. Equilibrium sensitivities of the Greenland ice sheet inferred from the adjoint of the three- dimensional thermo-mechanical model SICOPOLIS

    NASA Astrophysics Data System (ADS)

    Heimbach, P.; Bugnion, V.

    2008-12-01

    We present a new and original approach to understanding the sensitivity of the Greenland ice sheet to key model parameters and environmental conditions. At the heart of this approach is the use of an adjoint ice sheet model. MacAyeal (1992) introduced adjoints in the context of applying control theory to estimate basal sliding parameters (basal shear stress, basal friction) of an ice stream model which minimize a least-squares model vs. observation misfit. Since then, this method has become widespread to fit ice stream models to the increasing number and diversity of satellite observations, and to estimate uncertain model parameters. However, no attempt has been made to extend this method to comprehensive ice sheet models. Here, we present a first step toward moving beyond limiting the use of control theory to ice stream models. We have generated an adjoint of the three-dimensional thermo-mechanical ice sheet model SICOPOLIS of Greve (1997). The adjoint was generated using the automatic differentiation (AD) tool TAF. TAF generates exact source code representing the tangent linear and adjoint model of the parent model provided. Model sensitivities are given by the partial derivatives of a scalar-valued model diagnostic or "cost function" with respect to the controls, and can be efficiently calculated via the adjoint. An effort to generate an efficient adjoint with the newly developed open-source AD tool OpenAD is also under way. To gain insight into the adjoint solutions, we explore various cost functions, such as local and domain-integrated ice temperature, total ice volume or the velocity of ice at the margins of the ice sheet. Elements of our control space include initial cold ice temperatures, surface mass balance, as well as parameters such as appear in Glen's flow law, or in the surface degree-day or basal sliding parameterizations. Sensitivity maps provide a comprehensive view, and allow a quantification of where and to which variables the ice sheet model is most sensitive to. The model used in the present study includes simplifications in the model physics, parameterizations which rely on uncertain empirical constants, and is unable to capture fast ice streams. Nevertheless, as a proof-of-concept, this method can readily be extended to incorporate higher-order physics or parameterizations (or be applied to other models). It also opens the door to ice sheet state estimation: using the model's physics jointly with field and satellite observations to estimate a best estimate of the state of the ice sheets.

  14. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss

    PubMed Central

    Gomez, Natalya; Pollard, David; Holland, David

    2015-01-01

    The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet–sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica. PMID:26554381

  15. Annual accumulation over the Greenland ice sheet interpolated from historical and newly compiled observation data

    USGS Publications Warehouse

    Shen, Dayong; Liu, Yuling; Huang, Shengli

    2012-01-01

    The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.

  16. An Antarctic stratigraphic record of step-wise ice-sheet growth through the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Ciarletta, D. J.; Miriagos, T.; Bijl, P.; Bohaty, S. M.

    2016-12-01

    The Antarctic cryosphere plays a critical role in the ocean-atmosphere system, but its early evolution is still poorly known. With a near-field record from Prydz Bay, Antarctica, we conclude that Antarctic continental ice-sheet growth commenced with the EOT-1 "precursor" glaciation, during a time of Subantarctic surface ocean cooling and a decline in atmospheric pCO2. Prydz Bay lies downstream of a major East Antarctic ice-sheet drainage system and the Gamburtsev Mountains, a likely nucleation point for the first ice sheets. Its sedimentary records uniquely constrain the timing of ice-sheet advance onto the continental shelf. We investigate a detrital record extracted from three Ocean Drilling Program drill holes in Prydz Bay within a new depositional and chronological framework spanning the late Eocene to early Oligocene ( 36-33 Ma). The chemical index of alteration (CIA) and the S-index, calculated from the major element geochemistry of bulk samples, yield estimates of chemical weathering intensities and mean annual temperature (MAT) on the East Antarctic continent. We document evidence for late Eocene mountain glaciation along with transient warm events at 35.8-34.8 Ma. These data and our sedimentological analyses confirm the presence of ephemeral mountain glaciers on East Antarctica during the late Eocene between 35.9 and 34.4 Ma. Furthermore, we document the stepwise climate cooling of the Antarctic hinterland from 34.4 Ma as the ice sheet advanced towards the edges of the continent during EOT-1. The youngest part of our data set correlates to the time interval of the Oi-1 glaciation, when the ice-sheet in Prydz Bay extended to the outer shelf. Cooling and ice growth on Antarctica was spatially variable and ice sheets formed under declining pCO2. These results point to complex ice sheet - atmosphere - ocean - solid-earth feedbacks.

  17. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  18. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin

    PubMed Central

    Feldmann, Johannes; Levermann, Anders

    2015-01-01

    The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia. PMID:26578762

  19. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.

    2018-05-01

    Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.

  20. Sensing the bed-rock movement due to ice unloading from space using InSAR time-series

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Amelung, F.; Dixon, T. H.; Wdowinski, S.

    2014-12-01

    Ice-sheets in the Arctic region are retreating rapidly since late 1990s. Typical ice loss rates are 0.5 - 1 m/yr at the Canadian Arctic Archipelago, ~ 1 m/yr at the Icelandic ice sheets, and several meters per year at the edge of Greenland ice sheet. Such load decreasing causes measurable (several millimeter per year) deformation of the Earth's crust from Synthetic Aperture Radar Interferometry (InSAR). Using small baseline time-series analysis, this signal is retrieved after noises such as orbit error, atmospheric delay and DEM error being removed. We present results from Vatnajokull ice cap, Petermann glacier and Barnes ice cap using ERS, Envisat and TerraSAR-X data. Up to 2 cm/yr relative radar line-of-sight displacement is detected. The pattern of deformation matches the shape of ice sheet very well. The result in Iceland was used to develop a new model for the ice mass balance estimation from 1995 to 2010. Other applications of this kind of technique include validation of ICESat or GRACE based ice sheet model, Earth's rheology (Young's modulus, viscosity and so on). Moreover, we find a narrow (~ 1km) uplift zone close to the periglacial area of Petermann glacier which may due to a special rheology under the ice stream.

  1. Translating hydrologically-relevant variables from the ice sheet model SICOPOLIS to the Greenland Analog Project hydrologic modeling domain

    NASA Astrophysics Data System (ADS)

    Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard

    2013-04-01

    Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.

  2. Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust

    NASA Astrophysics Data System (ADS)

    Peltier, W. Richard; Marshall, Shawn

    1995-07-01

    We apply a coupled energy-balance/ice-sheet climate model in an investigation of northern hemisphere ice-sheet advance and retreat over the last glacial cycle. When driven only by orbital insolation variations, the model predicts ice-sheet advances over the continents of North America and Eurasia that are in good agreement with geological reconstructions in terms of the timescale of advance and the spatial positioning of the main ice masses. The orbital forcing alone, however, is unable to induce the observed rapid ice-sheet retreat, and we conclude that additional climatic feedbacks not explicitly included in the basic model must be acting. In the analyses presented here we have parameterized a number of potentially important effects in order to test their relative influence on the process of glacial termination. These include marine instability, thermohaline circulation effects, carbon dioxide variations, and snow albedo changes caused by dust loading during periods of high atmospheric aerosol concentration. For the purpose of these analyses the temporal changes in the latter two variables were inferred from ice core records. Of these various influences, our analyses suggest that the albedo variations in the ice-sheet ablation zone caused by dust loading may represent an extremely important ablation mechanism. Using our parameterization of "dirty" snow in the ablation zone we find glacial retreat to be strongly accelerated, such that complete collapse of the otherwise stable Laurentide ice sheet ensues. The last glacial maximum configurations of the Laurentide and Fennoscandian complexes are also brought into much closer accord with the ICE-3G reconstruction of Tushingham and Peltier (1991,1992) and the ICE-4G reconstruction of Peltier (1994) when this effect is reasonably introduced.

  3. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Moustafa, S. E.; Mioduszewski, J.; Chu, V. W.; Forster, R. R.; Hagedorn, B.; Harper, J. T.; Mote, T. L.; Robinson, D. A.; Shuman, C. A.; Smith, L. C.; Tedesco, M.

    2013-03-01

    Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs.

  4. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  5. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    NASA Astrophysics Data System (ADS)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  6. Deciphering the evolution of the last Eurasian ice sheets

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2016-04-01

    Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the climatic changes of the last glacial, discuss the implications of emerging post-census data, and describe plans for the next version of the database, DATED-2. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142

  7. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.

  8. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-01-01

    Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  9. Evaluation of three methods of different levels of complexity to represent the interactions between the Greenland ice sheet and the atmosphere at the century time scale.

    NASA Astrophysics Data System (ADS)

    Le clec'h, Sébastien; Fettweis, Xavier; Quiquet, Aurelien; Dumas, Christophe; Kageyama, Masa; Charbit, Sylvie; Ritz, Catherine

    2017-04-01

    Based on numerous studies showing implications of polar ice sheets on the climate system, the climate community recommended the development of methods to account for feedbacks between polar ice sheets and the other climate components. In this study we used three methods of different levels of complexity to represent the interactions between a Greenland ice sheet model (GRISLI) and a regional atmospheric model (MAR) under the RCP8.5 scenario. The simplest method, i.e. uncoupled, does not account for interactions between both models. In this method MAR computes varying atmospheric conditions using the same present-day observed Greenland ice sheet topography and extent. The outputs are then used to force GRISLI. The second method is a one-way coupling method in which the MAR outputs are corrected to account for topography changes before their transfer to GRISLI. The third method is a fully coupled method allowing the full representation of interactions between MAR and GRISLI. In this case, the ice sheet topography and its extent as seen by the atmospheric model is updated for each ice sheet model time step. The three methods are evaluated regarding the Greenland ice sheet response from 2000 to 2150. As expected, the uncoupled method shows a coastal thinning of the ice sheet due to a decreasing surface mass balance for coastal regions related to increased mean surface temperature. The one-way coupling and the full coupling methods tend to amplify the surface mass balance due to surface elevation feedback. The uncoupled method tends to underestimate the Greenland ice sheet volume reduction compared to both coupling methods over 150 years. This underestimation is of the same order of magnitude of the ice loss from the Greenland peripheral glaciers at the end of the 21st century. As for the uncoupled method, the thinning of the ice sheet occurs in coastal regions for both coupling methods. However compared to the one-way coupling method, the fully coupled method tends to increase the spatial variability of the surface mass balance changes through time. Our results also indicate that differences between the two coupling methods increase with time, which suggests that the choice of the method should depend on the timescale considered. Beyond century scale projections the fully coupled method is necessary in order to avoid underestimation of the ice sheet volume reduction, whilst the one-way method seems to be sufficient to represent the interactions between the atmosphere and the GrIS for projections by the end of the century.

  10. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Ivanovic, R. F.; Gregoire, L. J.; Maycock, A.; Valdes, P. J.

    2017-12-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 ka to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40-50° N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5 ka - 8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering are restricted to the North Atlantic sector. Thus, topographic forcing did not play a significant role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  11. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Gregoire, Lauren J.; Ivanovic, Ruza F.; Maycock, Amanda C.; Valdes, Paul J.; Stevenson, Samantha

    2018-02-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5-8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  12. The sea-level fingerprints of ice-sheet collapse during interglacial periods

    NASA Astrophysics Data System (ADS)

    Hay, Carling; Mitrovica, Jerry X.; Gomez, Natalya; Creveling, Jessica R.; Austermann, Jacqueline; E. Kopp, Robert

    2014-03-01

    Studies of sea level during previous interglacials provide insight into the stability of polar ice sheets in the face of global climate change. Commonly, these studies correct ancient sea-level highstands for the contaminating effect of isostatic adjustment associated with past ice age cycles, and interpret the residuals as being equivalent to the peak eustatic sea level associated with excess melting, relative to present day, of ancient polar ice sheets. However, the collapse of polar ice sheets produces a distinct geometry, or fingerprint, of sea-level change, which must be accounted for to accurately infer peak eustatic sea level from site-specific residual highstands. To explore this issue, we compute fingerprints associated with the collapse of the Greenland Ice Sheet, West Antarctic Ice Sheet, and marine sectors of the East Antarctic Ice Sheet in order to isolate regions that would have been subject to greater-than-eustatic sea-level change for all three cases. These fingerprints are more robust than those associated with modern melting events, when applied to infer eustatic sea level, because: (1) a significant collapse of polar ice sheets reduces the sensitivity of the computed fingerprints to uncertainties in the geometry of the melt regions; and (2) the sea-level signal associated with the collapse will dominate the signal from steric effects. We evaluate these fingerprints at a suite of sites where sea-level records from interglacial marine isotopes stages (MIS) 5e and 11 have been obtained. Using these results, we demonstrate that previously discrepant estimates of peak eustatic sea level during MIS5e based on sea-level markers in Australia and the Seychelles are brought into closer accord.

  13. An ice sheet model validation framework for the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of < 1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  14. On the Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges

    NASA Technical Reports Server (NTRS)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jacob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; hide

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress.

  15. On the reconstruction of palaeo-ice sheets: Recent advances and future challenges

    USGS Publications Warehouse

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jakob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Jakobsson, Martin; Kirchner, Nina; Livingstone, Stephen J.; Margold, Martin; Murton, Julian B.; Noormets, Riko; Peltier, W. Richard; Peteet, Dorothy M.; Piper, David J. W.; Preusser, Frank; Renssen, Hans; Roberts, David H.; Roche, Didier M.; Saint-Ange, Francky; Stroeven, Arjen P.; Teller, James T.

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress.

  16. An ice sheet model validation framework for the Greenland ice sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CMCT as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.« less

  17. An ice sheet model validation framework for the Greenland ice sheet

    DOE PAGES

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; ...

    2017-01-17

    We propose a new ice sheet model validation framework the Cryospheric Model Comparison Tool (CMCT) that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quanti- tative metricsmore » for use in evaluating the different model simulations against the observations. We find 10 that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, the model initial condition as well as output from idealized and dynamic models all provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CMCT, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CMCT as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.« less

  18. An ice sheet model validation framework for the Greenland ice sheet

    PubMed Central

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2018-01-01

    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013 using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin- and whole-ice-sheet scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate predictive skill with respect to observed dynamic changes occurring on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation. PMID:29697704

  19. An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas A.; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey R.; Chambers, Don P.; Evans, Katherine J.; hide

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of less than 1 meter). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  20. Retreat of the Southwest Labrador Sector of the Laurentide Ice Sheet During the Last Termination

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Kelly, M. A.; Fisher, T. G.; Barnett, P. J.; Howley, J. A.; Zimmerman, S. R. H.

    2016-12-01

    Large ice sheets are suspected to have played a major role in forcing the transitions from glacial to interglacial conditions, known as terminations. To improve the understanding of the role of the Laurentide Ice Sheet in the last termination, we present a chronology of ice sheet recession from just subsequent to end of the Last Glacial Maximum (LGM) to the early Holocene. We focus on the retreat of the southwest Labrador Sector of the ice sheet in northern Minnesota and adjacent Ontario. Multiple moraines in this region mark an overall pattern of ice recession interrupted by stillstands and/or minor readvances. Radiocarbon and 10Be ages from 50 sites along this 400 km-long transect indicate that the oldest moraine complex, the Vermillion moraine, formed at 17.0 ka. Subsequently, the ice margin retreated with minor standstills until the Dog Lake moraine was deposited between 12.7 and 12.3 ka. Recession from the Dog Lake moraine began by 12.3 ka the ice margin receded 150 km to the north-northeast by 10.7 ka. In general, the radiocarbon and 10Be ages define a pattern of near-continuous ice sheet retreat. Deposition of the Vermillion and Dog Lake moraines occurred at the beginning of Heinrich stadials 1 ( 17.5-14.5 ka) and 0 ( 12.9-11.7 ka), respectively, but ice recession occurred throughout the remainder of these stadials. This pattern is different from climate conditions registered by Greenland ice cores which show cold conditions from the end of the LGM until the Bølling warming at 14.5 ka, and throughout the Younger Dryas ( 12.9-11.7 ka). We suggest that the pattern of ice sheet recession is more similar to mountain glaciers in the southern mid-latitudes and tropics, and that Heinrich stadials may have been characterized by warming at least in the summertime that influenced near global ice recession.

  1. Englacial layer mapping correlation and consistency techniques: an example from airborne ice penetrating radar profiles in West Antarctica

    NASA Astrophysics Data System (ADS)

    Sudunagunta, V.; Ballal, S.; Albach, R.; Muldoon, G.; Quartini, E.; Cavitte, M. G.; Young, D. A.; Blankenship, D. D.

    2016-12-01

    Ice sheets are important considerations in projections of sea level rise and studies of climate history. Satellite imagery, ice-penetrating radar, and ground penetrating radar are commonly used to understand the dynamics and health of ice sheets. We focus on how to accurately interpret ice-penetrating radar data by tracing isochrones dated by comparison to deep ice cores so that an extensive knowledge of the West Antarctic Ice Sheet's internal stratigraphy is obtained. The radar data shows englacial reflectors and isochrones are interpreted englacial reflectors. We analyze these features and attempt to understand their possible origins. Accurate interpretation of radar data is crucial because the data will be used to evaluate ice flow evolution and boundary conditions. It can also be used to validate simulated ice sheet models. However to do so, isochrones must be traced and connected correctly. Our approach accomplishes this and has the potential to be applied to other ice sheets on Earth and in extraterrestrial systems. We discuss the methodology utilized by our team to interpret data from the West Antarctic Ice Sheet collected using airborne ice-penetrating radar. The seismic reflection interpretation environment Landmark DecisionSpace was adapted to display and interpret the radar returns. When tracing isochrones, a group approach is used to maximize accuracy. In gridded surveys, loops are used to continuously check isochrones, in addition to retracing of isochrones by different group members to check for errors in interpretation. As loops are made, areas of possible scientific merit, such as isochrone drawdowns or Raymond bumps, are documented. A key aspect of this approach is the ability to work in a shared environment with a collaborative database like DecisionSpace. We will explore how we identified these features, their root causes, and subsequent implications for understanding ice sheet dynamics.

  2. Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland

    NASA Astrophysics Data System (ADS)

    Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.

  3. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  4. Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.

    2000-01-01

    In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.

  5. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    NASA Astrophysics Data System (ADS)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves resulting in increased ice shelf melting. Stronger upwelling is associated with a rise in atmospheric carbon dioxide to reach a threshold at which full deglaciation could become inevitable.

  6. Isostasy as a Driver of Paleo Retreat of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Tabone, I.; Alvarez-Solas, J.; Montoya, M.

    2016-12-01

    During glacial times, the Greenland ice sheet (GrIS) extended onto the continental shelf, and thus was much more directly affected by changing ocean temperatures through basal melt of the marine ice margins than it is today. The larger glacial ice sheet also induced lithospheric depression of several hundred meters in regions that are near sea level today. As the ice sheet retreated inland under interglacial climatic forcing, the regions significantly affected by local isostatic changes in elevation were exposed to much higher basal melt rates than they would have been given the present-day topography. Here we explore this effect using a hybrid ice sheet model that represents both grounded and floating ice, as well as local isostatic effects, and is driven by both atmospheric and oceanic temperature anomalies. We find that when transient oceanic forcing is included in the model, isostasy plays an important role in allowing oceanic melting to drive GrIS retreat in some regions. During the last interglacial, for example, this effect can account for a significant additional sea-level contribution, as well as an increase in the rate of sea-level rise. Our results highlight the importance of accounting for ice-ocean-lithosphere interactions in the past, in order to be able to properly reconstruct the evolution of the ice sheet, and for estimating its sensitivity to potential changes in climate in the future.

  7. Isochronal Ice Sheet Model: a New Approach to Tracer Transport by Explicitly Tracing Accumulation Layers

    NASA Astrophysics Data System (ADS)

    Born, A.; Stocker, T. F.

    2014-12-01

    The long, high-resolution and largely undisturbed depositional record of polar ice sheets is one of the greatest resources in paleoclimate research. The vertical profile of isotopic and other geochemical tracers provides a full history of depositional and dynamical variations. Numerical simulations of this archive could afford great advances both in the interpretation of these tracers as well as to help improve ice sheet models themselves, as show successful implementations in oceanography and atmospheric dynamics. However, due to the slow advection velocities, tracer modeling in ice sheets is particularly prone to numerical diffusion, thwarting efforts that employ straightforward solutions. Previous attemps to circumvent this issue follow conceptually and computationally extensive approaches that augment traditional Eulerian models of ice flow with a semi-Lagrangian tracer scheme (e.g. Clarke et al., QSR, 2005). Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers (see figure). A new layer is added to the surface at equidistant time intervals (isochronally). Therefore, each layer is uniquely identified with an age. Horizontal motion follows the shallow ice approximation using an implicit numerical scheme. Vertical diffusion of heat which is physically desirable is also solved implicitly. A simulation of a two-dimensional section through the Greenland ice sheet will be discussed.

  8. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  9. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  10. Ice-sheet mass balance and climate change.

    PubMed

    Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay

    2013-06-06

    Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

  11. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  12. High-Resolution Physical Properties Logging of the AND-1B Sediment Core - Opportunity for Detecting High-Frequency Signals of Paleoenvironmental Changes

    NASA Astrophysics Data System (ADS)

    Niessen, F.; Magens, D.; Kuhn, G.; Helling, D.

    2008-12-01

    Within the ANDRILL-MIS Project, a more than 1200 m long sediment core, dating back to about 13 Ma, was drilled beneath McMurdo Ice Shelf near Ross Island (Antarctica) in austral summer 2006/07 with the purpose of contributing to a better understanding of the Late Cenozoic history of the Antarctic Ice Sheet. One way to approach past ice dynamics and changes in the paleoenvironment quantitatively, is the analysis of high- resolution physical properties obtained from whole-core multi-sensor core logger measurements in which lithologic changes are expressed numerically. This is especially applicable for the repeating sequences of diatomites and diamictites in the upper half of the core with a prominent cyclicity between 140-300 mbsf. Rather abrupt high-amplitude variations in wet-bulk density (WBD) and magnetic susceptibility (MS) reflect a highly dynamic depositional system, oscillating between two main end-member types: a grounded ice sheet and open marine conditions. For the whole core, the WBD signal, ranging from 1.4 kg/cu.m in the diatomites to 2.3 kg/cu.m in diamictites from the lower part of the core, represents the influence of three variables: (i) the degree of compaction seen as reduction of porosities with depth of about 30 % from top to bottom, (ii) the clast content with clasts being almost absent in diatomite deposits and (iii) the individual grain density (GD). GD itself strongly reflects the variety of lithologies as well as the influence of cement (mainly pyrite and carbonate) on the matrix grain density. The calculation of residual porosities demonstrates the strong imprint of glacial loading for especially diamictites from the upper 150 m, pointing to a significant thickness of the overriding Pleistocene ice sheet. MS on the other hand mainly documents a marine vs. terrestrial source of sediments where the latter can be divided into younger local material from the McMurdo Volcanic Province and basement clasts from the Transantarctic Mountains. Values range over several orders of magnitude from <10 (10-5 SI) in the diatomites to 8000 (10-5 SI) in single clasts (mainly dolerite). Synchronous minima and maxima in both WBD and MS support dramatic changes in the depositional environment, driven by oscillations in ice extent in response to global climate fluctuations on orbital timescales. Superimposed on this, small-amplitude variations of high frequency are found within diatomite units. A rhythmic pattern of probably millennial to centennial pacing proposes an additional non-orbital forcing as control on system dynamics, at least during interglacials.

  13. Polar process and world climate /A brief overview/

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1980-01-01

    A review is presented of events relating polar regions to the world climate, the mechanisms of sea ice and polar ice sheets, and of two theories of the Pleistocene Ice Ages. The sea ice which varies over time scales of one or two years and the polar ice sheets with time changes measured in tens or hundreds of thousands of years introduce two distinct time constants into global time changes; the yearly Arctic sea ice variations affect northern Europe and have some effect over the entire Northern Hemisphere; the ice-albedo coupling in the polar ice sheets is involved in major climatic events such as the Pleistocene ice ages. It is concluded that climate problems require a global approach including the atmosphere, the oceans, and the cryosphere.

  14. Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.

    2017-12-01

    The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.

  15. Widespread surface meltwater drainage in Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Ely, J.; Das, I.; Bell, R. E.

    2016-12-01

    Surface meltwater is thought to cause ice-shelf disintegration, which accelerates the contribution of ice sheets to sea-level rise. Antarctic surface melting is predicted to increase and trigger further ice-shelf disintegration during this century. These climate-change impacts could be modulated by an active hydrological network analogous to the one in operation in Greenland. Despite some observations of Antarctic surface and sub-surface hydrological systems, large-scale active surface drainage in Antarctica has rarely been studied. We use satellite imagery and aerial photography to reveal widespread active hydrology on the surface of the Antarctic Ice Sheet as far south as 85o and as high as 1800 m a.s.l., often near mountain peaks that protrude through the ice (nunataks) and relatively low-albedo `blue-ice areas'. Despite predominantly sub-zero regional air temperatures, as simulated by a regional climate model, Antarctic active drainage has persisted for decades, transporting water through surface streams and feeding vast melt ponds up to 80 km long. Drainage networks (the largest are over 100 km in length) form on flat ice shelves, steep outlet glaciers and ice-sheet flanks across the West and East Antarctica Ice Sheets. Motivated by the proximity of many drainage systems to low-albedo rock and blue-ice areas, we hypothesize a positive feedback between exposed-rock extent, BIA formation, melting and ice-sheet thinning. This feedback relies on drainage moving water long distances from areas near exposed rock, across the grounding line onto and across ice shelves - a process we observe, but had previously thought to be unlikely in Antarctica. This work highlights previously-overlooked processes, not captured by current regional-scale models, which may accelerate the retreat of the Antarctic Ice Sheet.

  16. Lava-snow interactions at Tolbachik 2012-13 eruption: comparison to recent field observations and experiments

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Belousov, A.; Belousova, M.; Izbekov, P. E.; Bindeman, I. N.; Gardeev, E.; Muravyev, Y. D.; Melnikov, D.

    2013-12-01

    More than a dozen volcanic eruptions in the past twenty years have produced lava interaction with snow or ice, some of which have produced damaging floods/lahars. However, the factors controlling melting during lava-snow/ice interactions is not well understood. Recent observations from the presently ongoing eruption at Tolbachik, Kamchatka confirm some general observations from large-scale experiments, and recent eruptions (2010 Fimmvorduhals; Edwards et al, 2012), but also show new types of behavior not before described. The new observations provide further constraints on heat transfer between ice/snow and three different lava morphologies: ';a'a, pahoehoe, and toothpaste. ';A'a flows at Tolbachik commonly were able to travel over seasonal snow cover (up to 4 m thick), especially where the snow was covered by tephra within 1.5 km of the vent area. Locally, heated meltwater discharge events issued from beneath the front of advancing lava, even though snow observation pits dug in front of advancing ';a'a flows also showed that in some areas melting was not as extensive. Once, an ';a'a flow was seen to collapse through snow, generating short-lived phreatomagmatic/phreatic activity. Closer to the vent, pahoehoe flow lobes and sheet flows occasionally spilled over onto snow and were able to rapidly transit snow with few obvious signs of melting/steam generation. Most of these flows did melt through basal snow layers within 24 hours however. We were also able to closely observe ';toothpaste' lava flows ';intruding' into snow in several locations, including snow-pits, and to watch it pushing up through snow forming temporary snow domes. Toothpaste lava caused the most rapid melting and most significant volumes of steam, as the meltwater drained down into the intruding lava. Behaviour seen at Tolbachik is similar to historic (e.g., Hekla 1947; Einarrson, 1949) and recent observations (e.g. Fimmvorduhals), as well as large-scale experiments (Edwards et al., 2013). While lava flows have been seen to eventually melt through up to 5 m of snow, melting generally is relatively slow (cm / hr); presence of ash cover on snow slows melting. Temperatures of meltwater discharging from beneath lava flows at Tolbachik were up to 40 deg C, which is similar to maximum temperatures measured during experiments. While meltwater discharge was documented on both subhorizontal and steeper slows (~10 degrees), the only explosive activity was observed where topography likely prevented fast meltwater escape from beneath lava. All of these observations hopefully will lead to a new and better understanding of the hazards associated with lava-ice/snow interactions. Meltwater discharge from beneath 'a'a flow.

  17. The multi-millennial Antarctic commitment to future sea-level rise

    NASA Astrophysics Data System (ADS)

    Golledge, N. R.; Kowalewski, D. E.; Naish, T. R.; Levy, R. H.; Fogwill, C. J.; Gasson, E. G. W.

    2015-10-01

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  18. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  19. The multi-millennial Antarctic commitment to future sea-level rise.

    PubMed

    Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W

    2015-10-15

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  20. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Seguinot, Julien; Rogozhina, Irina; Stroeven, Arjen P.; Margold, Martin; Kleman, Johan

    2016-03-01

    After more than a century of geological research, the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on which the ice sheet formed, geological studies have often had only local or regional relevance and shown such a complexity that ice-sheet-wide spatial reconstructions of advance and retreat patterns are lacking. Here we use a numerical ice sheet model calibrated against field-based evidence to attempt a quantitative reconstruction of the Cordilleran ice sheet history through the last glacial cycle. A series of simulations is driven by time-dependent temperature offsets from six proxy records located around the globe. Although this approach reveals large variations in model response to evolving climate forcing, all simulations produce two major glaciations during marine oxygen isotope stages 4 (62.2-56.9 ka) and 2 (23.2-16.9 ka). The timing of glaciation is better reproduced using temperature reconstructions from Greenland and Antarctic ice cores than from regional oceanic sediment cores. During most of the last glacial cycle, the modelled ice cover is discontinuous and restricted to high mountain areas. However, widespread precipitation over the Skeena Mountains favours the persistence of a central ice dome throughout the glacial cycle. It acts as a nucleation centre before the Last Glacial Maximum and hosts the last remains of Cordilleran ice until the middle Holocene (6.7 ka).

  1. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  2. SeaRISE: A Multidisciplinary Research Initiative to Predict Rapid Changes in Global Sea Level Caused by Collapse of Marine Ice Sheets

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.

  3. Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.

    2017-12-01

    The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.

  4. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    PubMed

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.

  5. Recent Ice Sheet and Glacier Elevation Changes in Greenland from Aircraft Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Thomas, R.; Sonntag, J.; Manizade, S.; Yungel, J.

    2008-01-01

    The Arctic Ice Mapping group (Project AIM) at the NASA Goddard Space Flight Center Wallops Flight Facility has been conducting systematic topographic surveys of the Greenland Ice Sheet (GIS) since 1993, using scanning airborne laser altimeters combined with Global Positioning System (UPS) technology. Earlier surveys showed the ice sheet above 2000-rn elevation to be in balance, but with localized regions of thickening or thinning. Thinning predominates at lower elevations and thinning rates have recently increased, resulting in a negative mass balance for the entire ice sheet. Recently, critical segments of near-coastal flight lines in Greenland were resurveyed. Results from the new data will be presented.

  6. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    NASA Astrophysics Data System (ADS)

    Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.

    2014-08-01

    The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

  7. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon

    NASA Astrophysics Data System (ADS)

    Roy-Leveillee, Pascale; Burn, Christopher R.

    2017-05-01

    It is generally assumed that permafrost is preserved beneath shallow lakes and ponds in the Western North American Arctic where water depth is less than about two thirds of the late-winter lake ice thickness. Here we present field observations of talik development beneath water as shallow as 0.2 m despite a lake ice thickness of 1.5 m, in Old Crow Flats (OCF), YT. Conditions leading to the initiation and development of taliks beneath shallow water were investigated with field measurements of shore erosion rates, bathymetry, ice thickness, snow accumulation, and lake bottom temperature near the shores of two expanding lakes in OCF. The sensitivity of talik development to variations in lake bottom thermal regime was then investigated numerically. Where ice reached the lake bottom, talik development was controlled by the ratio of freezing degree days to thawing degree days at the lake bottom (FDDlb/TDDlb). In some cases, spatial variations in on-ice snow depth had a minimal effect on annual mean lake bottom temperature (Tlb) but caused sufficient variations in FDDlb/TDDlb to influence talik development. Where Tlb was close to but greater than 0°C simulations indicated that the thermal offset allowed permafrost aggradation to occur under certain conditions, resulting in irregular near-shore talik geometries. The results highlight the sensitivity of permafrost to small changes in lake bottom thermal conditions where the water column freezes through in early winter and indicate the occurrence of permafrost degradation beneath very shallow water in the near-shore zone of Arctic ponds and lakes.

  8. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice Shelves.

  9. Modelling the climate and ice sheets of the mid-Pliocene warm period: a test of model dependency

    NASA Astrophysics Data System (ADS)

    Dolan, Aisling; Haywood, Alan; Lunt, Daniel; Hill, Daniel

    2010-05-01

    The mid-Pliocene warm period (MPWP; c. 3.0 - 3.3 million years ago) has been the subject of a large number of published studies during the last decade. It is an interval in Earth history, where conditions were similar to those predicted by climate models for the end of the 21st Century. Not only is it important to increase our understanding of the climate dynamics in a warmer world, it is also important to determine exactly how well numerical models can retrodict a climate significantly different from the present day, in order to have confidence in them for predicting the future climate. Previous General Circulation Model (GCM) simulations have indicated that MPWP mean annual surface temperatures were on average 2 to 3˚C warmer than the pre-industrial era. Coastal stratigraphy and benthic oxygen isotope records suggest that terrestrial ice volumes were reduced when compared to modern. Ice sheet modelling studies have supported this decrease in cryospheric extent. Generally speaking, both climate and ice sheet modelling studies have only used results from one numerical model when simulating the climate of the MPWP. However, recent projects such as PMIP (the Palaeoclimate Modelling Intercomparison Project) have emphasised the need to explore the dependency of past climate predictions on the specific climate model which is used. Here we present a comparison of MPWP climatologies produced by three atmosphere only GCMs from the Goddard Institute of Space Studies (GISS), the National Centre for Atmospheric Research (NCAR) and the Hadley Centre for Climate Prediction and Research (GCMAM3, CAM3-CLM and HadAM3 respectively). We focus on the ability of the GCMs to simulate climate fields needed to drive an offline ice sheet model to assess whether there are any significant differences between the climatologies. By taking the different temperature and precipitation predictions simulated by the three models as a forcing, and adopting GCM-specific topography, we have used the British Antarctic Survey thermomechanically coupled ice sheet model (BASISM) to test the extent to which equilibrium state ice sheets in the Northern Hemisphere are GCM dependent. Initial results which do not use GCM-specific topography suggest that employing different GCM climatologies with only small differences in surface air temperature and precipitation has a dramatic effect on the resultant Greenland ice sheet, where the end-member ice sheets vary from near modern to almost zero ice volume. As an extension of this analysis, we will also present results using a second ice sheet model (Glimmer), with a view to testing the degree to which end-member ice sheets are ice sheet model dependent, something which has not previously been addressed. Initially, BASISM and Glimmer will be internally optimised for performance, but we will also present a comparison where BASISM will be configured to the Glimmer model setup in a further test of ice sheet model dependency.

  10. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    PubMed

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  11. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    NASA Astrophysics Data System (ADS)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  12. Surface-atmosphere decoupling limits accumulation at Summit, Greenland

    PubMed Central

    Berkelhammer, Max; Noone, David C.; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J.; O’Neill, Michael S.; Schneider, David; Steffen, Konrad; White, James W. C.

    2016-01-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland. PMID:27386509

  13. Using palaeoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; King, Matt; Roberts, Jason; White, Duanne

    2017-04-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modelling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how palaeoclimate data can improve our ability to predict the future evolution of the AIS. A 50-member perturbed-physics ensemble is generated, spanning uncertainty in the parameterisations of three key physical processes within the model: (i) the stress balance within the ice sheet, (ii) basal sliding and (iii) calving of ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Palaeoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  14. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  15. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  16. A model of the Greenland ice sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Lecavalier, Benoit

    The goal of this thesis is to improve our understanding of the Greenland ice sheet (GrIS) and how it responds to climate change. This was achieved using ice core records to infer elevation changes of the GrIS during the Holocene (11.7 ka BP to Present). The inferred elevation changes show the response of the ice sheet interior to the Holocene Thermal Maximum (HTM; 9-5 ka BP) when temperatures across Greenland were warmer than present. These ice-core derived thinning curves act as a new set of key constraints on the deglacial history of the GrIS. Furthermore, a calibration was conducted on a three-dimensional thermomechanical ice sheet, glacial isostatic adjustment, and relative sea-level model of GrIS evolution during the most recent deglaciation (21 ka BP to present). The model was data-constrained to a variety of proxy records from paleoclimate archives and present-day observations of ice thickness and extent.

  17. Viscous grounding lines

    NASA Astrophysics Data System (ADS)

    Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke

    2008-11-01

    We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.

  18. The Glacier and Land Ice Surface Topography Interferometer (GLISTIN): A Novel Ka-band Digitally Beamformed Interferometer

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark

    2006-01-01

    The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.

  19. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  20. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

Top