Science.gov

Sample records for beneficiation process water

  1. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  2. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. . Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  3. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and

  4. Produced Water Management and Beneficial Use

    SciTech Connect

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  5. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Ohene, F.

    1996-02-01

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  6. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, May 1, 1993--July 31, 1993

    SciTech Connect

    Ohene, F.

    1994-09-01

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to-CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  7. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, January 1--March 30, 1995

    SciTech Connect

    Ohene, F.

    1995-12-31

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. Results on the rheological evaluation of CWS are presented.

  8. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, January 1--March 31, 1993

    SciTech Connect

    Ohene, F.

    1993-12-31

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. The paper discusses FTIR analysis, wet grinding, flotation cleaned coal, and heavy media cleaned coal.

  9. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Ohene, F.

    1994-09-01

    The overall objective of this project is to perform experiments to understand the effect of coal beneficiation processes and high shear rheological properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to-CWS. A correlation between the high shear rheological properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  10. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Final report, October 1, 1992--July 31, 1996

    SciTech Connect

    Ohene, F.

    1997-05-01

    To examine the factors that govern fine spray production during atomization of coal water slurries, an experimental study of the effect of coal beneficiation and their rheological properties on atomization of clean slurries was proposed. The objective of this study was to understand the effect of low shear, high shear rheology, and viscoelastic behavior on the atomization of beneficiated slurries.

  11. Nanoscale particles in technological processes of beneficiation.

    PubMed

    Popel, Sergey I; Adushkin, Vitaly V; Golub', Anatoly P

    2014-01-01

    Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations. The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated. The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier.

  12. Nanoscale particles in technological processes of beneficiation

    PubMed Central

    Adushkin, Vitaly V; Golub', Anatoly P

    2014-01-01

    Summary Background: Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations. Results: The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated. Conclusion: The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier. PMID:24778972

  13. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  14. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  15. Beneficial Reuse of Produced and Flowback Water

    EPA Pesticide Factsheets

    Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United StatesDrilling operations – 60,000 to 650,000 gallons per wellHydraulic fracturing operations – 3 million to 5 million gallons per wellDefinition of produced water and flowback waterInteractions of water quality constituents as they relate to water reuse and recyclingTesting criteria in the laboratory and field operations

  16. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  17. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  18. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, November 1, 1993--January 31, 1994

    SciTech Connect

    Ohene, F.

    1994-06-01

    The atomization study began with simulated fluids-(Mixtures of glycerine-water mixtures or corn syrup-water mixtures). This was done to minimize the experimental variables, optimize the experimental conditions for subsequent CWS atomization studies and also, simplify the analysis. The atomization data obtained for the simulated fluids are as shown in Table 1 and 2. The Air/Fuel ratio was varied from 0.12--0.40 in this study. variation of SMD as a Function of Viscosity. The SMD of glycerine-water mixtures at high Air/Fuel and low Air/Fuel data are plotted in Figures 5 and 6. The data show that at high Air/Fuel ratio, there is no significant change of the SMD as the viscosity is varied. However, at low Air/Fuel ratio the SMD shows a strong dependence on the viscosity. This is due to the fact that entrainment losses become more severe as A/F increases, In the high A/F regime, there is very little variation between the SMD and the viscosity of the glycerine-water solutions. This is probably due to the fact that the relative velocity between the droplets and the air is very high and this produces high pressure forces on the droplets to the same extent. Considerable dispersion of the droplets was also observed at high A/F ratios. This effect is minimized in the low A/F regime. Figures 5--8 show plots os SMD as a Function of Air/Fuel ratio. The plot show a linear dependence of SMD on the air to Fuel ratio. A fit of the experimental data to equation 1 in order to determine the necessary coefficients will be reported during the next quarter.

  19. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Quarterly progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Ohene, F.

    1992-12-31

    Three different coal water slurry samples were received from Amax R&D. The samples were prepared from Upper Elkhorn No. 3 (Taggart). The properties of the slurries are as shown in the appendix. The samples supplied were {approximately}20 mesh-size samples, wet ground uncleaned slurry (99% passing through 48 mesh), wet ground heavy-media cleaned slurry (99% passing through 48 mesh), and wet ground froth flotation cleaned slurry (99% passing through 48 mesh). Also, a portion of the {approximately}20 mesh samples were dry ground to produce {approximately}48 mesh samples. FTIR analysis were performed on these samples in order to elucidate any differences in the functional groups due to the preparation of the CWS samples.

  20. Effect of Bauxite Microstructure on Beneficiation and Processing

    NASA Astrophysics Data System (ADS)

    Solymár, Károly; Mádai, Ferenc; Papanastassiou, Dimitri

    The microstructure of bauxite determines to a significant extent the opportunities for its beneficiation and optimum processing downstream. Adequate fine grinding commensurate with its microstructure may result in proper mineral liberation and grain size distribution required for effective ore dressing (i.e. H/M or magnetic separation) and digestion respectively. Particle size distribution, mean diameter and amount of ooidal grains as well as degree of dissemination of the impurities in polished sections of raw bauxite, ground bauxite and red mud samples were determined by means of scanning electron-microscope, electron probe micro-analyser and digital image analysis. The results of beneficiation tests (effective removal of liberated limestone but insufficient reduction of finely disseminated reactive silica) and the required digestion parameters of the mainly oolitic Greek diasporic and the Hungarian boehmitic (partly dolomitic) bauxite are discussed. Based on the microstructure, the effectiveness of beneficiation, the degree of grinding (required particle size) and also the necessary digestion parameters of any bauxite can be adequately predicted.

  1. DECONTAMINATING AND PROCESSING DREDGED MATERIAL FOR BENEFICIAL USE

    SciTech Connect

    CLESCERI,N.L.; STERN,E.A.; FENG,H.; JONES,K.W.

    2000-07-01

    Management of contaminated dredged material is a major problem in the Port of New York and New Jersey. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency-Region 2, the US Army Corps of Engineers-New York District, the US Department of Energy-Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has gone through phased testing of commercial technologies at the bench scale (15 liters) and pilot scale (1.5--500 m{sup 3}) levels. Several technologies are now going forward to large-scale demonstrations that are intended to treat from 23,000 to 60,000 m{sup 3}. Selections of the technologies were made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  2. A combined physical/microbial process for coal beneficiation

    SciTech Connect

    Noah, K.S.; Glenn, A.W.; Stevens, C.J.; McAtee, N.B.; McIlwain, M.E.; Andrews, G.F.

    1993-11-01

    A combined physical/microbial process for the removal of pyritic sulfur from coal was demonstrated in a 200 L aerated trough slurry reactor. The reactor was divided into six sections, each of which acted as both a physical separator and a bioreactor. Settled solids from sections 2 through 6 were recycled to section 1 which acted as a rougher. The objective was physical removal of the larger pyritic inclusions, which would take many days to biodegrade, and biodegradation of the micropyrite, which is difficult to remove physically. The process was operated continuously for 8 months, treating two Illinois No. 6 coals (4 months each). Reduction of 90% in-pyritic sulfur with 90% energy recovery and 35% ash removal was obtained for a low pyrite Monterey coal at a 5 day coal retention time and 20% (w/w) slurry concentration. Increased coal loading reduced performance apparently due to losses of sulfur oxidizing bacteria. A low pyrite Consol coal gave 63--77% pyrite reduction with 23--30% ash removal and 77--90% heating value recovery. Product coal pyritic sulfur analysis indicated no differences between treatments of Consol coal. This suggests that the coal residence time could be further reduced and the slurry concentration increased in future work.

  3. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes

    PubMed Central

    Singh, Rachana; Singh, Samiksha; Parihar, Parul; Mishra, Rohit K.; Tripathi, Durgesh K.; Singh, Vijay P.; Chauhan, Devendra K.; Prasad, Sheo M.

    2016-01-01

    Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known. PMID:27729914

  4. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the

  5. Method for beneficiating coal ore

    SciTech Connect

    Irons, S.D.

    1983-03-15

    A new heavy liquid parting medium comprising an emulsion of water and a substantially water immiscible heavy parting liquid for use in beneficiating ores by gravity separations such as sink -float processes. The specific gravity of the emulsion parting medium can be adjusted by proportioning the relative amounts of water and the substantially water immiscible heavy liquid. Asmined coal is beneficiated using a water-trichlorofluoromethane emulsion as the parting medium in a sink-float separation process.

  6. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W.

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  7. Application of water quality guidelines and water quantity calculations to decisions for beneficial use of treated water

    NASA Astrophysics Data System (ADS)

    Pham, Minh Phung T.; Castle, James W.; Rodgers, John H.

    2011-12-01

    Water reuse guidelines were compiled as a decision-analysis screening tool for application to potential water reuse for irrigation, livestock watering, aquaculture, and drinking. Data compiled from the literature for water reuses yielded guideline values for over 50 water quality parameters, including concentrations of inorganic and organic constituents as well as general water chemistry parameters. These water quality guidelines can be used to identify constituents of concern in water, to determine the levels to which the constituents must be treated for water reuse applications, and assess the suitability of treated water for reuse. An example is provided to illustrate the application of water quality guidelines for decision analysis. Water quantity analysis was also investigated, and water volumes required for producing 16 different crops in 15 countries were estimated as an example of applying water quantity in the decision-making process regarding the potential of water reuse. For each of the countries investigated, the crop that produces the greatest yield in terms of weight per water volume is tomatoes in Australia, Brazil, Italy, Japan, Saudi Arabia, Turkey, USA; sugarcane in Chad, India, Indonesia, Sudan; watermelons in China; lettuce in Egypt, Mexico; and onions (dry) in Russia.

  8. Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003

    USGS Publications Warehouse

    Mashburn, Shana L.; Sughru, Michael P.

    2004-01-01

    The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median

  9. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  10. Cold Water Swimming Beneficially Modulates Insulin Sensitivity in Middle-Aged Individuals.

    PubMed

    Gibas-Dorna, Magdalena; Chęcińska, Zuzanna; Korek, Emilia; Kupsz, Justyna; Sowińska, Anna; Krauss, Hanna

    2016-10-01

    We determined whether cold water swimming for six consecutive months results in adaptive changes in body composition and insulin sensitivity. Thirty healthy subjects aged 50.2 ± 9.4 years were exposed to cold water at least twice a week. Body composition was determined and serum glucose and insulin served to calculate beta-cell function, insulin sensitivity, and resistance using HOMA2. Compared with control subjects, swimmers were overweight, and had greater percent body fat and beta cell function. Women had lower values of BMI, fat free mass, muscle mass, visceral adipose tissue level, and greater percent body fat than men. Increased insulin sensitivity and decreased insulin secretion and resistance from beginning to middle of swim season was observed in females and in lean subjects. Findings suggest that men and women differ in regard to body composition and response to repeated cold exposure. Cold water swimming may beneficially modulate insulin sensitivity in cold acclimated lean swimmers.

  11. Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria).

    PubMed

    Klammler, Gernot; Fank, Johann

    2014-11-15

    The shallow Murtal aquifer south of Graz, Austria, provides easily withdrawable groundwater, which is supplied as drinking water without any chemical treatment. The aquifer is also used intensively by agriculture. Common agricultural management practices are the main source for diffuse nitrogen leaching and high groundwater nitrate concentrations. To safeguard the coexisting use of these two important resources, lysimeters are operated at the agricultural test site Wagna, Austria, and the influence of two beneficial management practices--low nitrogen input and organic farming--on nitrogen leaching towards groundwater is investigated. The technical lysimeter design as presented here consists of: (1) high-resolution weighing cells, (2) a suction controlled lower boundary condition for sucking off seepage water, thus emulating undisturbed field conditions, (3) comparative soil temperature, water content and matrix potential measurements inside and outside the lysimeter at different depths, (4) an installation of the lysimeters directly into test plots and (5) a removable upper lysimeter ring enabling machinery soil tillage. Our results indicate that oasis effects or fringe effects of the lysimeter cylinder on unsaturated water flow did not occur. Another lysimeter cultivated with lawn is operated for observing grass-reference evapotranspiration, which resulted in good agreement with calculated grass-reference evapotranspiration according to the FAO-Penman-Monteith method. We conclude that lysimeters installed at Wagna test site did not show any fringe effects and, thus, are appropriate tools for measuring water balance elements and nitrogen leaching of arable and grass land at point scale. Furthermore, our results for the period of 2005 to 2011 show that beneficial management practices reduced nitrate leaching and, hence, may allow for a sustainable coexistence of drinking water supply and agriculture in the Murtal aquifer. Copyright © 2014 Elsevier B.V. All rights

  12. Thermochemical water decomposition processes

    NASA Technical Reports Server (NTRS)

    Chao, R. E.

    1974-01-01

    Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.

  13. Thermochemical water decomposition processes

    NASA Technical Reports Server (NTRS)

    Chao, R. E.

    1974-01-01

    Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.

  14. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  15. Beneficial effects of the aluminum alloy process as practiced in the photovoltaic device fabrication laboratory

    SciTech Connect

    Schubert, W.K.

    1995-07-01

    The aluminum alloy process implemented in Sandia`s Photovoltaic Device Fabrication Laboratory (PDFL) has major beneficial effects on the performance of commercial multicrystalline-silicon (mc-Si) substrates. Careful analysis of identically processed cells (except for the alloyed layer) in matched mc-Si substrates clearly indicates that the majority of the benefit arises from improved bulk minority carrier diffusion length. Based on spectral response measurements and PC-1D modeling the authors have observed improvements due to the alloy process of up to 400% in the average diffusion length in moderate-area cells and around 50% in large-area cells. The diffusion length is dramatically improved in the interior of the silicon grains in alloyed substrates, resulting in the majority of the recombination occurring at the grain boundaries and localized areas with high defect densities.

  16. In search of the organismic valuing process: the human tendency to move towards beneficial goal choices.

    PubMed

    Sheldon, Kennon M; Arndt, Jamie; Houser-Marko, Linda

    2003-10-01

    We attempted to test Rogers' concept of the organismic valuing process (OVP) by assessing changes in peoples' goal choices over time. When changes occur, are they more or less random, or do people tend to move towards goals that are more likely to be beneficial, both for themselves and others? "Beneficial" goals were defined as goals typically associated with subjective well-being (SWB) and with prosocial behavior--specifically, we focused on the distinction between intrinsic and extrinsic goal contents. In three studies, participants tended to move towards intrinsic goals and/or away from extrinsic goals over periods ranging from 20 minutes to 6 weeks. These changes were not reducible to social desirability nor to the differing motives underlying differing goal contents, did not vary for persons of different value-types, and had not changed when participants were retested a third time. We conclude that people may have a positive bias toward changing their minds in directions most likely to be SWB enhancing.

  17. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  18. Water chemistry and poultry processing water quality

    USDA-ARS?s Scientific Manuscript database

    This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

  19. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    PubMed

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lunar beneficiation

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    Natural concentrations of industrially valuable minerals are far less likely to be found on the Moon than on the Earth. But that is all the more reason for devising beneficiation processes to concentrate and extract the useful mineral components in lunar rocks and soils. As an example of a useful mineral that can be beneficiated, it has been estimated that ilmenite abundance accounts for 15 and 20 percent of the volume of the Apollo 11 and 17 basalts and 2 and 5 percent by volume in the Apollo 11 and 17 soils. Reduction of lunar ilmenite with hydrogen imported from Earth appears to one of the more practical schemes for obtaining lunar oxygen. While the reported concentrations are significant, a more highly concentrated ilmenite extract would improve the efficiency of the reduction process. The topics covered include electrostatic concentration, magnetic concentration, lunar soil sizing, and electrical sizing.

  1. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  2. Processes for water reclamation.

    PubMed

    Dean, R B

    1991-10-01

    Water treatments fall into two broad classes; those that remove or destroy specific classes of pollutants, i.e. color, metal ions, hardness, sediment, bacteria, etc., and those that remove water from nearly all of the pollutants. The first class includes sedimentation, biological treatment by microbes, chemical precipitation, adsorption on active carbon or ion exchange resins, and disinfection. The second class includes distillation, freezing and reverse osmosis (RO). The first class are the least expensive in terms of energy and have a long history of successful use on a large scale to reclaim water containing sewage. Most of the second group are energy intensive and have been used primarily on a moderate scale. All processes, except disinfection, leave a residual sludge or brine that contains a substantial quantity of water. Many of the problems of treating waste water for reuse on Earth stem from the fact that waste water carries pathogenic organisms from one location to another and may spread disease over long distances. In a closed group, such as in a Space Station, there are so many other routes for transfer of microorganisms, i.e. in the air, on surfaces, by hand-to-mouth, that undue emphasis on disinfection of water is inappropriate. Successful examples of water reuse on Earth are reviewed in terms of their possible application in space.

  3. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    PubMed

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d.

  4. The modes of occurrence of rare-earths ores and the issues on their beneficiation processes

    NASA Astrophysics Data System (ADS)

    Takagi, T.

    2012-04-01

    Rare-earths (RE) ores can largely be divided into the following four types in terms of the modes of occurrence. In each type of RE ores, there are some issues on beneficiation processes, which should be resolved for their successful exploitation. 1. Fine-grained phosphates with iron oxides: This type ores are commonly found from weathered carbonatite and IOCG deposits. The former is Araxa (Brazil), Zandkopsdrift (South Africa), Mt. Weld (Australia) and Yen Phu (Vietnam), and the latter Bayan Obo (China), Vergenoeg (South Africa) and Olympic Dam (Australia). Main RE minerals are monazite, xenotime and florencite contained in the aggregates of iron oxides such as goethite, hematite and magnetite. Fluorite often occurs in the latter type ores. The phosphates and iron oxides occur commonly as very fine grains (< 10 micron meters), and thus they are not readily separated by conventional physical processing. 2. Fluorapatite veins: This type ores are found from the deposits related to alkaline igneous rocks. Nolans Bore (Australia), Palabora (South Africa) and Mushugai Khudag (Mongolia) are the examples. RE is contained mostly in fluorapatite and associated monazite. It is expected that RE can be produced as byproducts of phosphorus fertilizer. However, dissolution of fluorapatite by sulfuric acid causes the coprecipitation of RE with gypsum, which is a refractory material. 3. Silicates and niobium oxides: This type ores are found from hydrothermally altered alkaline plutonic rocks or pegmatitic veins related to alkaline magmatism. Nechalacho and Strange Lake (Canada), Kvanefjeld (Greenland), Bokan Mountain (US), Norra Karr (Sweden) and Dubbo (Australia) are the representative deposits. Main RE minerals are zircon, eudialyte, mosandrite, fergusonite and allanite. They are relatively enriched in heavy RE, and it is expected that part of RE can be produced as byproducts of zirconium. However, their acid dissolution often causes the coprecipitation of RE with silica gel

  5. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    NASA Astrophysics Data System (ADS)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  6. Process water usage and water quality in poultry processing equipment

    USDA-ARS?s Scientific Manuscript database

    The operation of poultry processing equipment was analyzed to determine the impact of water reduction strategies on process water quality. Mandates to reduce the consumption of process water in poultry processing facilities have created the need to critically examine water usage patterns and develop...

  7. Polluter-financed environmentally beneficial expenditures: Effective use or improper abuse of citizen suits under the Clean Water Act

    SciTech Connect

    Mann, D.S. )

    1991-01-01

    In 1970, recognizing the cumbersome and often ineffective enforcement mechanisms in existing federal water and air pollution statutes, Congress passed the first citizen suit provision. This provision of the Clean Water Act was the subject of intense debate and underwent several transitions before it was finally adopted. With the advent of citizen suits in environmental legislation, Congress opened the courts to the public. Citizen suit provisions allowed private citizens to serve as watch-dogs of both industry and government, creating an additional check in the enforcement schemes established by Congress. But the provisions allowed only for enforcement, not for the right to sue for damages. The remedies available to citizen-plaintiffs were injunctive relief and, in the case of the Clean Water Act, civil penalties payable to the US Treasury. Focusing on the Clean Water Act, this Comment explores the use of alternative payments as settlement of Clean Water Act citizen suits: polluter-financed environmentally beneficial expenditures. As established through consent decrees, these expenditures go to local cleanup, research, and educational projects in the area of Clean Water Act violations, in lieu of or in addition to civil penalties. While the US Department of Justice has objected to the use of such settlements, one apellate court has ratified their use. This essay postulates that environmentally beneficial expenditures established through consent decrees are an important and effective use of the Clean Water Act's citizen suit provision, serving the dual goals of deterring polluters and mitigating the effects of past violations.

  8. Phosphorus recovery as AlPO4 from beneficially reused aluminium sludge arising from water treatment.

    PubMed

    Zhao, X H; Zhao, Y Q; Kearney, P

    2013-01-01

    The purpose of this study was to develop an efficient and, possibly, a practically operated methodology to recover phosphorus (P) from P-saturated dewatered aluminium sludge cakes (DASC) after the DASC have been beneficially reused as constructed wetlands substrate for P-rich wastewater treatment. A three-step procedure of 1) P extraction by H2SO4, 2) decolorization of extraction leachate via H2O2 oxidation, and 3) AlPO4 precipitation by pH adjustment, has been explored. The optimal conditions to form the precipitates of AlPO4 were determined, with 97% of P and 99% of Al being recovered. The obtained compounds were identified by XRD, FTIR and SEM analyses. Although the purity, structure, characteristics and production control of the compounds are worthy of further investigation, this study provides a showcase of a 'closed loop' regarding the beneficial reuse of a 'waste' and the recovery of useful elements after the reuse.

  9. [Beneficial effect of swimming in thermal waters on muscle glycogen depletion].

    PubMed

    D'Amelio, G; Boninsegna, A; Calzavara, M; Bertolini, M

    1991-05-01

    The effect of swimming in the termal water on muscle glycogen stores was studied. After 30 min the muscle glycogen results in a diminution, but it is not depleted. On the contrary, 30 min of swimming in normal water results in a depletion of muscle glycogene stores. The glycemic homeostasis is well maintained in thermal water, and hypoglicemia occurs only after swimming in normal water.

  10. Assessments of Environmental Impacts and Beneficial Use of Coalbed Methane Produced Water in the Powder River Basin

    SciTech Connect

    Jeff Morris

    2009-03-15

    Impact on water quality and the beneficial use of the coal bed methane (CBM) produced water are imminent questions to be answered due to the rapidly growing CBM exploration in the Powder River Basin (PRB). The practice of discharging large volumes of water into drainage channels or using it to irrigate rangeland areas has the potential of causing serious problems. The elevated salinity and sodicity in the CBM water may be detrimental to soils, plants and the associated microbial communities. There are limited studies on CBM water characterization; however, a comprehensive understanding of CBM water influence on the local ecosystem is lacking. It is very important that the water applied to soils meets the favorable combination of salinity and sodicity that will allow the plants to grow at good production levels and that will maintain the structure of the soils. The purpose of this study was to access various CBM water treatment technologies and the influence of the treated water on local biogeochemical settings in order to evaluate and identify the proper technologies to treat the CBM produced water from CBM operations, and use it in an environmentally safe manner. Unfortunately, a suitable field site was not identified and the funds for this effort were moved to a different project.

  11. Water reuse for irrigation in Jordan: plant beneficial nutrients, farmers' awareness and management strategies.

    PubMed

    Carr, G; Nortcliff, S; Potter, R B

    2011-01-01

    The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop's requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of inorganic fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers' decision making as to the application of inorganic fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.

  12. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    SciTech Connect

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  13. Elevated manganese concentrations in drinking water may be beneficial for fetal survival.

    PubMed

    Rahman, Syed Moshfiqur; Akesson, Agneta; Kippler, Maria; Grandér, Margaretha; Hamadani, Jena Derakhshani; Streatfield, Peter Kim; Persson, Lars-Åke; El Arifeen, Shams; Vahter, Marie

    2013-01-01

    Elevated exposure to the essential element manganese (Mn) can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women's drinking water. A total of 1,875 women were included in the analysis of spontaneous abortions (n=158) and 1,887 women in the perinatal mortality analysis (n=70). Water Mn ranged from 3.0-6,550 µg/L (median=217 µg/L). The adjusted odds ratio (OR) for spontaneous abortion was 0.65 (95% CI 0.43-0.99) in the highest water Mn tertile (median=1,292 µg/L) as compared to the lowest tertile (median=56 µg/L). The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28-1.71), which increased to 0.78 (95% CI 0.29-2.08) after adjustment for BMI and place of delivery (home/health facility; n=1,648). Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element's role in antioxidant defense.

  14. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  15. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  16. Demonstration of beneficial uses of warm water from condensers of electric-generating plants

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully. The demonstration proved the concept to be both technically and economically feasible at Sherco, with an apparent saving of $4500/hectare in 1978 dollars over fuel oil heating, plus an annual oil savings of about 500 cu m/hectare. Privately financed commercial greenhouses heated with warm water were built at Sherco in 1977. The commercial greenhouses will expand from 0.48 to almost 1 hectare by late 1980.

  17. Elevated Manganese Concentrations in Drinking Water May Be Beneficial for Fetal Survival

    PubMed Central

    Rahman, Syed Moshfiqur; Åkesson, Agneta; Kippler, Maria; Grandér, Margaretha; Hamadani, Jena Derakhshani; Streatfield, Peter Kim; Persson, Lars-Åke; Arifeen, Shams El; Vahter, Marie

    2013-01-01

    Background Elevated exposure to the essential element manganese (Mn) can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. Methods In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women’s drinking water. Results A total of 1,875 women were included in the analysis of spontaneous abortions (n=158) and 1,887 women in the perinatal mortality analysis (n=70). Water Mn ranged from 3.0–6,550 µg/L (median=217 µg/L). The adjusted odds ratio (OR) for spontaneous abortion was 0.65 (95% CI 0.43–0.99) in the highest water Mn tertile (median=1,292 µg/L) as compared to the lowest tertile (median=56 µg/L). The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28–1.71), which increased to 0.78 (95% CI 0.29–2.08) after adjustment for BMI and place of delivery (home/health facility; n=1,648). Conclusions Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element’s role in antioxidant defense. PMID:24066101

  18. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control

    PubMed Central

    Corradini, Stefano Ginanni; Ferri, Flaminia; Mordenti, Michela; Iuliano, Luigi; Siciliano, Maria; Burza, Maria Antonella; Sordi, Bruno; Caciotti, Barbara; Pacini, Maria; Poli, Edoardo; Santis, Adriano De; Roda, Aldo; Colliva, Carolina; Simoni, Patrizia; Attili, Adolfo Francesco

    2012-01-01

    AIM: To investigate the effect of drinking sulphate-bicarbonate-calcium thermal water (TW) on risk factors for atherosclerosis and cholesterol gallstone disease. METHODS: Postmenopausal women with functional dyspepsia and/or constipation underwent a 12 d cycle of thermal (n = 20) or tap (n = 20) water controlled drinking. Gallbladder fasting volume at ultrasound, blood vitamin E, oxysterols (7-β-hydroxycholesterol and 7-ketocholesterol), bile acid (BA), triglycerides, total/low density lipoprotein and high density lipoprotein cholesterol were measured at baseline and at the end of the study. Food consumption, stool frequency and body weight were recorded daily. RESULTS: Blood lipids, oxysterols and vitamin E were not affected by either thermal or tap water consumption. Fasting gallbladder volume was significantly (P < 0.005) smaller at the end of the study than at baseline in the TW (15.7 ± 1.1 mL vs 20.1 ± 1.7 mL) but not in the tap water group (19.0 ± 1.4 mL vs 19.4 ± 1.5 mL). Total serum BA concentration was significantly (P < 0.05) higher at the end of the study than at baseline in the TW (5.83 ± 1.24 μmol vs 4.25 ± 1.00 μmol) but not in the tap water group (3.41 ± 0.46 μmol vs 2.91 ± 0.56 μmol). The increased BA concentration after TW consumption was mainly accounted for by glycochenodeoxycholic acid. The number of pasta (P < 0.001), meat (P < 0.001) and vegetable (P < 0.005) portions consumed during the study and of bowel movements per day (P < 0.05) were significantly higher in the TW than in the tap water group. Body weight did not change at the end of the study as compared to baseline in both groups. CONCLUSION: Sulphate-bicarbonate-calcium water consumption has a positive effect on lithogenic risk and intestinal transit and allows maintenance of a stable body weight despite a high food intake. PMID:22408352

  19. Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Yang, Lijing; Li, Bo; Li, Zhihong

    2015-03-01

    Although cold spray process has many unique advantages over other coating techniques, it has difficulties in depositing hard materials. This article presents a study in the beneficial effects of laser irradiation on the fabrication process of diamond/Ni60 composite coating using cold spray. The focus of this research is on the comparison between the composite coatings produced with laser cladding (LC) and with supersonic laser deposition (SLD), with respect to diamond graphitization and tribological properties, thus to demonstrate the beneficial effects of laser irradiation on the cold spray process. The influence of deposition temperature on the coating characteristics, such as deposition efficiency, diamond volume fraction, microstructure and phase is also investigated. The tribological properties of the diamond/Ni60 composite coating produced with SLD are determined using a pin-on-disc tribometer, along with the diamond/Ni60 coating produced using LC with the optimal process parameters for comparison. The experimental results show that with the assistance of laser irradiation, diamond/Ni60 composite coating can be successfully deposited using cold spray; the obtained coating is superior to that processed with LC, because SLD can suppress the graphitization of the diamond particles. The diamond/Ni60 composite coating fabricated with SLD has much better tribological properties than the LC coating.

  20. Managing urban biosolids: Beneficial uses

    SciTech Connect

    Forste, J.B.

    1998-07-01

    Biosolids (the primarily organic product produced by wastewater treatment processes that can be beneficially recycled) are becoming a significant challenge for operators of both small and large urban wastewater facilities. More stringent water quality standards, coupled with increasingly sensitive environmental and public health considerations, have made the treatment and use/disposal of solids from treatment processes a growing and complex field of environmental management.

  1. A combined physical/microbial process for the beneficiation of coal

    SciTech Connect

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  2. The impact of industrial processing on health-beneficial tomato microconstituents.

    PubMed

    Chanforan, Céline; Loonis, Michèle; Mora, Nathalie; Caris-Veyrat, Catherine; Dufour, Claire

    2012-10-15

    The effect of industrial processing was investigated on the stability of tomato carotenoids, phenolic compounds and ascorbic acid. A deep insight in the processed products allowed the quantification of caffeic acid hexosides, which are far more important contributors than the well-known chlorogenic acid, dicaffeoylquinic acids and quercetin oligosaccharides (new feruloyl, sinapoyl and syringoyl derivatives of quercetin apiosylrhamnosylglucoside). (E)-β-Carotene and (E)-lycopene were also quantified along with different mono- and di-(Z)-isomers of lycopene which were tentatively assigned. Processing of fresh tomato into paste had an overall positive effect on the contents in phenolic compounds, no effect on lycopene and a slight and high detrimental effect on β-carotene and ascorbic acid, respectively. The balance between the increase in tomato matrix extractability and microconstituent catabolism was further observed in two contrasted transformations of paste into sauce. Overall, the nutritional quality of tomato-processed products, except for ascorbic acid, is mainly preserved through manufacture.

  3. Deeper processing is beneficial during episodic memory encoding for adults with Williams syndrome.

    PubMed

    Greer, Joanna; Hamiliton, Colin; Riby, Deborah M; Riby, Leigh M

    2014-07-01

    Previous research exploring declarative memory in Williams syndrome (WS) has revealed impairment in the processing of episodic information accompanied by a relative strength in semantic ability. The aim of the current study was to extend this literature by examining how relatively spared semantic memory may support episodic remembering. Using a level of processing paradigm, older adults with WS (aged 35-61 years) were compared to typical adults of the same chronological age and typically developing children matched for verbal ability. In the study phase, pictures were encoded using either a deep (decide if a picture belongs to a particular category) or shallow (perceptual based processing) memory strategy. Behavioural indices (reaction time and accuracy) at retrieval were suggestive of an overall difficulty in episodic memory for WS adults. Interestingly, however, semantic support was evident with a greater recall of items encoded with deep compared to shallow processing, indicative of an ability to employ semantic encoding strategies to maximise the strength of the memory trace created. Unlike individuals with autism who find semantic elaboration strategies problematic, the pattern of findings reported here suggests in those domains that are relatively impaired in WS, support can be recruited from relatively spared cognitive processes.

  4. The effect of industrial food processing on potentially health-beneficial tomato antioxidants.

    PubMed

    Capanoglu, Esra; Beekwilder, Jules; Boyacioglu, Dilek; De Vos, Ric C H; Hall, Robert D

    2010-11-01

    Increasing desires from both consumers and producers to understand better which nutritive components are present in our food and how these are influenced by industrial processing strategies is resulting in extra research involving the use of state-of-the-art technologies to generate novel biochemical information. In this review, attention has been focused on tomato as this is a product eaten right across the world both as fresh produce and after having been processed in a wide variety of ways. There is a particular interest in tomato as it is a major component in the so-called "Mediterranean diet" which has recently been associated with a healthier lifestyle. Tomatoes are rich sources of a variety of nutritional compounds and especially some key antioxidant components such as the carotenoid lycopene, vitamin C, and a range of polyphenols. The potentially protective properties of these antioxidants are of great interest and the consumer has already become aware of their potential importance. Surveying the literature has revealed that much research has been done on the biochemical composition of tomato and its products. However, it remains difficult to make clear conclusions on optimizing the processing strategy. Many, apparently conflicting, findings have been reported and consequently, in this review, we have drawn attention to these and have attempted to clarify their cause. Finally, a range of recommendations has been made as to how future research might be performed in order to generate more concrete conclusions enabling recommendations towards more optimized processing strategies.

  5. Intrinsic Motivation and the Process of Learning: Beneficial Effects of Contextualization, Personalization, and Choice.

    ERIC Educational Resources Information Center

    Cordova, Diana I.; Lepper, Mark R.

    1996-01-01

    The effects on the learning process of the strategies of contextualization, personalization, and provision of choices for enhancing students intrinsic motivation were studied with 72 fourth and fifth graders in one control and four experimental conditions. All three strategies produced increases in student motivation and in engagement in learning.…

  6. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  7. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds.

    PubMed

    Gil-Izquierdo, Angel; Gil, Maria I; Ferreres, Federico

    2002-08-28

    Phenolic compounds, vitamin C (L-ascorbic acid and L-dehydroascorbic acid), and antioxidant capacity were evaluated in orange juices manufactured by different techniques. Five processes at industrial scale (squeezing, mild pasteurization, standard pasteurization, concentration, and freezing) used in commercial orange juice manufacturing were studied. In addition, domestic squeezing (a hand processing technique) was compared with commercial squeezing (an industrial FMC single-strength extraction) to evaluate their influences on health components of orange juice. Whole orange juice was divided into soluble and cloud fractions after centrifugation. Total and individual phenolics were analyzed in both fractions by HPLC. Commercial squeezing extracted 22% more phenolics than hand squeezing. The freezing process caused a dramatic decrease in phenolics, whereas the concentration process caused a mild precipitation of these compounds to the juice cloud. In pulp, pasteurization led to degradation of several phenolic compounds, that is, caffeic acid derivatives, vicenin 2 (apigenin 6,8-di-C-glucoside), and narirutin (5,7,4'-trihydroxyflavanone-7-rutinoside) with losses of 34.5, 30.7, and 28%, respectively. Regarding vitamin C, orange juice produced by commercial squeezing contained 25% more of this compound than domestic squeezing. Mild and standard pasteurization slightly increased the total vitamin C content as the contribution from the orange solids parts, whereas concentration and freezing did not show significant changes. The content of L-ascorbic acid provided 77-96% of the total antioxidant capacity of orange juice. Mild pasteurization, standard pasteurization, concentration, and freezing did not affect the total antioxidant capacity of juice, but they did, however, in pulp, where it was reduced by 47%.

  8. Sulfur Fumigation Processing of Traditional Chinese Medicinal Herbs: Beneficial or Detrimental?

    PubMed Central

    Kan, Winnie Lai Ting; Ma, Bin; Lin, Ge

    2011-01-01

    Majority of traditional Chinese medicine (TCM) herbs need to undergo post-harvesting processing to convert raw material into the form readily used for prescription. In general, processing procedures are either according to China Pharmacopeia or based on traditional methods. Recently sulfur fumigation is increasingly used to replace traditional sun-drying for its pesticidal and anti-bacterial properties in a cheap and convenient manner. However, to date information on effects of sulfur fumigation on herbal safety and efficacy are limited. This article addresses potential destructive effects of sulfur fumigation on herbal efficacy and safety through reviewing currently available information. Since recently increased numbers of studies have demonstrated that sulfur fumigation-induced dramatic changes in chemical profiles of various sulfur-fumigated herbs, consequent alteration of efficacy, and/or potential incidence of toxicity are suspected. Therefore comprehensive investigations on effects of sulfur fumigation on toxicity, chemical profiles, pharmacokinetics, and bioactivities of TCM herbs are timely to provide scientific basis for standardization and regulation of this currently common but potentially harmful processing method. PMID:22207851

  9. Water quality impact assessment of agricultural Beneficial Management Practices (BMPs) simulated for a regional catchment in Quebec, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rousseau, Alain N.; Hallema, Dennis W.; Gumiere, Silvio J.; Savary, Stéphane; Hould Gosselin, Gabriel

    2014-05-01

    Water quality has become a matter of increasing concern over the past four decades as a result of the intensification of agriculture, and more particularly so in Canada where agriculture has evolved into the largest non-point source of surface water pollution. The Canadian WEBs project (Watershed Evaluation of Beneficial Management Practices, BMPs) was initiated in order to determine the efficiency of BMPs in improving the surface water quality of rural catchments, and the economic aspects related to their implementation on the same scale. In this contribution we use the integrated watershed modelling platform GIBSI (Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé) to evaluate the effects of various BMPs on sediment and nutrient yields and, in close relation to this, the surface water quality for the Beaurivage River catchment (718 km2) in Quebec, eastern Canada. A base scenario of the catchment is developed by calibrating the different models of the GIBSI platform, namely HYDROTEL for hydrology, the Revised Universal Soil Loss Equation (RUSLE) for soil erosion, the Erosion-Productivity Impact Calculator (EPIC) of the Soil and Water Assessment Tool (SWAT) for contaminant transport and fate, and QUAL2E for stream water quality. Four BMPs were analysed: (1) vegetated riparian buffer strips, (2) precision slurry application, (3) transition of all cereal and corn fields to grassland (grassland conversion), and (4) no-tillage on corn fields. Simulations suggest that riparian buffer strips and grassland conversion are more effective in terms of phosphorus, nitrogen and sediment load reduction than precision slurry application and no-tillage on corn fields. The results furthermore indicate the need for a more profound understanding of sediment dynamics in streams and on riparian buffer strips.

  10. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOEpatents

    Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  11. DUPoly process for treatment of depleted uranium and production of beneficial end products

    SciTech Connect

    Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.; Cooley, C.R.

    2000-02-29

    The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  12. Coal beneficiation kinetics of a gas-promoted oil agglomeration process

    SciTech Connect

    Zhang, F.; Wheelock, T.D.

    1996-12-31

    The kinetics of a gas-promoted oil agglomeration process were investigated by monitoring the change in the turbidity of an aqueous particle suspension as the particles were agglomerated with heptane in a closed tank fitted with baffles and an agitator. Measured amounts of air and heptane were added to a suspension of Pittsburgh No. 8 coal under vigorous agitation. The subsequent rate of change of particle concentration was taken to be an indication of the rate of agglomeration. The rate was found to be proportional to the particle number concentration raised to a power and dependent on agitator speed and the amounts of air and oil added.

  13. Beneficial effects of the NMDA antagonist ketamine on decision processes in visual search.

    PubMed

    Shen, Kelly; Kalwarowsky, Sarah; Clarence, Wendy; Brunamonti, Emiliano; Paré, Martin

    2010-07-21

    The ability of sensory-motor circuits to integrate sensory evidence over time is thought to underlie the process of decision-making in perceptual discrimination. Recent work has suggested that the NMDA receptor contributes to mediating neural activity integration. To test this hypothesis, we trained three female rhesus monkeys (Macaca mulatta) to perform a visual search task, in which they had to make a saccadic eye movement to the location of a target stimulus presented among distracter stimuli of lower luminance. We manipulated NMDA-receptor function by administering an intramuscular injection of the noncompetitive NMDA antagonist ketamine and assessed visual search performance before and after manipulation. Ketamine was found to lengthen response latency in a dose-dependent fashion. Surprisingly, it was also observed that response accuracy was significantly improved when lower doses were administered. These findings suggest that NMDA receptors play a crucial role in the process of decision-making in perceptual discrimination. They also further support the idea that multiple neural representations compete with one another through mutual inhibition, which may explain the speed-accuracy trade-off rule that shapes discrimination behavior: lengthening integration time helps resolve small differences between choice alternatives, thereby improving accuracy.

  14. Development of a method for characterizing changes in coal and mineral surfaces resulting from beneficiation processes

    SciTech Connect

    Slomka, B.J.; Seward, K.J.; Dawson, M.R.; Buttermore, W.H.

    1989-01-01

    A novel method was developed for characterizing changes in coal and mineral surfaces resulting from sonication and other cleaning processes. This method employs a unique flow-cell to permit the dynamic measurement of dye adsorption on coal and mineral particle surfaces. The rates and extents of adsorption of ionic dyes on Illinois No. 6 coal were found to be dependent on mineral content and particle size of ground coal samples. A significant correlation was observed between the adsorbed quantity of dye and the total mineral content of coal. In preliminary experiments with methylene blue dye, clay was found to absorb significantly more of the dye than quartz, pyrite, calcite, or clean coal'' surfaces. By using dyes of differing adsorption selectivity, it is demonstrated that sonication reduces the apparent mineral content on the surface of coal. 9 refs., 7 fig., 3 tabs.

  15. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    PubMed

    Lee, Jung-Han; Hyun, Chang-Kee

    2014-09-01

    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent.

  16. Electrostatic beneficiation of coal

    SciTech Connect

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  17. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.

    PubMed

    Yang, Qi; Benoy, Glenn A; Chow, Thien Lien; Daigle, Jean-Louis; Bourque, Charles P-A; Meng, Fan-Rui

    2012-01-01

    Runoff from crop production in agricultural watersheds can cause widespread soil loss and degradation of surface water quality. Beneficial management practices (BMPs) for soil conservation are often implemented as remedial measures because BMPs can reduce soil erosion and improve water quality. However, the efficacy of BMPs may be unknown because it can be affected by many factors, such as farming practices, land-use, soil type, topography, and climatic conditions. As such, it is difficult to estimate the impacts of BMPs on water quality through field experiments alone. In this research, the Soil and Water Assessment Tool was used to estimate achievable performance targets of water quality indicators (sediment and soluble P loadings) after implementation of combinations of selected BMPs in the Black Brook Watershed in northwestern New Brunswick, Canada. Four commonly used BMPs (flow diversion terraces [FDTs], fertilizer reductions, tillage methods, and crop rotations), were considered individually and in different combinations. At the watershed level, the best achievable sediment loading was 1.9 t ha(-1) yr(-1) (89% reduction compared with default scenario), with a BMP combination of crop rotation, FDT, and no-till. The best achievable soluble P loading was 0.5 kg ha(-1) yr(-1) (62% reduction), with a BMP combination of crop rotation and FDT and fertilizer reduction. Targets estimated through nonpoint source water quality modeling can be used to evaluate BMP implementation initiatives and provide milestones for the rehabilitation of streams and rivers in agricultural regions.

  18. Process for photosynthetically splitting water

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    The invention is an improved process for producing gaseous hydrogen and oxygen from water. The process is conducted in a photolytic reactor which contains a water-suspension of a photoactive material containing a hydrogen-liberating catalyst. The reactor also includes a volume for receiving gaseous hydrogen and oxygen evolved from the liquid phase. To avoid oxygen-inactivation of the catalyst, the reactor is evacuated continuously by an external pump which circulates the evolved gases through means for selectively recovering hydrogen therefrom. The pump also cools the reactor by evaporating water from the liquid phase. Preferably, product recovery is effected by selectively diffusing the hydrogen through a heated semipermeable membrane, while maintaining across the membrane a magnetic field gradient which biases the oxygen away from the heated membrane. This promotes separation, minimizes the back-reaction of hydrogen and oxygen, and protects the membrane.

  19. Beneficial microorganisms [Chapter 14

    Treesearch

    Kim M. Wilkinson

    2009-01-01

    The web of life depends on microorganisms, a vast network of small and unseen allies that permeate the soil, water, and air of our planet. For people who work with plants, the greatest interest in microorganisms is in the complex communities that are part of the soil. Beneficial microorganisms are naturally occurring bacteria, fungi, and other microbes that play a...

  20. Family identification: a beneficial process for young adults who grow up in homes affected by parental intimate partner violence

    PubMed Central

    Naughton, Catherine M.; Muldoon, Orla T.

    2015-01-01

    Exposure to parental intimate partner violence (parental IPV) is a complex trauma. Research within social psychology establishes that identification with social groups impacts positively on how we appraise, respond to and recover from traumatic events. IPV is also a highly stigmatized social phenomenon and social isolation is a major factor for families affected by IPV, yet strong identification with the family group may act as a beneficial psychological resource to young people who grew up in homes affected by IPV. The current study, an online survey of 355 students (Mage = 20, 70% female), investigated if a psychosocial process, specifically identification with the family, may influence the relationship between the predictor, exposure to parental IPV, and outcomes, global self-esteem and state anxiety. Mediation analysis suggests that identification with the family has a positive influence on the relationship between exposure to parental IPV and psychological outcomes; exposure to parental IPV results in reduced family identification, but when family identification is strong it results in both reduced anxiety and increased self-esteem for young people. The findings highlight the importance of having a strong sense of belonging to the extended family for young people who were exposed to parental IPV, thus has implications for prevention, intervention, and social policy. PMID:26379582

  1. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and

  2. Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition.

    PubMed

    Peng, Yuxuan; Xiong, Zhe; Li, Juan; Huang, Jian-An; Teng, Cuiqin; Gong, Yushun; Liu, Zhonghua

    2014-08-01

    Fuzhuan brick tea (FBT) is traditionally consumed by the ethnic group in the border region of northwest China. The unique yellow fungal (Eurotium cristatum) growth phase is considered to be the key process point in the manufacture of the brick tea. The fungi from FBT are not only strongly correlated to the quality of brick tea, but also have the potential function of preventing obesity. The water extract of fungi (100 μg/mL) can significantly inhibit fat deposition in 3T3-L1 adipocyte and Caenorhabditis elegans. Furthermore, the inhibition of 3T3-L1 adipocyte formation was not due to the suppression on cell viability.

  3. Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use.

    PubMed

    Fakhru'l-Razi, A; Pendashteh, Alireza; Abidin, Zurina Zainal; Abdullah, Luqman Chuah; Biak, Dayang Radiah Awang; Madaeni, Sayed Siavash

    2010-09-01

    Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters.

  4. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    PubMed

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.

  5. The Oxnard advanced water purification facility: combining indirect potable reuse with reverse osmosis concentrate beneficial use to ensure a California community's water sustainability and provide coastal wetlands restoration.

    PubMed

    Lozier, Jim; Ortega, Ken

    2010-01-01

    The City of Oxnard in California is implementing a strategic water resources program known as the Groundwater Recovery Enhancement and Treatment (GREAT) program, which includes an Advanced Water Purification Facility (AWPF) that will use a major portion of the secondary effluent from the City's existing Water Pollution Control Facility to produce high-quality treated water to be used for irrigation of edible food crops, landscape irrigation, injection into the groundwater basin to form a barrier to seawater intrusion, and other industrial uses. The AWPF, currently under design by CH2M HILL, will employ a multiple-barrier treatment train consisting of microfiltration, reverse osmosis, and ultravioletlightbased advanced oxidation processes to purify the secondary effluent to conform to California Department of Public Health Title 22 Recycled Water Criteria for groundwater recharge. The AWPF, which will have initial and build-out capacities of ca. 24,000 and ca 95,000 m(3)/day, respectively, was limited to a 1.8-hectare site, with 0.4 hectares dedicated to a Visitor's Center and administration building. Further, the depth below grade and height of the AWPF's structures were constrained because of the high groundwater table at the site, the high cost of excavation and dewatering, and local codes. To accommodate these various restrictions, an innovative design approach has been developed. This paper summarizes the design constraints and innovative solutions for the design of the AWPF.

  6. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review

    PubMed Central

    Stookey, Jodi J. D.

    2016-01-01

    Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management. PMID:26729162

  7. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review.

    PubMed

    Stookey, Jodi J D

    2016-01-02

    Drinking water has heterogeneous effects on energy intake (EI), energy expenditure (EE), fat oxidation (FO) and weight change in randomized controlled trials (RCTs) involving adults and/or children. The aim of this qualitative review of RCTs was to identify conditions associated with negative, null and beneficial effects of drinking water on EI, EE, FO and weight, to generate hypotheses about ways to optimize drinking water interventions for weight management. RCT conditions that are associated with negative or null effects of drinking water on EI, EE and/or FO in the short term are associated with negative or null effects on weight over the longer term. RCT conditions that are associated with lower EI, increased EE and/or increased FO in the short term are associated with less weight gain or greater weight loss over time. Drinking water instead of caloric beverages decreases EI when food intake is ad libitum. Drinking water increases EE in metabolically-inflexible, obese individuals. Drinking water increases FO when blood carbohydrate and/or insulin concentrations are not elevated and when it is consumed instead of caloric beverages or in volumes that alter hydration status. Further research is needed to confirm the observed associations and to determine if/what specific conditions optimize drinking water interventions for weight management.

  8. Water surface capturing by image processing

    USDA-ARS?s Scientific Manuscript database

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  9. Tritiated water processing for fusion reactors

    SciTech Connect

    Sood, S.K.; Kalyanam, K.M.

    1995-03-01

    Tritiated water represents a source of occupational exposure and environmental emissions for fusion and fission reactors. Fusion reactors must operate within stringent radionuclide emission limits. A range of tritiated water concentrations can be generated in fusion reactors, mostly in the form of tritiated light water. In contrast, tritium removal plants have been built in Canada and France to remove tritium from heavy water moderated fission reactors. Various isotope separation processes have been developed to remove tritium from light and heavy water. Appropriate process selection depends, amongst other items, on whether tritium is to be removed from light or heavy water, and on whether the detritiated water is recycled back to a process system or is discharged to the environment. This paper primarily discusses water detritiation requirements in fusion reactors and outlines process options that are suitable for meeting these requirements. 11 refs., 4 tabs.

  10. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura Katrina (Inventor)

    2017-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion.RTM., over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  11. Ionomer-Membrane Water Processing Methods

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(TradeMark) over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  12. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  13. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial?

    PubMed

    Gibbs, A G; Louie, A K; Ayala, J A

    1998-01-01

    The desert fruit fly Drosophila mojavensis experiences environmental conditions of high temperature and low humidity. To understand the physiological mechanisms allowing these small insects to survive in such stressful conditions, we studied the effects of thermal acclimation on cuticular lipids and rates of water loss of adult D. mojavensis. Mean hydrocarbon chain length increased at higher temperatures, but cuticular lipid melting temperature (Tm) did not. Lipid quantity doubled in the first 14 days of adult life, but was unaffected by acclimation temperature. Despite these changes in cuticular properties, organismal rates of water loss were unaffected by either acclimation temperature or age. Owing to the smaller body size of warm-acclimated flies, D. mojavensis reared for 14 days at 33 degrees C lost water more rapidly on a mass-specific basis than flies acclimated to 25 degrees C or 17 degrees C. Thus, apparently adaptive changes in cuticular lipids do not necessarily result in reduced rates of water loss. Avoidance of high temperatures and desiccating conditions is more likely to contribute to survival in nature than changes in water balance mediated by surface lipids.

  14. Toward delisting of the water quality beneficial use impairment in the St. Louis River, MN: A monitoring approach

    EPA Science Inventory

    Water quality in the St. Louis River Estuary (SLRE), a great lakes area of concern (AOC), is improving. A significant leap forward followed the opening of the Western Lake Superior Sanitary District in 1978. However, desire for continued improvement throughout the estuary was the...

  15. Demonstration of beneficial uses of warm water from condensers of electric generating plants. Final report, May 1975-April 1980

    SciTech Connect

    Boyd, L.L.; Ashley, G.C.; Hietala, J.S.; Stansfield, R.V.; Tonkinson, T.R.C.

    1980-05-01

    The report gives results of a project to demonstrate that warmed cooling water from condensers of electric generating plants can effectively and economically heat greenhouses. The 0.2-hectare demonstration greenhouse, at Northern States Power Co.'s Sherburne County (Sherco) Generating Plant, used 29.4 C water to heat both air and soil: finned-tube commercial heat exchangers were used to heat the air; and buried plastic pipes, the soil. Warm water from the Sherco 1 cooling tower was piped over 0.8 km to the greenhouse where it was cooled from 2.7 to 5.6 C before returning to the cooling tower basin. Roses and tomatoes were the principal crops in the 3-year test, although other flowers and vegetables, and conifer seedlings were also grown. The warm water heating system supplied all the greenhouse heating requirements, even at ambient temperatures as low as -40 C. Roses, snapdragons, geraniums, tomatoes, lettuce, and evergreen seedlings were grown successfully.

  16. Toward delisting of the water quality beneficial use impairment in the St. Louis River, MN: A monitoring approach

    EPA Science Inventory

    Water quality in the St. Louis River Estuary (SLRE), a great lakes area of concern (AOC), is improving. A significant leap forward followed the opening of the Western Lake Superior Sanitary District in 1978. However, desire for continued improvement throughout the estuary was the...

  17. DOE/EA-1498: Environmental Assessment for the Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (January 2005)

    SciTech Connect

    N /A

    2005-01-01

    The Clean Coal Power Initiative (CCPI) is a cost-shared partnership between the U.S. Department of Energy (DOE) and industry to demonstrate advanced coal-based power generation technologies. Through the CCPI, candidate technologies are demonstrated at commercial-scale facilities to foster widespread application. The goals of the program are to realize environmental and economic benefits through DOE and industry partnerships, as well as to move promising, yet commercially risky, advanced coal energy systems to market. DOE proposes to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky. The proposed project would contribute to CCPI program goals by demonstrating a means to reduce the net costs of particulate control technologies through the conversion of ash into salable products. DOE would provide $4,492,008, approximately 50 percent of total project cost. The proposed demonstration plant would process 200,000 tons per year of fly ash generated at the Ghent Power Station into: 156,000 tons per year of pozzolan for concrete; 16,000 tons per year of high-quality block sand; 16,000 tons per year of graded fill sand; 1,500 tons per year of high-quality polymer filler; and 8,000 tons of carbon fuel. Because the proposed project would utilize an existing waste to produce concrete and masonry materials, which could replace Portland cement, overall CO2 emissions resulting from concrete manufacturing could be reduced. Furthermore, the need for additional storage areas for fly ash would be reduced. The findings of this Environmental are that no significant impacts to human health and safety or the environment from construction and operation of the proposed demonstration plant are anticipated. Because the

  18. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.

    PubMed

    Bengough, A Glyn; McKenzie, B M; Hallett, P D; Valentine, T A

    2011-01-01

    Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ∼10% of penetration resistances were >2 MPa at a matric potential of -10 kPa, rising to nearly 50% >2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.

  19. The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze.

    PubMed

    Hosseini, Mahmoud; Hadjzadeh, Mosa Al-Reza; Derakhshan, Mohammad; Havakhah, Shahrzad; Rassouli, Fatemeh Behnam; Rakhshandeh, Hassan; Saffarzadeh, Fatema

    2010-03-01

    Functional consequences of hypothyroidism include impaired learning and memory and inability to produce long-term potentiation (LTP) in hippocampus. Olibanum has been used for variety of therapeutic purposes. In traditional medicine, oilbanum is used to enhance learning and memory. In the present study the effect of olibanum on memory deficit in hypothyroid rats was investigated. Male wistar rats were divided into four groups and treated for 180 days. Group 1 received tap drinking water while in group 2, 0.03% methimazol was added to drinking water. Group 3 and 4 were treated with 0.03% methimazole as well as 100 and 500 mg/kg olibanum respectively. The animals were tested in Morris water maze. The swimming speed was significantly lower and the distance and time latency were higher in group 2 compared with group 1. In groups 3 and 4 the swimming speed was significantly higher while, the length of the swim path and time latency were significantly lower in comparison with group 2. It is concluded that methimazole-induced hypothyroidism impairs learning and memory in adult rats which could be prevented by using olibanum.

  20. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    USDA-ARS?s Scientific Manuscript database

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  1. Zero-discharge: An application of process water recovery technology in the food processing industry

    SciTech Connect

    Fok, S.; Moore, B.

    1999-07-01

    Water is a valuable natural resource and the food processing industry has been among the leading industrial water users in California. With support from a major northern California utility and the California Institute for Food and Agricultural Research, Tri Valley Growers (TVG) has successfully installed the first US energy-efficient zero-discharge process water reclamation system at its Oberti Olive processing facility in Madera, California. The advanced zero-discharge system is the largest application in the world of membrane filtration for recovering water from a food processing plant. Previously, the plant discharged an average of 1 million gallons of salty wastewater (brine) a day into 160 acres of evaporation ponds. However, new environmental regulations made the ponds obsolete. The cost of process water disposal using alternate biotreatment system was prohibitive and would make continued operation uneconomical with plant closure and job loss the likely outcome. Through comprehensive pilot testing and subsequent system design and operational optimization, the advance membrane filtration system with pre- and post-treatment now recovers about 80% of the process liquid in high priority form of water for subsequent reuse at the plant. The solids produced in olive processing, plus concentrated process liquids are used off-site as an animal feed component, thus achieving the plant zero-discharge scheme. The successful implementation of the zero discharge system at the Oberti Olive processing plant has produced energy saving of 3,500,000 kilowatthours and 244,000 therms of gas a year of power as compared to the alternate biotreatment system. It also prevented plant closure and job loss. In addition, water conservation and the discontinuation of evaporation pond use is beneficial to the environment. The project was applauded by the California Environmental Protection Agency as a positive step forward for environmental technology in the agricultural sector in

  2. Water First Aid Is Beneficial In Humans Post-Burn: Evidence from a Bi-National Cohort Study

    PubMed Central

    Wood, Fiona M.; Phillips, Michael; Jovic, Tom; Cassidy, John T; Cameron, Peter; Edgar, Dale W.

    2016-01-01

    Introduction Reported first aid application, frequency and practices around the world vary greatly. Based primarily on animal and observational studies, first aid after a burn injury is considered to be integral in reducing scar and infection, and the need for surgery. The current recommendation for optimum first aid after burn is water cooling for 20 minutes within three hours. However, compliance with this guideline is reported as poor to moderate at best and evidence exists to suggest that overcooling can be detrimental. This prospective cohort study of a bi-national burn patient registry examined data collected between 2009 and 2012. The aim of the study was to quantify the magnitude of effects of water cooling first aid after burn on indicators of burn severity in a large human cohort. Method The data for the analysis was provided by the Burn Registry of Australia and New Zealand (BRANZ). The application of first aid cooling prior to admission to a dedicated burn service, was analysed for its influence on four outcomes related to injury severity. The patient related outcomes were whether graft surgery occurred, and death while the health system (cost) outcomes included total hospital length of stay and admission to ICU. Robust regression analysis using bootstrapped estimation adjusted using a propensity score was used to control for confounding and to estimate the strength of association with first aid. Dose-response relationships were examined to determine associations with duration of first aid. The influence of covariates on the impact of first aid was assessed. Results Cooling was provided before Burn Centre admission for 68% of patients, with at least twenty minutes duration for 46%. The results indicated a reduction in burn injury severity associated with first aid. Patients probability for graft surgery fell by 0.070 from 0.537 (13% reduction) (p = 0.014). The probability for ICU admission fell by 0.084 from 0.175 (48% reduction) (p<0.001) and hospital

  3. PROCESS WATER BUILDING, TRA605. EAST SIDE. CAMERA FACING WEST. REMOVABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. EAST SIDE. CAMERA FACING WEST. REMOVABLE OPENINGS WERE NOT BENEFICIALLY USED FOR FUTURE EXPANSION. PART OF MTR APPEARS BEHIND BUILDING AT LEFT. ATR BUILDING IN BACKGROUND ON RIGHT. INL NEGATIVE NO. HD46-34-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Combining Contextual and Morphemic Cues Is Beneficial during Incidental Vocabulary Acquisition: Semantic Transparency in Novel Compound Word Processing

    ERIC Educational Resources Information Center

    Brusnighan, Stephen M.; Folk, Jocelyn R.

    2012-01-01

    In two studies, we investigated how skilled readers use contextual and morphemic information in the process of incidental vocabulary acquisition during reading. In Experiment 1, we monitored skilled readers' eye movements while they silently read sentence pairs containing novel and known English compound words that were either semantically…

  5. Combining Contextual and Morphemic Cues Is Beneficial during Incidental Vocabulary Acquisition: Semantic Transparency in Novel Compound Word Processing

    ERIC Educational Resources Information Center

    Brusnighan, Stephen M.; Folk, Jocelyn R.

    2012-01-01

    In two studies, we investigated how skilled readers use contextual and morphemic information in the process of incidental vocabulary acquisition during reading. In Experiment 1, we monitored skilled readers' eye movements while they silently read sentence pairs containing novel and known English compound words that were either semantically…

  6. Ispra Mark-10 water splitting process

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A thermochemical water splitting process, the Ispra Mark-10 chemical reaction cycle, was chosen for examining the possibility of using water to produce hydrogen on a large scale for fuel and major industrial chemical uses. The assumed energy source for the process is an HTGR (helium cooled). A process flow diagram, a material balance, and an energy balance were developed for the thermochemical reaction cycle. Principal reactions which constitute the cycle are included.

  7. Make your process water pay for itself

    SciTech Connect

    Dhole, V.R.; Ramchandani, N.; Tainsh, R.A.; Wasilewski, M.

    1996-01-01

    Environmental protection, rising costs for wastewater-treatment, and at many sites a shortage of fresh water are all persuasive motives for reducing raw water consumption and wastewater discharge at a chemical-process plant. Maximizing the re-use of water within the plant can be of great help. Systematic strategies for such maximization can lower freshwater usage and wastewater discharges by 50% or more, while also significantly reducing capital investment in treatment facilities. The typical base case or starting point for such improvements appears in a figure which shows a conventional water network in a process plant. After undergoing initial treatment, the incoming water goes in parallel streams to the various individual process units, as well as to the utility system for steam production and for use in cooling towers. Wastewater streams from the processes, along with blowdown and condensate losses from the utility system, are usually collected together and the combined stream fed to a wastewater treatment facility prior to discharge. There are two basic strategies for reducing water demand in such a plant. One strategy consists of modifying individual process and utility units to reduce their inherent need for water. Examples include replacing water cooling with air cooling, improving controls of boiler and cooling-tower blowdowns, and increasing the number of stages in an extraction unit that employs water as its extractant. In the other basic strategy, which is the main focus of this article, the engineer seeks opportunities to use the outlet water from one operation to satisfy the water requirement of another or the same operation. In some cases, the water may require some regeneration prior to re-use. Examples of regeneration include pH adjustment, filtration, membrane separation, sour-water stripping and ion exchange.

  8. Nontarget effects of aerial mosquito adulticiding with water-based unsynergized pyrethroids on honey bees and other beneficial insects in an agricultural ecosystem of north Greece.

    PubMed

    Chaskopoulou, Alexandra; Thrasyvoulou, Andreas; Goras, Georgios; Tananaki, Chrysoula; Latham, Mark D; Kashefi, Javid; Pereira, Roberto M; Koehler, Philip G

    2014-05-01

    We assessed the nontarget effects of ultra-low-volume (ULV) aerial adulticiding with two new water-based, unsynergized pyrethroid formulations, Aqua-K-Othrine (FFAST antievaporant technology, 2% deltamethrin) and Pesguard S102 (10% d-phenothrin). A helicopter with GPS navigation technology was used. One application rate was tested per formulation that corresponded to 1.00 g (AI)/ha of deltamethrin and 7.50 g (AI)/ha of d-phenothrin. Three beneficial nontarget organisms were used: honey bees (domesticated hives), family Apidae (Apis mellifera L.); mealybug destroyers, family Coccinellidae (Cryptolaemus montrouzieri Mulsant); and green lacewings, family Chrysopidae (Chrysoperla carnea (Stephens)). No significant nontarget mortalities were observed. No bees exhibited signs of sublethal exposure to insecticides. Beehives exposed to the insecticidal applications remained healthy and productive, performed as well as the control hives and increased in weight (25-30%), in adult bee population (14-18%), and in brood population (15-19%).

  9. A Process Model for Water Jug Problems

    ERIC Educational Resources Information Center

    Atwood, Michael E.; Polson, Peter G.

    1976-01-01

    A model is developed and evaluated for use in the water jug task in in which subjects are required to find a sequence of moves which produce a specified amount of water in each jug. Results indicate that the model presented correctly predicts the difficulties of different problems and describes the behavior of subjects in the process of problem…

  10. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  11. Process for removing metals from water

    DOEpatents

    Napier, John M.; Hancher, Charles M.; Hackett, Gail D.

    1989-01-01

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  12. Process for removing metals from water

    DOEpatents

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  13. Apparatus and process for water treatment

    DOEpatents

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  14. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls.

    PubMed

    Thomas, Kate N; van Rij, André M; Lucas, Samuel J E; Cotter, James D

    2017-03-01

    Passive heat induces beneficial perfusion profiles, provides substantive cardiovascular strain, and reduces blood pressure, thereby holding potential for healthy and cardiovascular disease populations. The aim of this study was to assess acute responses to passive heat via lower-limb, hot-water immersion in patients with peripheral arterial disease (PAD) and healthy, elderly controls. Eleven patients with PAD (age 71 ± 6 yr, 7 male, 4 female) and 10 controls (age 72 ± 7 yr, 8 male, 2 female) underwent hot-water immersion (30-min waist-level immersion in 42.1 ± 0.6°C water). Before, during, and following immersion, brachial and popliteal artery diameter, blood flow, and shear stress were assessed using duplex ultrasound. Lower-limb perfusion was measured also using venous occlusion plethysmography and near-infrared spectroscopy. During immersion, shear rate increased (P < 0.0001) comparably between groups in the popliteal artery (controls: +183 ± 26%; PAD: +258 ± 54%) and brachial artery (controls: +117 ± 24%; PAD: +107 ± 32%). Lower-limb blood flow increased significantly in both groups, as measured from duplex ultrasound (>200%), plethysmography (>100%), and spectroscopy, while central and peripheral pulse-wave velocity decreased in both groups. Mean arterial blood pressure was reduced by 22 ± 9 mmHg (main effect P < 0.0001, interaction P = 0.60) during immersion, and remained 7 ± 7 mmHg lower 3 h afterward. In PAD, popliteal shear profiles and claudication both compared favorably with those measured immediately following symptom-limited walking. A 30-min hot-water immersion is a practical means of delivering heat therapy to PAD patients and healthy, elderly individuals to induce appreciable systemic (chronotropic and blood pressure lowering) and hemodynamic (upper and lower-limb perfusion and shear rate increases) responses.

  15. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  16. Electrostatic Beneficiation of Coal

    SciTech Connect

    D. Lindquist; K. B. Tennal; M. K. Mazumder

    1998-10-29

    It was suggested in the proposal that small particles, due to low inertia, may not impact on the surfaces of the tribocharger. They would, thus, not receive charge and would not be beneficiated in the electrostatic separation. A milling process was proposed in which the small particles are stirred together with larger carrier beads producing the desired contact charge exchange. A force is necessary for removing the coal particles from the carrier beads. In copying machines electrostatic force is used to pull toner particles away horn iron carrier particles which are held back by magnetic force. Aerodynamic force is used in test instruments for measuring the charge to mass ratio on toners. A similar system of milling and removal is desired for use with the small coal particles. The carrier beads need to be made of copper rather than iron. This complicates the separation process since copper is non-magnetic. We are working on coating of iron beads with a layer of copper. Dr. Robert Engleken of Arkansas State University has supplied us with several test batches of copper-coated iron in the size range of -40 +70 mesh. ` We are currently testing whether the milling process used with the copper coated iron beads produces the desired charge on the coal particles.

  17. Chapter A5. Processing of Water Samples

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1999-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses methods to be used in processing water samples to be analyzed for inorganic and organic chemical substances, including the bottling of composite, pumped, and bailed samples and subsamples; sample filtration; solid-phase extraction for pesticide analyses; sample preservation; and sample handling and shipping. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http:/ /water.usgs.gov/lookup/get?newpubs.

  18. Hydrothermal carbonization: process water characterization and effects of water recirculation.

    PubMed

    Stemann, Jan; Putschew, Anke; Ziegler, Felix

    2013-09-01

    Poplar wood chips were treated hydrothermally and the increase of process efficiency by water recirculation was examined. About 15% of the carbon in the biomass was dissolved in the liquid phase when biomass was treated in de-ionized water at 220 °C for 4 h. The dissolved organic matter contained oxygen and was partly aerobically biodegradable. About 30-50% of the total organic carbon originated from organic acids. A polar and aromatic fraction was extracted and a major portion of the organic load was of higher molecular weight. By process water recirculation organic acids in the liquid phase concentrated and catalyzed dehydration reactions. As a consequence, functional groups in hydrothermally synthesized coal declined and dewaterability was enhanced. Recirculated reactive substances polymerized and formed additional solid substance. As a result, carbon and energetic yields of the produced coal rose to 84% and 82%, respectively.

  19. Understanding the Effects of Multiscale Groundwater-Surface Water Interactions on Scott River Baseflow and Stream Temperature in Support of Beneficial Salmon Habitat

    NASA Astrophysics Data System (ADS)

    Hines, R.; Harter, T.

    2009-12-01

    The Scott River watershed is one of only a handful of major watersheds in California that include a zone of adjudicated groundwater and that is not managed by a major reservoir. The Scott River is a major tributary in the Klamath River basin, providing habitat for cold water salmon fishery, including the migration, spawning, reproduction, and early development of cold water fish such as coho salmon, Chinook salmon, and steelhead trout. The Scott Valley entertains extensive alfalfa and hay productions that provide the economic base for the agricultural valley. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Summer baseflow in the Scott supports juvenile coho salmon that remain in the Valley until the following winter. Stream temperatures in the Scott River have increased to levels that are not considered sustainable for the native salmon population. Concurrently, late summer/early fall baseflow has decreased, possibly leading to substantial deterioration of habitat conditions. Increased temperature and decreased baseflow are thought to be due in part to groundwater pumping for irrigation and to increased solar radiation from lack of shade by riparian vegetation. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Regional scale surface water - groundwater modeling is employed to investigate the benefits to mid-and late summer baseflow in the Scott River of various conjunctive use management alternatives, including increased spring irrigation recharge and deficit irrigation. Field measurements of stream temperature indicate that

  20. Processing of water on the moon

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1963-01-01

    The electrolytic dissociation of water into gaseous forms of hydrogen and oxygen is a well known process that can quickly be summarized in a series of illustrations. Table 1 presents some physical properties of hydrogen and oxygen for purposes of reference. Figure 1 illustrates the chemical process and the equipment used in the industrial production of hydrogen and oxygen by the electrolysis of water. Table 2 summarizes the characteristics of electrolytic H2-O2 cells used in industrial practice. It is of interest to note that substantial amounts of power are required for the process and that rather heavy equipments are common to the land-based systems now in use. Very little can be done to reduce the power requirements, for the process as now carried out is relatively efficient, but undoubtedly great savings in weight can be realized.

  1. Beneficial Effects of Dietary Probiotics Mixture on Hemato-Immunology and Cell Apoptosis of Labeo rohita Fingerlings Reared at Higher Water Temperatures

    PubMed Central

    Prusty, Ashisa K.; PaniPrasad, Kurchetti; Mohanta, Kedar N.

    2014-01-01

    Probiotics play an important role in growth increment, immune enhancement and stress mitigation in fish. Increasing temperature is a major concern in present aquaculture practices as it markedly deteriorates the health condition and reduces the growth in fish. In order to explore the possibilities of using probiotics as a counter measure for temperature associated problems, a 30 days feeding trial was conducted to study the hemato-immunological and apoptosis response of Labeo rohita (8.3±0.4 g) reared at different water temperatures, fed with or without dietary supplementation of a probiotic mixture (PM) consisting of Bacillus subtilis, Lactococcus lactis and Saccharomyces cerevisiae) (1011 cfu kg−1). Three hundred and sixty fish were randomly distributed into eight treatment groups in triplicates, namely, T1(28°C+BF(Basal feed)+PM), T2(31°C+BF+PM), T3(34°C+BF+PM), T4(37°C+BF+PM), T5(28°C+BF), T6(31°C+BF), T7(34°C+BF) and T8(37°C+BF). A significant increase (P<0.01) in weight gain percentage was observed in the probiotic fed fish even when reared at higher water temperature (34–37°C). Respiratory burst assay, blood glucose, erythrocyte count, total serum protein, albumin, alkaline phosphatase and acid phosphatase were significantly higher (P<0.01) in the probiotic fed groups compared to the non-probiotic fed groups. A significant (P<0.01) effect of rearing temperature and dietary probiotic mixture on serum myeloperoxidase activity, HSP70 level and immunoglobulin production was observed. Degree of apoptosis in different tissues was also significantly reduced in probiotic-supplemented groups. Hence, the present results show that a dietary PM could be beneficial in enhancing the immune status of the fish and also help in combating the stress caused to the organism by higher rearing water temperature. PMID:24979660

  2. The first commercial supercritical water oxidation sludge processing plant.

    PubMed

    Griffith, James W; Raymond, Dennis H

    2002-01-01

    Final disposal of sludge continues to be one of the more pressing problems for the wastewater treatment industry. Present regulations for municipal sludge have favored beneficial use, primarily in land application. However, several agencies and entities have warned of potential health risks associated with these methods. Hydrothermal oxidation provides an alternative method that addresses the health concerns associated with sludge disposal by completely converting all organic matter in the sludge to carbon dioxide, water, and other innocuous materials. A hydrothermal oxidation system using HydroProcessing, L.L.C.'s HydroSolids process has been installed at Harlingen, Texas to process up to 9.8 dry tons per day of sludge. Based on a literature review, this system is the largest hydrothermal oxidation system in the world, and the only one built specifically to process a sludge. Start up of Unit 1 of two units of the HTO system began in April 2001. Early results have indicated COD conversion rates in excess of 99.9%. Harlingen Waterworks System estimates that the HydroSolids system will cost less than other alternatives such as autothermal thermophilic aerobic digestion and more traditional forms of digestion that still require dewatering and final disposal. The Waterworks intends to generate income from the sale of energy in the form of hot water and the use of carbon dioxide from the HydroSolids process for neutralization of high pH industrial effluent. The Waterworks also expects to generate income from the treatment of septage and grease trap wastes.

  3. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  4. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  5. Deep Water Ambient Noise and Mode Processing

    DTIC Science & Technology

    2012-09-30

    Deep Water Ambient Noise and Mode Processing Kathleen E. Wage George Mason University Electrical and Computer Engineering Department 4400...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) George Mason University Electrical and Computer Engineering Department 4400 University...analysis of the Church Opal data set showed that noise levels decreased substantially (on the order of 20 dB) below the critical depth [5]. This project

  6. Water in Biological and Chemical Processes

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman

    2013-11-01

    Part I. Bulk Water: 1. Uniqueness of water; 2. Anomalies of water; 3. Dynamics of water: molecular motions and hydrogen bond breaking kinetics; 4. Inherent structures of liquid water; 5. pH of water; Part II. Water in Biology: Dynamical View and Function: 6. Biological water; 7. Explicit role of water in biological functions; 8. Hydration of proteins; 9. Can we understand protein hydration layer: lessons from computer simulations; 10. Water in and around DNA and RNA; 11. Role of water in protein-DNA interaction; 12. Water surrounding lipid bilayers; 13. Water in Darwin's world; Part III. Water in Complex Chemical Systems: 14. Hydrophilic effects; 15. Hydrophobic effects; 16. Aqueous binary mixtures: amphiphilic effect; 17. Water in and around micelles, reverse micelles and microemulsions; 18. Water in carbon nanotubes; Part IV. Bulk Water: Advanced Topics: 19. Entropy of water; 20. Freezing of water into ice; 21. Supercritical water; 22. Microscopic approaches to understand water anomalies.

  7. Coal Beneficiation by Gas Agglomeration

    SciTech Connect

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  8. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  9. A hybrid ED/RO process for TDS reduction of produced waters

    SciTech Connect

    Tsai, S.P.; Datta, R.; Frank, J.R.

    1995-12-31

    Large volumes of produced waters are generated from natural gas production. In the United States the prevailing management practice for produced waters is deep well injection, but this practice is costly. Therefore minimizing the need for deep well injection is desirable. A major treatment issue for produced waters is the reduction of total dissolved solids (TDS), which consist mostly of inorganic salts. A hybrid electrodialysis/reverse-osmosis (ED/RO) treatment process is being developed to concentrate the salts in produced waters and thereby reduce the volume of brine that needs to be managed for disposal. The desalted water can be used beneficially or discharged. In this study, laboratory feasibility experiments were conducted by using produced waters from multiple sites. A novel-membrane configuration approach to prevent fouling and scale formation was developed and demonstrated. Results of laboratory experiments and plans for field demonstration are discussed.

  10. The Beneficiation of Education

    ERIC Educational Resources Information Center

    Senger, April J.

    2014-01-01

    When the challenge of adapting curriculum to meet the requirements of the Common Core State Standards were presented, this author immediately sought out the assistance of experts in another field: the school library staff. It was apparent that staff needed to practice the beneficiation of the current curriculum to meet the CCSS requirements.…

  11. The Beneficiation of Education

    ERIC Educational Resources Information Center

    Senger, April J.

    2014-01-01

    When the challenge of adapting curriculum to meet the requirements of the Common Core State Standards were presented, this author immediately sought out the assistance of experts in another field: the school library staff. It was apparent that staff needed to practice the beneficiation of the current curriculum to meet the CCSS requirements.…

  12. Defluoridation of drinking water using adsorption processes.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Fast switching water processable electrochromic polymers.

    PubMed

    Shi, Pengjie; Amb, Chad M; Dyer, Aubrey L; Reynolds, John R

    2012-12-01

    This paper describes the synthesis of two new blue to transmissive donor-acceptor electrochromic polymers: a polymer synthesized using an alternating copolymerization route (ECP-Blue-A) and a polymer synthesized using a random copolymerization (ECP-Blue-R) by Stille polymerization. These polymers utilize side chains with four ester groups per donor moiety, allowing organic solubility in the ester form, and water solubility upon saponification to their carboxylate salt form. We demonstrate that the saponified polymer salts of ECP-Blue-A and ECP-Blue-R (WS-ECP-Blue-A and WS-ECP-Blue-R) can be processed from aqueous solutions into thin films by spray-casting. Upon the subsequent neutralization of the thin films, the resulting polymer acid films are solvent resistant and can be electrochemically switched between their colored state and a transmissive state in a KNO(3)/water electrolyte solution. The polymer acids, WS-ECP-Blue-A-acid and WS-ECP-Blue-R-acid, show electrochromic contrast Δ%T of 38% at 655 nm and 39% at 555 nm for a 0.5 s switch, demonstrating the advantage of an aqueous compatible electrochrome switchable in high ionic conductivity aqueous electrolytes. The results of the electrochromic properties study indicate that these polymers are promising candidates for aqueous processable and aqueous switching electrochromic materials and devices as desired for applications where environmental impact is of importance.

  14. Photochemical Transformation Processes in Sunlit Surface Waters

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  15. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  16. Produced Water Treatment Using the Switchable Polarity Solvent Forward Osmosis (SPS FO) Desalination Process: Preliminary Engineering Design Basis

    SciTech Connect

    Wendt, Daniel; Adhikari, Birendra; Orme, Christopher; Wilson, Aaron

    2016-05-01

    Switchable Polarity Solvent Forward Osmosis (SPS FO) is a semi-permeable membrane-based water treatment technology. INL is currently advancing SPS FO technology such that a prototype unit can be designed and demonstrated for the purification of produced water from oil and gas production operations. The SPS FO prototype unit will used the thermal energy in the produced water as a source of process heat, thereby reducing the external process energy demands. Treatment of the produced water stream will reduce the volume of saline wastewater requiring disposal via injection, an activity that is correlated with undesirable seismic events, as well as generate a purified product water stream with potential beneficial uses. This paper summarizes experimental data that has been collected in support of the SPS FO scale-up effort, and describes how this data will be used in the sizing of SPS FO process equipment. An estimate of produced water treatment costs using the SPS FO process is also provided.

  17. Beneficial Uses of Depleted Uranium

    SciTech Connect

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  18. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  19. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  20. Electrochemical Advanced Oxidation Process for Shipboard Final Purification of Filtered Black Water, Gray Water, and Bilge Water, Vol. 1

    DTIC Science & Technology

    2001-08-01

    Shipboard Final Purification of Filtered Black Water , Gray Water , and Bilge Water O. Weres, PhD and H.E. O’Donnell Sonoma Research Company Napa...Process for Shipboard Final Purification of Filtered Black Water , Gray Water , and Bilge Water 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Shipboard Final Purification of Filtered Black Water , Gray Water , and Bilge Water Final Report Submitted to: SERDP Office 901 North Stuart Street, Suite

  1. Potassium: more beneficial effects.

    PubMed

    He, F J; MacGregor, G A

    2003-10-01

    Over 70 years ago, potassium was found to have a natriuretic effect and was used in patients with heart failure. However, it took many years for its role in the control of blood pressure to be recognized. Recently, epidemiological and clinical studies in man and experimental studies in animals have shown that increasing potassium intake towers blood pressure and that communities with a high potassium intake tend to have lower population blood pressures. Several studies have shown an interaction between salt intake and potassium intake. However, the recent DASH-Sodium (Dietary Approaches to Stop Hypertension) study demonstrates an additive effect of a low salt and high potassium diet on blood pressure. Increasing potassium intake may have other beneficial effects, for example, reducing the risk of stroke and preventing the development of renal disease independent of its effect on blood pressure. A high potassium intake reduces calcium excretion and could play an important role in the management of hypercalciuria and kidney stone formation, as well as bone demineralization. Potassium intake may also play an important role in carbohydrate intolerance. A reduced serum potassium increases the risk of lethal ventricular arrhythmias in those at risk, i.e. patients with ischemic heart disease, heart failure or left ventricular hypertrophy, and increasing potassium intake may prevent this. In this article, we address the evidence for the important role of potassium intake in regulating blood pressure and other beneficial effects of potassium which may be independent of and additional to its effect on blood pressure.

  2. Systems for recycling water in poultry processing

    SciTech Connect

    Carawan, R.E.; Sheldon, B.W.

    1988-12-31

    The study was conducted to identify effective and economical water treatments, including disinfection, to meet the U.S. Department of Agriculture`s standards for the recycling of poultry chiller water. Reconditioned chiller water meeting these criteria was used to chill hot broiler carcasses, and the quality of the chilled carcasses was then evaluated.

  3. Role of water in some biological processes.

    PubMed Central

    Wiggins, P M

    1990-01-01

    The state of intracellular water has been a matter of controversy for a long time for two reasons. First, experiments have often given conflicting results. Second, hitherto, there have been no plausible grounds for assuming that intracellular water should be significantly different from bulk water. A collective behavior of water molecules is suggested here as a thermodynamically inevitable mechanism for generation of appreciable zones of abnormal water. At a highly charged surface, water molecules move together, generating a zone of water perhaps 6 nm thick, which is weakly hydrogen bonded, fluid, and reactive and selectively accumulates small cations, multivalent anions, and hydrophobic solutes. At a hydrophobic surface, molecules move apart and local water becomes strongly bonded, inert, and viscous and accumulates large cations, univalent anions, and compatible solutes. Proteins and many other biopolymers have patchy surfaces which therefore induce, by the two mechanisms described, patchy interfacial water structures, which extended appreciable distances from the surface. The reason for many conflicting experimental results now becomes apparent. Average values of properties of water measured in gels, cells, or solutions of proteins are often not very different from the same properties of normal water, giving no indication that they are averages of extreme values. To detect the operation of this phenomenon, it is necessary to probe selectively a single abnormal population. Examples of such experiments are given. It is shown that this collective behavior of water molecules amounts to a considerable biological force, which can be equivalent to a pressure of 1,000 atm (1.013 x 10(5) kPa). It is suggested that cells selectively accumulate K+ ions and compatible solutes to avoid extremes of water structure in their aqueous compartments, but that cation pumps and other enzymes exploit the different solvent properties and reactivities of water to perform work of

  4. Fever: is it beneficial?

    PubMed Central

    Blatteis, C. M.

    1986-01-01

    Data obtained in lizards infected with live bacteria suggest that fever may be beneficial to their survival. An adaptive value of fever has also been inferred in mammals, but the results are equivocal. Findings that certain leukocyte functions are enhanced in vitro at high temperatures have provided a possible explanation for the alleged benefits of fever. However, serious questions exist as to whether results from experiments in ectotherms and in vitro can properly be extrapolated to in vivo endothermic conditions. Indeed, various studies have yielded results inconsistent with the survival benefits attributed to fever, and fever is not an obligatory feature of all infections under all conditions. Certainly, the widespread use of antipyretics, without apparent adverse effects on the course of disease, argues against fever having great benefit to the host. In sum, although fever is a cardinal manifestation of infection, conclusive evidence that it has survival value in mammals is still lacking. PMID:3090790

  5. Modeling Benthic Sediment Processes to Predict Water ...

    EPA Pesticide Factsheets

    The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal benthic fluxes of nutrients and chemicals in Narragansett Bay. A benthic sediment model is presented in this report to identify benthic flux into the water column in Narragansett Bay. Benthic flux is essential to properly model water quality and ecology in estuarine and coastal systems.

  6. Modeling Benthic Sediment Processes to Predict Water ...

    EPA Pesticide Factsheets

    The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal benthic fluxes of nutrients and chemicals in Narragansett Bay. A benthic sediment model is presented in this report to identify benthic flux into the water column in Narragansett Bay. Benthic flux is essential to properly model water quality and ecology in estuarine and coastal systems.

  7. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  8. Effects of water chemistry on decolorization in three photochemical processes: Pro and cons of the UV/AA process.

    PubMed

    Wu, Bingdang; Yin, Ran; Zhang, Guoyang; Yu, Chao; Zhang, Shujuan

    2016-11-15

    The poor selectivity of hydroxyl radicals is a major restriction in the practical application of the UV/H2O2 process for dyeing wastewater treatment. As an alternative, the target-selective UV/acetylacetone (AA) process was found highly efficient for dye decolorization. For the proper selection and application of the two photochemical processes, the effects of water matrices, including common inorganic anions (Cl(-), SO4(2-), NO3(-), HCO3(-)), natural organic matter, metal cations (Mg(2+), Mn(2+), Cu(2+), Fe(3+), Cr(3+)), and temperature, on the photo-degradation of an azo dye, Acid Orange 7 (AO7), were systematically investigated. The experimental results demonstrate that the UV/AA process was more sensitive to inner filter effect. NO3(-), Cu(2+), and Fe(3+) were all detrimental to the UV/AA process, whereas at certain concentrations they were beneficial to the UV/H2O2 process. However, even with severe inhibitory effects, the decolorization efficiency of the UV/AA process was still several times higher than that of the UV/H2O2 process. The results are helpful for us to better understand the mechanisms behind the UV/AA process and may shed light on the application of UV-based advanced oxidation processes for wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microbiological control of the water bottling process.

    PubMed

    Sefcová, H

    1999-11-01

    Psychrophilic and mesophilic bacteria counts were detected in samples taken from 10 sites in filling line for bottled waters (table and baby waters). Increased microorganisms count were located behind the sand filter and the aeration unit (10(2) CFU/ml). We recommend intensified sanitation of the aeration columns.

  10. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  11. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    SciTech Connect

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  12. Beneficial Use of Produced Water from Oil and Gas Operations for Agriculture: Effects on Crop Health and Crop Uptake of Contaminants

    NASA Astrophysics Data System (ADS)

    Sedlacko, E.; Blaine, A. C.; Haynes, K. M.; Higgins, C. P.

    2016-12-01

    The balance between water conservation and energy generation is difficult to maintain. Oil and gas (O&G) companies look to dispose of produced water in safe, economical ways, while farmers desperate for water seek plentiful sources to maintain their fields. The solution seems simple—purify the water from O&G operations and deliver it to the farmers for irrigation to ensure a reliable source of food. Unfortunately, little research has been conducted to date that could provide purification guidelines, risk warnings, or standard methods for how to implement this solution. In addition, multiple barriers to implementation including regulatory, economic, liability, and social license considerations, must be addressed. This presentation contains data regarding the uptake of compounds two crops, Triticum aestivum (spring wheat) and Helianthus annus (sunflower), grown in a controlled greenhouse environment and irrigated with different dilutions of raw and treated produced water from O&G operations. Differences in plant height, plant color, leaf area, and plant mass were examined, and additional laboratory analyses were conducted on the plants to detect uptake of inorganic and organic substances. Plant stress was also assessed both qualitatively and through plant hormone analysis. In addition, this project provided the opportunity for K-12 teachers to become involved in university research through a new National Science Foundation Research Experience for Teachers (RET) program at Colorado School of Mines. The subsequent impacts of this food-energy-water nexus research on local communities and local STEM curricula via the RET program will also be highlighted.

  13. Beneficial bacteria inhibit cachexia

    PubMed Central

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  14. Beneficial uses of radiation

    SciTech Connect

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.

  15. Beneficial Properties of Probiotics

    PubMed Central

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-01-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as “health friendly bacteria”, which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller’s diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents. PMID:27688852

  16. Fractal processes in soil water retention

    SciTech Connect

    Tyler, S.W.; Wheatcraft, S.W. )

    1990-05-01

    The authors propose a physical conceptual model for soil texture and pore structure that is based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some particle size distributions in granular soils have already been shown to display self-similar scaling that is typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display fractal scaling properties. The paradigm that they used for the soil pore size distribution is the Sierpinski carpet, which is a fractal that contains self similar holes (or pores) over a wide range of scales. The authors evaluate the water retention properties of regular and random Sierpinski carpets and relate these properties directly to the Brooks and Corey (or Campbell) empirical water retention model. They relate the water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal dimension strongly controls the water retention properties of the Sierpinski carpet soil. Higher fractal dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. Their fractal model of soil water retention removes the empirical fitting parameters from the soil water retention models and provides paramters which are intrinsic to the nature of the fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to be fractal directly from fractal water retention results.

  17. Surface processing using water cluster ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  18. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  19. Oil shale retorting and retort water purification process

    SciTech Connect

    Venardos, D.G.; Grieves, C.G.

    1985-01-22

    An oil shale process is provided to retort oil shale and purify oil shale retort water. In the process, raw oil shale is retorted in an in situ underground retort or in an above ground retort to liberate shale oil, light hydrocarbon gases and oil shale retort water. The retort water is separated from the shale oil and gases in a sump or in a fractionator or quench tower followed by an API oil/water separator. After the retort water is separated from the shale oil, the retort water is steam stripped, carbon adsorbed and biologically treated, preferably by granular carbon adsorbers followed by activated sludge treatment or by activated sludge containing powdered activated carbon. The retort water can be granularly filtered before being steam stripped. The purified retort water can be used in various other oil shale processes, such as dedusting, scrubbing, spent shale moisturing, backfilling, in situ feed gas injection and pulsed combustion.

  20. Beneficial Biofilms: Wastewater and Other Industrial Applications

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the use of beneficial biofilms for the production of industrial chemicals such as ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid. It also emphasizes application of biofilm reactors for treatment of dairy industry wastewater, oily sea water...

  1. Water savings potentials of irrigation systems: global simulation of processes and linkages

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global

  2. Thermochemical production of hydrogen via multistage water splitting processes

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  3. Data processing for water monitoring system

    NASA Technical Reports Server (NTRS)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  4. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  5. In vivo cytogenetic effects of oil shale retort process waters.

    PubMed

    Meyne, J; Deaven, L L

    1982-01-01

    The induction of cytogenetic effects by oil shale retort process waters from 3 types of pilot plant retorts were examined in murine bone marrow. Each of the process waters induced increased frequencies of structural aberrations in mice treated with 3 daily intraperitoneal injections of the waters. The same treatment had no effect on the frequency of sister chromatid exchanges. Mice given a 1% solution of an above-ground retort water ad libitum for 8 weeks consumed about 1 ml/kg per day of the process water and had a frequency of aberrations comparable to mice given the same dose intraperitoneally for 3 days. Transplacental exposure of C3H mouse embryos indicated that clastogenic compounds in the above-ground retort process water can cross the placenta and induce chromosomal aberrations in embryonic tissues.

  6. Beneficiation and extraction of nonterrestrial materials, part 2

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    A review of options for processing extraterrestrial materials was dominated by industrial materials scientist who tried to identify which processes utilizing space materials could be implemented in the near term. The most practical process seem to us to be the extraction of lunar oxygen and the extraction of metals and ceramics from the residues of the reduction process. The growth of space activity will be accompanied by increased demand for liquid oxygen for each round trip to the Moon. The oxygen and the intermediary product water will be needed for the life support at the base. The reduced metals and ceramics may be considered byproducts or may develop into primary products. Some of the same processes would be directly applicable to recovery of products from asteroids. We also discussed other processes for directly utilizing asteroid metals. Some of the topics covered include beneficiation and oxygen extraction methods, metallurgy, and extraterrestrial cement.

  7. Analysis of process water use in poultry meat production

    USDA-ARS?s Scientific Manuscript database

    Poultry processing facilities use large quantities of water for chiller unit operations. The chiller is critical for temperature reduction to inhibit microbial growth and preserve product quality and safety. Process water quality can also influence product safety when bacteria present on poultry sk...

  8. Water chemistry and antimicrobial treatment in poultry processing

    USDA-ARS?s Scientific Manuscript database

    This study examined the influence of calcium and magnesium ions in process water on the solubility of trisodium phosphate. Water used in poultry processing operations may be treated with sanitizers such as trisodium phosphate to reduce microbial activity and the risk of contamination. This occurs wh...

  9. Fly ash beneficiation by carbon burnout

    SciTech Connect

    Cochran, J.W.; Boyd, T.J.

    1995-03-01

    The CBO process for fly ash beneficiation shows excellent potential. Values derived from avoided disposal costs, revenue from fly ash sales, environmental attributes and the ability to process 100% of the ash indicate the potential market for this process. Work has begun on the next phase of process development and commercialization and includes site specific application studies (technical and economic investigations for specific sites). Demonstration plant designs at approximately 100,000 TPY are being considered by several participating utilities.

  10. Inhibitor performance in process water containing ammonia

    SciTech Connect

    Sherwood, N.S.

    1998-12-31

    Ammonia is a prevalent contaminant and issue in water reuse. Since ammonia exhibits decreasing dissociation with increasing pH, operation of cooling systems at high pH is effective in improving corrosion control, biocide demand and overall system performance. Polyamino polyether methylene phosphate based programs for high pH conditions provided scale and corrosion control at very high levels of ammonia contamination at a northern steel mill.

  11. Quantitative Eatimation of Ground Water Recharge Process in Vadose Zone Beneath a Rice Paddy Field Using Cross-Borehole Radar

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Shiina, Y.; Okuyama, T.; Takeutch, M.

    2005-12-01

    Wet Rice Paddy field is one of most important components of land uses in monsoon Asia. It is known to have some other beneficial functions than food production, for example ground water recharge, purification of surface and subsurface water, and alleviation of flood. Though ground water recharge process of paddy field is essential for those functions, the actual conditions of ground water recharge process beneath paddy field has not been clarified besides in the zone of about 1m depth from soil surface. Recently cross borehole radar is recognized as one of usefull methods for measurement of soil water distribution and its change. We applied cross borehole radar for monitoring of soil water in vadose zone beneath a paddy field to clarify the ground water recharge process. Cross borehole radar monitoring clarified the infiltration process into the vadose zone and shallow ground water aquifer beneath the paddy field. We estimated the increment of soil volumetric water content from CRIME model, the descent velocity of wetting front, and infiltration rate from cross borehole radar data quantitatively. They were almost coincident with the directly measured results. Using these results,we tried to estimate permeability based on some hypothesis of infiltration process.

  12. A water-alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in the obese Zucker rats fed with high fat/high cholesterol diet.

    PubMed

    Raasmaja, Atso; Lecklin, Anne; Li, Xiang Ming; Zou, Jianqiang; Zhu, Guo-Guang; Laakso, Into; Hiltunen, Raimo

    2013-06-01

    Epidemiological studies suggest that citrus fruits and compounds such as flavonoids, limonoids and pectins have health promoting effects. Our aim was to study the effects of Citrus grandis (L.) Osbeck var. tomentosa hort. fruit extract on the energy metabolism. A whole fruit powder from dry water and alcohol extracts of C. grandis containing 19% naringin flavonoid was prepared. The effects of the citrus extract were followed in the obese Zucker rats fed with the HFD. The circulatory levels of GLP-1 decreased significantly by the extract in comparison to the HFD group, whereas the decreased ghrelin levels were reversed. The levels of PYY were decreased in all HFD groups. The leptin amounts decreased but not significantly whereas insulin and amylin were unchanged. The cholesterol and glucose levels were somewhat but not systematically improved in the HFD fed rats. Further studies are needed to identify the active compounds and their mechanisms.

  13. Salvia Miltiorrhiza Root Water-Extract (Danshen) Has No Beneficial Effect on Cardiovascular Risk Factors. A Randomized Double-Blind Cross-Over Trial.

    PubMed

    van Poppel, Pleun C M; Breedveld, Pauline; Abbink, Evertine J; Roelofs, Hennie; van Heerde, Waander; Smits, Paul; Lin, Wenzhi; Tan, Aaitje H; Russel, Frans G; Donders, Rogier; Tack, Cees J; Rongen, Gerard A

    2015-01-01

    Danshen is the dried root extract of the plant Salvia Miltiorrhiza and it is used as traditional Chinese medicinal herbal product to prevent and treat atherosclerosis. However, its efficacy has not been thoroughly investigated. This study evaluates the effect of Danshen on hyperlipidemia and hypertension, two well known risk factors for the development of atherosclerosis. This was a randomized, placebo-controlled, double-blind crossover study performed at a tertiary referral center. Participants were recruited by newspaper advertisement and randomized to treatment with Danshen (water-extract of the Salvia Miltiorrhiza root) or placebo for 4 consecutive weeks. There was a wash out period of 4 weeks. Of the 20 analysed participants, 11 received placebo first. Inclusion criteria were: age 40-70 years, hyperlipidemia and hypertension. At the end of each treatment period, plasma lipids were determined (primary outcome), 24 hours ambulant blood pressure measurement (ABPM) was performed, and vasodilator endothelial function was assessed in the forearm. LDL cholesterol levels were 3.82±0.14 mmol/l after Danshen and 3.52±0.16 mmol/l after placebo treatment (mean±SE; p<0.05 for treatment effect corrected for baseline). Danshen treatment had no effect on blood pressure (ABPM 138/84 after Danshen and 136/87 after placebo treatment). These results were further substantiated by the observation that Danshen had neither an effect on endothelial function nor on markers of inflammation, oxidative stress, glucose metabolism, hemostasis and blood viscosity. Four weeks of treatment with Danshen (water-extract) slightly increased LDL-cholesterol without affecting a wide variety of other risk markers. These observations do not support the use of Danshen to prevent or treat atherosclerosis. ClinicalTrials.gov NCT01563770.

  14. Salvia Miltiorrhiza Root Water-Extract (Danshen) Has No Beneficial Effect on Cardiovascular Risk Factors. A Randomized Double-Blind Cross-Over Trial

    PubMed Central

    van Poppel, Pleun C. M.; Breedveld, Pauline; Abbink, Evertine J.; Roelofs, Hennie; van Heerde, Waander; Smits, Paul; Lin, Wenzhi; Tan, Aaitje H.; Russel, Frans G.; Donders, Rogier; Tack, Cees J.; Rongen, Gerard A.

    2015-01-01

    Purpose Danshen is the dried root extract of the plant Salvia Miltiorrhiza and it is used as traditional Chinese medicinal herbal product to prevent and treat atherosclerosis. However, its efficacy has not been thoroughly investigated. This study evaluates the effect of Danshen on hyperlipidemia and hypertension, two well known risk factors for the development of atherosclerosis. Methods This was a randomized, placebo-controlled, double-blind crossover study performed at a tertiary referral center. Participants were recruited by newspaper advertisement and randomized to treatment with Danshen (water-extract of the Salvia Miltiorrhiza root) or placebo for 4 consecutive weeks. There was a wash out period of 4 weeks. Of the 20 analysed participants, 11 received placebo first. Inclusion criteria were: age 40-70 years, hyperlipidemia and hypertension. At the end of each treatment period, plasma lipids were determined (primary outcome), 24 hours ambulant blood pressure measurement (ABPM) was performed, and vasodilator endothelial function was assessed in the forearm. Results LDL cholesterol levels were 3.82±0.14 mmol/l after Danshen and 3.52±0.16 mmol/l after placebo treatment (mean±SE; p<0.05 for treatment effect corrected for baseline). Danshen treatment had no effect on blood pressure (ABPM 138/84 after Danshen and 136/87 after placebo treatment). These results were further substantiated by the observation that Danshen had neither an effect on endothelial function nor on markers of inflammation, oxidative stress, glucose metabolism, hemostasis and blood viscosity. Conclusion Four weeks of treatment with Danshen (water-extract) slightly increased LDL-cholesterol without affecting a wide variety of other risk markers. These observations do not support the use of Danshen to prevent or treat atherosclerosis. Trial Registration ClinicalTrials.gov NCT01563770 PMID:26192328

  15. Novel biotreatment process for glycol waters

    SciTech Connect

    Raja, L.M.V.; Elamvaluthy, G.; Palaniappan, R.; Krishnan, R.M.

    1991-12-31

    Propylene oxide (PO), propylene glycol (PG), and polyols are produced from propylene via propylene chlorohydrin. Effluents from these plants contain biological oxygen demand/chemical oxygen demand (BOD/COD) loads besides high chloride concentrations. The high salinity poses severe problem to adopt conventional methods like activated sludge processes. Presently, a simple, economically viable and versatile microbiological process has been developed to get more than 90% biodegradation in terms of BOD/COD, utilizing specially developed Pseudomonas and Aerobacter. The process can tolerate high salinity up to 10 wt% NaCl or 5 wt% CaCl{sub 2} and can withstand wide variations in pH (5.5-11.0) and temperature (15-45{degrees}C). The biodegradation of glycols involves two steps. The enzymatic conversion of glycols to carboxylic and hydroxycarboxylic acids is aided by Pseudoomonas. Further degradation to CO{sub 2} and H{sub 2}O by carboxylic acid utilizing Aerobacter, and possible metabolic degradative pathway of glycols are discussed. Various process parameters obtained in the lab scale (50 L bioreactor) and pilot scale (20 m{sup 3} bioreactor), and unique features of our process are also discussed.

  16. Study for Identification of Beneficial Uses of Space (BUS). Volume 2: Technical report. Book 4: Development and business analysis of space processed surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Preliminary development plans, analysis of required R and D and production resources, the costs of such resources, and, finally, the potential profitability of a commercial space processing opportunity for the production of very high frequency surface acoustic wave devices are presented.

  17. Chemometric analysis of the water purification process data.

    PubMed

    Stanimirova, I; Połowniak, M; Skorek, R; Kita, A; John, E; Buhl, F; Walczak, B

    2007-11-15

    The aim of this work was to show usefulness of chemometric analysis in processing of the data describing production of drinking water in the Silesian region of Poland. Water samples have been collected within the period of 1 year and the quality of water was characterized by a number of physical, chemical and microbiological parameters. Principal component analysis (PCA) and STATIS (Structuration des Tableaux A Trois Indices de la Statistique) were employed to obtain the knowledge about the complete water treatment process. PCA makes it possible to uncover seasonal changes influencing the water treatment process. In particular, it was found out that the salt content, hardness and conductivity of water tend to obtain higher levels in winter rather than in summer, and the relatively lower acidity is also to be expected in winter. The sensory quality of water is considerably improved over the consecutive purification steps. Complementary information about the individual technological units of the process is gained with the STATIS approach. The obtained results show that the water produced by the two independent filtering branches of the water plant is of similar quality and the prescribed quality characteristics of drinking water are fulfilled.

  18. Beneficial effects of hyaluronic acid.

    PubMed

    Sudha, Prasad N; Rose, Maximas H

    2014-01-01

    Biomaterials are playing a vital role in our day-to-day life. Hyaluronan (hyaluronic acid), a biomaterial, receives special attention among them. Hyaluronic acid (HA) is a polyanionic natural polymer occurring as linear polysaccharide composed of glucuronic acid and N-acetylglucosamine repeats via a β-1,4 linkage. It is the most versatile macromolecule present in the connective tissues of all vertebrates. Hyaluronic acid has a wide range of applications with its excellent physicochemical properties such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity and serves as an excellent tool in biomedical applications such as osteoarthritis surgery, ocular surgery, plastic surgery, tissue engineering, and drug delivery. It plays a key role in cushioning and lubricating the body and is abundant in the eyes, joints, and heart valves. A powerful antioxidant, hyaluronic acid is perhaps best known for its ability to bond water to tissue. Hyaluronan production increases in proliferating cells, and the polymer may play a role in mitosis. This chapter gives an overview of hyaluronic acid and its physicochemical properties and applications. This chapter gives a deep understanding on the special benefits of hyaluronic acid in the fields of pharmaceutical, medical, and environmental applications. Hyaluronic acid paves the way for beneficial research and applications to the welfare of life forms.

  19. Hydrogeophysical monitoring of water infiltration processes

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio

    2010-05-01

    Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content

  20. Electrostatic beneficiation of ores on the moon surface

    NASA Technical Reports Server (NTRS)

    Inculet, I. I.; Criswell, D. R.

    1979-01-01

    The feasibility of the electrostatic beneficiation of lunar ores is studied. It is shown that the lunar environment with its sustained high vacuum, low temperature, and low acceleration of gravity, is suitable for the use of the electrostatic technique with magnetic as well as nonmagnetic ores. Only an initial coarse screening will be required prior to processing, as the lunar soil is already in fine particulate form. The low temperature and the absence of water suggest the use of tribo-electrification for the electric charging of lunar soils.

  1. Study for identification of beneficial Uses of Space (BUS). Volume 2: Technical report. Book 3: Development and business analysis of space processed tungsten fox X-ray targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.

  2. Study for identification of beneficial uses of Space (BUS). Volume 2: Technical report. Book 1: Development and business analysis of space processed isoenzymes

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A separation method to provide reasonable yields of high specificity isoenzymes for the purpose of large scale, early clinical diagnosis of diseases and organic damage such as, myocardial infarction, hepatoma, muscular dystrophy, and infectous disorders is presented. Preliminary development plans are summarized. An analysis of required research and development and production resources is included. The costs of such resources and the potential profitability of a commercial space processing opportunity for electrophoretic separation of high specificity isoenzymes are reviewed.

  3. Beneficial uses of space

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1977-01-01

    The study elicited over 100 ideas for Space Processing. Of the elicited ideas, more than 20% involved processing of biologicals, or related medical and life sciences applications. Among these were High Purity Separation of Isoenzymes, and Development of Biorhythms applications data. Program planning for four products is outlined. Experimentation and testing resulted in definition of nearly 70 series of tests in ground-based laboratories, sounding rockets, etc., and space shuttle. Development schedules established timing and interrelationships of decisions involved in carrying these products to the point of production. The potential profitability of the four products is determined. Resources needed to achieve full scale production included use of shuttle for transportation, for which cost apportionment model was developed. R and D resources for the four products totalled $46,000,000 with Isoenzymes requiring the smallest expenditure, $4,000,000. A computerized profitability model (INVEST) was used to determine the measures of profitability of each product. Results build confidence that there will be a payoff.

  4. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats.

    PubMed

    Gacar, Nejat; Mutlu, Oguz; Utkan, Tijen; Komsuoglu Celikyurt, Ipek; Gocmez, Semil Selcen; Ulak, Güner

    2011-09-01

    Resveratrol (3,5,4-trihydroxy-trans-stilbene), which is found in grapes and red wine has been shown to protect neuronal cells with its antioxidant activity, improve memory function in dementia and reverse acetylcholine esterase (AChE) activity. The aim of this study was to investigate the effect of resveratrol on emotional and spatial memory in naive rats, as well as on scopolamine- and mecamylamine-induced memory impairment in the passive avoidance and Morris water maze (MWM) tests. Resveratrol (12.5, 25 and 50 mg/kg), scopolamine (0.6 mg/kg) and mecamylamine (10mg/kg) were administered to male Wistar rats. In the passive avoidance test, there was no significant difference in the first day latency between all groups, whereas scopolamine and mecamylamine significantly shortened the second day latency compared to the control group. Resveratrol reversed the effect of scopolamine at all doses used, but it had no effect on mecamylamine-induced memory impairment in the passive avoidance test. Both scopolamine and mecamylamine significantly decreased the time spent in the escape platform quadrant during the probe trial of the MWM test compared to the control group. Resveratrol reversed the effect of scopolamine at all doses, but did not change the effect of mecamylamine in the MWM test. There were no significant differences in the locomotor activities of any of the groups. In conclusion, we suggested that resveratrol had improving effects on learning and memory by acting on muscarinic cholinergic receptors and at least in part, may reverse AChE activity.

  5. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.

    2003-07-22

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  6. Magnetic process for removing heavy metals from water employing magnetites

    DOEpatents

    Prenger, F. Coyne; Hill, Dallas D.

    2006-12-26

    A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.

  7. Industrial membrane processes in the treatment of process waters and liquors.

    PubMed

    Mänttäri, M; Kallioinen, M; Pihlajamäki, A; Nyström, M

    2010-01-01

    A review on pulp and paper industrial membrane processes using a variety of modules and processes is presented. Membranes are mostly used today to purify process waters and to recover coating colours. Ultrafiltration using tubular membrane modules or cross-rotational (CR) filtration has been widely applied for the purification of process waters. The reuse of UF membrane permeate has decreased the fresh water consumption to lower than 6 m³/t of paper in some paper machines. Some industrial membrane processes also recover valuable products from different streams (e.g lignosulphonates). Membranes are also combined with biological degradation processes in some paper mills. Nanofiltration has been used to purify the effluents discharged from the activated sludge process. At least two reverse osmosis plants purify river water to be used as raw water in the mill. Furthermore, advantages of different membrane modules and the current ways to treat membrane concentrate are discussed.

  8. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  9. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  10. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes.

    PubMed

    Takagi, Sokichi; Adachi, Fumie; Miyano, Keiichi; Koizumi, Yoshihiko; Tanaka, Hidetsugu; Watanabe, Isao; Tanabe, Shinsuke; Kannan, Kurunthachalam

    2011-07-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Process for removing hydrogen sulfide from waste water

    SciTech Connect

    Niedzwiecki, J.L.; Wolfe, R.G.

    1989-08-01

    The patent describes a process for removing hydrogen sulfide from a water stream, derived by separating water from crude oil at the production well. The water stream comprising hydrogen sulfide or a hydrogen sulfide precursor and a concentration of at least about 1000 mg/L of a Group IIA metal component of the Periodic Table of Elements. The process comprises the steps of: maintaining the water stream at a temperature ranging from about 150{sup 0}F. to about 200{sup 0}F. and at a pH ranging from about 5 to about 6; subjecting the water stream resulting in the absence of a stripping gas, to a pressure ranging from about 3 to about 10 psia, whereby at least a portion of the hydrogen sulfide is removed by volatilization from the water stream and whereby salt deposition is minimized.

  12. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  13. Process for the production of hydrogen from water

    DOEpatents

    Miller, William E.; Maroni, Victor A.; Willit, James L.

    2010-05-25

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  14. Hydrologic processes and the water budget: Chapter 2

    USGS Publications Warehouse

    Rosenberry, Donald O.; Winter, Thomas C.; Winter, Thomas C.; Likens, Gene E.

    2009-01-01

    This chapter focuses on the hydrological setting of Mirror Lake and its water budget. It first describes the glacial deposits and bedrock topography in the Mirror Lake area. It then provides an overview of the hydrologic processes associated with Mirror Lake and examines the field and analytical methods used to determine its water budget. It presents results from the hydrologic studies, which are based on monthly and annual water budgets for the calendar years 1981 through 2000.

  15. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    EPA Science Inventory

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  16. Influence of process water quality on hydrothermal carbonization of cellulose.

    PubMed

    Lu, Xiaowei; Flora, Joseph R V; Berge, Nicole D

    2014-02-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources. Liquid waste streams may be ideal alternative liquid source candidates. Experiments were conducted to systematically evaluate how changes in pH, ionic strength, and organic carbon content of the initial process water influences cellulose carbonization. Results from the experiments conducted evaluating the influence of process water quality on carbonization indicate that changes in initial water quality do influence time-dependent carbonization product composition and yields. These results also suggest that using municipal and industrial wastewaters, with the exception of streams with high CaCl2 concentrations, may impart little influence on final carbonization products/yields.

  17. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose objective is to develop hydrogen-selective membranes for an innovative gas-separation process based on a water-gas-shift membrane reactor (WGS-MR) for the production of hydrogen.

  18. Understanding Multiscale Surface Water-Groundwater Interactions on Scott River Watershed Temperatures with the use of Distributed Temperature Sensing (DTS) in Support of the Coldwater Salmonid Fishery Beneficial Use

    NASA Astrophysics Data System (ADS)

    Hines, R. J.; Harter, T.; Tyler, S. W.; McFadin, B.; Yokel, E.

    2008-12-01

    river temperatures, groundwater accretion and other beneficial salmonid habitat indicators. Our work suggests that understanding of local-scale groundwater-stream interaction and analysis of corresponding local-scale geologic and riparian vegetation controls are critical to understanding the basin-scale groundwater-stream interactions. Preliminary data reviews indicate that groundwater discharge leads to distinct cold temperature pools near the streambed, while the remainder of the stream column is thermally well mixed. This local-scale, three-dimensional understanding is necessary if strategies are to be developed that aim for effective water resource management practices and improved beneficial use habitat. A multi-scale field reconnaissance and modeling approach is suggested to develop water management practices that lead to better habitat protection throughout the watershed.

  19. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.

  20. WTPII: a screening-level water treatment processes model

    SciTech Connect

    Hetrick, D.M.; Travis, C.C.

    1985-03-01

    A screening-level water treatment processes computer model called WTPII is described. WTPII predicts the transport and transformation of toxic substances in the treatment of water. Processes considered include sedimentation, coagulation and flocculation, filtration, aeration, chemical oxidation, activated carbon adsorption, and chlorination. Input to and output from the computer code are explained and an example run is provided. 16 references, 1 figure, 2 tables.

  1. Preliminary evaluation of alternative ethanol/water separation processes

    SciTech Connect

    Eakin, D.E.; Donovan, J.M.; Cysewski, G.R.; Petty, S.E.; Maxham, J.V.

    1981-05-01

    Preliminary evaluation indicates that separation of ethanol and water can be accomplished with less energy than is now needed in conventional distillation processes. The state of development for these methods varies from laboratory investigation to commercially available processes. The processes investigated were categorized by type of separation depending on their ability to achieve varying degrees of ethanol/water separation. The following methods were investigated: ethanol extraction with CO/sub 2/ (the A.D. Little process); solvent extraction of ethanol; vacuum distillation; vapor recompression distillation; dehydration with fermentable grains; low temperature blending with gasoline; molecular sieve adsorption; and reverse osmosis.

  2. Beneficial Use of Dredged Material

    EPA Pesticide Factsheets

    An important goal of managing dredged material is to ensure that the material is used or disposed of in an environmentally sound manner.Most of this dredged material could be used in a beneficial manner instead.

  3. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  4. Capacitive deionization of water: An innovative new process

    SciTech Connect

    Farmer, J.; Fix, D.; Mack, G.

    1995-01-09

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  5. An alternative process to treat boiler feed water for reuse.

    PubMed

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  6. Fractionation of process water in thermomechanical pulp mills.

    PubMed

    Persson, T; Krawczyk, H; Nordin, A-K; Jönsson, A-S

    2010-06-01

    In this work process water from a thermomechanical pulp mill was divided into five fractions by filtration and membrane filtration. Suspended matter was mainly isolated in the retentate from the drum filter, extractives in the microfiltration retentate, hemicelluloses in the ultrafiltration retentate and lignin in the nanofiltration retentate. The final water fraction was of fresh water quality. For each tonne of pulp produced, about 10kg of suspended matter, more than 0.3kg of extractives, 11kg of hemicelluloses and 8kg of aromatic compounds (lignin) could be recovered from the drum filtration retentate, the microfiltration retentate, the ultrafiltration retentate and the nanofiltration retentate, respectively. About 40% of the treated process water could be recovered as fresh water.

  7. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  8. How processing digital elevation models can affect simulated water budgets.

    PubMed

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  9. The Roles of Beneficiation in Lunar Work

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  10. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  11. Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process.

    PubMed

    Tu, Qingshi; Lu, Mingming; Thiansathit, Worrarat; Keener, Tim C

    2016-01-01

    Although water is one of the most critical factors affecting the sustainable development of algal biofuels, it is much less studied as compared to the extensive research on algal biofuel production technologies. This paper provides a review of the recent studies on water consumption of the algae biofuel process and presents the water conservation technologies applicable at different stages of the algal biofuel process. Open ponds tend to have much higher water consumption (216 to 2000 gal/gal) than photobioreactors (25 to 72 gal/gal). Algae growth accounts for the highest water consumption (165 to 2000 gal/gal) in the open pond system. Water consumption during harvesting, oil extraction, and biofuel conversion are much less compared with the growth stage. Potential water conservation opportunities include technology innovations and better management practices at different stages of algal biofuel production.

  12. Experimental research on water-jet guided laser processing

    NASA Astrophysics Data System (ADS)

    Li, Ling; Wang, Yang; Yang, Lijun; Chu, Jiecheng

    2007-01-01

    The water-jet guided laser processing is a new compound micro-machining process in which the laser beam passes through the water-jet by full reflection onto the workpiece. In this paper, a new key component:the coupling unit was designed and which would form a long, slim, high-pressure and stable water-jet. The couple unit made the fluid field in the chamber symmetry; the coupling quality of the laser beam and the water-jet could be easily detected by CCD camera. For its excellent surface quality, the nozzle with a \\fgr 0.18mm hole got better machining effect than other nozzles. Aiming at finding optimum machining parameters, experiments were carried out. The results showed the attenuation of laser energy bore relation to water-jet stability. The energy intensity distributed over the water-jet cross section nearly homogeneous and the laser energy nearly did not decrease in long working distance. When water-jet pressure was high, efficient cooling of the workpiece prevented burrs, cracks and heat affected zone from forming. During cutting Si wafer process, nearly no cracking was found; Adjusting reasonable laser parameters grooving 65Mn, the machining accuracy would combine with the speed.

  13. Monitoring the Water Quality in the Recycling Process

    NASA Astrophysics Data System (ADS)

    Antonyová, A.; Antony, P.; Soewito, B.

    2015-06-01

    Specific water contamination requires the recycling process prior to its discharge into the public sewerage network. Electro-flotation technology was used for cleaning of waste water contaminated with the disperse colorants. Dispersion colorants were used to decorate the boxes, made of corrugated board, in the company for the production of packaging. The objective of this paper is to present a method of optimization to determine the length of the time interval for electro-flotation process. Interval should be set so as to achieve the degree of cleaning the water that is the maximum possible in the process of electro-flotation. The measurement of the light passing through the measuring the translucent tube determines the actual degree of the water purity. The measurement is carried out by means of a photodiode in different wavelengths. The measured values in the measuring tube are compared with the nominal value, which corresponds to pure distilled water. Optimization the time interval to clean the water using electro-flotation was determined for yellow color. The optimum interval for the water contaminated with the yellow color was set to 1800s.

  14. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  15. Feasibility of the silver-UV process for drinking water disinfection.

    PubMed

    Butkus, Michael A; Talbot, Mark; Labare, Michael P

    2005-12-01

    A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.

  16. Indirect gas chromatographic measurement of water for process streams

    SciTech Connect

    Barbour, F.A.

    1993-05-01

    This project was conducted to develop a moisture measurement method for process gas streams of fossil fuels. Objective was to from pyrolysis to measure the molar concentration of water in a gas stream without flow measurements. The method developed has been incorporated into the hydrocarbon gas analysis method currently used at Western Research Institute. A literature search of types of direct measuring moisture sensors was conducted, and a list of sensors available is given; most of them could not survive in the environment of the process streams. Indirect methods of measuring water involve changing the water via reaction to a compound that can be more readily measured. These methods react water with various reagents to form hydrogen, acetylene, and acetone. The method chose for this study uses a calcium carbide reaction column to convert the water present in the gas stream to acetylene for analysis. Relative deviation for the daily determination of water varied from 0.5 to 3.4%. The method chosen was tested for linearity over a wide range of gas stream water content. Response over 2 to 15 mole % water appears to be linear with a correlation coefficient of 0.991.

  17. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  18. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  19. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  20. Oil shale retorting and retort water purification process

    SciTech Connect

    Venardos, D.G.; Grieves, C.G.

    1986-04-29

    An in situ oil shale process is described comprising the steps of: retorting raw oil shale in situ to liberate light hydrocarbon gases, shale oil and shale-laden retort water containing suspended and dissolved impurities including raw and spent oil shale particulates, shale oil, organic carbon, carbonates, ammonia and chemical oxygen demand; separating the light hydrocarbon gases and a substantial portion of the shale oil from the shale-laden retort water by sedimentation in an underground sump; removing a substantial portion of the remaining shale oil and a substantial portion of the suspended raw and spent oil shale particulates from the shale-laden retort water by filtering the shale-laden retort water through a granular filter; steam stripping a substantial amount of the ammonia and carbonates from the shale-laden retort water; and carbon adsorbing and biologically treating the shale-laden retort water to remove a substantial amount of the total and dissolved organic carbon from the shale-laden retort water and simultaneously substantially lower the chemical oxygen demand of the shale-laden retort water so as to substantially purify the shale-laden retort water.

  1. Beneficial uses of CFB ash

    SciTech Connect

    Young, L.J.; Cotton, J.L. Jr.

    1994-12-31

    Coal-fired generation accounts for almost 55 percent of the electricity produced in the United States. It has been estimated that over 90 million tons of coal combustion waste by-products were generated in 1990. Currently, only 30% of coal combustion waste is recycled for various beneficial applications. The remaining waste is primarily managed in landfills and surface impoundments. Circulating fluidized bed (CFB) combustion technology will play an important role in supplying power for future load growth and Title 4 of the 1990 Clean Air Act Amendments compliance. CFB ash by-products have many beneficial uses. This paper describes potential applications of CFB ashes based on the ash characteristics. The beneficial uses of CFB ash discussed in this study include agricultural applications, acidic waste stabilizer, ash rock, sludge stabilizer, strip mine reclamation, and structural fill.

  2. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  3. Fate of antibiotics during municipal water recycling treatment processes.

    PubMed

    Le-Minh, N; Khan, S J; Drewes, J E; Stuetz, R M

    2010-08-01

    Municipal water recycling processes are potential human and environmental exposure routes for low concentrations of persistent antibiotics. While the implications of such exposure scenarios are unknown, concerns have been raised regarding the possibility that continuous discharge of antibiotics to the environment may facilitate the development or proliferation of resistant strains of bacteria. As potable and non-potable water recycling schemes are continuously developed, it is imperative to improve our understanding of the fate of antibiotics during conventional and advanced wastewater treatment processes leading to high-quality water reclamation. This review collates existing knowledge with the aim of providing new insight to the influence of a wide range of treatment processes to the ultimate fate of antibiotics during conventional and advanced wastewater treatment. Although conventional biological wastewater treatment processes are effective for the removal of some antibiotics, many have been reported to occur at 10-1000 ng L(-1) concentrations in secondary treated effluents. These include beta-lactams, sulfonamides, trimethoprim, macrolides, fluoroquinolones, and tetracyclines. Tertiary and advanced treatment processes may be required to fully manage environmental and human exposure to these contaminants in water recycling schemes. The effectiveness of a range of processes including tertiary media filtration, ozonation, chlorination, UV irradiation, activated carbon adsorption, and NF/RO filtration has been reviewed and, where possible, semi-quantitative estimations of antibiotics removals have been provided.

  4. Electrical coagulation: a new process for preparation plant water treatment

    SciTech Connect

    Nickeson, F.H.

    1982-09-01

    The paper describes an electric coagulation process developed by Westinghouse Electric Corp. for the treatment of coal preparation plant water. There are many claims for the system, including improved settling rates of colloidal clays and fines, decreased use of chemicals and no reversion of precipitates to colloidal suspension when disturbed. Other benefits include improved fine coal recovery, reduced filtration time, reduced build-up of fines and clays on dewatering screens, removal of heavy metals and organic carbon from water, increased plant availability and reduced plant maintenance. The treatment process depends on the passage of an AC current through the flow of plant water through a coagulator box. Examples of its use are quoted, in particular at a plant installed for the evaluation of the process.

  5. Science-policy processes for transboundary water governance.

    PubMed

    Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B

    2015-09-01

    In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings.

  6. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  7. Water and processes of degradation in the Martian landscape

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  8. Note On The Ross Sea Shelf Water Downflow Processes (antarctica)

    NASA Astrophysics Data System (ADS)

    Bergamasco, A.; Defendi, V.; Spezie, G.; Budillon, G.; Carniel, S.

    In the framework of the CLIMA Project of the Italian National Program for Research in Antarctica, three different experimental data sets were acquired along the continental shelf break; two of them (in 1997 and 2001) close to Cape Adare, the 1998 one in the middle of the Ross Sea (i.e. 75 S, 177 W). The investigations were chosen in order to explore the downslope flow of the bottom waters produced in the Ross Sea, namely the High Salinity Shelf Water (HSSW, the densest water mass of the southern ocean coming from its formation site in the polynya region in Terra Nova bay), and the Ice Shelf Water (ISW, originated below the Ross Ice Shelf and outflowing northward). Both bottom waters spill over the shelf edge and mix with the Circumpolar Deep Water (CDW) contributing to the formation of the Antarctic Bottom Waters (AABW). Interpreting temperature, salinity and density maps in terms of cascading processes, both HSSW and ISW overflows are evidenced during, respectively, 1997 and 1998. During the 2001 acquisition there is no presence of HSSW along the shelf break, nevertheless distribution captures the evidence of a downslope flow process.

  9. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  10. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    PubMed

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  11. Evaluation of white water reuse in the bleaching process for reducing fresh water consumption.

    PubMed

    Andrade, A A; Glória, P M; d'Angelo, J V H; Perissotto, D O; Lima, R A

    2007-01-01

    The main objective of this work is to study the technical viability of using the effluent generated in paper machines (white water) in the wash presses of the bleaching stage, reducing fresh water consumption. As a case study, the industrial process of Ripasa S.A. Celulose e Papel was evaluated. White water rate is about 700 m3/h and it is not possible to reuse all this volume in the bleaching stage without causing operational problems (fouling in tubes and clogging in the screens). A mass balance of the bleaching unit was developed in an electronic spreadsheet in order to evaluate the possibility of reducing fresh water consumption, using only a fraction of the available white water in the wash presses. To achieve this objective some physical-chemistry properties of the white water stream and of other streams of the process were determined. The maximum concentration of some non-process elements (Si, Ca, Mn and Fe), which could accumulate in the process, were determined in order to establish some parameters to allow process integration of the streams involved, considering operational constraints. The results obtained have shown that it is possible to reduce approximately by 13% the consumption of fresh water and this methodology has been satisfactory.

  12. Stage efficiency in the analysis of thermochemical water decomposition processes

    NASA Technical Reports Server (NTRS)

    Conger, W. L.; Funk, J. E.; Carty, R. H.; Soliman, M. A.; Cox, K. E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies and loss coefficients. The use of these quantities to establish the thermodynamic insufficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  13. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  14. Stage efficiency in the analysis of thermochemical water decomposition processes

    NASA Technical Reports Server (NTRS)

    Conger, W. L.; Funk, J. E.; Carty, R. H.; Soliman, M. A.; Cox, K. E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies and loss coefficients. The use of these quantities to establish the thermodynamic insufficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  15. Modeling the water decarbonization processes in atmospheric deaerators

    NASA Astrophysics Data System (ADS)

    Leduhovsky, G. V.

    2017-02-01

    A mathematical model of the water decarbonization processes in atmospheric deaerators is proposed to calculate the thermal decomposition degree of hydrocarbonates in a deaerator, pH of a deaerated water sample, and the mass concentration of free carbonic acid in it on a carbon dioxide basis. The mathematical description of these processes is based on the deaeration tank water flow model implemented in the specialized software suite for the calculation of three-dimensional liquid flows, where a real water flow is a set of parallel small plug-flow reactors, and the rate constant of the reaction representing a generalized model of the thermal decomposition of hydrocarbonates with consideration for its chemical and diffusion stages is identified by experimental data. Based on the results of experimental studies performed on deaerators of different designs with and without steam bubbling in their tanks, an empirical support of this model has been developed in the form of recommended reaction order and rate constant values selected depending on the overall alkalinity of water fed into a deaerator. A self-contained mathematical description of the water decarbonization processes in deaerators has been obtained. The proposed model precision has been proven to agree with the specified metrological characteristics of the potentiometric and alkalimetric methods for measuring pH and the free carbonic acid concentration in water. This allows us to recommend the obtained model for the solution of practical problems of forming a specified amount of deaerated water via the selection of the structural and regime parameters of deaerators during their design and regime adjustment.

  16. Buildings, Beneficial Microbes, and Health.

    PubMed

    Peccia, Jordan; Kwan, Sarah E

    2016-08-01

    Bacteria and fungi in buildings exert an influence on the human microbiome through aerosol deposition, surface contact, and human and animal interactions. As the identities and functions of beneficial human microbes emerge, the consequences of building design, operation, and function must be understood to maintain the health of occupants in buildings.

  17. PROCESS WATER BUILDING, TRA605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CONTEXTUAL VIEW, CAMERA FACING SOUTHEAST. PROCESS WATER BUILDING AND ETR STACK ARE IN LEFT HALF OF VIEW. TRA-666 IS NEAR CENTER, ABUTTED BY SECURITY BUILDING; TRA-626, AT RIGHT EDGE OF VIEW BEHIND BUS. INL NEGATIVE NO. HD46-34-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.

    2014-12-01

    Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.

  19. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    SciTech Connect

    Boettinger, W.L.

    1993-09-09

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today`s legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ``Indifference`` decision process in assessing the Beneficial Reuse option relative to the Burial option are described.

  20. JV TASK 7-FIELD APPLICATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS FOR THE TREATMENT OF NATURAL GAS PRODUCED WATER IN WYOMING

    SciTech Connect

    James A. Sorensen; John Boysen; Deidre Boysen; Tim Larson

    2002-10-01

    The freeze-thaw/evaporation (FTE{reg_sign}) process treats oil and gas produced water so that the water can be beneficially used. The FTE{reg_sign} process is the coupling of evaporation and freeze-crystallization, and in climates where subfreezing temperatures seasonally occur, this coupling improves process economics compared to evaporation alone. An added benefit of the process is that water of a quality suited for a variety of beneficial uses is produced. The evolution, from concept to successful commercial deployment, of the FTE{reg_sign} process for the treatment of natural gas produced water has now been completed. In this document, the histories of two individual commercial deployments of the FTE{reg_sign} process are discussed. In Wyoming, as in many other states, the permitting and regulation of oil and gas produced water disposal and/or treatment facilities depend upon the legal relationship between owners of the facility and the owners of wells from which the water is produced. An ''owner-operated'' facility is regulated by the Wyoming Oil and Gas Conservation Commission (WOGCC) and is defined as an entity which only processes water which comes from the wells in fields of which they have an equity interest. However, if a facility processes water from wells in which the owners of the facility have no equity interest, the facility is considered a ''commercial'' facility and is permitted and regulated by the Wyoming Department of Environmental Quality. For this reason, of the two commercial FTE{reg_sign} process deployments discussed in this document, one is related to an ''owner-operated'' facility, and the other relates to a ''commercial'' facility. Case 1 summarizes the permitting, design, construction, operation, and performance of the FTE{reg_sign} process at an ''owner-operated'' facility located in the Jonah Field of southwestern Wyoming. This facility was originally owned by the McMurry Oil Company and was later purchased by the Alberta Energy

  1. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  2. New process for screen cutting: water-jet guided laser

    NASA Astrophysics Data System (ADS)

    Perrottet, Delphine; Amorosi, Simone; Richerzhagen, Bernold

    2005-07-01

    Today's OLED manufacturers need high-precision, fast tools to cut the metal screens used to deposit the electroluminescent layers onto the substrate. Conventional methods -tching and dry laser cutting - are not satisfying regarding the demands of high-definition OLED displays. A new micro machining technology, the water jet guided laser - a hybrid of laser and water jet technologies that has been actively used in recent years in the electronic and semiconductor field - is now available to OLED manufacturers. This technology represents a significant improvement in screen, mask and stencil cutting, as it combines high precision and high speed. It is able to cut small apertures with totally clean edges (no dross or slag), as the water jet removes the particles and a thin water film is maintained on the material surface during the process. Because the water jet cools the material between the laser pulses, the cut material is free of any thermal stress. The water jet guided laser is also a very fast process: as an example, rectangular slots can be cut in 30 to 50 microns thick stainless steel or nickel at a rate between 25'000 and 30'000 holes per hour.

  3. An Excel Workbook for Identifying Redox Processes in Ground Water

    USGS Publications Warehouse

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  4. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  5. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  6. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    USGS Publications Warehouse

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  7. Effect of water treatment processes on Cryptosporidium infectivity.

    PubMed

    Keegan, Alexandra; Daminato, David; Saint, Christopher P; Monis, Paul T

    2008-03-01

    Conventional water treatment processes have the ability to remove Cryptosporidium oocysts through coagulation, flocculation, sedimentation and filtration, provided there is efficient management of plant performance. The potential exists for the breakthrough of oocysts through the treatment train. The effect of the water treatment chemical aluminium sulphate (alum) on Cryptosporidium oocyst infectivity has been assessed using an assay that combines cell culture and real-time polymerase chain reaction techniques. The infectivity of fresh and temperature-aged oocysts (stored up to 6 months at 4 or 15 degrees C) was unaffected by exposure to a range of doses of alum in standard jar test procedures and dissolved air flotation processes and subsequent exposure to chlorine or chloramine. Removal efficiencies and infectivity measures are important in determining risk to public health and will reflect the ability of water treatment plants to act as a barrier to these pathogens.

  8. Erosional processes in channelized water flows on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  9. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    EPA Science Inventory

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  10. Erosional processes in channelized water flows on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  11. COST ESTIMATION MODELS FOR DRINKING WATER TREATMENT UNIT PROCESSES

    EPA Science Inventory

    Cost models for unit processes typically utilized in a conventional water treatment plant and in package treatment plant technology are compiled in this paper. The cost curves are represented as a function of specified design parameters and are categorized into four major catego...

  12. Amend soils with residues from water-treatment processes

    SciTech Connect

    Makansi, J.

    1993-09-01

    This article reports that land application is emerging as a viable disposal/reuse method for water-treatment-process residues. In many cases, these residues actually enhance soil quality and arrest fertilizer loss. Water treatment usually generates solid residues requiring disposal. These include sludges from lime softening and related pretreatment processes and spent ion-exchange resins and adsorbents used for softening, dealkalization, and deionization of surface and well water. Although it may not appear so at first glance, according to consultant Dr. Robert Kunin, these materials have properties that can benefit the soil for agricultural and horticultural needs. Treating water with lime is popular and effective for removing hardness, phosphates, and some silica. Small amounts of alum, chlorine, and/or organic flocculants may also be added in lime-softening processes. Resulting sludge consists of calcium carbonate (CaCO[sub 3]), magnesium hydroxide, and calcium/magnesium/phosphate compounds, along with humic matter and related organic compounds that originate in the raw water. If softening is conducted at high temperatures, large, dense CaCO[sub 3] particles form as the compound crystallizes around sand particles. Disposal of this sludge is often considered a major disadvantage of lime softening. But if the water being treated meets EPA regulations for heavy metals, especially arsenic, then chemical analysis suggests benefits for soils. This has been well-described in texts addressing water treatment. For example, the sludge serves as a mild liming agent and may even supply various plant nutrients. Note that this application is different from municipal wastewater treatment plant sludge, which is difficult to land apply.

  13. Fluctuations, exchange processes, and water diffusion in aqueous protein systems

    PubMed Central

    Kimmich, R.; Gneiting, T.; Kotitschke, K.; Schnur, G.

    1990-01-01

    Experimental frequency, concentration, and temperature dependences of the deuteron relaxation times T1 and T2 of D2O solutions of bovine serum albumin are reported and theoretically described in a closed form without formal parameters. Crucial processes of the theoretical concept are material exchange, translational diffusion of water molecules on the rugged surfaces of proteins, and tumbling of the macromolecules. It is also concluded that, apart from averaging of the relaxation rates in the diverse deuteron phases, material exchange contributes to transverse relaxation by exchange modulation of the Larmor frequency. The rate limiting factor of macromolecular tumbling is determined by the free water content. In a certain analogy to the classical free-volume theory, a “free-water-volume theory” is presented. There are two characteristic water mass fractions indicating the saturation of the hydration shells (Cs ≈ 0.3) and the onset of protein tumbling (C0 ≈ 0.6). The existence of the translational degrees of freedom of water molecules in the hydration shells has been verified by direct measurement of the diffusion coefficient using an NMR field-gradient technique. The concentration and temperature dependences show phenomena indicating a percolation transition of clusters of free water. The threshold water content was found to be Ccw ≈ 0.43. PMID:19431772

  14. Temporal variations in water quality in a brackish tidal pond: Implications for governing processes and management strategies.

    PubMed

    Cui, Wenhui; Chui, Ting Fong May

    2017-02-10

    Brackish tidal ponds have been constructed along coastal areas in many parts of the world for aquaculture, including some Ramsar Sites. Such ponds are considered a sustainable, wise use of wetlands if managed properly, but they can also pose serious environmental problems if mismanaged. To understand the governing processes and to promote sustainable management strategies, this study examines the different temporal variations in water quality parameters in a brackish tidal pond located within the wetland complex of the Mai Po Ramsar Site in Hong Kong, China. The variations are compared with those of the receiving bay, and the water channel that connects the pond and the bay. Equations are then developed to link the dissolved oxygen (DO) concentrations in the pond with the governing processes, and to analyze their relative contributions to DO levels. Field data show seasonal patterns in water temperature and salinity in response to the seasonal variations in solar radiation and rainfall. For the pond and the channel, DO, chlorophyll and pH exhibit fortnightly variations due to the bi-weekly water exchange between the pond and the bay. There were also diurnal variations in water temperature and DO in response to changes in solar radiation for both locations, and the tidal flushing for the water channel. Analysis of the findings indicates that water exchange influences the DO concentration more strongly than solar radiation. The DO equation links pond water quality with the time of day, and the time in a water exchange cycle, and thus provides some guidance for determining water exchange and water sampling schedules. The study sheds light on the governing processes and management strategies related to the sustainable management of a brackish tidal pond. The results are thus beneficial in elucidating and promoting the sustainable management and wise use of wetlands in other locations.

  15. A learning process of water cycle as complex system

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Deroubaix, J. F.; Tchiguirinskaia, I.; Tassin, B.; Thevenot, D.

    2009-04-01

    Water cycle is a very good example of a complex geosystem which has many societal impacts and drivers. A permanent and ubiquitous question is how to increase public awareness and understanding of its extreme behaviours, as well as of the related uncertainties. For instance, CEREVE is highly solicited to help the general public, particularly the youth, and the local politicians to get better acquainted with the new water culture in general and with flood risks in particular, in the nearby county Val-de-Marne. Since 2001, May is the month of the "Festival de l'Oh"(which sounds like "Festival de l'Eau", i.e. the water festival co-organized by the county council and city of Paris. "Oh » at the same time partly displays the chemical composition of water and is an exclamation for atonishment). This festival starts with the Scientific Days of Environment that involve researchers and students of the county, as well as collaborators of all around the world. This conference is open to the public who can be informed from the latest research developments, in particular with the help of some general synthesis and panel discussions. On the other hand, (young) researchers can present their own works to a large public. This conference is followed by a Professional Forum where students, heads of water public services or private operators can meet. In the framework of the water festival preparation, there are several water forums for the secondary schools. All along the year, there are regular pedagogical activities for secondary schools, in particular in the framework of Water Houses scattered across the county. We will discuss the importance to better evaluate the effective impact of these pedagogical events on the public awareness and understanding, and to make the learning process more adaptive and interactive, as well as to better address the underlying fundamental problems, e.g. the present limitations of current modelling and data processing.

  16. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  17. Modeling abiotic processes of aniline in water-saturated soils

    SciTech Connect

    Fabrega-Duque, J.R.; Jafvert, C.T.; Li, H.; Lee, L.S.

    2000-05-01

    The long-term interactions of aromatic amines with soils are important in defining the fate and transport of these compounds in the environment. Abiotic loss of aniline from the aqueous phase to the soil phase occurs with an initial rapid loss due to reversible mass transfer processes, followed by a slow loss due to irreversible reactions. A kinetic model describing these processes in water-saturated soils was developed and evaluated. The model assumes that instantaneous equilibrium occurs for the following reversible processes: (1) acid dissociation of the protonated organic base (BH+) in the aqueous phase; (2) ion exchange between inorganic divalent cations (D{sup 2+} = Ca{sup 2+} + Mg{sup 2+}) on the soil and the protonated organic base; and (3) partitioning of the nonionic species of aniline (B{sub aq}) to soil organic carbon. The model assumes that irreversible loss of aniline occurs through reaction of B{sub aq} with irreversible sites (C{sub ir}) on the soil. A kinetic rate constant, k{sub ir}, and the total concentration of irreversible sites, C{sub T}, were employed as adjustable model parameters. The model was evaluated as adjustable model parameters. The model was evaluated with measured mass distributions of aniline between water and five soils ranging in pH (4.4--7.3), at contact times ranging from 2 to 1,600 h. Some experiments were performed at different soil mass to water volume ratios. A good fit was obtained with a single value of k{sub ir} for all soils, pH values, and soil-water ratios. To accurately predict soil-water distributions at contact times <24 h, mass transfer of the neutral species to the soil was modeled as a kinetic process, again, assuming that ion exchange processes are instantaneous.

  18. Influence of hard water ions on the growth of salmonella in poultry processing water

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...

  19. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  20. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget.

  1. Thermal consolidation process of multiphase medium consisting of elastic skeleton, water, and water vapour

    NASA Astrophysics Data System (ADS)

    Strzelecki, Tomasz; Uciechowska, Anna

    2014-10-01

    In the process of coal gasification, the phase transition from water to water vapour takes place as a result of high temperature. Thus, the parameters of the fluid flowing through the pores of the elastic skeleton change in a significant way. The goal of this work is to calculate the fluid flow process at a variable temperature using Finite Element Method and to determine the soil consolidation process taking place under its own weight and temperature changes. The mathematical model of thermal consolidation for a Biot body accounts for the phase transition of a liquid. Numerical calculations for a homogeneous and isotropic porous medium, consisting of two conventionally accepted layers, were carried out using the FlexPDE v. 6 software. The obtained results are a first approximation of the actual processes taking place under complex geological conditions. They make it possible to determine, in approximation, the range of the phase transition and the influence of water vapour filtration on soil consolidation.

  2. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  3. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  4. Toxicity assessment of oil field produced water treated by evaporative processes to produce water to irrigation.

    PubMed

    Andrade, V T; Andrade, B G; Costa, B R S; Pereira, O A; Dezotti, M

    2010-01-01

    During the productive life of an oil well, a high quantity of produced water is extracted together with the oil, and it may achieve up to 99% in the end of the well's economical life. Desalination is one of mankind's earliest forms of saline water treatment, and nowadays, it is still a common process used throughout the world. A single-effect mechanical vapor compression (MVC) process was tested. This paper aims to assess the potential toxicity of produced water to be re-used in irrigation. Samples of both produced and distilled water were evaluated by 84 chemical parameters. The distilled produced water presented a reduction up to 97% for the majority of the analyzed parameters, including PAHs. Toxicity bioassays were performed with distilled produced water to evaluate the growth inhibition of Pseudokirchneriella subcapitata algae, the acute toxicity to Danio rerio fish, the germination inhibition of Lactuca sativa vegetable and the severity of toxicity, as well as behavior test with Lumbricid Earthworm Eisenia fetida. The ecotoxicological assays results showed no toxicity, indicating that the referred evaporative process can produce water to be reused in irrigation.

  5. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  6. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  7. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  8. Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions.

    PubMed

    de Lafontaine, Yves; Despatie, Simon-Pierre

    2014-02-15

    Water deoxygenation is listed among the promising on-board treatment technologies to treat ships' ballast waters to reduce the risk of species transfer. We assessed the performance of a yeast-based bioreactive deoxygenation process in very cold water (<2°C) and determined the potential toxicity of the residual treated waters. Experiments using two treatment levels (0.5% and 1% v/v) were conducted in large-volume (4.5m(3)) tanks over 19 days at mean temperature of 1.5°C. Time to hypoxia varied between 10.3 and 16 days, being slightly higher than the predicted time of 9.8 days from previous empirical relationships. Water deoxygenation was achieved when yeast density exceeded 5×10(5) viable cellsmL(-1) and variation in time to hypoxia was mainly explained by difference in yeast growth. There was no oxycline and no significant difference in yeast density over the 2-m deep water column. Results from six bioassays indicated weak toxic response of treated waters at the 1.0% level, but no potential toxic response at the 0.5% treatment level. Results confirmed that the potential application of a yeast-based deoxygenation process for treating ships' ballast waters extended over the range of water temperature typically encountered during most shipping operational conditions. Time to reach full deoxygenation may however be limiting for universal application of this treatment which should be preferably used for ships making longer voyages in cold environments. There was no evidence that biological deoxygenation at low temperature did increase toxicity risk of treated waters to impede their disposal at the time of discharge. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Drinking water treatment processes for removal of Cryptosporidium and Giardia.

    PubMed

    Betancourt, Walter Q; Rose, Joan B

    2004-12-09

    Major waterborne cryptosporidiosis and giardiasis outbreaks associated with contaminated drinking water have been linked to evidence of suboptimal treatment. Cryptosporidium parvum oocysts are particularly more resistant than Giardia lamblia cysts to removal and inactivation by conventional water treatment (coagulation, sedimentation, filtration and chlorine disinfection); therefore, extensive research has been focused on the optimization of treatment processes and application of new technologies to reduce concentrations of viable/infectious oocysts to a level that prevents disease. The majority of the data on the performance of treatment processes to remove cysts and oocysts from drinking water have been obtained from pilot-tests, with a few studies performed in full-scale conventional water treatment plants. These studies have demonstrated that protozoan cyst removal throughout all stages of the conventional treatment is largely influenced by the effectiveness of coagulation pretreatment, which along with clarification constitutes the first treatment barrier against protozoan breakthrough. Physical removal of waterborne Crytosporidium oocysts and Giardia cysts is ultimately achieved by properly functioning conventional filters, providing that effective pretreatment of the water is applied. Disinfection by chemical or physical methods is finally required to inactivate/remove the infectious life stages of these organisms. The effectiveness of conventional (chlorination) and alternative (chlorine dioxide, ozonation and ultra violet [UV] irradiation) disinfection procedures for inactivation of Cryptosporidium has been the focus of much research due to the recalcitrant nature of waterborne oocysts to disinfectants. This paper provides technical information on conventional and alternative drinking water treatment technologies for removal and inactivation of the protozoan parasites Cryptosporidium and Giardia.

  10. Stemflow-induced processes of soil water storage

    NASA Astrophysics Data System (ADS)

    Germer, Sonja

    2013-04-01

    Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might

  11. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    NASA Astrophysics Data System (ADS)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  12. Investigation of MCHM transport mechanisms and fate: implications for coal beneficiation.

    PubMed

    He, Y Thomas; Noble, Aaron; Ziemkiewicz, Paul

    2015-05-01

    4-Methyl cyclohexane methanol (MCHM) is a flotation reagent often used in fine coal beneficiation and notably involved in the January 9, 2014 Elk River chemical spill in Charleston, WV. This study investigates the mechanisms controlling the transport and fate of MCHM in coal beneficiation plants and surrounding environments. Processes such as volatilization, sorption, and leaching were evaluated through laboratory batch and column experiments. The results indicate volatilization and sorption are important mechanisms which influence the removal of MCHM from water, with sorption being the most significant removal mechanism over short time scales (<1 h). Additionally, leaching experiments show both coal and tailings have high affinity for MCHM, and this reagent does not desorb readily. Overall, the results from these experiments indicate that MCHM is either volatilized or sorbed during coal beneficiation, and it is not likely to transport out of coal beneficiation plant. Thus, use of MCHM in coal beneficiation plant is not likely to pose threat to either surface or groundwater under normal operating conditions.

  13. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  14. Reactor Materials Program process water piping indirect failure frequency

    SciTech Connect

    Daugherty, W.L.

    1989-10-30

    Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments.

  15. Effectiveness of water desalination by membrane distillation process.

    PubMed

    Gryta, Marek

    2012-07-17

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  16. Effectiveness of Water Desalination by Membrane Distillation Process

    PubMed Central

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  17. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  18. Towards Sustainable Water Quality In Estuarine Impoundments: Sediment Processes.

    NASA Astrophysics Data System (ADS)

    Wright, J.; Worrall, F.

    Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. The results of process based studies, concentrating on interactions between sediment and water quality in the systems, are presented. A series of sequential extraction exper- iments have been carried out on cores of sediment to model the releases from sediment under different environmental conditions likely to be encountered in the impound- ments. Results are related to similar experiments carried out on suspended particulate material, and to pore-water experiments carried out using gel-probes.

  19. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  20. Redox processes and water quality of selected principal aquifer systems

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.

  1. UMTRA Ground Water Project management action process document

    SciTech Connect

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  2. Packaged water: optimizing local processes for sustainable water delivery in developing nations

    PubMed Central

    2011-01-01

    With so much global attention and commitment towards making the Water and Sanitation targets of the Millennium Development Goals (MDGs) a reality, available figures seem to speak on the contrary as they reveal a large disparity between the expected and what currently obtains especially in developing countries. As studies have shown that the standard industrialized world model for delivery of safe drinking water technology may not be affordable in much of the developing world, packaged water is suggested as a low cost, readily available alternative water provision that could help bridge the gap. Despite the established roles that this drinking water source plays in developing nations, its importance is however significantly underestimated, and the source considered unimproved going by 'international standards'. Rather than simply disqualifying water from this source, focus should be on identifying means of improvement. The need for intervening global communities and developmental organizations to learn from and build on the local processes that already operate in the developing world is also emphasized. Identifying packaged water case studies of some developing nations, the implication of a tenacious focus on imported policies, standards and regulatory approaches on drinking water access for residents of the developing world is also discussed. PMID:21801391

  3. Packaged water: optimizing local processes for sustainable water delivery in developing nations.

    PubMed

    Dada, Ayokunle C

    2011-07-29

    With so much global attention and commitment towards making the Water and Sanitation targets of the Millennium Development Goals (MDGs) a reality, available figures seem to speak on the contrary as they reveal a large disparity between the expected and what currently obtains especially in developing countries. As studies have shown that the standard industrialized world model for delivery of safe drinking water technology may not be affordable in much of the developing world, packaged water is suggested as a low cost, readily available alternative water provision that could help bridge the gap. Despite the established roles that this drinking water source plays in developing nations, its importance is however significantly underestimated, and the source considered unimproved going by 'international standards'. Rather than simply disqualifying water from this source, focus should be on identifying means of improvement. The need for intervening global communities and developmental organizations to learn from and build on the local processes that already operate in the developing world is also emphasized. Identifying packaged water case studies of some developing nations, the implication of a tenacious focus on imported policies, standards and regulatory approaches on drinking water access for residents of the developing world is also discussed.

  4. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  5. Integrating Beneficiation into Regolith Conveyance Systems

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Mantovani, James H.; Townsend, I. I.; Mueller, Robert P.

    2010-01-01

    Regolith conveyance includes hauler/dumpers, hoppers, augers, pneumatic transport subsystems, and other elements. The features of the conveyance and the time the material stream spend in conveyance may be used synergistically to perform beneficiation, pre-processing (such as heating), and other tasks, thus reducing the mass and complexity of the overall ISRU system. Since the cost of spaceflight is largely driven by the cost of launching mass out of Earth's gravity well, the conveyance system should be leveraged in this way to the maximum extent.

  6. Fernald scrap metal recycling and beneficial reuse

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the {open_quotes}beneficial reuse{close_quotes} concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned.

  7. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    SciTech Connect

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-07-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  8. Minimization of water consumption under uncertainty for PC process

    SciTech Connect

    Salazar, J.; Diwekar, U.; Zitney, S.

    2009-01-01

    Integrated gasification combined cycle (IGCC) technology is becoming increasingly important for the development of advanced power generation systems. As an emerging technology different process configurations have been heuristically proposed for IGCC processes. One of these schemes combines water-gas shift reaction and chemical-looping combustion for the CO2 removal prior the fuel gas is fed to the gas turbine reducing its size (improving economic performance) and producing sequestration-ready CO2 (improving its cleanness potential). However, these schemes have not been energetically integrated and process synthesis techniques can be used to obtain optimal flowsheets and designs. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). For the alternative designs, large differences in the performance parameters (for instance, the utility requirements) predictions from AEA and AP were observed, suggesting the necessity of solving the HENS problem within the AP simulation environment and avoiding the AEA simplifications. A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case.

  9. Stagewise processing of yellow water using clinoptilolite for nitrogen and phosphorus recovery and higher residual quality.

    PubMed

    Allar, A D; Beler Baykal, B

    2015-01-01

    Source-separated human urine may be used as a source of fertilizers indirectly through processing with clinoptilolite. The suggested form of fertilizer is clinoptilolite loaded with plant nutrients from urine, where nitrogen and phosphorus will be released upon contact with water. Triggered by the need for handling high concentrations remaining in the liquid phase to be disposed of, this paper aims to present the option of improving the residual nutrient quality through stagewise processing with clinoptilolite, while investigating any improvement in nutrient removal. Two sets of experiments, stagewise operation under (i) constant loadings and (ii) variable loadings in each stage, are discussed. Stagewise operation has been observed to be successful for attaining reduced residual liquid phase concentrations as well as improvements in nitrogen recovery as compared to single-stage operation. Comparing constant and variable stagewise loadings, the final concentration is 10 times lower with variable loadings. The latter is comparable to a level found in only 1% of conventional domestic wastewater volume. Stagewise operation was beneficial from the standpoint of both additional nutrient recovery and for residuals control, with more pronounced benefits for attaining higher quality residual liquid phase concentrations to be disposed of.

  10. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  11. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    USGS Publications Warehouse

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  12. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  13. Aluminium removal from water after defluoridation with the electrocoagulation process.

    PubMed

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  14. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  15. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.

    1999-01-26

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.

  16. Process for separation and preconcentration of radium from water

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.

    1999-01-01

    A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.

  17. Wastewater privatization: A beneficial alternative

    SciTech Connect

    Wakeman, R.F.; Drewry, W.A.

    1999-07-01

    Municipalities with wastewater operations face increasing requirements to maximize efficiency, implement capital improvements, and ensure environmental compliance. Privatization is a relatively unused alternative offering benefits in the areas of cost-effective operations, flexible financing, technology access, and compliance assurance. Recent executive direction and tax code changes have opened new doors for mutually beneficial public-private partnerships. Wastewater privatization has historically consisted of short-term contract agreements for treatment operations, but looming infrastructure recapitalization and development requirements have catalyzed an exploration of non-traditional alternatives that include private sector financing, development, and operation of entire wastewater systems, The purpose of this paper is to show why privatization must be considered, evaluate the different levels available, and generate an analytical aid for communities taking their first look at privatization opportunities.

  18. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    PubMed

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.

  19. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    NASA Astrophysics Data System (ADS)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  20. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  1. Water states and water gates in osmotic processes, and the inoperative concept of molfraction of water.

    PubMed

    Scholander, P F

    1975-10-01

    An historical account is given of concepts regarding the mechanism of osmosis and imbibition, starting with Lord Kelvin's gravitational column, where he pointed out that a capillary standing in a dish of water within an isothermal enclosure must have a lowered vapor pressure at its elevated meniscus so as to match that emanating from the surface in the dish, otherwise distillation would violate the Second law. A brilliant sequence to this simple idea followed through Poynting, Arrhenius, Noyes and culminated with Hulett, who in 1901 formulated the "solvent tension theory" of osmosis, stating in essence that the thermal motion of the solute molecules by impact with the free solvent surface put the solvent under tension. This lowers the vapor pressure and thereby also its freezing point. Perrin, in famous experiments on Brownian motion, demonstrated solute-solvent independence within a solution and further support came through Herzfeld, Mysels and Duclaux. We measured negative pressures in salt-free sap of mangroves and other plants matching the osmotic pressure in the leaf cells. A series of measurements on magnetic and gravitational effects on osmotic pressure likewise bore out the tension theory. The fashionable "water concentration theory" is left experimentally contradicted and in violation of the Second law.

  2. Extraction of reusable water from a mineral mining process

    SciTech Connect

    Gleim, W.K.

    1982-01-19

    A method for the treatment of an aqueous effluent slime derived from a tar sand extraction process is disclosed. The effluent slime ph is adjusted to an acidic ph and treated with an anionic surface active agent to create flocculation of solid asphaltic material entrained within the slime. A solvent solution comprising chlorinated hydrocarbon and a solvent therefor is added so that upon centrifuging of the treated slime three physical layers of material comprising (1) water; (2) asphaltics in the solvent solution and (3) clay are formed.

  3. Modal processing for acoustic communications in shallow water experiment.

    PubMed

    Morozov, Andrey K; Preisig, James C; Papp, Joseph

    2008-09-01

    Acoustical array data from the Shallow Water Acoustics experiment was processed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array designed at the Woods Hole Oceanographic Institution. Phase-shift Keying (PSK) m-sequence modulated signals with different carrier frequencies were transmitted at a distance 19.2 km from the array. Even during a strong internal waves activity a low bit error rate was achieved.

  4. Dynamic Three-Dimensional Process Water Density Model for Ultrasim

    SciTech Connect

    Aviles, B.N.

    2001-03-28

    A temperature dependent D2O density model has been developed for the 3-D hydraulics module in the near real-time plant analysis code ULTRASIM. By replacing the constant density, ULTRASIM is improved in two ways. First, all 3-D hydraulic analyses performed are more physically realistic now that the temperature dependence of the D2O density is accounted for. Secondly, simple temperature driven process water transients can now be modeled and investigated, including natural circulation tests. This report describes results in both of these areas.

  5. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  6. Hybrid membrane operations in water desalination and industrial process rationalisation.

    PubMed

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  7. Effect of water hardness on the ability of water to rinse bacteria from the skin of processed broilers

    USDA-ARS?s Scientific Manuscript database

    The effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens was examined. Artificial hard water with a total hardness of 200 ppm (very hard water) was prepared by dissolving calcium chloride (CaCl2) and magnesium chloride hexahydrate (MgCl2 •6H2...

  8. Ground-water sapping processes, Western Desert, Egypt

    SciTech Connect

    Luo, W.; Arvidson, R.E.; Sultan, M.; Becker, R.; Crombie, M.K.; Sturchio, N.; Alfy, Z.E.

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.

  9. Enhancement of processes for solar photocatalytic detoxification of water

    SciTech Connect

    Pacheco, J.E.; Tyner, C.E.

    1990-01-01

    A solar-driven photocatalytic process is being developed to destroy low levels of toxic organics in water. Parabolic troughs with a glass pipe reactor and heliostats (large tracking mirrors) with a falling-film reactor were used to conduct engineering-scale solar detoxification of water experiments. We have assessed the effect of catalyst (titanium dioxide) loading and hydrogen peroxide concentration on the destruction of a model organic compound, salicylic acid. We found the optimal catalyst loading to be 0.1% for the conditions of 30 ppM salicylic acid and 300 ppM hydrogen peroxide. Hydrogen peroxide affected the reaction rates significantly, increasing the reaction rate over 4 times for stoichiometric amounts and more than 19 times for 10 times the stoichiometric amount. Destruction rates appear to be linearly proportional to the ultraviolet light intensity, though more data are needed to fully establish the relation. Initial tests with an actual water pollutant, trichloroethylene, demonstrated destruction from 1.2 ppM to less than 50 ppB in less than 5 minutes of exposure with a trough system. 15 refs., 6 figs.

  10. Digital radar-gram processing for water pipelines leak detection

    NASA Astrophysics Data System (ADS)

    García-Márquez, Jorge; Flores, Ricardo; Valdivia, Ricardo; Carreón, Dora; Malacara, Zacarías; Camposeco, Arturo

    2006-02-01

    Ground penetrating radars (GPR) are useful underground exploration devices. Applications are found in archaeology, mine detection, pavement evaluation, among others. Here we use a GPR to detect by an indirect way, the anomalies caused by the presence of water in the neighborhood of an underground water pipeline. By Fourier transforming a GPR profile map we interpret the signal as spatial frequencies, instead of the temporal frequencies, that composes the profile map. This allows differentiating between signals returning from a standard subsoil feature from those coming back from anomalous zones. Facilities in Mexican cities are commonly buried up to 2.5 m. Their constituent materials are PVC, concrete or metal, typically steel. GPRs are ultra-wide band devices; leak detection must be an indirect process since echoes due to the presence of underground zones with high moisture levels are masked by dense reflections (clutter). In radargrams the presence of water is visualized as anomalies in the neighborhood of the facility. Enhancement of these anomalies will give us the information required to detect leaks.

  11. Co-occurrence of Photochemical and Microbiological Transformation Processes in Open-Water Unit Process Wetlands.

    PubMed

    Prasse, Carsten; Wenk, Jannis; Jasper, Justin T; Ternes, Thomas A; Sedlak, David L

    2015-12-15

    The fate of anthropogenic trace organic contaminants in surface waters can be complex due to the occurrence of multiple parallel and consecutive transformation processes. In this study, the removal of five antiviral drugs (abacavir, acyclovir, emtricitabine, lamivudine and zidovudine) via both bio- and phototransformation processes, was investigated in laboratory microcosm experiments simulating an open-water unit process wetland receiving municipal wastewater effluent. Phototransformation was the main removal mechanism for abacavir, zidovudine, and emtricitabine, with half-lives (t1/2,photo) in wetland water of 1.6, 7.6, and 25 h, respectively. In contrast, removal of acyclovir and lamivudine was mainly attributable to slower microbial processes (t1/2,bio = 74 and 120 h, respectively). Identification of transformation products revealed that bio- and phototransformation reactions took place at different moieties. For abacavir and zidovudine, rapid transformation was attributable to high reactivity of the cyclopropylamine and azido moieties, respectively. Despite substantial differences in kinetics of different antiviral drugs, biotransformation reactions mainly involved oxidation of hydroxyl groups to the corresponding carboxylic acids. Phototransformation rates of parent antiviral drugs and their biotransformation products were similar, indicating that prior exposure to microorganisms (e.g., in a wastewater treatment plant or a vegetated wetland) would not affect the rate of transformation of the part of the molecule susceptible to phototransformation. However, phototransformation strongly affected the rates of biotransformation of the hydroxyl groups, which in some cases resulted in greater persistence of phototransformation products.

  12. Development of an integrated membrane process for water reclamation.

    PubMed

    Lew, C H; Hu, J Y; Song, L F; Lee, L Y; Ong, S L; Ng, W J; Seah, H

    2005-01-01

    An integrated membrane process (IMP) comprising a membrane bioreactor (MBR) and a reverse osmosis (RO) process was developed for water reclamation. Wastewater was treated by an MBR operated at a sludge retention time (SRT) of 20 days and a hydraulic retention time (HRT) of 5.5 h. The IMP had an overall recovery efficiency of 80%. A unique feature of the IMP was the recycling of a fraction of RO concentrate back to the MBR. Experimental results revealed that a portion of the slow- and hard-to-degrade organic constituents in the recycle stream could be degraded by an acclimated biomass leading to an improved MBR treatment efficiency. Although recycling concentrated constituents could impose an inhibitory effect on the biomass and suppress their respiratory activities, results obtained suggested that operating MBR (in the novel IMP) at an F/M ratio below 0.03 g TOC/g VSS.day could yield an effluent quality comparable to that achievable without concentrate recycling. It is noted in this study that the novel IMP could achieve an average overall TOC removal efficiency of 88.940% and it consistently produced product water usable for high value reuse applications.

  13. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  14. Cryptosporidium-contaminated water disinfection by a novel Fenton process.

    PubMed

    Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara

    2017-05-01

    Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL(-1) for the divalent iron, 30mgL(-1) for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL(-1) for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for a loan. The producer must always have had the beneficial interest in the honey unless, before the...

  16. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for a loan. The producer must always have had the beneficial interest in the honey unless, before the...

  17. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for a loan. The producer must always have had the beneficial interest in the honey unless, before the...

  18. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for a loan. The producer must always have had the beneficial interest in the honey unless, before the honey...

  19. 7 CFR 1434.6 - Beneficial interest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS FOR HONEY § 1434.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans under this part a producer must have the beneficial interest in the honey that is tendered to CCC for a loan. The producer must always have had the beneficial interest in the honey unless, before the honey...

  20. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    NASA Astrophysics Data System (ADS)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter < 0.1 μm) account for the vast majority of 1O2 and triplet states photoproduction. In hydrophobic sites of particles, the formation rate of 1O2 is considerably lower than in the solution bulk [5], but the absence

  1. Characterizing Water Erosion Processes for Hillslope Evolution Models

    NASA Astrophysics Data System (ADS)

    Dunne, T.

    2003-12-01

    Mike Kirkby formulated the co-evolution of topographic and soil profiles along hillslopes in terms of hydrologic and sediment transport processes and their environmental controls. His models emphasize the feedbacks and co-evolution of form and processes. He thus provided a road map for modeling the mass balance of regolith to link theories in geomorphology and soil science to theories in climatology, hydrology, and biology, and for doing this on the basis of concrete field data. This theoretical work challenged geomorphologists (and other environmental scientists) to develop formulae relating mineral and solute transport to its controls, and therefore to systematize their analyses of the geomorphic effects of climate, hydrology, vegetation, material properties, tectonism, and time. Field and laboratory measurements of the material transport processes responsible for landform evolution have accumulated more slowly than the theoretical developments, but are necessary for understanding actual magnitudes and rates of geomorphic change, the relative roles and interactions of various processes, and the influence of environmental factors on rates of landform change and sediment production. This talk will review progress and difficulties in responding to Kirkby's challenge for computing sediment transport by water on uncultivated hillslopes of realistic size and complexity over time periods sufficient to change the morphology of hillslopes. The question of validation will also be addressed.

  2. Antisolvent precipitation of water-soluble hemicelluloses from TMP process water.

    PubMed

    Zasadowski, Dariusz; Yang, Jiayi; Edlund, Håkan; Norgren, Magnus

    2014-11-26

    During the thermomechanical pulping (TMP) of spruce, hemicelluloses (mainly galactoglucomannans, GGMs) are released into the process water at relatively low concentrations that are currently impossible to efficiently recover. This paper examines the recovery of hemicelluloses precipitated from TMP process water via solubility reduction by adding antisolvents such as methanol, ethanol, and acetone. The phase separation was monitored by turbidity measurements. Gravimetric analysis, FTIR, GC-MS, UV spectroscopy, and ICP-OES were used to determine the yield, purity, and composition of the precipitates. Gel permeation chromatography and pulsed field-gradient self-diffusion NMR were used to measure the molecular mass distribution of the precipitates. Acetone was found to be the most efficient antisolvent, giving the highest yield at the lowest addition. The contents of lipophilic extractives and lignin impurities were below 0.5% and 1.6%, respectively, and the metal content was approximately 2% in the precipitates obtained with acetone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Petroleum coke adsorption as a water management option for oil sands process-affected water.

    PubMed

    Zubot, Warren; MacKinnon, Michael D; Chelme-Ayala, Pamela; Smith, Daniel W; Gamal El-Din, Mohamed

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction.

  4. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms.

    PubMed

    Wood, Thammajun L; Guha, Rajarshi; Tang, Li; Geitner, Michael; Kumar, Manish; Wood, Thomas K

    2016-05-17

    Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants.

  5. Living biofouling-resistant membranes as a model for the beneficial use of engineered biofilms

    PubMed Central

    Wood, Thammajun L.; Guha, Rajarshi; Tang, Li; Geitner, Michael; Kumar, Manish

    2016-01-01

    Membrane systems are used increasingly for water treatment, recycling water from wastewater, during food processing, and energy production. They thus are a key technology to ensure water, energy, and food sustainability. However, biofouling, the build-up of microbes and their polymeric matrix, clogs these systems and reduces their efficiency. Realizing that a microbial film is inevitable, we engineered a beneficial biofilm that prevents membrane biofouling, limiting its own thickness by sensing the number of its cells that are present via a quorum-sensing circuit. The beneficial biofilm also prevents biofilm formation by deleterious bacteria by secreting nitric oxide, a general biofilm dispersal agent, as demonstrated by both short-term dead-end filtration and long-term cross-flow filtration tests. In addition, the beneficial biofilm was engineered to produce an epoxide hydrolase so that it efficiently removes the environmental pollutant epichlorohydrin. Thus, we have created a living biofouling-resistant membrane system that simultaneously reduces biofouling and provides a platform for biodegradation of persistent organic pollutants. PMID:27140616

  6. Draix multidisciplinary observatory for water and sediment processes

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Mathys, N.; Liébault, F.; Klotz, S.

    2013-12-01

    Over the last decades, much progress has been done in the modeling and conceptualizing of surface processes. Testing theories and models requires field data, and possibly long-term time series. Here we present a 30-year old field observatory dedicated to water and sediment fluxes in the French Alps. Draix observatory is located in a badland area of the French Alps (shale lithology), and includes several subcatchments which differ in size (0.001 to 1 km2) and vegetation coverage (bare soil or forest). Climate is mountainous and Mediterranean, characterized with summer storm-induced floods and winter frost. Data collected includes climatic data (rainfall, temperature) and water and sediment fluxes (discharge at the outlet of each subcatchment, suspended load and bedload fluxes). High frequency monitoring (minute/hour) is used to capture flood dynamics. Some soil hydraulic and geophysical properties, lidar scans and vegetation maps are also available. The combination of an erodible badland morphology and tough climatic conditions induces very high erosion rates and sediment yield (up to 70 tons/ha/yr). Observed erosion processes include landslides, small-scale debris flows, gully formation, weathering on the slopes and in the riverbeds, hyperconcentrated flows and in-transport sediment abrasion. The sediment response is highly non-linear with a strong seasonal pattern of storage and scour in the bed. Current research on Draix observatory is multidisciplinary and involves hydraulic engineers, hydrologists, geomorphologists, soil scientists and restoration ecologists. Fast rates of geomorphic changes, well-constrained sediment budgets and long data series are some of the advantages of this site for the study of earth surface processes. Our data is available for the community and we welcome everyone who is interested in collaborating on it.

  7. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  8. The REAL process--a process for recycling sludge from water works.

    PubMed

    Stendahl, K; Färm, C; Fritzdorf, H

    2006-01-01

    In order to produce drinking water, coagulants--such as aluminium salts--are widely used for precipitation and separation of impurities from raw water. The residual from the process is sludge, which presents a disposal problem. The REAL process is a method for recycling the aluminium from the sludge. In a first step, the aluminium hydroxide is dissolved in sulphuric acid. In a second step, an ultra filtration will separate all suspended matter and large molecules, leaving a concentrate of 15-20% dry solids. The permeate will contain the trivalent aluminium ions together with 30-50% of the organic contaminants. In a third step, by concentrating the permeate in a nano filter, the concentration of aluminium will be high enough to, in a fourth step, be precipitated with potassium sulphate to form a pure crystal: potassium aluminium sulphate. The potassium aluminium sulphate is comparable to standard aluminium sulphate. The process will give a residual in form of a concentrate from the ultra filtration, representing a few per cent of the incoming volume. This paper presents the results from a long time pilot-scale continuous test run at Västerås water works in Sweden, as well as calculations of costs for full-scale operations.

  9. 17Oexcess in meteoric water: as a new isotopic parameter to decipher water cycle processes

    NASA Astrophysics Data System (ADS)

    Landais, A.; Guillevic, M.; Steen-Larsen, H.; Vimeux, F.; Bouygues, A.; Falourd, S.; Risi, C. M.; Bony, S.

    2009-12-01

    Classical water stable isotopes (dD and d18O) have been used for more than 50 years with the aim to understand the links between water cycle and climate. They provide information on either temperature or precipitation changes depending on the latitudes. Their combination, in the so-called d-excess, brings some information on climatic conditions occurring during non equilibrium processes along air masses histories (evaporation over the Oceans, reevaporation of droplets in convective systems, continental recycling or ice crystals formation). Recently, the possibility to measure with high precision d17O in water has enabled to introduce a new parameter, 17Oexcess, resulting from the combination of d18O and d17O. According to both observations and modeling works, this new isotopic parameter is able to decipher some of the non equilibrium processes: when measured in ice core, it is expected to be a more direct tracer of relative humidity of the oceanic evaporative regions than d-excess. In order to better understand what controls this new parameter as well as to extract the maximum climatic information from the combination of 17Oexcess and d-excess, we present different original studies combining these two parameters in several key regions. First, data collected in Niger, West Africa, at scales ranging from the convective system to the seasonal cycle confirm the strong influence of relative humidity on 17Oexcess through the rain reevaporation process. Second, seasonal cycles in the Zongo Valley (Tropical Bolivia) suggest that rain recycling along air masses trajectories have different signatures on d-excess and 17Oexcess leading to decipher the different processes. Third, we study how local processes (precipitation, sublimation) in polar region (Greenland) can affect 17Oexcess archived in ice core with respect to d-excess records through (1) isotopic measurements of vapor versus precipitation collected at the NEEM station and (2) seasonal cycles measured from snow pits.

  10. Soil erodibility and processes of water erosion on hillslope

    NASA Astrophysics Data System (ADS)

    Bryan, Rorke B.

    2000-03-01

    The importance of the inherent resistance of soil to erosional processes, or soil erodibility, is generally recognized in hillslope and fluvial geomorphology, but the full implications of the dynamic soil properties that affect erodibility are seldom considered. In Canada, a wide spectrum of soils and erosional processes has stimulated much research related to soil erodibility. This paper aims to place this work in an international framework of research on water erosion processes, and to identify critical emerging research questions. It focuses particularly on experimental research on rill and interrill erosion using simulated rainfall and recently developed techniques that provide data at appropriate temporal and spatial scales, essential for event-based soil erosion prediction. Results show that many components of erosional response, such as partitioning between rill and interrill or surface and subsurface processes, threshold hydraulic conditions for rill incision, rill network configuration and hillslope sediment delivery, are strongly affected by spatially variable and temporally dynamic soil properties. This agrees with other recent studies, but contrasts markedly with long-held concepts of soil credibility as an essentially constant property for any soil type. Properties that determine erodibility, such as soil aggregation and shear strength, are strongly affected by climatic factors such as rainfall distribution and frost action, and show systematic seasonal variation. They can also change significantly over much shorter time scales with subtle variations in soil water conditions, organic composition, microbiological activity, age-hardening and the structural effect of applied stresses. Property changes between and during rainstorms can dramatically affect the incidence and intensity of rill and interrill erosion and, therefore, both short and long-term hillslope erosional response. Similar property changes, linked to climatic conditions, may also

  11. OCCUPATIONAL ALLERGY AND ASTHMA AMONG SALT WATER FISH PROCESSING WORKERS

    PubMed Central

    Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L

    2010-01-01

    Background Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. Methods A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (tidal breathing method) used ATS guidelines. Results Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC20 ≤ 8 mg/ml or ≥12% increase in FEV1 post bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR=1.94) and have NSBH (OR=3.09), while men were more likely to be sensitized to fish (OR=2.06) and have airway obstruction (OR=4.17). Atopy (OR=3.16) and current smoking (OR=2.37), but not habitual seafood consumption were associated with sensitization to fish. Conclusions Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. PMID:18726880

  12. Coastal processes influencing water quality at Great Lakes beaches

    USGS Publications Warehouse

    ,

    2013-01-01

    In a series of studies along the Great Lakes, U.S. Geological Survey scientists are examining the physical processes that influence concentrations of fecal indicator bacteria and related pathogens at recreational beaches. These studies aim to estimate human health risk, improve management strategies, and understand the fate and transport of microbes in the nearshore area. It was determined that embayed beaches act as traps, accumulating Escherichia coli (E. coli) and other bacteria in the basin and even in beach sand. Further, shear stress and wave run-up could resuspend accumulated bacteria, leading to water-contamination events. These findings are being used to target beach design and circulation projects. In previous research, it was determined that E. coli followed a diurnal pattern, with concentrations decreasing throughout the day, largely owing to solar inactivation, but rebounding overnight. Studies at a Chicago beach identified the impact of wave-induced mass transport on this phenomenon, a finding that will extend our understanding of bacterial fate in the natural environment. In another series of studies, scientists examined the impact of river outfalls on bacteria concentrations, using mechanistic and empirical modeling. Through these studies, the models can indicate range and extent of impact, given E. coli concentration in the source water. These findings have been extended to extended lengths of coastlines and have been applied in beach management using empirical predictive modeling. Together, these studies are helping scientists identify and eliminate threats to human and coastal health.

  13. Role and functions of beneficial microorganisms in sustainable aquaculture.

    PubMed

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  14. Diaromatic sulphur-containing 'naphthenic' acids in process waters.

    PubMed

    West, Charles E; Scarlett, Alan G; Tonkin, Andrew; O'Carroll-Fitzpatrick, Devon; Pureveen, Jos; Tegelaar, Erik; Gieleciak, Rafal; Hager, Darcy; Petersen, Karina; Tollefsen, Knut-Erik; Rowland, Steven J

    2014-03-15

    Polar organic compounds found in industrial process waters, particularly those originating from biodegraded petroleum residues, include 'naphthenic acids' (NA). Some NA have been shown to have acute toxicity to fish and also to produce sub-lethal effects. Whilst some of these toxic effects are produced by identifiable carboxylic acids, acids such as sulphur-containing acids, which have been detected, but not yet identified, may produce others. Therefore, in the present study, the sulphur-containing acids in oil sands process water were studied. A fraction (ca 12% by weight of the total NA containing ca 1.5% weight sulphur) was obtained by elution of methylated NA through an argentation solid phase extraction column with diethyl ether. This was examined by multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) in both nominal and high resolution mass accuracy modes and by GCxGC-sulphur chemiluminescence detection (GCxGC-SCD). Interpretation of the mass spectra and retention behaviour of methyl esters of several synthesised sulphur acids and the unknowns allowed delimitation of the structures, but not complete identification. Diaromatic sulphur-containing alkanoic acids were suggested. Computer modelling of the toxicities of some of the possible acids suggested they would have similar toxicities to one another and to dehydroabietic acid. However, the sulphur-rich fraction was not toxic or estrogenic to trout hepatocytes, suggesting the concentrations of sulphur acids in this sample were too low to produce any such effects in vitro. Further samples should probably be examined for these compounds.

  15. Induced systemic resistance by beneficial microbes.

    PubMed

    Pieterse, Corné M J; Zamioudis, Christos; Berendsen, Roeland L; Weller, David M; Van Wees, Saskia C M; Bakker, Peter A H M

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.

  16. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  17. 40 CFR 435.50 - Applicability; description of the beneficial use subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... States and west of the 98th meridian for which the produced water has a use in agriculture or wildlife... Wildlife Water Use Subcategory § 435.50 Applicability; description of the beneficial use subcategory....

  18. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    2000-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  19. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, Arthur J.; Richards, Jeff M.

    1999-01-01

    A process for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process.

  20. Stabilized thermally beneficiated low rank coal and method of manufacture

    DOEpatents

    Viall, A.J.; Richards, J.M.

    1999-01-26

    A process is described for reducing the spontaneous combustion tendencies of thermally beneficiated low rank coals employing heat, air or an oxygen containing gas followed by an optional moisture addition. Specific reaction conditions are supplied along with knowledge of equipment types that may be employed on a commercial scale to complete the process. 3 figs.

  1. Water recovery and solid waste processing for aerospace and domestic applications

    NASA Technical Reports Server (NTRS)

    Murawczyk, C.

    1973-01-01

    The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.

  2. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser.

  3. Water reuse in the l-lysine fermentation process

    SciTech Connect

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.

  4. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Saraswat, N.; Khanna, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 l/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by close methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 l.kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  5. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Savaswat, N.; Khana, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  6. Influence of water hardness on the ability of water to rinse bacteria from the skin of processed broilers

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted to examine the effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens. Very hard water (200 ppm total hardness) was prepared by dissolving 0.38 g calcium chloride (CaCl2) and 0.175 g magnesium chloride hexahydrate (Mg...

  7. One-step process for transforming a water-in-oil emulsion into an oil-in-water emulsion

    SciTech Connect

    Prasad, R.R.S.

    1986-12-09

    A process is described for the production of an oil-in-water emulsion for pipeline transmission which comprises: (a) producing a hydrocarbon crude including a water-in-oil emulsion; (b) adding to the hydrocarbon crude when the crude is at a temperature of from about 100/sup 0/ to about 200/sup 0/F, an emulsifier system capable of forming and sustaining an oil-in-water emulsion at the temperature and at ambient pipeline transmission temperatures. The amount of emulsifier system added is sufficient to form and sustain an oil-in-water emulsion having a selected water content of from about 15 percent to about 35 percent by weight water and a viscosity sufficiently low for pipeline transmission; (c) agitating the hydrocarbon crude including a water-in-oil emulsion and the added emulsifier system, to form an oil-in-water emulsion; and (d) separating any excess water from the formed oil-in-water emulsion.

  8. Example process hazard analysis of a Department of Energy water chlorination process

    SciTech Connect

    Not Available

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  9. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    PubMed

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O3-biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  10. Effect of processing method on bacterial community recovered from scalder and chiller water tanks in a commercial broiler processing facility.

    USDA-ARS?s Scientific Manuscript database

    In poultry processing plants, chicken carcasses were processed through a succession of steps including their immersion in scalder and chiller water tanks. Water tank microbiota may impact the microbiological quality of carcasses and the occurrence of pathogens or spoilage bacteria may lead to their ...

  11. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  12. WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER

    EPA Science Inventory

    Water quality changes along hyporheic flow paths may have
    important effects on river water quality and aquatic habitat. Previous
    studies on the Willamette River, Oregon, showed that river water follows
    hyporheic flow paths through highly porous deposits created by river...

  13. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    PubMed

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  14. Mining and beneficiation: A review of possible lunar applications

    NASA Technical Reports Server (NTRS)

    Chamberlain, Peter G.

    1991-01-01

    Successful exploration of Mars and outer space may require base stations strategically located on the Moon. Such bases must develop a certain self-sufficiency, particularly in the critical life support materials, fuel components, and construction materials. Technology is reviewed for the first steps in lunar resource recovery-mining and beneficiation. The topic is covered in three main categories: site selection; mining; and beneficiation. It will also include (in less detail) in-situ processes. The text described mining technology ranging from simple diggings and hauling vehicles (the strawman) to more specialized technology including underground excavation methods. The section of beneficiation emphasizes dry separation techniques and methods of sorting the ore by particle size. In-situ processes, chemical and thermal, are identified to stimulate further thinking by future researchers.

  15. On the beneficiation and comminution of lunar regolith

    NASA Astrophysics Data System (ADS)

    Mason, Larry W.

    A major concern in the area of planning for future lunar missions and for establishing a lunar base is the selection of a chemical process for liberation of oxygen from lunar regolith (Lunar Liquid Oxygen or LLOX), and for extraction of other useful materials. The processes currently being considered all require regolith feedstock in various stages of beneficiation. This paper addresses the applicability of terrestrial based comminution (particle grinding and sizing) and beneficiation (mineral/ore separation and concentration) equipment for use in the lunar environment. Classification techniques (screening, settling, cyclonic, and pneumatic), grinding operations (tumbling, fluid energy, impact, and ultrasonic mills), and beneficiation techniques (magnetic and electrostatic) am assessed for use on the lunar surface. The question of optimal source material (rock or regolith) is also addressed.

  16. Mining and beneficiation: A review of possible lunar applications

    NASA Technical Reports Server (NTRS)

    Chamberlain, Peter G.

    1991-01-01

    Successful exploration of Mars and outer space may require base stations strategically located on the Moon. Such bases must develop a certain self-sufficiency, particularly in the critical life support materials, fuel components, and construction materials. Technology is reviewed for the first steps in lunar resource recovery-mining and beneficiation. The topic is covered in three main categories: site selection; mining; and beneficiation. It will also include (in less detail) in-situ processes. The text described mining technology ranging from simple diggings and hauling vehicles (the strawman) to more specialized technology including underground excavation methods. The section of beneficiation emphasizes dry separation techniques and methods of sorting the ore by particle size. In-situ processes, chemical and thermal, are identified to stimulate further thinking by future researchers.

  17. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation.

    PubMed

    Cangialosi, Federico; Notarnicola, Michele; Liberti, Lorenzo; Stencel, John

    2009-05-30

    Triboelectrostatic beneficiation of coal combustion fly ashes with high-unburned carbon contents can produce low-carbon ash products having value as mineral admixtures and meeting technical requirements for replacing cement in concrete. This capability is a result of establishing bipolar charge on mineral ash versus carbon particles where, typically, unburned carbon attains positive surface charge and ash attains negative surface charge under the tribocharging conditions employed in triboelectrostatic technologies. However, long-term exposure of fly ash to weathering conditions, such as moisture or high humidity, before beneficiation is known to dramatically diminish carbon-ash separation efficiencies. Although experimentation has shown that water soluble surface species can be redistributed on fly ash particles after exposure to moisture, which could affect the extent of charging and polarities, measurement of the actual amount of charge and polarity on particles after weathering exposure versus after removal of surface moisture has not been accomplished. Hence, a new experimental methodology was developed and applied to measure charge distributions on tribocharged ash and carbon particles in a fly ash that had been exposed to weathering conditions for 6 months before and after removal of the surface moisture. Weathered ash particles were found to have an average zero charge, whereas carbon particles attained an average negative charge, opposite of the normal polarity for carbon. Although the extent of uncharged particles decreased and ash particles attained an average negative charge after drying, carbon particles attained only an average zero charge. These changes were reflected in very small increases in carbon-ash separation efficiency, in contrast to previous beneficiation tests in which fly ash drying led to significant increases in carbon-ash separation efficiency. It is suggested that removal of surface moisture in the absence of other processes like

  18. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  19. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  20. EPA Region 7 and Four States Water Quality Standards Review Process Kaizen Event

    EPA Pesticide Factsheets

    The submittal, review and approval process of the EPA–State process for developing and revising Water Quality Standards (WQS) was the focus of a Lean business process improvement kaizen event in June 2007.

  1. Beneficial Insects and Spiders of Alaska

    USDA-ARS?s Scientific Manuscript database

    The development of integrated pest management programs is dependent on the availability of biological information on beneficial insects and natural enemies of agricultural pests. This cooperative effort between ARS and UAF represents the first manual on beneficial insects and natural enemies of pest...

  2. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

  3. 76 FR 71008 - Yuba County Water Agency; Notice of Dispute Resolution Process Schedule; Panel Meeting, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...) hydrology for anadromous fish; (3) water temperatures for anadromous fish migration, holding, spawning, and... Energy Regulatory Commission Yuba County Water Agency; Notice of Dispute Resolution Process Schedule... resolution process, pursuant to 18 CFR 5.14, in the relicensing proceeding for the Yuba County Water Agency's...

  4. Role of water hardness in rinsing bacteria from the skin of processed broiler chickens

    USDA-ARS?s Scientific Manuscript database

    The effect of water hardness on the ability of water to rinse bacteria from the skin of processed broiler chickens was examined. Artificial hard water with a total hardness of 200 ppm (very hard water) was prepared by dissolving calcium chloride (CaCl2) and magnesium chloride hexahydrate (MgCl2 •6H2...

  5. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    PubMed

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  6. Novel Electrochemical Process for Treatment of Perchlorate in Waste Water

    DTIC Science & Technology

    2011-03-06

    exchange (ESIX) system based on a conducting polymer/carbon nanotube nanocomposite for removing perchlorate from drinking water and wastewater. The ESIX...nanotube nanocomposite for removing perchlorate from drinking water and wastewater. The ESIX technology combines ion exchange and electrochemistry to...potential for perchlorate occurrence in drinking water and food supplies is a human health concern because it can interfere with iodide uptake by the

  7. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  8. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.

    PubMed

    Jiménez, Silvia; Micó, María M; Arnaldos, Marina; Ferrero, Enrique; Malfeito, Jorge J; Medina, Francisco; Contreras, Sandra

    2017-02-01

    In this study, bench scale dissolved air flotation (DAF) and settling processes have been studied and compared to a novel flotation technology based on the use of glass microspheres of limited buoyancy and its combination with conventional DAF, (Enhanced DAF or E-DAF). They were evaluated as pretreatments for advanced oxidation processes (AOPs) to polish produced water (PW) for reuse purposes. Settling and E-DAF without air injection showed adequate turbidity and oil and grease (O&G) removals, with eliminations higher than 87% and 90% respectively, employing 70 mg L(-1) of FeCl3 and 83 min of settling time, and 57.9 mg L(-1) of FeCl3, 300 mg L(-1) of microspheres and a flocculation rate of 40 rpm in the E-DAF process. A linear correlation was observed between final O&G concentration and turbidity after E-DAF. In order to polish the O&G content of the effluent even further, to remove soluble compounds as phenol and to take advantage of residual iron after these treatments, Fenton and photo-Fenton reactions were essayed. After 6 h of the Fenton reaction at pH 3, the addition of 1660 mg L(-1) of H2O2 and 133 mg L(-1) of iron showed a maximum O&G elimination of 57.6% and a phenol removal up to 80%. Photo-Fenton process showed better results after 3 h, adding 600 mg L(-1) of H2O2 and 300 mg L(-1) of iron, at pH 3, with a higher fraction of elimination of the O&G content (73.7%) and phenol (95%) compared to the conventional Fenton process.

  9. Structural integrity analysis of process water system Bingham pumps

    SciTech Connect

    Gupta, N.K.

    1992-10-01

    Bingham pumps comprise part of the pressure boundary of the Process Water System (PWS). Monitoring the pump casing through in-service inspection is important to demonstrate the structural integrity throughout service. An acceptance criteria methodology with technical bases is provided to disposition flaws detected during examination of the pump casing. The methodology ensures that the defined structural or safety margins against failure are maintained throughout pump service in full consideration of service-induced degradation. Acceptance criteria, defining the acceptable flaw (length and depth) configurations for the pump casing, are established through structural analyses of the casing and flaw stability analyses of postulated flaws. Three-dimensional shell element model of the complex-shaped casing is constructed and detailed finite element stress analyses are performed at normal and off-normal loading conditions. Safety factors are applied to the resultant stresses and flaws are postulated at the most highly stressed regions of the pump casing. Postulated throughwall flaws in simplified casing configurations are analyzed with linear elastic and limit load methods with conservative application of the stress results. The most limiting results from the flaw stability analyses define The acceptable flaw length of 3.5 inches for the casing. The pump suction cover was separately analyzed to study the bolt failure concerns. Analyses were performed considering all bolts intact, all bolts cracked (25% deep through minor diameter), and up to 8 bolts inactive. It is found that as many as 4 bolts could be completely broken without adversely impacting the pressure boundary of the pumps at the design and operating conditions. Therefore, the current practice of volumetric and surface examination of the suction cover bolts is sufficient for the continued safe operation of the pumps.

  10. Radiation processing of water, oxygen and ozone ices

    NASA Astrophysics Data System (ADS)

    Teolis, Benjamin D.

    solid. In solid O2, a fluence dependence in the sputtering yield was discovered (using 100 keV protons) and attributed to the production of trapped ozone, which enhanced the sputtering yield. The enhancement is due to the liberation of potential energy during radiolytic decomposition of O3 into O2, which contributes to the physical ejection of molecules from the solid; a physical phenomenon not previously observed in studies of sputtering. When irradiated O2 is warmed above ˜33 K, the O2 desorbs from the solid, leaving behind residual solid ozone that was found to possess a remarkably low density (˜0.34 g/cm 3). The discovery of a low density form of solid ozone can explain the temperature dependence in the infrared spectra of condensed ozone previously reported, but the molecular structure of the solid and the reason for its transformation to a high density form at ˜47 K are still open questions. Solid ozone was found to possess an extraordinarily high sputtering yield when irradiated by 100 keV protons at 30 K and above, second only to solid hydrogen. This is due to (i) the high chemical reactivity of the solid and (ii) the volatility of the decomposition product (O2). Laboratory simulations of processes on astronomical surfaces that use infrared reflectance spectroscopy of thin films to analyze their composition and structure often ignore important optical interference effects which often lead to erroneous measurements of absorption band strengths and give an apparent dependence of this quantity on film thickness, index of refraction and wavelength. In appendix 1, these interference effects are demonstrated experimentally and the optical depths of several absorption bands of thin water ice films on a gold mirror are shown to be disproportionate to film thickness. A way to remove interference effects by performing measurements with P-polarized light incident at Brewster's angle is proposed. Additionally, appendix 2 describes a computer program I created to perform

  11. Water quality and hydrogeochemical processes in McDonalds Branch Basin, New Jersey pinelands, 1984-88. Water resources investigation

    SciTech Connect

    Johnsson, P.A.; Barringer, J.L.

    1993-12-31

    The report describes the spatial and temporal variability in the chemical constituents of surface and ground water in a small watershed in the Pinelands and discusses the complex hydrologic and geochemical processes thought to contribute to the variability associated with the freshwater wetlands within the basin. The report presents hydrologic measurements (precipitation amounts, stream stage and discharge, and water-table altitudes) and water-quality data (from analysis of samples of bulk and wet precipitation, surface water, and ground water) collected as part of a 1986-88 study by the USGS at McDonalds Branch basin.

  12. 241-SY-101 mulitport riser acceptance for beneficial use

    SciTech Connect

    Mendoza, R.E.

    1995-10-02

    This document formally demonstrates that the Acceptance for Beneficial USE (ABU) process for the SY tank farm Multiport Riser assembly has been properly completed in accordance with the ABU checklist. For each item required on the ABU checklist, a bibliography of the documentation prepared and released to satisfy the requirement is provided

  13. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  14. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  15. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  16. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  17. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. ); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. ); Chiang, S.H.; Venkatadri, R. ); Misra, M. )

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  19. Process for treating waste water having low concentrations of metallic contaminants

    DOEpatents

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  20. DEMONSTRATION BULLETIN: CAV-OX ULTRAVIOLET OXIDATION PROCESS MAGNUM WATER TECHNOLOGY

    EPA Science Inventory

    The CAV-OX® technology (see Fig- ure 1) destroys organic contaminants, including chlorinated hy- drocarbons, in water. The process uses hydrogen peroxide, hy- drodynamic cavitation, and ultraviolet (UV) radiation to photolyze and oxidize organic compounds present in water at ...

  1. Magnetic beneficiation of lunar soils

    NASA Technical Reports Server (NTRS)

    Mckay, D. S; Oder, R. R.; Graf, J.; Taylor, L. A.

    1992-01-01

    We will present a review of recent laboratory results obtained in dry magnetic separation of one gram samples of the minus 1 mm size fraction of five lunar soils of widely differing maturities. Two highland soils were investigated as potential sources of low iron content feed stocks for space manufacture of metals, including aluminum, silicon, and calcium. Pure anorthite was separated from the diamagnetic fraction of immature highland regolith. Three high titanium mare soils were investigated as potential sources of ilmenite for production of hydrogen and for recovery of He-3. Ilmenite and pyroxene were separated from the paramagnetic fractions of the mare basalts. Agglutinates and other fused soil components containing metallic iron were separated from the strongly magnetic fractions of all soils. We will present conceptual magnetic separation flow sheets developed from the laboratory data and designed for production of anorthite from highland soils and for production of ilmenite from mare soils. Using these flow sheets, we will discuss problems and opportunities associated with the magnetic separation of lunar soils. Separation of high-grade anorthite or other diamagnetic components at moderately high recovery can be achieved in processing immature highland soils. Further, while magnet weight is always an issue in magnetic separation technology, recent developments in both low temperature and high temperature superconductivity present unusual opportunities for magnet design specific to the lunar environment.

  2. Evaluation of pretreatment processes for supercritical water oxidation

    SciTech Connect

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  3. Evaluation of surface water resources from machine-processing of ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.

    1976-01-01

    The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.

  4. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  5. Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis.

    PubMed

    Lee, Sang Joon; Hwang, Bae Geun; Kim, Hae Koo

    2013-08-01

    Plants have efficient water-transporting vascular networks with a self-recovery function from embolism, which causes fatal discontinuity in sap flow. However, the embolism-refilling process in xylem vessel is still unclear. The water-refilling processes in the individual xylem vessels of excised Arabidopsis roots were visualized in this study using synchrotron X-ray micro-imaging technique with high spatial resolution up to 1 μm per pixel and temporal resolution up to 24 fps. In normal continuous water-refilling process, we could observe various flow patterns affected by the morphological structures of the xylem vessels, especially when water passed through perforation plates. A simple criterion based on the variation in dynamic pressure was suggested to evaluate the contribution of individual perforation plates to the water-refilling process. Meanwhile, the water-refilling embolized sections of xylem vessels through radial pathways were also observed. Separated water columns were formed from this discontinuous water-refilling process and the water influx rates through the radial pathways were estimated to be 478 and 928 μm(3) s(-1). The dynamic behavior of the separated water columns were quantitatively analyzed from the stoppage of volume growth to the translational phase. These water-refilling processes in excised roots of Arabidopsis may shed light on understanding the water refilling in the embolism vessels of intact plants and the interconnectivity of xylem vessel networks in vascular plants.

  6. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C.; Schultz, C.W.; Mehta, R.K.; Lamont, W.E.; Chiang, S.H.; Venkatadri, R.; Misra, M.

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  7. Microcharacterization of coal components for beneficiation

    SciTech Connect

    Straszhelm, W.E.; Markuszewski, R.

    1989-09-01

    Our studies on the characterization of coal-mineral association by scanning electron microscopy-based automated image analysis (SEM-AIA) have proceeded with the development of an expression for the amount of the phases present on the particle surface which could be used to predict coal behavior in surface-based cleaning processes such as froth flotation. Tables were prepared for two different coals showing the mass of coal and various minerals present in particles with a given fraction of mineral matter on the surface. Such tables may help to predict and/or explain the behavior of coals undergoing surface-based beneficiation. These tables were compared to tables showing the distribution of mass version the fraction of mineral matter in the particle. Major differences were seen in the distribution of mineral matter between the two modes of expression. AIA results were also compared to results of lab-scale float-sink and froth flotation tests. Although a direct comparison of AIA results to cleaning results is not possible, AIA results showed significant differences between the two coals were born out by differences in their cleaning behavior. 4 refs., 10 figs., 2 tabs.

  8. Water and processes of degradation in the Martian landscape.

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    Some large channels on Mars show features, notably bars and braiding, that indicate an origin by the action of running water. Smaller channels on steep slopes may have been produced by runoff of precipitation. Dendritic canyon systems suggest ground water sapping, which may have been an effective agent in cliff retreat generally. Extensive plains developed as cliffs retreated and, although modified by later wind action, may be regarded as relict landforms from a fluvial stage of Martian history.

  9. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  10. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  11. Effects of tap water processing on the concentration of disinfection by-products.

    PubMed

    Rahman, M D Bayzidur; Driscoll, Tim; Clements, Mark; Armstrong, Bruce K; Cowie, Christine T

    2011-09-01

    This study examined the effects on disinfection by-product (DBP) concentrations of common household methods for processing drinking water. We investigated the effects of refrigerator storage, jug filtering, boiling in an electric kettle, and supply from an instant boiling water unit, with or without filtering, on four species of trihalomethanes (THMs) and nine species of haloacetic acids (HAAs) in water ready for consumption in Sydney, Australia. Water samples were processed in such a way as to simulate real life conditions for drinking filtered water or hot water drinks prepared from tap water drawn from public water supply systems. There was a large reduction in total THMs in kettle-boiled water, instant boiled water, jug-filtered water and instant boiled-filtered water (reductions of 85.8, 93.5, 92.6 and 87.8% of their concentration in tap water respectively). Refrigerator storage did not appear to have a consequential effect on THMs or HAAs. Jug-filtering and instant boiling and filtering resulted in large decreases (77-94%) in all species of HAAs in tap water. This study suggests that different methods of processing tap water can change DBP concentration to an extent that would have a meaningful impact on exposure assessment in epidemiological studies.

  12. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  13. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  14. Beneficiation of Compression Debarked Wood Chips

    Treesearch

    James A. Mattson

    1974-01-01

    Presents the results of a preliminary study of secondary beneficiation of compression debarked chips to reduce residual bark to acceptable amounts. Ballmilling is a feasible method of reducing residual bark and minimizing wood loss.

  15. 7 CFR 1421.6 - Beneficial interest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... obtain beneficial interest to the commodity whether such purchase or acquisition is made prior to the... following language: Notwithstanding any other provision of this option to purchase or any other contract...

  16. Federal Standard: Beneficial Use of Dredged Material

    EPA Pesticide Factsheets

    The purpose of this document is to provide national guidance that explains the role of the Federal Standard in implementing beneficial uses of dredged material from U.S. Army Corps of Engineers’ new and maintenance navigation projects.

  17. Photodriven processes for production of hydrogen by water splitting (a review)

    SciTech Connect

    Mathur, P.N.

    1982-02-09

    An overview is given of each of three processes for dissociating water by visible light by incorporating reactions using photosensitizers. These processes are: photochemical processes using photocatalysts such as compound salts and photosynthetic dyes; photobiochemical processes using natural or synthetic plant chlorophyll, algae, or bacteria; and photoelectrochemical processes using semiconductor photocatalysts such as TiO electrodes. (LEW)

  18. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  19. [Arsenic (V) removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process].

    PubMed

    Li, Xiao-bo; Wu, Shui-bo; Gu, Ping

    2007-10-01

    Two lab-scale coagulation/microfiltration membrane reactors were used to compare the arsenic removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process. FeCl3 and Al2(SO4)3 were appointed as the coagulants. The results show that the arsenic removal efficiency of the two processes are almost equal. Arsenic concentration can be lowered from about 100 microg/L to below 10 microg/L and the lowest is 1.68 microg x L(-1). All of the turbidity of the treated water is less than 0.1 NTU. The concentrations of ferric, aluminum and SO4(2-) of the treated water are entirely satisfied the standard of drinking water. After treated by ferric salt process, pH value of the treated water is increased about 0.5. However, aluminum salt process does not change pH of the drinking water. The concentration ratio of the ferric salt process is 1,791 which is about 2.54 times of the aluminum salt process. Arsenic concentration of the sludge of ferric salt process is also higher greatly than that of the aluminum salt process. Therefore, the volume of the sludge produced by the ferric salt process is smaller than that of the aluminum salt process when equal amount of drinking water was treated. Accordingly, ferric salt process should be used when only high concentration arsenic existed in drinking water. On the other hand, fluoride also can be removed simultaneously while arsenic was removed by aluminum salt process. The amount of coagulant needed is the amount of coagulant required to remove fluoride separately. Fluoride can not be removed from drinking water by the ferric salt process. It was concluded that aluminum salt process should be used to remove arsenic and fluoride simultaneously from high arsenic and high fluoride coexisted drinking water.

  20. Water processing technology for space and weight savings

    SciTech Connect

    Favret, U.B.; Caudle, D.D.

    1996-11-01

    Sump piles have been used on offshore platforms for any years. The very first platforms placed in open waters outside the recognized coastline were fitted with a large diameter tubular vessel which extended from above the surface of the sea to some distance under water. The original purpose of these vessels as to serve as a conduit for waste (rain water and ash water) off the platform deck so that it would not foul the platform structural members. There has been steady development of this technology since the early 1970`s and it has been improved and adapted to other treating applications. Today this technology is capable of doing much more than simply acting as a catch basin for waste oil in deck drains. This paper discuss, advances made in this technology and describes some of the potential applications of it. Modern sump technology includes a number of ow products with a range of capabilities. From the original {open_quote}sump pile{close_quote} used on early platforms several levels of increasingly sophisticated features have been added. The original sump pile was an open ended tubular vessel that extended into the water from the lower levels of the platform. It had an open bottom and no internals. Subsequent improvements have included vessel internals, ways to control level and level fluctuations, and incorporation of more sophisticated separation schemes. This paper will discuss some of these improvements and discuss some illustrative applications.

  1. Transport processes of water and protons through micropores

    SciTech Connect

    Din, X.D.; Michaelides, E.E.

    1998-01-01

    Molecular dynamics simulations were performed to study the movement of water molecules and protons in two pores: a small pore of radius 9.36 {angstrom} and a larger one of radius 12.24 {angstrom}. Inside the ionic solution, the wall charge densities are approximately {minus}0.1 C/m{sup 2} and {minus}0.2 C/m{sup 2}. Water and proton distributions in the pore are affected strongly by the water content and the wall charge density. In the case of low wall charge density, if there is a sufficient number of water molecules in the pore, the protons are strongly hydrated to the water molecules and do not directly contact the wall. In the case of high wall charge density, most of the protons are attracted to the wall. Then, the wall charge and the absorbed protons together behave like a weakly charged wall. The authors found that the Poisson-Boltzmann theory fails to predict the proton distribution in these pores. The calculated electroosmotic drag coefficient, proton diffusion coefficients, and pore conductance are compared with the simulation results for the Nafion-117 membrane. This study suggests that if the Nafion-117 membrane is modeled as a large number of identical cylindrical pores, the effective wall charge densities in the pores will never reach the value of {minus}0.2 C/m{sup 2}.

  2. Nucleation processes of nanobubbles at a solid/water interface

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  3. Nucleation processes of nanobubbles at a solid/water interface

    PubMed Central

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-01-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules. PMID:27090291

  4. [Controlling of biological stability in drinking water by purification processes].

    PubMed

    Lu, Wei; Tang, Feng; Zhang, Xiao-jian; He, Wen-jie; Han, Hong-da; Hu, Jian-kun

    2005-11-01

    In a pilot scale system, the formation and removal of BDOC and AOC were compared in the pre-treatment unit, traditional treatment unit and advanced treatment unit. The experimental results indicate that the COD(Mn) removal in a traditional process plus active carbon filter system is 30% and in a traditional process plus ozone and active carbon filter system is more than 50%. The AOC contents in the effluent of a traditional process plus active carbon filter system is below 50 microg/L. The optimum process combination in the research is: traditional process plus ozonation plus biological active carbon.

  5. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  6. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  7. Processes in the pore waters of peat deposits

    SciTech Connect

    Levshenko, T.V.; Efremova, A.G.; Galkina, Z.M.; Surkova, T.E.; Tolstov, K.A.

    1983-01-01

    The composition of the waters of modern peat bogs that have developed in the intracontinental regions under the conditions of bogs of the high-moor, mixed, and lowmoor types have been investigated for the case of a number of peat deposits of the Smolensk, Volgorad, and Pskov provinces. During the work the pH of the deposits and the C1-, Alk, SO/sup 2/-, Ca/sup 2 +/, Mg/sup 2 +/, K- contents of the pore water of modern peat beds were studied. The thickness of the deposits studied amounted to 5-7 m. Samples were taken every 0.5 m in depth. The water was separated from the deposits by pressing out.

  8. Computational Analysis of Sedimentation Process in the Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Tulus; Suriati; Situmorang, M.; Zain, D. M.

    2017-09-01

    This study aims to determine how the distribution of sludge concentration and velocity of water flow in the water treatment plant in equilibrium state. The problems are solved by implementing the finite element method to a momentum transport equation which is a basic differential equation that is used for liquid-solid mixtures with high solid concentrations. In the finite element method, the flow field is broken down into a set of smaller fluid elements. The domain is considered as a container in the space of three-dimensional (3D). The sludge concentration distribution as well as the water flow velocity distribution in the inlet, central and outlet are different. The results of numerical computation are similar compared to the measurement results.

  9. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result.

  10. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  11. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS USING DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    The conventional drinking water treamtent processes of coagulation, flocculation, and filtration as well as specialized treatment processes have been examined for their capacity to remove endocrine disrupting chemicals (EDCs). A groupf od EDCs including 4-nonylphenol, diethylphth...

  12. EFFECTIVE RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS USING DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    The conventional drinking water treamtent processes of coagulation, flocculation, and filtration as well as specialized treatment processes have been examined for their capacity to remove endocrine disrupting chemicals (EDCs). A groupf od EDCs including 4-nonylphenol, diethylphth...

  13. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  14. Ability of chemically softened water to rinse bacteria from the skin of processed broilers

    USDA-ARS?s Scientific Manuscript database

    Introduction: The quality of water used in cleansing operations in commercial poultry processing facilities may have an effect on the efficacy of sanitation operations in these facilities. Water hardness is a characteristic of water that is related to the concentration of calcium and magnesium disso...

  15. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    USDA-ARS?s Scientific Manuscript database

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  16. Earth Science (A Process Approach), Section 1: The Water Cycle.

    ERIC Educational Resources Information Center

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  17. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  18. WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.

    EPA Science Inventory

    Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...

  19. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  20. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    PubMed

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l(−1)) and high bottom DO (>4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l(−1)) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.

  1. Investigation of hydrogeochemical processes in groundwater resources located in the vicinity of a mine process water dam

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2013-10-01

    The study aims to identify and describe the dominant hydrogeochemical processes and their contribution to the overall groundwater quality of an aquifer situated in the vicinity of a mine process water dam. The study site is located in a typical Karoo Basin of Southern Africa. Groundwater samples were collected from a network of boreholes designed to monitor the migration of contamination from the mine process water dam during a five year period from November 2007 to November 2011. The study utilises the expanded Durov diagram, bivariate plots and correlation coefficients statistics to analyse groundwater chemistry data. Based on analyses of the groundwater chemistry the study area was divided into two hydrogeochemical zones; the fresh background and contaminated groundwater. Fresh water in the background aquifer is characterised by a Na+-HCO3- hydrochemical groundwater type. Groundwater in the contaminated zone comprises of Mg2+-Cl- and Na+-Cl-, two main hydrochemical water types. High levels of EC and TDS that ranges from 63.10 to 1870 mS/m and 690-11443 mg/l respectively were measured in the contaminated groundwater indicating that the aquifer has been affected by saline water from the dam. Major ions of Mg2+, SO42- and Ca2+ measured in the contaminated portion of the aquifer are positively correlated to the conservative Cl- indicating that these ions were derived from the same saline source (dam). The study identified albite dissolution as the main hydrogeochemical process responsible for the evolution of fresh groundwater chemistry in the background aquifer. The aquifer on the down gradient of the process water dam is contaminated by saline water that evolved from the dam. There is evidence to show that the mine process water dam poses a serious threat of contaminating the groundwater with salts. A recommendation was therefore made to the responsible authorities to consider decommissioning of the facility given that the mine operations ceased some years back.

  2. 40 CFR 410.30 - Applicability; description of the low water use processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the low water use processing subcategory. 410.30 Section 410.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.30...

  3. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    PubMed

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  4. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  5. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  6. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  7. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  8. Integrated Ion Exchange Regeneration Process for Perchlorate in Drinking Water

    DTIC Science & Technology

    2010-08-01

    or below notification level, 10 nanograms per liter (ng/L), for nitrosamines . The performance of IIX was evaluated through several cycles to...facility construction. IIX was not found to increase nitrosamines or other semivolatile organic compounds in treated water. Perchlorate-loaded resin...reducing operating costs. Re-use of resin also reduces nitrosamine and nitrosamine precursor residuals associated with installation of virgin resin

  9. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  10. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Abstract: Water vapor in the winter arctic stratospheric middleworld (that part of the stratosphere with potential temperatures lower than the tropical tropopause) is important for two reasons: (1) the arctic middleworld is a source of air for the upper troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. The relationship between ozone and CO from aircraft measurements taken during the early, middle and late part of the winter of 1999-2000 show that recent mixing with tropospheric air extends up to ozone values of about 350-450 ppbv. Above that level, the relationship suggests stratospheric air with minimal tropospheric influence. The transition is quite abrupt, particularly in early spring. Trajectory analyses are consistent with these relationships, with a significant drop-off in the percentage of trajectories with tropospheric PV values in their 10-day history as in-situ ozone increases above 400 ppbv. The water distribution is affected by these mixing characteristics, and by cloud formation. Significant cloud formation along trajectories occurs up to ozone values of about 400 ppbv during the early spring, with small, but nonzero probabilities extending to 550 ppbv. Cloud formation in the stratospheric middleworld is minimal during early and midwinter. Also important is the fact that, during early spring 30% of the trajectories near the tropopause (ozone values less than 200 ppbv) have minimum saturation mixing ratios less than 5 ppmv. Such parcels can mix out into the troposphere and could lead to very dry conditions in

  11. UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?

    PubMed

    Moreno-Andrés, Javier; Romero-Martínez, Leonardo; Acevedo-Merino, Asunción; Nebot, Enrique

    2017-03-01

    Water contained on ships is employed in the majority of activities on a vessel; therefore, it is necessary to correctly manage through marine water treatments. Among the main water streams generated on vessels, ballast water appears to be an emerging global challenge (especially on cargo ships) due to the transport of invasive species and the significant impact that the ballast water discharge could have on ecosystems and human activities. To avoid this problem, ballast water treatment must be implemented prior to water discharge in accordance with the upcoming Ballast Water Management Convention. Different UV-based treatments (photolytic: UV-C and UV/H2O2, photocatalytic: UV/TiO2), have been compared for seawater disinfection. E. faecalis is proposed as a biodosimeter organism for UV-based treatments and demonstrates good properties for being considered as a Standard Test Organism for seawater. Inactivation rates by means of the UV-based treatments were obtained using a flow-through UV-reactor. Based on the two variables responses that were studied (kinetic rate constant and UV-Dose reductions), both advanced oxidation processes (UV/H2O2 and photocatalysis) were more effective than UV-C treatment. Evaluation of salinity on the processes suggests different responses according to the treatments: major interference on photocatalysis treatment and minimal impact on UV/H2O2.

  12. Removal of Mycobacterium avium subspecies hominissuis (MAH) from drinking water by coagulation, flocculation and sedimentation processes.

    PubMed

    Wong, E A; Shin, G-A

    2015-03-01

    There has been a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water due to its ubiquitous presence in natural waters and remarkable resistance to both chemical and physical disinfectants in drinking water treatment processes. However, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Therefore, we determined the removal of MAH by alum coagulation, flocculation and sedimentation processes in optimized drinking water treatment conditions using standard jar test equipment. Contrary to the prevailing hypothesis, the results of this study show that removal of MAH by coagulation, flocculation and sedimentation processes was only moderate (approx. 0.65 log10) under low turbidity treatment conditions and the removal of MAH was actually lower than that of Escherichia coli (reference bacterium) in all the waters tested. Overall, the results of this study suggested that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for removing MAH, and more efforts to find an effective control measures against MAH should be made to reduce the risk of MAH infection from drinking water. Despite a growing concern over human exposure to Mycobacterium avium subspecies hominissuis (MAH) through drinking water and its remarkable resistance to water disinfectants, little is known about the effectiveness of physico-chemical water treatment processes to remove MAH. Contrary to the prevailing hypothesis, the results of this study suggest that coagulation, flocculation and sedimentation processes may not be a reliable treatment option for MAH removal. As these processes have been the last remaining conventional drinking water treatment processes that might be effective against MAH, more efforts should be urgently made to find an effective control measures against this important waterborne pathogen. © 2014 The Society for Applied Microbiology.

  13. A process integration approach to industrial water conservation: a case study for a Chinese steel plant.

    PubMed

    Tian, J R; Zhou, P J; Lv, B

    2008-03-01

    A systematic approach to optimizing water network has traditionally been utilized to exam and plan water conservation in industrial processes. In the present case study, water-pinch technology was used to analyze and optimize the water network of a steel plant near China's Zhangjiakou city. A system design was developed and a limiting constraint (Cl(-) concentration) was identified based on investigations of water quality then the minimum freshwater and wastewater targets were determined without considering water losses. The analysis was then extended by calculating the additional input of freshwater required to balance the actual water losses. A nearest-neighbor algorithm (NNA) was used to distribute the freshwater and recycled water among each of the plant's operations. The results showed that with some reconstruction of the water network, the flow rates of freshwater and wastewater could be decreased by 57.5% and 81.9%, respectively.

  14. Determining the locus of a processing zone in an oil shale retort by effluent water composition

    SciTech Connect

    Cha, C.Y.

    1980-09-23

    A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in-situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent water passing therefrom. The effluent water carries a constituent which is formed, by advancement of the processing zone through the fragmented mass, from a precursor contained in the formation. In a first aspect of the invention, the locus of the processing zone is determined by assaying the formation at selected locations in the retort for content of the precursor before processing the selected locations, and effluent water from the retort is monitored for concentration of the selected constituent. For example, the nitrogen content of kerogen can be the precursor and effluent water from the retort can be monitored for the concentration of ammonia and/or ammonium sulfate produced by retorting of kerogen in the oil shale. In the second embodiment of the invention, recognition is made of the correlation between the fischer assay of the oil shale and the amount of water it contains. Core samples of the formation are analyzed prior to processing to determine the water content and the predicted water production rate due to the passage of a processing zone through that location in the formation. Actual water production rate can then be compared with the predicted rate and the locus of the processing zone determined.

  15. Removal of Stabilized Silver Nanoparticles from Ohio River Water by Potable Water Treatment Processes

    EPA Science Inventory

    Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...

  16. Removal of Stabilized Silver Nanoparticles from Ohio River Water by Potable Water Treatment Processes

    EPA Science Inventory

    Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...

  17. Unit process engineering for water quality control and biosecurity in marine water recirculating systems

    USDA-ARS?s Scientific Manuscript database

    High-intensity systems that treat and recirculate water must maintain a culture environment that can sustain near optimum fish health and growth at the design carrying capacity. Water recirculating systems that use centralized treatment systems can benefit from the economies of scale to decrease th...

  18. Dissolved organic compounds in reused process water for steam-assisted gravity drainage oil sands extraction.

    PubMed

    Kawaguchi, Hideo; Li, Zhengguo; Masuda, Yoshihiro; Sato, Kozo; Nakagawa, Hiroyuki

    2012-11-01

    The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula C(n)H(2n+Z)O(X) for combinations of n = 4 to 18, Z = 0 and -2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent

  19. Navy Energy/Water Program and Applicable Process Technologies

    DTIC Science & Technology

    2004-02-25

    Energy Policy Board members issued – Oct. 2000 • Posted on http://energy.navy.mil select “program management” • Corporate metrics – Energy and water...Focus –Annual Plan and Report –Update Business Plan –Reconstitute Policy Board –Issue Energy Instructions –SECNAV and FEMP Awards –Input to Energy...CNO (N4) CM C (LF) NAVFAC DON SHORE ENERGY POLICY BOARD EFDsProject ExecutionTeam AUDIT AGENTS PROGRAM OFFICE GEOTHERM AL INSTALLATION

  20. The population genetics of beneficial mutations

    PubMed Central

    Orr, H. Allen

    2010-01-01

    The population genetic study of advantageous mutations has lagged behind that of deleterious and neutral mutations. But over the past two decades, a number of significant developments, both theoretical and empirical, have occurred. Here, I review two of these developments: the attempt to determine the distribution of fitness effects among beneficial mutations and the attempt to determine their average dominance. Considering both theory and data, I conclude that, while considerable theoretical progress has been made, we still lack sufficient data to draw confident conclusions about the distribution of effects or the dominance of beneficial mutations. PMID:20308094

  1. NMR spectroscopy and chemometrics to evaluate different processing of coconut water.

    PubMed

    Sucupira, N R; Alves Filho, E G; Silva, L M A; de Brito, E S; Wurlitzer, N J; Sousa, P H M

    2017-02-01

    NMR and chemometrics was applied to understand the variations in chemical composition of coconut water under different processing. Six processing treatments were applied to coconut water and analyzed: two control (with and without sulphite), and four samples thermally processed at 110°C and 136°C (with and without sulphite). Samples processed at lower temperature and without sulphite presented pink color under storage. According to chemometrics, samples processed at higher temperature exhibited lower levels of glucose and malic acid. Samples with sulphite processed at 136°C presented lower amount of sucrose, suggesting the degradation of the carbohydrates after harshest thermal treatment. Samples with sulphite and processed at lower temperature showed higher concentration of ethanol. However, no significant changes were verified in coconut water composition as a whole. Sulphite addition and the temperature processing to 136°C were effective to prevent the pinking and to maintain the levels of main organic compounds.

  2. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1977-01-01

    Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).

  3. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  4. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Astrophysics Data System (ADS)

    Walker, J. A.; Jensen, R. N.

    1982-04-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  5. Dielectric study of the α and β processes in supercooled ethylene glycol oligomer-water mixtures

    NASA Astrophysics Data System (ADS)

    Sudo, Seiichi; Tsubotani, Sosuke; Shimomura, Mayumi; Shinyashiki, Naoki; Yagihara, Shin

    2004-10-01

    Broadband dielectric measurements for 65 wt % ethylene glycol oligomer (EGO)-water mixtures with one to six repeat units of EGO molecules were performed in the frequency range of 10 μHz-10 GHz and the temperature range of 128-298 K. In the case of the water-EGO mixtures with one and two repeat units of the EGO molecule (small EGO), the shape of the dielectric loss peak of the primary process is asymmetrical about the logarithm of the frequency of maximum loss above the crossover temperature, TC. The asymmetric process continues to the α process at a low frequency, and an additional β process appears in the frequency range higher than that of the α process below TC. In contrast, the water-EGO mixtures with three or more repeat units of the EGO molecule (large EGO) show a broad and symmetrical loss peak of the primary process above TC. The symmetric process continues to the β process, and an additional α process appears in the frequency range lower than that of the β process below TC. These different scenarios of the α-β separation related to the shape of the loss peak above TC are a result of the difference in the cooperative motion of water and solute molecules. The solute and water molecules move cooperatively in the small EGO-water mixtures above TC, and this cooperative motion leads to the asymmetric loss peak above TC and the α process below TC. For the large EGO-water mixtures, the spatially restricted motion of water confined by solute molecules leads to the symmetric loss peak above TC and the β process below TC.

  6. Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes.

    PubMed

    Wang, Wuyi; Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Yonghua

    2007-02-01

    The occurrences of trihalomethanes (THMs) and haloacetics (HAAs) in the water supply in Beijing and Canada were investigated. The concentrations of THMs and HAAs in Beijing and Canada were below the maximum contaminant levels specified by the USEPA and WHO standards. The multi-pathway risk assessment (assessed through oral ingestion, dermal absorption and inhalation exposure to drinking water) was used to assess the cancer risk and the hazard index of THMs and HAAs from fifteen waterworks in Beijing, China and three treatment plants using different disinfection processes in Canada. Residents in Beijing and residents who were served by three treatment plants using different disinfection processes in Canada had a higher risk of cancer through oral ingestion than through the other two pathways. The cancer risk resulted from disinfection by-products (DBPs) was 8.50E-05(for males), 9.25E-05(for females) in Beijing, China, while it was 1.18E-04, 1.44E-04 in Canada. The risk was higher when water treatment plants used surface water source than when they used ground water source and mixture water source in Beijing. The risk showed different changes in three treatment plants using different disinfection processes in Canada. The lifetime cancer risk for THMs followed the order: Plant 2>Plant 1>Plant 3. And, the lifetime cancer risk for HAAs was: Plant 1>Plant 2>Plant 3.

  7. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  8. Computer simulation of the water and hydrogen distillation and CECE process and its experimental verification

    SciTech Connect

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.; Uborski, V.V.

    1995-10-01

    Mathematical simulation procedures have been developed for three processes of hydrogen isotopes separation: (1) a non steady-state water distillation; (2) a cryogenic distillation; and (3) a combined electrolysis and multistage water/hydrogen catalytic exchange (CECE) process. The simulation procedures possess some special features. Thus, the comparatively large step of integration and as a result of this high fast-acting is the peculiarity of the model for the dynamic behaviour of water distillation column operating at total reflux. The simulation procedure for CECE process considers six components and three phases (liquid water, water vapour, and hydrogen gas) and allows one to carry out computations for any mole fraction stock. This procedure, as the one for cryogenic distillation process, is not based on the Newton-Raphson method, and, in spite of this, convergence is reached by a small number of iterations (4 - 11). 8 refs., 4 figs., 6 tabs.

  9. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    SciTech Connect

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  10. Criticality safety evaluation report for the Cold Vacuum Drying Facility`s process water handling system

    SciTech Connect

    Roblyer, S.D.

    1998-02-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO`s interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck.

  11. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    PubMed

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  12. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  13. Induced Systemic Resistance by Beneficial Microbes

    USDA-ARS?s Scientific Manuscript database

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic esistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathog...

  14. [Prebiotics: concept, properties and beneficial effects].

    PubMed

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-02-07

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. Rare beneficial mutations can halt Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  16. Formation process of a strong water-repellent alumina surface by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Li, Hui; Song, Yongfeng; Wang, Yulong

    2010-03-01

    A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1° is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.

  17. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    DOEpatents

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  18. Coalification process waste water reusability: separation of organics by membranes

    SciTech Connect

    Bhattacharyya, D.; Kermode, R.I.; Dickinson, R.L.

    1983-02-01

    The overall objective of this investigation is to provide a critical evaluation of the current information concerning coal-gasification wastewaters and to establish experimentally the extent of separation of phenolics and polynuclear aromatic hydrocarbons (from single and multi-solute synthetic systems) by low-and high-pressure composite membranes. The compounds selected for experimental investigation were: phenol, O-cresol, 2,3-dimethylphenol, catechol, resorcinol, 2-naphthol, naphthalene, and indole. The development of membrane separation processes is gaining considerable importance because of the feasibility of simultaneous removal of organics and inorganic dissolved solids. Cellulose-acetate membranes developed for desalination processes show no rejection of phenolics; however, recently developed thin-film, noncellulosic composite membranes (even at low-pressure operation) may be useful in gasification wastewater reuse schemes. 24 references, 11 figures, 5 tables.

  19. Water-processable polymer-nanocrystal hybrids for thermoelectrics.

    PubMed

    See, Kevin C; Feser, Joseph P; Chen, Cynthia E; Majumdar, Arun; Urban, Jeffrey J; Segalman, Rachel A

    2010-11-10

    We report the synthesis and thermoelectric characterization of composite nanocrystals composed of a tellurium core functionalized with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Solution processed nanocrystal films electronically out perform both PEDOT:PSS and unfunctionalized Te nanorods while retaining a polymeric thermal conductivity, resulting in a room temperature ZT ∼ 0.1. This combination of electronic and thermal transport indicates the potential for tailored transport in nanoscale organic/inorganic heterostructures.

  20. Evidence for Recent Liquid Water on Mars: 'Dry' Processes on One Slope; 'Wet' Processes on Another

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site]

    How can martian gullies--thought to be caused in part by seepage and runoff of liquid water--be distinguished from the more typical, 'dry' slope erosion processes that also occur on Mars? For one thing, most--though not all--of the gully landforms occur on slopes that face away from the martian equator and toward the pole. For another, slopes that face toward the equator exhibit the same types of features as seen on nearly every other non-gullied slope on Mars.

    The example shown here comes from northwestern Elysium Planitia in the martian northern hemisphere. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution view (A, left) shows a portion of a 10 kilometer-(6.2 mi)-diameter meteor impact crater at a resolution of about 9 meters (29.5 ft) per pixel. The crater is shown in the context image (B, middle). The north-facing (or, pole-ward) slope in the MOC view is shadowed because sunlight illuminates the scene from the lower left. In this shadowed area, a series of martian gullies--defined by their erosional alcoves, deep channels, and apron deposits--are seen. On the sunlit south-facing (or equator-ward) slope, a scene more typical of most martian impact craters is present--the upper slopes show layered bedrock, the lower slopes show light-toned streaks of dry debris that has slid down the slope forming talus deposits that are distinctly different from the lobe-like form of gully aprons. The picture in (C) has been rotated so that the two slopes--one with gullies (right) and one without (left)--can be compared.

    The crater is located at 36.7oN, 252.3oW. The MOC image was acquired in November 1999 and covers an area 3 km (1.9 mi) wide by 14 km (8.7 mi) long; north is toward the upper right (in A) and it is illuminated by sunlight from the lower left. The Viking 1 orbiter context image (B) was obtained in 1978 and is illuminated from the left

  1. Evidence for Recent Liquid Water on Mars: 'Dry' Processes on One Slope; 'Wet' Processes on Another

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site]

    How can martian gullies--thought to be caused in part by seepage and runoff of liquid water--be distinguished from the more typical, 'dry' slope erosion processes that also occur on Mars? For one thing, most--though not all--of the gully landforms occur on slopes that face away from the martian equator and toward the pole. For another, slopes that face toward the equator exhibit the same types of features as seen on nearly every other non-gullied slope on Mars.

    The example shown here comes from northwestern Elysium Planitia in the martian northern hemisphere. The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution view (A, left) shows a portion of a 10 kilometer-(6.2 mi)-diameter meteor impact crater at a resolution of about 9 meters (29.5 ft) per pixel. The crater is shown in the context image (B, middle). The north-facing (or, pole-ward) slope in the MOC view is shadowed because sunlight illuminates the scene from the lower left. In this shadowed area, a series of martian gullies--defined by their erosional alcoves, deep channels, and apron deposits--are seen. On the sunlit south-facing (or equator-ward) slope, a scene more typical of most martian impact craters is present--the upper slopes show layered bedrock, the lower slopes show light-toned streaks of dry debris that has slid down the slope forming talus deposits that are distinctly different from the lobe-like form of gully aprons. The picture in (C) has been rotated so that the two slopes--one with gullies (right) and one without (left)--can be compared.

    The crater is located at 36.7oN, 252.3oW. The MOC image was acquired in November 1999 and covers an area 3 km (1.9 mi) wide by 14 km (8.7 mi) long; north is toward the upper right (in A) and it is illuminated by sunlight from the lower left. The Viking 1 orbiter context image (B) was obtained in 1978 and is illuminated from the left

  2. Optimal selection on water-supply pipe of building based on analytic hierarchy process

    NASA Astrophysics Data System (ADS)

    Wei, Tianyun; Chen, Guiqing

    2017-04-01

    The main problem of pipes used in water-supply system was analyzed, and the commonly used pipe and their main features were introduced in this paper. The principles that the selection on water-supply pipes should follow were pointed out. Analytic Hierarchy Process (AHP) using 9 scaling was applied to optimize water-supply pipes quantitatively. The optimal water-supply pipes were determined according to the sorting result of comprehensive evaluation index. It could provide the reference to select the reasonable water-supply pipes for the engineers.

  3. Impact of redox and transport processes in a riparian wetland on stream water quality in the Fichtelgebirge region, southern Germany

    NASA Astrophysics Data System (ADS)

    Lischeid, G.; Kolb, A.; Alewell, C.; Paul, S.

    2007-01-01

    Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first-order perennial stream. Here, we analysed the frequency distributions and time-series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3-year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (0.37 mg l-1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near-surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate-nitrogen was close to 100% of deep groundwater and stream-water nitrogen concentration. Stream-water baseflow concentrations of nitrate, dissolved carbon and silica were about 1.6 mg l-1, 4 mg l-1 and 7.5 mg l-1 respectively, and >3 mg l-1, >10 mg l-1 and <4 mg l-1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction-cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil-water fraction. In contrast

  4. Technical and economic feasibility of oil shale beneficiation by heavy media

    SciTech Connect

    Sareen, S.S.; Albayrak, F.A.; Protopapas, T.E.; Uthus, D.B.

    1985-01-01

    A study to evaluate physical beneficiation processes was undertaken to assess the efficiency of beneficiating oil shale, and to measure its impact on the economics of shale oil production. This study evaluated the effect of crusher types and degree of crushing on beneficiation of oil shales, the natural beneficiation that occurs due to particle size distribution, different beneficiation techniques (heavy liquid sink-float, heavy media cyclones, the Dyna Whirlpool Process, and froth flotation), and the costs associated with beneficiating low grade oil shales. Every effort was made to incorporate all test data available in published reports for both the Green River and Eastern Oil Shales. Results of beneficiation tests show that within the scatter in data, there is no effect of shale particle size (between 45 microns to -3''), method of beneficiation, grade of feed material 13 to 3/GPT), or type of crusher used on oil recovery. The geochemical nature of the oil shale clearly shows that maximum separation of kerogen and inorganic materials occur at particle size below 20 microns. This was verified when the froth flotation technique was used on these fine particle sizes; the oil recovery increased dramatically with much lower oil losses. Analysis of the data shows that froth flotation is the preferred technique for beneficiating oil shales as opposed to heavy media separation.

  5. The Potential and Beneficial Use of Weigh-In-Motion (WIM) Systems Integrated with Radio Frequency Identification (RFID) Systems for Characterizing Disposal of Waste Debris to Optimize the Waste Shipping Process

    SciTech Connect

    Abercrombie, Robert K; Buckner Jr, Dooley; Newton, David D

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehicles can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification [RFID] enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.

  6. WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS

    SciTech Connect

    Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

    2004-02-01

    This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space

  7. Stiction-free release etch with anhydrous HF/water vapor processes

    NASA Astrophysics Data System (ADS)

    Hanestad, Ron; Butterbaugh, Jeffery W.; ben-Hamida, Abdselem; Gelmi, Ilaria

    2001-09-01

    In today's MEMS fabrication, stiction remains one of the fundamental manufacturability challenges. A major step towards eliminating stiction problems is the use of a gas-phase process for the beam release. To date, an anhydrous HF/water vapor MEMS release process has been in production for two years with excellent repeatability and reliability. This stiction-free anhydrous HF/water vapor MEMS release process for accelerometers has been further characterized to determine and solve manufacturing challenges associated with the differences between aqueous-based and vapor-phase release processes. Detailed process characterization to further understand material compatibility with the HF/water vapor release process has been investigated. Various films such as oxides and nitrides of silicon, photoresist, and metals such as gold and aluminum have been characterized for their compatibility with the anhydrous HF/water vapor MEMS release process. Initial results with wafer dicing films are promising as these films show little degradation during extended vapor-phase release processes. The resistance of the wafer dicing films to the anhydrous HF/water vapor process makes it possible to complete the sacrificial oxide release process after substrates have been diced.

  8. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  9. Process for decontaminating radioactive waste water using a ferrofluid and magnetic separation

    SciTech Connect

    Silver, G.L.

    1980-07-31

    The present invention provides a process for decontaminating radioactive waste water containing a radioactive element that forms a water-insoluble compound. This process includes the steps of forming the compound of the radioactive element, treating the resulting waste water with a ferrofluid, dispersing the ferrofluid, diluting the solids concentration of the resulting mixture with a coagulation initiator, such as ethyl alcohol or acetone, and collecting by use of a magnetic field, the resulting radioactive sludge. In a variation of the process, the steps involving the use of the coagulation initiator and the use of the ferrofluid are reversed.

  10. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2001-01-01

    The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.

  11. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?

    PubMed

    Benner, Jessica; Helbling, Damian E; Kohler, Hans-Peter E; Wittebol, Janneke; Kaiser, Elena; Prasse, Carsten; Ternes, Thomas A; Albers, Christian N; Aamand, Jens; Horemans, Benjamin; Springael, Dirk; Walravens, Eddy; Boon, Nico

    2013-10-15

    In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants.

  12. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    NASA Astrophysics Data System (ADS)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  13. Advanced precoat filtration and competitive processes for water purification. Technical report

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1989-01-28

    An advanced precoat filtration process system is introduced. Also presented and discussed are major competitive processes for water purification, such as conventional precoat filtration, conventional physical-chemical process, lime softening, carbon adsorption, ion exchange, activated alumina, reverse osmosis, ultrafiltration, microfiltration, electrodialysis, and packed aeration column.

  14. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.

    PubMed

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; Shen, Ji-min; Gregory, John

    2011-08-01

    A novel two-stage coagulant addition strategy applied in a coagulation-ultrafiltration (UF) process for treatment of humic-rich water at neutral pH was investigated in this study. When aluminum sulfate (alum) doses were set at a ratio of 3:1 added during rapid mix stage and half way through flocculation stage, the integrated process of two-stage alum addition achieved almost the same organic matter removal as that of conventional one-stage alum addition at the same overall dose. Whereas membrane fouling could be effectively mitigated by the two-stage addition exhibited by trans-membrane pressure (TMP) developments. The TMP developments were found to be primarily attributed to external fouling on membrane surface, which was closely associated with floc characteristics. The results of jar tests indicated that the average size of flocs formed in two-stage addition mode roughly reached one half larger than that in one-stage addition mode, which implied a beneficial effect on membrane fouling reduction. Moreover, the flocs with more irregular structure and lower effective density resulted from the two-stage alum addition, which caused higher porosity of cake layer formed by such flocs on membrane surface. Microscopic observations of membrane surface demonstrated that internal fouling in membrane pores could be also remarkably limited by two-stage alum addition. It is likely that the freshly formed hydroxide precipitates were distinct in surface characteristics from the aged precipitates due to formation of more active groups or adsorption of more labile aluminum species. Consequently, the flocs could further connect and aggregate to contribute to preferable properties for filtration performance of the coagulation-UF process. As a simple and efficient approach, two-stage coagulant addition strategy could have great practical significance in coagulation-membrane processes.

  15. Acceptable approaches for beneficial use of cement kiln dust

    SciTech Connect

    Schreiber, R.J.; Smeenk, S.D.

    1998-12-31

    One beneficial use of cement kiln dust (CKD) is application of CKD to cropland as agricultural lime or fertilizer. However, the EPA has expressed a concern over land application of CKD when the metals constituents in the CKD are above the industry-wide median levels presented in EPA`s Report to Congress on Cement Kiln Dust. Under the Clean Water Act, EPA has established limits for metals concentrations in sewage sludge that is applied to the land for beneficial use of the nitrogen in the sludge. The limits for land application of sewage sludge were established based on the results of exposure risk assessments. A comparison of the median industry-wide metals concentrations in CKD to the metals concentration limits for land application of sewage sludge indicates that all trace metal concentrations IN CKD are below the corresponding sewage sludge land application limit, with the exception of the median level of arsenic from one data set. EPA has determined that land application of CKD with metals concentration limits at or below the industry-wide median concentrations does not pose a significant human cancer or non-cancer health risk. Therefore, with appropriate limits, CKD can be beneficially reused for land application on agricultural land in a manner that is protective of human health and the environment.

  16. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  17. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  18. Processes of water rock interaction in the Turonian aquifer of Oum Er-Rabia Basin, Morocco

    NASA Astrophysics Data System (ADS)

    Ettazarini, Said

    2005-12-01

    Possible water rock interaction processes, in the Moroccan basin of Oum Er-Rabia, were discussed by a geochemical study of groundwater from the Turonian limestone aquifer, the most important water resource in the region. Different types of water according to the classification of Piper were defined. Waters have shown an evolution from dominant CHO3 Ca Mg type through mixed to SO4 Cl Ca Mg type. The use of geochemical diagrams and chemical speciation modeling method has shown that water rock interaction is mainly controlled by carbonate and anhydrite dissolution, ion exchange and reverse ion exchange processes. Water rock equilibrium conditions are favorable for the precipitation of calcite, dolomite, kaolinite and magnesian smectite.

  19. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  20. Biosorption process for removing heavy metal ions using water milfoil (Myriophyllum Spicatum) in contaminated water

    SciTech Connect

    Wang, T.C.; Weissman, J.C.; Varadarajan, R.

    1995-12-31

    A small scale biomass metal contacting experiment was performed to screen the optimal plant species for biosorption and bioaccumulation of cadmium, zinc, nickel, lead, and copper. Experiments were also conducted to test the ability of the biomass to lower the metal concentrations below the US Environmental Protection Agency surface water discharge criteria. The minimum residual concentration was 0.1 mg/L for zinc, 0.004 mg/L for lead, and about 0.01 mg/L for cadmium, nickel, and lead. Results indicate that water milfoil can be used for bioremoval of metals.

  1. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 10, July--September 1991

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1991-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport fuels; completed editing of the first three quarterly reports and sent them to the publishing office; presented the project results at the Annual Contractors` Conference.

  2. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 12, January--March 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1992-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed editing of the fifth quarterly report and sent it to the publishing office; and prepared two technical papers for conferences.

  3. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 14, July--September 1992

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-02-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; published two technical papers at conferences; and prepared for upcoming tests of new BCFs being produced.

  4. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  5. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  6. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, E.N.; Kang, D.

    1987-06-23

    A process is described for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases. 2 figs.

  7. Process for preparing a stabilized coal-water slurry

    DOEpatents

    Givens, Edwin N.; Kang, Doohee

    1987-01-01

    A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.

  8. Characterization of plutonium in ground water near the idaho chemical processing plant

    USGS Publications Warehouse

    Cleveland, J.M.

    1982-01-01

    Plutonium is present in very low concentrations in ground water near the disposal well at the Idaho Chemical Processing Plant but was not detected in waters at greater distances. Because of the absence of strong complexing agents, the plutonium is present as an uncomplexed (perhaps hydrolyzed) tetravalent species, which is readily precipitated or sorbed by basalt or sediments along the ground-water flow path.

  9. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  10. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  11. PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  13. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  14. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  15. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    SciTech Connect

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.

  16. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGES

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oilmore » and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  17. A model to estimate hydrological processes and water budget from an irrigation pond in Mississippi

    USDA-ARS?s Scientific Manuscript database

    With increased interest to conserve groundwater resources without adversely affecting crop yield potential, more irrigation farm ponds have been constructed in recent years in Mississippi. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds h...

  18. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    EPA Science Inventory

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  19. PROCESS WATER BUILDING, TRA605. SIX CONTROL VALVES INSTALLED ABOVE PIPES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SIX CONTROL VALVES INSTALLED ABOVE PIPES IN BASEMENT. INL NEGATIVE NO. 3583A. Unknown Photographer, 10/29/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. PROCESS WATER BUILDING, TRA605. SUMP TANK PUMP. COMPARE WITH ID33G247. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SUMP TANK PUMP. COMPARE WITH ID-33-G-247. INL NEGATIVE NO. 4378. Unknown Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID