Sample records for benign eeg patterns

  1. Epilepsy in fragile-X-syndrome mimicking panayiotopoulos syndrome: Description of three patients.

    PubMed

    Bonanni, Paolo; Casellato, Susanna; Fabbro, Franco; Negrin, Susanna

    2017-10-01

    Fragile-X-syndrome is the most common cause of inherited intellectual disability. Epilepsy is reported to occur in 10-20% of individuals with Fragile-X-syndrome. A frequent seizure/electroencephalogram (EEG) pattern resembles that of benign rolandic epilepsy. We describe the clinical features, EEG findings and evolution in three patients affected by Fragile-X-syndrome and epilepsy mimicking Panayiotopoulos syndrome. Age at seizure onset was between 4 and about 7 years. Seizures pattern comprised a constellation of autonomic symptoms with unilateral deviation of the eyes and ictal syncope. Duration of the seizures could be brief or lengthy. Interictal EEGs revealed functional multifocal abnormalities. The evolution was benign in all patients with seizures remission before the age of 14. This observation expands the spectrum of benign epileptic phenotypes present in Fragile-X-syndrome and may be quite helpful in guiding anticonvulsant management and counseling families as to expectations regarding seizure remission. © 2017 Wiley Periodicals, Inc.

  2. Mimickers of generalized spike and wave discharges.

    PubMed

    Azzam, Raed; Bhatt, Amar B

    2014-06-01

    Overinterpretation of benign EEG variants is a common problem that can lead to the misdiagnosis of epilepsy. We review four normal patterns that mimic generalized spike and wave discharges: phantom spike-and-wave, hyperventilation hypersynchrony, hypnagogic/ hypnopompic hypersynchrony, and mitten patterns.

  3. "Just like EKGs!" Should EEGs undergo a confirmatory interpretation by a clinical neurophysiologist?

    PubMed

    Benbadis, Selim R

    2013-01-01

    The misdiagnosis of epilepsy is common and has serious consequences. A major contributor to the misdiagnosis of epilepsy is the tendency to overread normal EEGs as abnormal. In fact, the wrong diagnosis of seizures is sometimes based solely on the "abnormal" EEG. Reasons for the common overinterpretation of normal EEGs are mostly related to the lack of standards or mandatory training in EEG, and the erroneous assumption that all neurologists are trained to read EEGs. The most common overread pattern consists of benign, nonspecific, sharply contoured temporal transients. In particular, there is a common misconception that "phase reversals" are indicative of abnormality. Potential solutions include defining and ensuring EEG competency of neurologists who read EEGs, and perhaps providing a confirmatory reading by an electroencephalographer, as is done for EKGs.

  4. The Success Rate of Neurology Residents in EEG Interpretation After Formal Training.

    PubMed

    Dericioglu, Nese; Ozdemir, Pınar

    2018-03-01

    EEG is an important tool for neurologists in both diagnosis and classification of seizures. It is not uncommon in clinical practice to see patients who were erroneously diagnosed as epileptic. Most of the time incorrect interpretation of EEG contributes significantly to this problem. In this study, we aimed to investigate the success rate of neurology residents in EEG interpretation after formal training. Eleven neurology residents were included in the study. Duration of EEG training (3 vs 4 months) and time since completion of EEG education were determined. Residents were randomly presented 30 different slides of representative EEG screenshots. They received 1 point for each correct response. The effect of training duration and time since training were investigated statistically. Besides, we looked at the success rate of each question to see whether certain patterns were more readily recognized than others. EEG training duration ( P = .93) and time since completion of training ( P = .16) did not influence the results. The success rate of residents for correct responses was between 17% and 50%. On the other hand, the success rate for each question varied between 0% and 91%. Overall, benign variants and focal ictal onset patterns were the most difficult to recognize. On 13 occasions (6.5%) nonepileptiform patterns were thought to represent epileptiform abnormalities. After formal training, neurology residents could identify ≤50% of the EEG patterns correctly. The wide variation in success rate among residents and also between questions implies that both personal characteristics and inherent EEG features influence successful EEG interpretation.

  5. Encephalopathy with status epilepticus during sleep (ESES) induced by oxcarbazepine in idiopathic focal epilepsy in childhood

    PubMed Central

    Pavlidis, Elena; Rubboli, Guido; Nikanorova, Marina; Kölmel, Margarethe Sophie; Gardella, Elena

    2015-01-01

    Summary Encephalopathy with status epilepticus during sleep (ESES) is an age-related disorder characterized by neuropsychological regression, epilepsy and a typical EEG pattern of continuous epileptiform activity (> 85%) during NREM sleep. Cases of worsening or induction of ESES with phenytoin, carbamazepine and phenobarbital have been reported. We describe a child with benign epilepsy with centrotemporal spikes (BECTS) in whom treatment with oxcarbazepine (OXC) induced ESES. The patient was studied through repeated clinical-neuropsychological evaluations and 24-hour EEG recordings. He was treated with OXC two months after epilepsy onset. One month after starting OXC, he developed an abrupt and severe cognitive deterioration. A 24-hour EEG and neuropsychological tests showed an electro-clinical picture compatible with ESES. Withdrawal of OXC and introduction of other drugs were followed by a prompt improvement. Five months after ESES onset, a 24-hour EEG was normal. Our report indicates that OXC can induce ESES in BECTS. PMID:26415787

  6. Tantrums, Emotion Reactions and Their EEG Correlates in Childhood Benign Rolandic Epilepsy vs. Complex Partial Seizures: Exploratory Observations.

    PubMed

    Potegal, Michael; Drewel, Elena H; MacDonald, John T

    2018-01-01

    We explored associations between EEG pathophysiology and emotional/behavioral (E/B) problems of children with two types of epilepsy using standard parent questionnaires and two new indicators: tantrums recorded by parents at home and brief, emotion-eliciting situations in the laboratory. Children with Benign Rolandic epilepsy (BRE, N = 6) reportedly had shorter, more angry tantrums from which they recovered quickly. Children with Complex Partial Seizures (CPS, N = 13) had longer, sadder tantrums often followed by bad moods. More generally, BRE correlated with anger and aggression; CPS with sadness and withdrawal. Scores of a composite group of siblings ( N = 11) were generally intermediate between the BRE and CPS groups. Across all children, high voltage theta and/or interictal epileptiform discharges (IEDs) correlated with negative emotional reactions. Such EEG abnormalities in left hemisphere correlated with greater social fear, right hemisphere EEG abnormalities with greater anger. Right hemisphere localization in CPS was also associated with parent-reported problems at home. If epilepsy alters neural circuitry thereby increasing negative emotions, additional assessment of anti-epileptic drug treatment of epilepsy-related E/B problems would be warranted.

  7. Is there a predictive value of EEG and MRI after a first afebrile seizure in children?

    PubMed

    Tews, W; Weise, S; Syrbe, S; Hirsch, W; Viehweger, A; Merkenschlager, A; Bertsche, A; Kiess, W; Bernhard, M K

    2015-03-01

    After a first afebrile seizure, EEG in addition to cMRI is recommended for pediatric patients. Once indications requiring immediate treatment are excluded, it is of interest to determine if the results provide a prognostic tool for seizure relapses. Patients aged between 1 month and 18 years who had a first afebrile seizure between 2006 and 2008 were retrospectively studied and monitored for another 48 months. Out of 248 patients, 62.5% had generalized and 36.3% focal seizures. 34.7% of the EEG results were pathological. 176 patients had a cMRI that showed in 23.3% probable epileptogenic lesions. 3 patients with benign cerebral tumours needed surgical therapy. In the following 48 months 29.4% of the children showed seizure relapses. There was a correlation between epileptic patterns in the EEG and further seizures (p=0.0001). However, the sensitivity of the EEG based diagnoses was 0.6, the specificity 0.78 and the positive predictive value 0.52. There was no correlation between epileptogenic lesions and the probability of seizure relapses. The sensitivity of the cMRI to this effect was 0.36, the specificity 0.74 and the positive predictive value 0.34. The EEG is superior to cMRI for predicting seizure relapses. The percentage of noticeable cMRI findings is high but this has low therapeutic relevance and is assumed to largely represent "incidental findings". It is important to question the value of MRI investigations for sedated small children except in the case of emergencies. The key question is whether the cMRI should be deployed to diagnose epilepsy, the probability of seizure recurrences or to classify the entity of a most likely epilepsy. © Georg Thieme Verlag KG Stuttgart · New York.

  8. [Clinical and electrophysiologic studies on epileptic negative myoclonus in atypical benign partial epilepsy of childhood].

    PubMed

    Yang, Zhi-xian; Liu, Xiao-yan; Qin, Jiong; Zhang, Yue-hua; Bao, Xin-hua; Chang, Xing-zhi; Wu, Ye; Xiong, Hui

    2008-12-01

    To investigate the clinical, neurophysiologic characteristics and therapeutic considerations of epileptic negative myoclonus (ENM) in atypical benign partial epilepsy of childhood (ABPE). Video-EEG monitoring with outstretched arm tests were carried out in 17 patients, and 9 of them were examined with simultaneous electromyography (EMG). The ENM manifestations, electrophysiologic features and responses to antiepileptic drugs (AED) were analyzed. Seventeen patients were diagnosed as having benign childhood epilepsy with centrotemporal spikes (BECT) during the early course of the disease and were treated with AED. During the course of the disease, hand trembling, objects dropping, head nodding and instability during standing might be clues for ENM occurrence. ENM had been confirmed in our patients by outstretched arm tests during video-EEG recording. The ictal EEG showed that high-amplitude spikes followed by a slow wave over the contralateral motor areas. This was further confirmed by time-locked silent EMG in 9 patients. During ENM occurrence or recurrence, the habitual seizures and interictal discharges were exaggerated. Atypical absence seizures also occurred in 6 patients. The alteration of therapeutic options of AED relating to ENM appearance in some patients included the add-on therapy with carbamazepine (CBZ), oxcarbazepine, phenobarbital, or withdrawal of valproate (VPA). ENM was controlled in most cases by using VPA, clonazepam (CZP) and corticosteroid with different combination. ENM could occur during the course of ABPE. Outstretching arm tests during video-EEG monitoring in combination with EMG was essential to confirm ENM. The ENM occurrence was always associated with the frequency increasing of habitual seizures and the aggravation of interictal discharges. Some AED such as CBZ might induce ENM. VPA, benzodiazepines and corticosteroid with different combination were relatively effective in treatment of ENM.

  9. Electroencephalographic features of benign adult familial myoclonic epilepsy.

    PubMed

    Toyota, Tomoko; Akamatsu, Naoki; Tanaka, Akihiro; Tsuji, Sadatoshi; Uozumi, Takenori

    2014-02-01

    To investigate electroencephalographic (EEG) features of benign adult familial myoclonic epilepsy (BAFME). We reviewed interictal EEG features in patients with BAFME treated between April 2005 and November 2012 at a tertiary referral center. The diagnostic criteria for BAFME were the presence of infrequent generalized tonic-clonic seizures, myoclonus or myoclonic seizures, and autosomal dominant inheritance. Interictal EEG findings of epilepsy with generalized tonic-clonic seizure only (EGTCS) were reviewed for comparison. We randomly selected 10 generalized spike/polyspike and wave complexes (GSW) for each BAFME patient and measured the duration of them. Photic stimulation and hyperventilation were performed in all. Nineteen (eight men, 11 women) patients with BAFME were included in this study. The mean frequency of GSW was 4.3±1.0Hz (mean±SD, n=14) in BAFME and 3.2±0.8Hz (n=10) in EGTCS. There was a statistically significant difference (p=0.008) between the two. Photoparoxysmal responses (PPR) were noted in 18 (95%) patients with BAFME but 1 (10%) with EGTCS. Faster frequency of GSW, compared with that in EGTCS, accompanied by PPR may be characteristic EEG features of BAFME. These findings may lead the diagnosis of BAFME. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state, cognitive task and with different neuropsychopathologies is demonstrated. PMID:21379390

  11. Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.

    2013-06-01

    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.

  12. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.

  13. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology.

    PubMed

    Fürbass, F; Hartmann, M M; Halford, J J; Koren, J; Herta, J; Gruber, A; Baumgartner, C; Kluge, T

    2015-09-01

    Continuous EEG from critical care patients needs to be evaluated time efficiently to maximize the treatment effect. A computational method will be presented that detects rhythmic and periodic patterns according to the critical care EEG terminology (CCET) of the American Clinical Neurophysiology Society (ACNS). The aim is to show that these detected patterns support EEG experts in writing neurophysiological reports. First of all, three case reports exemplify the evaluation procedure using graphically presented detections. Second, 187 hours of EEG from 10 critical care patients were used in a comparative trial study. For each patient the result of a review session using the EEG and the visualized pattern detections was compared to the original neurophysiology report. In three out of five patients with reported seizures, all seizures were reported correctly. In two patients, several subtle clinical seizures with unclear EEG correlation were missed. Lateralized periodic patterns (LPD) were correctly found in 2/2 patients and EEG slowing was correctly found in 7/9 patients. In 8/10 patients, additional EEG features were found including LPDs, EEG slowing, and seizures. The use of automatic pattern detection will assist in review of EEG and increase efficiency. The implementation of bedside surveillance devices using our detection algorithm appears to be feasible and remains to be confirmed in further multicenter studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. How to write an EEG report

    PubMed Central

    Benbadis, Selim R.

    2013-01-01

    The EEG report is structured to include demographics of the patient studied and reason for the EEG; specifics of the EEG techniques used; a description of the patterns, frequencies, voltages, and progression of the EEG pattern that were recorded; and finally a clinical impression of the EEG significance. The interpretation should be concise, clear and to the point, avoid jargon and EEG specifics, and should be understandable by any health care practitioner. PMID:23267044

  15. Speech Presentation Cues Moderate Frontal EEG Asymmetry in Socially Withdrawn Young Adults

    PubMed Central

    Cole, Claire; Zapp, Daniel J.; Nelson, S. Katherine; Pérez-Edgar, Koraly

    2011-01-01

    Socially withdrawn individuals display solitary behavior across wide contexts with both unfamiliar and familiar peers. This tendency to withdraw may be driven by either past or anticipated negative social encounters. In addition, socially withdrawn individuals often exhibit right frontal electroencephalogram (EEG) asymmetry at baseline and when under stress. In the current study we examined shifts in frontal EEG activity in young adults (N=41) at baseline, as they viewed either an anxiety-provoking or a benign speech video, and as they subsequently prepared for their own speech. Results indicated that right frontal EEG activity increased, relative to the left, only for socially withdrawn participants exposed to the anxious video. These results suggest that contextual affective cues may prime an individual’s response to stress, particularly if they illustrate or substantiate an anticipated negative event. PMID:22169714

  16. Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad

    2017-01-01

    Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

  17. EEG background activity is abnormal in the temporal and inferior parietal cortex in benign rolandic epilepsy of childhood: a LORETA study.

    PubMed

    Besenyei, M; Varga, E; Fekete, I; Puskás, S; Hollódy, K; Fogarasi, A; Emri, M; Opposits, G; Kis, S A; Clemens, B

    2012-01-01

    Benign rolandic epilepsy of childhood (BERS) is an epilepsy syndrome with presumably genetic-developmental etiology. The pathological basis of this syndrome is completely unknown. We postulated that a developmental abnormality presumably results in abnormal EEG background activity findings. 20 children with typical BERS and an age- and sex-matched group of healthy control children underwent EEG recording and analysis. 60×2 s epochs of waking EEG background activity (without epileptiform potentials and artifacts) were analyzed in the 1-25 Hz frequency range, in very narrow bands (VNB, 1 Hz bandwidth). LORETA (Low Resolution Electromagnetic Tomography) localized multiple distributed sources of EEG background activity in the Talairach space. LORETA activity (current source density) was computed for 2394 voxels and 25 VNBs. Normalized LORETA data were processed to voxel-wise comparison between the BERS and control groups. Bonferroni-corrected p<0.05 Student's t-values were accepted as statistically significant. Increased LORETA activity was found in the BERS group (as compared to the controls) in the left and right temporal lobes (fusiform gyri, posterior parts of the superior, middle and inferior temporal gyri) and in the angular gyri in the parietal lobes, in the 4-6 Hz VNBs, mainly at 5 Hz. (1) Areas of abnormal LORETA activity exactly correspond to the temporal and parietal cortical areas that are major components of the Mirsky attention model and also the perisylvian speech network. Thus the LORETA findings may correspond to impaired attention and speech in BERS patients. (2) The LORETA findings may contribute to delineating the epileptic network in BERS. The novel findings may contribute to investigating neuropsychological disturbances and organization of the epileptic network in BERS. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A Robust Current Pattern for the Detection of Intraventricular Hemorrhage in Neonates Using Electrical Impedance Tomography

    PubMed Central

    Tang, T.; Oh, Sungho; Sadleir, R. J.

    2010-01-01

    We compared two 16-electrode electrical impedance tomography (EIT) current patterns on their ability to reconstruct and quantify small amounts of bleeding inside a neonatal human head using both simulated and phantom data. The current patterns used were an adjacent injection RING pattern (with electrodes located equidistantly on the equator of a sphere) and an EEG current pattern based on the 10–20 EEG electrode layout. Structures mimicking electrically important structures in the infant skull were included in a spherical numerical forward model and their effects on reconstructions were determined. The EEG pattern was found to be a better topology to localize and quantify anomalies within lateral ventricular regions. The RING electrode pattern could not reconstruct anomaly location well, as it could not distinguish different axial positions. The quantification accuracy of the RING pattern was as good as the EEG pattern in noise-free environments. However, the EEG pattern showed better quantification ability than the RING pattern when noise was added. The performance of the EEG pattern improved further with respect to the RING pattern when a fontanel was included in forward models. Significantly better resolution and contrast of reconstructed anomalies was achieved when generated from a model containing such an opening and 50 dB added noise. The EEG method was further applied to reconstruct data from a realistic neonatal head model. Overall, acceptable reconstructions and quantification results were obtained using this model and the homogeneous spherical forward model. PMID:20238166

  19. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    PubMed

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional outcome six months after discharge was significantly worse in patients with early epileptiform discharges (p=0.01). Epileptiform discharges within the first 30 min of EEG recording are predictive for the occurrence of ictal EEG patterns and for RPPIIU on subsequent cEEG, for acute convulsive seizures during the ICU stay, and for a worse functional outcome after 6 months of follow-up. This article is part of a Special Issue entitled Status Epilepticus. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Automated Identification of Abnormal Adult EEGs

    PubMed Central

    López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.

    2016-01-01

    The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311

  1. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE.

    PubMed

    Kadam, Shilpa D; D'Ambrosio, Raimondo; Duveau, Venceslas; Roucard, Corinne; Garcia-Cairasco, Norberto; Ikeda, Akio; de Curtis, Marco; Galanopoulou, Aristea S; Kelly, Kevin M

    2017-11-01

    In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  2. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    PubMed

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A study on epileptic negative myoclonus in atypical benign partial epilepsy of childhood.

    PubMed

    Yang, Zhixian; Liu, Xiaoyan; Qin, Jiong; Zhang, Yuehua; Bao, Xinhua; Chang, Xingzhi; Wang, Shuang; Wu, Ye; Xiong, Hui

    2009-04-01

    To investigate the clinical and neurophysiological characteristics, particularly therapeutic considerations, of epileptic negative myoclonus (ENM) in atypical benign partial epilepsy (ABPE) of childhood. From 1998 to 2006, 14/242 patients with benign children epilepsy with centrotemporal spikes (BECTS) were diagnosed as having ABPE with ENM. In all 14 patients, we performed video-EEG monitoring along with tests with the patient's arms outstretched; 6/14 patients were also simultaneously underwent surface electromyogram (EMG). ENM manifestations, electrophysiological features, and responses to antiepileptic drugs were analyzed. In all cases, ENM developed after the onset of epilepsy and during antiepileptic drug therapy, and the appearance of ENM were corresponding to EEG findings of high-amplitude spikes followed by a slow wave in the contralateral motor areas with secondary generalization. This was further confirmed by time-locked silent EMG. During ENM occurrence or recurrence, habitual seizures and interictal discharges were exaggerated. In some patients, the changes in antiepileptic drug regimens in relation to ENM appearance included add-on therapy with carbamazepine, oxcarbazepine, and phenobarbital or withdrawal of valproate. ENM was controlled in most cases by administration of various combinations of valproate, clonazepam, and corticosteroids. The incidence of ENM or ABPE in our center was approximately 5.79%. A combination of video-EEG monitoring with the patient's arms outstretched and EMG is essential to identify ENM. The aggravation of habitual seizures and interictal discharges indicate ENM. Some antiepileptic drugs, such as carbamazepine, oxcarbazepine, and phenobarbital, may be related to ENM occurrence during spontaneous aggravation of ABPE. Various combinations of valproate, benzodiazepines, and corticosteroids are relatively effective for treating ENM that occurs in ABPE.

  4. [Prognostic value of EEG in acute posttraumatic coma (author's transl)].

    PubMed

    Walser, H; Friedli, W; Glinz, W

    1981-12-01

    To evaluate the prognostic power of a single EEG-record, the recordings of 50 patients with posttraumatic coma performed within 48 hours after the injury were compared with the outcome after 6 months. A 5-point scale comprising 2 EEG-patterns being notorious for their dismal prognostic significance (suppression bursts, alpha-coma) and changes of vigilance were used as a mean of visual assessment of the recordings. In 24 out of the 28 patients with a bad outcome, the EEG had shown the patterns of category I, II and III (suppression bursts, alpha coma, no changes of vigilance). Of the 22 patients with a good outcome, the EEG had been classified as IV or V (clearly discernible changes of vigilance, sleep patterns). Further findings of particular dismal prognostic significance were focal epileptic discharges, as 9 out of the 11 patients with this EEG pattern had not survived the posttraumatic coma for more than 6 months.

  5. Non-convulsive seizures and non-convulsive status epilepticus monitoring in the intensive care unit. A real need for the Gulf Cooperation Council countries.

    PubMed

    Mesraoua, Boulenouar; Wieser, Heinz G

    2009-10-01

    Continuous EEG (cEEG) monitoring in the intensive care unit (ICU) is essential for detecting non-convulsive seizures/status epilepticus (NCSs, NCSE). Currently there exist a number of continuous EEG monitoring systems adapted for use in the ICU. However, these systems have been trained using EEG data collected from healthy, neurologically intact patients with epileptic seizures, a very different patient population from ICU patients. The review consists of 2 parts, clinical and technological aspects. In the first one, we summarize the electroencephalographic aspects of NCSs/NCSE and other EEG patterns encountered in the ICU. In the second part, we explain how to develop a novel cEEG monitoring system to be used in Hamad Medical Corporation ICUs, Doha, Qatar, that is able to detect pathological EEG patterns commonly occurring in the critically ill patient. Real-time monitoring of seizure discharges, and other pathological EEG patterns will allow correct diagnosis and adequate treatment in a timely fashion.

  6. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns

    PubMed Central

    Lee, You-Yun; Hsieh, Shulan

    2014-01-01

    This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695

  7. Self-induced stretch syncope of adolescence: a video-EEG documentation.

    PubMed

    Mazzuca, Michel; Thomas, Pierre

    2007-12-01

    We present the first video-EEG documentation, with ECG and EMG features, of stretch syncope of adolescence in a young, healthy 16-year-old boy. Stretch syncope of adolescence is a rarely reported, benign cause of fainting in young patients, which can be confused with epileptic seizures. In our patient, syncopes were self-induced to avoid school. Dynamic transcranial Doppler showed evidence of blood flow decrease in both posterior cerebral arteries mimicking effects of a Valsalva manoeuvre. Dynamic angiogram of the vertebral arteries was normal. Hypotheses concerning the physiopathology are discussed. [Published with video sequences].

  8. Detection of EEG-patterns associated with real and imaginary movements using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Runnova, Anastasiya E.; Maksimenko, Vladimir A.; Grishina, Daria S.; Hramov, Alexander E.

    2018-02-01

    Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi- nary movements is an important stage for the development of brain-computer interfaces. In experiments with untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related to motor executions depends on the electrode position.

  9. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Benign childhood epilepsy with centro-temporal spikes: quantitative EEG and the Wechsler intelligence scale for children (WISC-III).

    PubMed

    Tedrus, Gloria M A S; Fonseca, Lineu C; Tonelotto, Josiane M F; Costa, Rebeca M; Chiodi, Marcelo G

    2006-07-01

    Benign childhood epilepsy with centro-temporal spikes (BECTS) is a form of focal idiopathic epilepsy, with seizure remission by the age of 18. Recent studies have suggested that some children with BECTS can suffer from deficits of memory, attention and learning ability and in auditory-verbal and performance sub-tests. On the other hand, alterations in the baseline brain electrical activity determined by using the quantitative electroencephalogram (qEEG) have been described. The objective of this study was to evaluate the absolute and relative powers in the delta, theta, alpha and beta bands of the qEEG in children with BECTS, and their relation to IQ measurements (WISC-III). Twenty-six 8 to 11-year-old children with BECTS were studied, paired with a control group of healthy children according to age and gender. It was shown that the absolute delta and theta powers were statistically greater in the children with BECTS than in the control group, at almost all the electrodes. In the children with BECTS, a negative correlation (Pearson's correlation test) was observed at various electrodes between the absolute delta and theta powers and the performance IQ. These data indicate a possible relationship between maturational disturbance in the brain electrical activity development and the tendency for inferior cognitive performance in children with BECTS.

  11. Paradoxical ictal EEG lateralization in children with unilateral encephaloclastic lesions.

    PubMed

    Garzon, Eliana; Gupta, Ajay; Bingaman, William; Sakamoto, Americo C; Lüders, Hans

    2009-09-01

    Describe an ictal EEG pattern of paradoxical lateralization in children with unilateral encephaloclastic hemispheric lesion acquired early in life. Of 68 children who underwent hemispherectomy during 2003-2005, scalp video-EEG and brain MRI of six children with an ictal scalp EEG pattern discordant to the clinical and imaging data were reanalyzed. Medical charts were reviewed for clinical findings and seizure outcome. Age of seizure onset was 1 day-4 years. The destructive MRI lesion was an ischemic stroke in 2, a post-infectious encephalomalacia in 2, and a perinatal trauma and hemiconvulsive-hemiplegic syndrome in one patient each. Ictal EEG pattern was characterized by prominent ictal rhythms with either 3-7 Hz spike and wave complexes or beta frequency sharp waves (paroxysmal fast) over the unaffected (contralesional) hemisphere. Scalp video-EEG was discordant, however, other findings of motor deficits (hemiparesis; five severe, one mild), seizure semiology (4/6), interictal EEG abnormalities (3/6), and unilateral burden of MRI lesion guided the decision for hemispherectomy. After 12-39 months of post-surgery follow up, five of six patients were seizure free and one has brief staring spells. We describe a paradoxical lateralization of the EEG to the "good" hemisphere in children with unihemispheric encephaloclastic lesions. This EEG pattern is compatible with seizure free outcome after surgery, provided other clinical findings and tests are concordant with origin from the abnormal hemisphere.

  12. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the feature subset producing highest classification accuracy. The suggested feature based classification method is executed using our recorded neonatal EEG dataset, consisting of burst and artifact segments. We obtain 78% sensitivity and 72% specificity as the accuracy measures. The accuracy obtained using the proposed method is found to be about 20% higher than that of the reference approaches. Joint use of the proposed method with our previous work on burst detection outperforms reference methods on simultaneous burst and artifact detection. As the proposed method supports detection of a wide range of artifact patterns, it can be improved to incorporate the detection of artifacts within other seizure patterns and background EEG information as well. © 2013 Elsevier Ltd. All rights reserved.

  13. Computerized recognition of persons by EEG spectral patterns.

    PubMed

    Stassen, H H

    1980-07-01

    Modified techniques of communication theory in connection with multivariate statistical procedures were applied to a sample of 82 patients for the purpose of defining EEG spectral patterns and for solving the relevant classification problems. Ten measurements per patient were made and it could be shown that a subject can be characterized and be recognized by his EEG spectral pattern with high reliability and a confidence probability of almost 90%. This result is valid not only for normal adults but also for schizophrenic patients, implying a close relationship between the EEG spectral pattern and the individual person. At the moment the nature of this relationship is not clear; in particular the supposed relationship to psychopathology could not be proved.

  14. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    PubMed

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals.

  15. EEG Patterns Related to Cognitive Tasks of Varying Complexity.

    ERIC Educational Resources Information Center

    Dunn, Denise A.; And Others

    A study was conducted that attempted to show changes in electroencephalographic (EEG) patterns (identified using topographic EEG mapping) when children were required to perform the relatively simple task of button pressing during an eyes-open baseline session of low cognitive demand and a complex reaction time (RT) task of high cognitive demand.…

  16. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  17. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis.

    PubMed

    Sondag, Lotte; Ruijter, Barry J; Tjepkema-Cloostermans, Marleen C; Beishuizen, Albertus; Bosch, Frank H; van Til, Janine A; van Putten, Michel J A M; Hofmeijer, Jeannette

    2017-05-15

    We recently showed that electroencephalography (EEG) patterns within the first 24 hours robustly contribute to multimodal prediction of poor or good neurological outcome of comatose patients after cardiac arrest. Here, we confirm these results and present a cost-minimization analysis. Early prognosis contributes to communication between doctors and family, and may prevent inappropriate treatment. A prospective cohort study including 430 subsequent comatose patients after cardiac arrest was conducted at intensive care units of two teaching hospitals. Continuous EEG was started within 12 hours after cardiac arrest and continued up to 3 days. EEG patterns were visually classified as unfavorable (isoelectric, low-voltage, or burst suppression with identical bursts) or favorable (continuous patterns) at 12 and 24 hours after cardiac arrest. Outcome at 6 months was classified as good (cerebral performance category (CPC) 1 or 2) or poor (CPC 3, 4, or 5). Predictive values of EEG measures and cost-consequences from a hospital perspective were investigated, assuming EEG-based decision- making about withdrawal of life-sustaining treatment in the case of a poor predicted outcome. Poor outcome occurred in 197 patients (51% of those included in the analyses). Unfavorable EEG patterns at 24 hours predicted a poor outcome with specificity of 100% (95% CI 98-100%) and sensitivity of 29% (95% CI 22-36%). Favorable patterns at 12 hours predicted good outcome with specificity of 88% (95% CI 81-93%) and sensitivity of 51% (95% CI 42-60%). Treatment withdrawal based on an unfavorable EEG pattern at 24 hours resulted in a reduced mean ICU length of stay without increased mortality in the long term. This gave small cost reductions, depending on the timing of withdrawal. Early EEG contributes to reliable prediction of good or poor outcome of postanoxic coma and may lead to reduced length of ICU stay. In turn, this may bring small cost reductions.

  18. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  20. Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy

    PubMed Central

    2013-01-01

    Background Amplitude-integrated electroencephalography (aEEG) is a useful tool to determine the severity of neonatal hypoxic-ischemic encephalopathy (HIE). Our aim was to assess the prevalence and study the origin of false normal aEEG recordings based on 85 aEEG recordings registered before six hours of age. Methods Raw EEG recordings were reevaluated retrospectively with Fourier analysis to identify and describe the frequency patterns of the raw EEG signal, in cases with inconsistent aEEG recordings and clinical symptoms. Power spectral density curves, power (P) and median frequency (MF) were determined using the raw EEG. In 7 patients non-depolarizing muscle relaxant (NDMR) exposure was found. The EEG sections were analyzed and compared before and after NDMR administration. Results The reevaluation found that the aEEG was truly normal in 4 neonates. In 3 neonates, high voltage electrocardiographic (ECG) artifacts were found with flat trace on raw EEG. High frequency component (HFC) was found as a cause of normal appearing aEEG in 10 neonates. HFC disappeared while P and MF decreased significantly upon NDMR administration in each observed case. Conclusion Occurrence of false normal aEEG background pattern is relatively high in neonates with HIE and hypothermia. High frequency EEG artifacts suggestive of shivering were found to be the most common cause of false normal aEEG in hypothermic neonates while high voltage ECG artifacts are less common. PMID:24268061

  1. Benign Childhood Focal Epilepsies: Assessment of Established and Newly Recognized Syndromes

    ERIC Educational Resources Information Center

    Panayiotopoulos, Chrysostomos P.; Michael, Michael; Sanders, Sue; Valeta, Thalia; Koutroumanidis, Michael

    2008-01-01

    A big advance in epileptology has been the recognition of syndromes with distinct aetiology, clinical and EEG features, treatment and prognosis. A prime and common example of this is rolandic epilepsy that is well known by the general paediatricians for over 50 years, thus allowing a precise diagnosis that predicts an excellent prognosis. However,…

  2. Unsupervised EEG analysis for automated epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  3. Outcomes of patients with altered level of consciousness and abnormal electroencephalogram: A retrospective cohort study

    PubMed Central

    Ferrari-Marinho, Taissa; Naves, Pedro Vicente Ferreira; Ladeia-Frota, Carol; Caboclo, Luís Otávio

    2017-01-01

    Introduction Nonconvulsive seizures (NCS) are frequent in hospitalized patients and may further aggravate injury in the already damaged brain, potentially worsening outcomes in encephalopathic patients. Therefore, both early seizure recognition and treatment have been advocated to prevent further neurological damage. Objective Evaluate the main EEG patterns seen in patients with impaired consciousness and address the effect of treatment with antiepileptic drugs (AEDs), continuous intravenous anesthetic drugs (IVADs), or the combination of both, on outcomes. Methods This was a single center retrospective cohort study conducted in a private, tertiary care hospital. Consecutive adult patients with altered consciousness submitted to a routine EEG between January 2008 and February 2011 were included in this study. Based on EEG pattern, patients were assigned to one of three groups: Group Interictal Patterns (IP; EEG showing only interictal epileptiform discharges or triphasic waves), Group Rhythmic and Periodic Patterns (RPP; at least one EEG with rhythmic or periodic patterns), and Group Ictal (Ictal; at least one EEG showing ictal pattern). Groups were compared in terms of administered antiepileptic treatment and frequency of unfavorable outcomes (modified Rankin scale ≥3 and in-hospital mortality). Results Two hundred and six patients (475 EEGs) were included in this analysis. Interictal pattern was observed in 35.4% (73/206) of patients, RPP in 53.4% (110/206) and ictal in 11.2% (23/206) of patients. Treatment with AEDs, IVADs or a combination of both was administered in half of the patients. While all Ictal group patients received treatment (AEDs or IVADs), only 24/73 (32.9%) IP group patients and 55/108 (50.9%) RPP group patients were treated (p<0.001). Hospital length of stay (LOS) and frequency of unfavorable outcomes did not differ among the groups. In-hospital mortality was higher in IVADs treated RPP patients compared to AEDs treated RPP patients [11/19 (57.9%) vs. 11/36 (30.6%) patients, respectively, p = 0.049]. Hospital LOS, in-hospital mortality and frequency of unfavorable outcomes did not differ between Ictal patients treated exclusively with AEDs or IVADs. Conclusion In patients with acute altered consciousness and abnormal routine EEG, antiepileptic treatment did not improve outcomes regardless of the presence of periodic, rhythmic or ictal EEG patterns. PMID:28886073

  4. Outcomes of patients with altered level of consciousness and abnormal electroencephalogram: A retrospective cohort study.

    PubMed

    Sanches, Paula Rodrigues; Corrêa, Thiago Domingos; Ferrari-Marinho, Taissa; Naves, Pedro Vicente Ferreira; Ladeia-Frota, Carol; Caboclo, Luís Otávio

    2017-01-01

    Nonconvulsive seizures (NCS) are frequent in hospitalized patients and may further aggravate injury in the already damaged brain, potentially worsening outcomes in encephalopathic patients. Therefore, both early seizure recognition and treatment have been advocated to prevent further neurological damage. Evaluate the main EEG patterns seen in patients with impaired consciousness and address the effect of treatment with antiepileptic drugs (AEDs), continuous intravenous anesthetic drugs (IVADs), or the combination of both, on outcomes. This was a single center retrospective cohort study conducted in a private, tertiary care hospital. Consecutive adult patients with altered consciousness submitted to a routine EEG between January 2008 and February 2011 were included in this study. Based on EEG pattern, patients were assigned to one of three groups: Group Interictal Patterns (IP; EEG showing only interictal epileptiform discharges or triphasic waves), Group Rhythmic and Periodic Patterns (RPP; at least one EEG with rhythmic or periodic patterns), and Group Ictal (Ictal; at least one EEG showing ictal pattern). Groups were compared in terms of administered antiepileptic treatment and frequency of unfavorable outcomes (modified Rankin scale ≥3 and in-hospital mortality). Two hundred and six patients (475 EEGs) were included in this analysis. Interictal pattern was observed in 35.4% (73/206) of patients, RPP in 53.4% (110/206) and ictal in 11.2% (23/206) of patients. Treatment with AEDs, IVADs or a combination of both was administered in half of the patients. While all Ictal group patients received treatment (AEDs or IVADs), only 24/73 (32.9%) IP group patients and 55/108 (50.9%) RPP group patients were treated (p<0.001). Hospital length of stay (LOS) and frequency of unfavorable outcomes did not differ among the groups. In-hospital mortality was higher in IVADs treated RPP patients compared to AEDs treated RPP patients [11/19 (57.9%) vs. 11/36 (30.6%) patients, respectively, p = 0.049]. Hospital LOS, in-hospital mortality and frequency of unfavorable outcomes did not differ between Ictal patients treated exclusively with AEDs or IVADs. In patients with acute altered consciousness and abnormal routine EEG, antiepileptic treatment did not improve outcomes regardless of the presence of periodic, rhythmic or ictal EEG patterns.

  5. Proepileptic patterns in EEG of WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  6. Resting and reactive frontal brain electrical activity (EEG) among a non-clinical sample of socially anxious adults: Does concurrent depressive mood matter?

    PubMed Central

    Beaton, Elliott A; Schmidt, Louis A; Ashbaugh, Andrea R; Santesso, Diane L; Antony, Martin M; McCabe, Randi E

    2008-01-01

    A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG) is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG) at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality. PMID:18728822

  7. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study.

    PubMed

    Ruijter, B J; Hofmeijer, J; Meijer, H G E; van Putten, M J A M

    2017-09-01

    In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG abnormalities. We used a mean field model comprising excitatory and inhibitory neurons, local synaptic connections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synaptic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with continuous EEG recordings of 155 comatose patients after cardiac arrest. The simulations agree well with six common categories of EEG rhythms in postanoxic encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory synapses were more severely affected by short-term synaptic depression than inhibitory synapses. In postanoxic encephalopathy, the evolution of EEG patterns presumably results from gradual improvement of complete synaptic failure, where excitatory synapses are more severely affected than inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably resulting from long-term potentiation of excitatory neurotransmission. Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both typical EEG observations and their evolution in time. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. EEG - A Valuable Biomarker of Brain Injury in Preterm Infants.

    PubMed

    Pavlidis, Elena; Lloyd, Rhodri O; Boylan, Geraldine B

    2017-01-01

    This review focuses on the role of electroencephalography (EEG) in monitoring abnormalities of preterm brain function. EEG features of the most common developmental brain injuries in preterm infants, including intraventricular haemorrhage, periventricular leukomalacia, and perinatal asphyxia, are described. We outline the most common EEG biomarkers associated with these injuries, namely seizures, positive rolandic sharp waves, EEG suppression/increased interburst intervals, mechanical delta brush activity, and other deformed EEG waveforms, asymmetries, and asynchronies. The increasing survival rate of preterm infants, in particular those that are very and extremely preterm, has led to a growing demand for a specific and shared characterization of the patterns related to adverse outcome in this unique population. This review includes abundant high-quality images of the EEG patterns seen in premature infants and will provide a valuable resource for everyone working in developmental neuroscience. © 2017 S. Karger AG, Basel.

  9. Determination of awareness in patients with severe brain injury using EEG power spectral analysis

    PubMed Central

    Goldfine, Andrew M.; Victor, Jonathan D.; Conte, Mary M.; Bardin, Jonathan C.; Schiff, Nicholas D.

    2011-01-01

    Objective To determine whether EEG spectral analysis could be used to demonstrate awareness in patients with severe brain injury. Methods We recorded EEG from healthy controls and three patients with severe brain injury, ranging from minimally conscious state (MCS) to locked-in-state (LIS), while they were asked to imagine motor and spatial navigation tasks. We assessed EEG spectral differences from 4 to 24 Hz with univariate comparisons (individual frequencies) and multivariate comparisons (patterns across the frequency range). Results In controls, EEG spectral power differed at multiple frequency bands and channels during performance of both tasks compared to a resting baseline. As patterns of signal change were inconsistent between controls, we defined a positive response in patient subjects as consistent spectral changes across task performances. One patient in MCS and one in LIS showed evidence of motor imagery task performance, though with patterns of spectral change different from the controls. Conclusion EEG power spectral analysis demonstrates evidence for performance of mental imagery tasks in healthy controls and patients with severe brain injury. Significance EEG power spectral analysis can be used as a flexible bedside tool to demonstrate awareness in brain-injured patients who are otherwise unable to communicate. PMID:21514214

  10. Clinical outcome of recurrent afebrile seizures in children with benign convulsions associated with mild gastroenteritis.

    PubMed

    Chen, Boman; Cheng, Min; Hong, Siqi; Liao, Shuang; Ma, Jiannan; Li, Tingsong; Jiang, Li

    2018-05-30

    To assess the clinical outcome and evolution of recurrent afebrile seizures in children initially diagnosed with benign convulsions associated with mild gastroenteritis (CwG). We reviewed and analyzed the medical records of 37 patients who were diagnosed as CwG at onset, followed by recurrent afebrile seizures and followed up for at least 24 months. The follow-up period ranged from 2 to 7 years (median, 40.1 months).Three patterns of recurrent afebrile seizures were recorded: afebrile seizures associated with gastrointestinal infection (AS-GI, n = 25), afebrile seizures associated with non-gastrointestinal infection (AS-nGI, n = 9), and unprovoked seizures (US, n = 3). Twenty eight patients (75.7%) had a second episode within 6 months after the first seizures. Five cases (13.5%) suffered three episodes of afebrile seizures. Seizure characteristics of the three patterns were similar, manifesting as clustered seizures in the majority. Focal epileptic activities in interictal EEG were found in 3 cases (9.4%) at onset, 10 cases (28.6%) at the second episode, respectively. Six patients were prescribed anti-epileptic drugs with apparently good responses. During at least 2 years' follow-up, all the cases showed normal psychomotor development. Only one patient was diagnosed with epilepsy. All the recurrent afebrile seizures initially diagnosed as CwG, irrespective of the kinds and frequency of relapses, showed favorable prognoses. CwG maybe falls within the category of situation-related seizures, rather than epilepsy. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    PubMed

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure detection algorithm were categorized: ictal discharges, periodic epileptiform discharges (PEDs) and other waveforms. Brain injury was assessed with sequential cranial ultrasound (cUS) and MRI at term-equivalent age. Neurodevelopmental outcome was assessed with the BSITD-III (2 years) and WPPSI-III-NL (5 years). Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (p<0.05), but not PEDs (p=0.238), was significantly associated with head position. No relation was found between the median total duration of each pattern and injury on cUS and MRI or cognition at 2 and 5 years. Clear ictal discharges are rare in extremely preterm infants. PEDs are common but their significance is unclear. Rhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task

    DTIC Science & Technology

    2014-11-01

    using non-parametric statistical analysis to identify neurophysiological patterns due to the time-on-task effect. Significant changes in EEG power...EEG, Cognitive Performance, Power Spectral Analysis , Non-Parametric Analysis Document is available to the public through the Internet...3 Performance Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 EEG

  13. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    PubMed

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  14. Insomnia and sleep misperception.

    PubMed

    Bastien, C H; Ceklic, T; St-Hilaire, P; Desmarais, F; Pérusse, A D; Lefrançois, J; Pedneault-Drolet, M

    2014-10-01

    Sleep misperception is often observed in insomnia individuals (INS). The extent of misperception varies between different types of INS. The following paper comprised sections which will be aimed at studying the sleep EEG and compares it to subjective reports of sleep in individuals suffering from either psychophysiological insomnia or paradoxical insomnia and good sleeper controls. The EEG can be studied without any intervention (thus using the raw data) via either PSG or fine quantitative EEG analyses (power spectral analysis [PSA]), identifying EEG patterns as in the case of cyclic alternating patterns (CAPs) or by decorticating the EEG while scoring the different transient or phasic events (K-Complexes or sleep spindles). One can also act on the on-going EEG by delivering stimuli so to study their impact on cortical measures as in the case of event-related potential studies (ERPs). From the paucity of studies available using these different techniques, a general conclusion can be reached: sleep misperception is not an easy phenomenon to quantify and its clinical value is not well recognized. Still, while none of the techniques or EEG measures defined in the paper is available and/or recommended to diagnose insomnia, ERPs might be the most indicated technique to study hyperarousal and sleep quality in different types of INS. More research shall also be dedicated to EEG patterns and transient phasic events as these EEG scoring techniques can offer a unique insight of sleep misperception. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Clinical review: Continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest

    PubMed Central

    2013-01-01

    There has been a dramatic change in hospital care of cardiac arrest survivors in recent years, including the use of target temperature management (hypothermia). Clinical signs of recovery or deterioration, which previously could be observed, are now concealed by sedation, analgesia, and muscle paralysis. Seizures are common after cardiac arrest, but few centers can offer high-quality electroencephalography (EEG) monitoring around the clock. This is due primarily to its complexity and lack of resources but also to uncertainty regarding the clinical value of monitoring EEG and of treating post-ischemic electrographic seizures. Thanks to technical advances in recent years, EEG monitoring has become more available. Large amounts of EEG data can be linked within a hospital or between neighboring hospitals for expert opinion. Continuous EEG (cEEG) monitoring provides dynamic information and can be used to assess the evolution of EEG patterns and to detect seizures. cEEG can be made more simple by reducing the number of electrodes and by adding trend analysis to the original EEG curves. In our version of simplified cEEG, we combine a reduced montage, displaying two channels of the original EEG, with amplitude-integrated EEG trend curves (aEEG). This is a convenient method to monitor cerebral function in comatose patients after cardiac arrest but has yet to be validated against the gold standard, a multichannel cEEG. We recently proposed a simplified system for interpreting EEG rhythms after cardiac arrest, defining four major EEG patterns. In this topical review, we will discuss cEEG to monitor brain function after cardiac arrest in general and how a simplified cEEG, with a reduced number of electrodes and trend analysis, may facilitate and improve care. PMID:23876221

  16. Electroencephalogram Signatures of Ketamine-Induced Unconsciousness

    PubMed Central

    Akeju, Oluwaseun; Song, Andrew H.; Hamilos, Allison E.; Pavone, Kara J.; Flores, Francisco J.; Brown, Emery N.; Purdon, Patrick L.

    2016-01-01

    Objectives Ketamine is an N-methyl-D-aspartate receptor antagonist commonly administered as a general anesthetic. However, circuit level mechanisms to explain ketamine-induced unconsciousness in humans are yet to be clearly defined. Disruption of frontal-parietal network connectivity has been proposed as a mechanism to explain this brain state. However, this mechanism was recently demonstrated at subanesthetic doses of ketamine in awake-patients. Therefore we investigated whether there is an electroencephalogram (EEG) marker for ketamine-induced unconsciousness. Methods We retrospectively studied the EEG in 12 patients who received ketamine for the induction of general anesthesia. We analyzed the EEG dynamics using power spectral and coherence methods. Results Following the administration of a bolus dose of ketamine to induce unconsciousness, we observed a “gamma burst” EEG pattern that consisted of alternating slow-delta (0.1-4 Hz) and gamma (~27-40 Hz) oscillations. This pattern was also associated with increased theta oscillations (~4-8 Hz) and decreased alpha/beta oscillations (~10-24 Hz). Conclusions Ketamine-induced unconsciousness is associated with a gamma burst EEG pattern. Significance We postulate that the gamma burst pattern is a thalamocortical rhythm based on insights previously obtained from cat neurophysiological experiments. This EEG signature of ketamine-induced unconsciousness may offer new insights into general anesthesia induced brain states. PMID:27178861

  17. Automatic burst detection for the EEG of the preterm infant.

    PubMed

    Jennekens, Ward; Ruijs, Loes S; Lommen, Charlotte M L; Niemarkt, Hendrik J; Pasman, Jaco W; van Kranen-Mastenbroek, Vivianne H J M; Wijn, Pieter F F; van Pul, Carola; Andriessen, Peter

    2011-10-01

    To aid with prognosis and stratification of clinical treatment for preterm infants, a method for automated detection of bursts, interburst-intervals (IBIs) and continuous patterns in the electroencephalogram (EEG) is developed. Results are evaluated for preterm infants with normal neurological follow-up at 2 years. The detection algorithm (MATLAB®) for burst, IBI and continuous pattern is based on selection by amplitude, time span, number of channels and numbers of active electrodes. Annotations of two neurophysiologists were used to determine threshold values. The training set consisted of EEG recordings of four preterm infants with postmenstrual age (PMA, gestational age + postnatal age) of 29-34 weeks. Optimal threshold values were based on overall highest sensitivity. For evaluation, both observers verified detections in an independent dataset of four EEG recordings with comparable PMA. Algorithm performance was assessed by calculation of sensitivity and positive predictive value. The results of algorithm evaluation are as follows: sensitivity values of 90% ± 6%, 80% ± 9% and 97% ± 5% for burst, IBI and continuous patterns, respectively. Corresponding positive predictive values were 88% ± 8%, 96% ± 3% and 85% ± 15%, respectively. In conclusion, the algorithm showed high sensitivity and positive predictive values for bursts, IBIs and continuous patterns in preterm EEG. Computer-assisted analysis of EEG may allow objective and reproducible analysis for clinical treatment.

  18. Somatosensory-evoked spikes on electroencephalography (EEG): longitudinal clinical and EEG aspects in 313 children.

    PubMed

    Fonseca, Lineu Corrêa; Tedrus, Gloria M A S

    2012-01-01

    Somatosensory-evoked spikes (ESp) are high-voltage potentials registered on the EEG, which accompany each of the percussions on the feet or hands. The objective of this research was to study the longitudinal clinical and EEG aspects of children with ESp. A total of 313 children, 53.7% male, showing ESp on the EEG and with an average initial age of 6.82 (range from 2 to 14 years) were followed for a mean period of 35.7 months. In the initial evaluation, 118 (37.7%) had a history of nonfebrile epileptic seizures (ES). Epileptiform activity (EA) was observed on the EEG in 61% and showed a significantly greater occurrence in children with ES than in those without (P = .000). Of the 118 showing seizures from the start, 53 (44.9%) continued to have seizures; of the 195 without seizures at the start, only 13 (6.67%) developed them. Thus, only 66 (21.1%) children showed ES during the follow-up. ESp disappeared in 237 (75.7%) cases and EA in 221 (70.6%). In the children with ES, it was found that the presence of EA on the first EEG did not indicate continuation of the ES throughout the remaining period, while the 13 children who presented their first ES in a later period showed a greater occurrence of EA on the initial EEG than those who did not develop ES (P = .001). Evidence of brain injury was observed in 43 (13.7%) children and was associated with a greater continuity of the ES during the study (P = .018). ESp, EA, and ES tend to disappear, suggesting an age-dependent phenomenon. The finding of ESp, particularly in the absence of any evidence of brain injury, indicates a low association with ES and benign outcome.

  19. Functional neurotoxicity evaluation of noribogaine using video-EEG in cynomolgus monkeys.

    PubMed

    Authier, Simon; Accardi, Michael V; Paquette, Dominique; Pouliot, Mylène; Arezzo, Joseph; Stubbs, R John; Gerson, Ronald J; Friedhoff, Lawrence T; Weis, Holger

    2016-01-01

    Continuous video-electroencephalographic (EEG) monitoring remains the gold standard for seizure liability assessments in preclinical drug safety assessments. EEG monitored by telemetry was used to assess the behavioral and EEG effects of noribogaine hydrochloride (noribogaine) in cynomolgus monkeys. Noribogaine is an iboga alkaloid being studied for the treatment of opioid dependence. Six cynomolgus monkeys (3 per gender) were instrumented with EEG telemetry transmitters. Noribogaine was administered to each monkey at both doses (i.e., 160 and 320mg/kg, PO) with an interval between dosing of at least 6days, and the resulting behavioral and EEG effects were evaluated. IV pentylenetetrazol (PTZ), served as a positive control for induced seizures. The administration of noribogaine at either of the doses evaluated was not associated with EEG evidence of seizure or with EEG signals known to be premonitory signs of increased seizure risk (e.g., sharp waves, unusual synchrony, shifts to high-frequency patterns). Noribogaine was associated with a mild reduction in activity levels, increased scratching, licking and chewing, and some degree of poor coordination and related clinical signs. A single monkey exhibited brief myoclonic movements that increased in frequency at the high dose, but which did not appear to generalize, cluster or to be linked with EEG abnormalities. Noribogaine was also associated with emesis and partial anorexia. In contrast, PTZ was associated with substantial pre-ictal EEG patterns including large amplitude, repetitive sharp waves leading to generalized seizures and to typical post-ictal EEG frequency attenuation. EEG patterns were within normal limits following administration of noribogaine at doses up to 320mg/kg with concurrent clinical signs that correlated with plasma exposures and resolved by the end of the monitoring period. PTZ was invariably associated with EEG paroxysmal activity leading to ictal EEG. In the current study, a noribogaine dose of 320mg/kg was considered to be the EEG no observed adverse effect level (NOAEL) in conscious freely moving cynomolgus monkeys. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Benign Rolandic epilepsy presenting like paradoxical vocal fold motion.

    PubMed

    Gross, Jennifer H; Bertrand, Mary; Hirose, Keiko

    2017-11-01

    Paradoxical vocal fold motion (PVFM) is characterized by vocal fold adduction during respiration. Benign Rolandic epilepsy (BRE) is the most common childhood epilepsy and can cause oropharyngolaryngeal or facial manifestations. A 9-year-old male presented with intermittent apnea lasting 30-60 seconds and presumed PVFM. The patient's physical and fiberoptic exam were normal. He was admitted and found to have episodes of oxygen desaturation, neck twitching, and tongue burning. An EEG revealed focal epilepsy. After starting anti-epileptic medications, he had resolution of symptoms. Our patient was eventually diagnosed with BRE, a focal onset epilepsy that can mimic primary otolaryngologic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Automatic Seizure Detection Based on Morphological Features Using One-Dimensional Local Binary Pattern on Long-Term EEG.

    PubMed

    Shanir, P P Muhammed; Khan, Kashif Ahmad; Khan, Yusuf Uzzaman; Farooq, Omar; Adeli, Hojjat

    2017-12-01

    Epileptic neurological disorder of the brain is widely diagnosed using the electroencephalography (EEG) technique. EEG signals are nonstationary in nature and show abnormal neural activity during the ictal period. Seizures can be identified by analyzing and obtaining features of EEG signal that can detect these abnormal activities. The present work proposes a novel morphological feature extraction technique based on the local binary pattern (LBP) operator. LBP provides a unique decimal value to a sample point by weighing the binary outcomes after thresholding the neighboring samples with the present sample point. These LBP values assist in capturing the rising and falling edges of the EEG signal, thus providing a morphologically featured discriminating pattern for epilepsy detection. In the present work, the variability in the LBP values is measured by calculating the sum of absolute difference of the consecutive LBP values. Interquartile range is calculated over the preprocessed EEG signal to provide dispersion measure in the signal. For classification purpose, K-nearest neighbor classifier is used, and the performance is evaluated on 896.9 hours of data from CHB-MIT continuous EEG database. Mean accuracy of 99.7% and mean specificity of 99.8% is obtained with average false detection rate of 0.47/h and sensitivity of 99.2% for 136 seizures.

  2. EEG as an Indicator of Cerebral Functioning in Postanoxic Coma.

    PubMed

    Juan, Elsa; Kaplan, Peter W; Oddo, Mauro; Rossetti, Andrea O

    2015-12-01

    Postanoxic coma after cardiac arrest is one of the most serious acute cerebral conditions and a frequent cause of admission to critical care units. Given substantial improvement of outcome over the recent years, a reliable and timely assessment of clinical evolution and prognosis is essential in this context, but may be challenging. In addition to the classic neurologic examination, EEG is increasingly emerging as an important tool to assess cerebral functions noninvasively. Although targeted temperature management and related sedation may delay clinical assessment, EEG provides accurate prognostic information in the early phase of coma. Here, the most frequently encountered EEG patterns in postanoxic coma are summarized and their relations with outcome prediction are discussed. This article also addresses the influence of targeted temperature management on brain signals and the implication of the evolution of EEG patterns over time. Finally, the article ends with a view of the future prospects for EEG in postanoxic management and prognostication.

  3. Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konkol, R.J.; Maister, B.H.; Wells, R.G.

    1990-11-01

    Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with themore » pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.« less

  4. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    NASA Astrophysics Data System (ADS)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  5. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  6. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  7. Quantitative EEG Metrics Differ Between Outcome Groups and Change Over the First 72 h in Comatose Cardiac Arrest Patients.

    PubMed

    Wiley, Sara Leingang; Razavi, Babak; Krishnamohan, Prashanth; Mlynash, Michael; Eyngorn, Irina; Meador, Kimford J; Hirsch, Karen G

    2018-02-01

    Forty to sixty-six percent of patients resuscitated from cardiac arrest remain comatose, and historic outcome predictors are unreliable. Quantitative spectral analysis of continuous electroencephalography (cEEG) may differ between patients with good and poor outcomes. Consecutive patients with post-cardiac arrest hypoxic-ischemic coma undergoing cEEG were enrolled. Spectral analysis was conducted on artifact-free contiguous 5-min cEEG epochs from each hour. Whole band (1-30 Hz), delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), α/δ power ratio, percent suppression, and variability were calculated and correlated with outcome. Graphical patterns of quantitative EEG (qEEG) were described and categorized as correlating with outcome. Clinical outcome was dichotomized, with good neurologic outcome being consciousness recovery. Ten subjects with a mean age = 50 yrs (range = 18-65) were analyzed. There were significant differences in total power (3.50 [3.30-4.06] vs. 0.68 [0.52-1.02], p = 0.01), alpha power (1.39 [0.66-1.79] vs 0.27 [0.17-0.48], p < 0.05), delta power (2.78 [2.21-3.01] vs 0.55 [0.38-0.83], p = 0.01), percent suppression (0.66 [0.02-2.42] vs 73.4 [48.0-97.5], p = 0.01), and multiple measures of variability between good and poor outcome patients (all values median [IQR], good vs. poor). qEEG patterns with high or increasing power or large power variability were associated with good outcome (n = 6). Patterns with consistently low or decreasing power or minimal power variability were associated with poor outcome (n = 4). These preliminary results suggest qEEG metrics correlate with outcome. In some patients, qEEG patterns change over the first three days post-arrest.

  8. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

  9. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980

  10. Prognostic value of electroencephalography (EEG) after out-of-hospital cardiac arrest in successfully resuscitated patients used in daily clinical practice.

    PubMed

    Søholm, Helle; Kjær, Troels Wesenberg; Kjaergaard, Jesper; Cronberg, Tobias; Bro-Jeppesen, John; Lippert, Freddy K; Køber, Lars; Wanscher, Michael; Hassager, Christian

    2014-11-01

    Out-of-hospital cardiac arrest (OHCA) is associated with a poor prognosis and predicting outcome is complex with neurophysiological testing and repeated clinical neurological examinations as key components of the assessment. In this study we examine the association between different electroencephalography (EEG) patterns and mortality in a clinical cohort of OHCA-patients. From 2002 to 2011 consecutive patients were admitted to an intensive-care-unit after resuscitation from OHCA. Utstein-criteria for pre-hospital data and review of individual patients' charts for post-resuscitation care were used. EEG reports were analysed according to the 2012 American Clinical Neurophysiology Society's guidelines. A total of 1076 patients were included, and EEG was performed in 20% (n=219) with a median of 3(IQR 2-4) days after OHCA. Rhythmic Delta Activity (RDA) was found in 71 patients (36%) and Periodic Discharges (PD) in 100 patients (45%). Background EEG frequency of Alpha+ or Theta was noted in 107 patients (49%), and change in cerebral EEG activity to stimulation (reactivity) was found in 38 patients (17%). Suppression (all activity <10 μV) was found in 26 (12%) and burst-suppression in 17 (8%) patients. A favourable EEG pattern (reactivity, favourable background frequency and RDA) was independently associated with reduced mortality with hazard ratio (HR) 0.43 (95%CI: 0.24-0.76), p=0.004 (false positive rate: 31%) and a non-favourable EEG pattern (no reactivity, unfavourable background frequency, and PD, suppressed voltage or burst-suppression) was associated with higher mortality (HR=1.62(1.09-2.41), p=0.02) after adjustment for known prognostic factors (false positive rate: 9%). EEG may be useful in work-up in prognostication of patients with OHCA. Findings such as Rhythmic Delta Activity (RDA) seem to be associated with a better prognosis, whereas suppressed voltage and burst-suppression patterns were associated with poor prognosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Dynamic Modulation of Sensory Cortex by Top-Down Spatial Attention

    DTIC Science & Technology

    2015-04-15

    yet only in recent decades has the neural basis for these benefits begun to be studied. The studies presented here use EEG and MEG to identify patterns...presented here use EEG and MEG to identify patterns of neural activity related to the deployment of attention in extrapersonal space, and examine the...we use simultaneously recorded EEG/ MEG to examine the interaction of these top-down signals with neural responses evoked by attended and unattended

  12. Inflammatory and vascular placental lesions are associated with neonatal amplitude integrated EEG recording in early premature neonates

    PubMed Central

    Goshen, Sharon; Richardson, Justin; Drunov, VIadimir; Staretz Chacham, Orna; Shany, Eilon

    2017-01-01

    Introduction Placental histologic examination can assist in revealing the mechanism leading to preterm birth. Accumulating evidence suggests an association between intrauterine pathological processes, morbidity and mortality of premature infants, and their long term outcome. Neonatal brain activity is increasingly monitored in neonatal intensive care units by amplitude integrated EEG (aEEG) and indices of background activity and sleep cycling patterns were correlated with long term outcome. We hypothesized an association between types of placental lesions and abnormal neonatal aEEG patterns. Objective To determine the association between the placental lesions observed in extreme preterm deliveries, and their neonatal aEEG patterns and survival. Patients and methods This prospective cohort study included extreme premature infants, who were born ≤ 28 weeks of gestation, their placentas were available for histologic examination, and had a continues aEEG, soon after birth)n = 34). Infants and maternal clinical data were collected. aEEG data was assessed for percentage of depressed daily activity in the first 3 days of life and for sleep cycling. Associations of placental histology with clinical findings and aEEG activity were explored using parametric and non-parametric statistics. Results Twenty two out of the 34 newborns survived to discharge. Preterm prelabor rupture of membranes (PPROM) or chorioamnionitis were associated with placental lesions consistent with fetal amniotic fluid infection (AFI) or maternal under perfusion (MUP) (P < 0.05). Lesions consistent with fetal response to AFI were associated with absence of SWC pattern during the 1st day of life. Fetal-vascular-thrombo-occlusive lesions of inflammatory type were negatively associated with depressed cerebral activity during the 1st day of life, and with aEEG cycling during the 2nd day of life (P<0.05). Placental lesions associated with MUP were associated with depressed neonatal cerebral activity during the first 3 days of life (P = 0.007). Conclusions Depressed neonatal aEEG patterns are associated with placental lesions consistent with maternal under perfusion, and amniotic fluid infection of fetal type, but not with fetal thrombo-oclusive vascular disease of inflammatory type. Our findings highlight the association between the intrauterine mechanisms leading to preterm parturition and subsequent depressed neonatal cerebral function early after birth, which eventually may put premature infants at risk for abnormal neurodevelopmental outcome. PMID:28644831

  13. Quantitative EEG patterns of differential in-flight workload

    NASA Technical Reports Server (NTRS)

    Sterman, M. B.; Mann, C. A.; Kaiser, D. A.

    1993-01-01

    Four test pilots were instrumented for in-flight EEG recordings using a custom portable recording system. Each flew six, two minute tracking tasks in the Calspan NT-33 experimental trainer at Edwards AFB. With the canopy blacked out, pilots used a HUD display to chase a simulated aircraft through a random flight course. Three configurations of flight controls altered the flight characteristics to achieve low, moderate, and high workload, as determined by normative Cooper-Harper ratings. The test protocol was administered by a command pilot in the back seat. Corresponding EEG and tracking data were compared off-line. Tracking performance was measured as deviation from the target aircraft and combined with control difficulty to achieve an estimate of 'cognitive workload'. Trended patterns of parietal EEG activity at 8-12 Hz were sorted according to this classification. In all cases, high workload produced a significantly greater suppression of 8-12 Hz activity than low workload. Further, a clear differentiation of EEG trend patterns was obtained in 80 percent of the cases. High workload produced a sustained suppression of 8-12 Hz activity, while moderate workload resulted in an initial suppression followed by a gradual increment. Low workload was associated with a modulated pattern lacking any periods of marked or sustained suppression. These findings suggest that quantitative analysis of appropriate EEG measures may provide an objective and reliable in-flight index of cognitive effort that could facilitate workload assessment.

  14. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  15. Recognition of neural brain activity patterns correlated with complex motor activity

    NASA Astrophysics Data System (ADS)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  16. Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani

    2017-03-01

    Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.

  17. Some sequential, distribution-free pattern classification procedures with applications

    NASA Technical Reports Server (NTRS)

    Poage, J. L.

    1971-01-01

    Some sequential, distribution-free pattern classification techniques are presented. The decision problem to which the proposed classification methods are applied is that of discriminating between two kinds of electroencephalogram responses recorded from a human subject: spontaneous EEG and EEG driven by a stroboscopic light stimulus at the alpha frequency. The classification procedures proposed make use of the theory of order statistics. Estimates of the probabilities of misclassification are given. The procedures were tested on Gaussian samples and the EEG responses.

  18. Electroencephalography in premature and full-term infants. Developmental features and glossary.

    PubMed

    André, M; Lamblin, M-D; d'Allest, A M; Curzi-Dascalova, L; Moussalli-Salefranque, F; S Nguyen The, Tich; Vecchierini-Blineau, M-F; Wallois, F; Walls-Esquivel, E; Plouin, P

    2010-05-01

    Following the pioneering work of C. Dreyfus-Brisac and N. Monod, research into neonatal electroencephalography (EEG) has developed tremendously in France. French neurophysiologists who had been trained in Paris (France) collaborated on a joint project on the introduction, development, and currently available neonatal EEG recording techniques. They assessed the analytical criteria for the different maturational stages and standardized neonatal EEG terminology on the basis of the large amount of data available in the French and the English literature. The results of their work were presented in 1999. Since the first edition, technology has moved towards the widespread use of digitized recordings. Although the data obtained with analog recordings can be applied to digitized EEG tracings, the present edition, including new published data, is illustrated with digitized recordings. Herein, the reader can find a comprehensive description of EEG features and neonatal behavioural states at different gestational ages, and also a definition of the main aspects and patterns of both pathological and normal EEGs, presented in glossary form. In both sections, numerous illustrations have been provided. This precise neonatal EEG terminology should improve homogeneity in the analysis of neonatal EEG recordings, and facilitate the setting up of multicentric studies on certain aspects of normal EEG recordings and various pathological patterns. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  19. Time-series analysis of sleep wake stage of rat EEG using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Shinba, Toshikazu; Mugishima, Go; Haraguchi, Hikaru; Inoue, Masayoshi

    2008-05-01

    We performed electroencephalography (EEG) for six male Wistar rats to clarify temporal behaviors at different levels of consciousness. Levels were identified both by conventional sleep analysis methods and by our novel entropy method. In our method, time-dependent pattern entropy is introduced, by which EEG is reduced to binary symbolic dynamics and the pattern of symbols in a sliding temporal window is considered. A high correlation was obtained between level of consciousness as measured by the conventional method and mean entropy in our entropy method. Mean entropy was maximal while awake (stage W) and decreased as sleep deepened. These results suggest that time-dependent pattern entropy may offer a promising method for future sleep research.

  20. Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes.

    PubMed

    Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri; Juhl, Claus; Remvig, Line Sofie; Rose, Martin H; Rosenzweig, Ivana; Beniczky, Sándor; Olsen, Birthe; Pilgaard, Kasper; Johannesen, Jesper

    2016-11-01

    The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG measurement and real-time signal processing. Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures were calculated. A within-patient analysis was conducted comparing hypoglycemia versus euglycemia changes in the qEEG. The nonparametric Wilcoxon signed rank test was performed. A real-time analyzing algorithm developed for adults was applied. The qEEG showed significant differences in specific bands comparing hypoglycemia to euglycemia both during daytime and during sleep. In daytime the EEG-based algorithm identified hypoglycemia in all children on average at a blood glucose (BG) level of 2.5 ± 0.5 mmol/l and 18.4 (ranging from 0 to 55) minutes prior to blood glucose nadir. During sleep the nighttime algorithm did not perform. We found significant differences in the qEEG in euglycemia and hypoglycemia both during daytime and during sleep. The algorithm developed for adults detected hypoglycemia in all children during daytime. The algorithm had too many false alarms during the night because it was more sensitive to deep sleep EEG patterns than hypoglycemia-related EEG changes. An algorithm for nighttime EEG is needed for accurate detection of nocturnal hypoglycemic episodes in children. This study indicates that a hypoglycemia alarm may be developed using real-time continuous EEG monitoring. © 2016 Diabetes Technology Society.

  1. A study of 43 patients with panayiotopoulos syndrome, a common and benign childhood seizure susceptibility.

    PubMed

    Lada, Christina; Skiadas, Konstantinos; Theodorou, Virginia; Loli, Nomiki; Covanis, Athanasios

    2003-01-01

    To determine prevalence, clinical, EEG features, and prognosis of Panayiotopoulos syndrome and to examine the proposition that clinical manifestations are more important than EEG findings. We analyzed retrospectively the clinical and EEG records of 1,340 children with one or more focal seizures seen in the last 18 years, supplemented with a prospective study from 1998. Panayiotopoulos syndrome was defined by clinical criteria, mainly ictal emesis, irrespective of EEG findings. We analyzed 43 of 90 patients with Panayiotopoulos syndrome who were seizure free >2 years. Girls predominated. Mean age at first seizure was 5 years. Seizures consisted mainly of autonomic manifestations; ictal emesis was often the first symptom, culminating in vomiting in 86%. Of nonautonomic manifestations, lateral eye deviation was the most common; visual symptoms were exceptional. Impairment of consciousness ensued in all seizures, half of which ended with hemi or generalized convulsions. Nearly 46.5% of cases had at least one seizure >30 min, constituting autonomic status epilepticus. Seizures during sleep (84%) were more common than those in wakefulness. EEG showed occipital spikes in 29 patients. Of the other 14 cases, five had extraoccipital abnormalities or brief generalized discharges, and nine had normal awake and sleep EEG. Prognosis was excellent. All 43 children have been free of seizures for > or =2 years, 53% having a single seizure, and 47%, an average two to three seizures. Panayiotopoulos syndrome is common and needs wider recognition. EEG shows occipital or extraoccipital abnormalities, is normal in one third of patients, and does not determine clinical manifestations or prognosis, which is excellent despite the high prevalence of lengthy seizures.

  2. [EEG changes in symptomatic headache caused by bruxism].

    PubMed

    Wieselmann, G; Grabmair, W; Logar, C; Permann, R; Moser, F

    1987-02-20

    EEG recordings were carried out on 36 patients with the verified diagnosis of bruxism and unilateral headache. Occlusal splints were applied in the long-term management of these patients. Initial EEG recordings showed pathological changes in 56% of the patients. The EEG recordings were repeated two and six weeks later in these patients and following improvement in the clinical symptomatology pathological EEG patterns were detected in only 22% of all cases. This decrease is of statistical significance.

  3. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  4. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  5. [Mexidol in treatment of children with generalized epilepsy and febrile seizures].

    PubMed

    Natriashvili, G; Natriashvili, S; Kapanadze, N

    2005-05-01

    The aim of our study was to estimate the role of Mexidol in ceasing of epileptic fits and improving electroencephalographic (EEG) pathological patterns in children. 120 patients with generalized epilepsy (from 4 to 16 years old) were investigated. All patients were treated by Depakin chrono 30 mg/kg. Children were divided into 2 groups: 1st--study group consisted of 60 children with combined treatment with Depakin and Mexidol (5 mg/kg). In the control group (60 children) treatment was performed only by Depakin. 100 children with the first episode of febrile seizures (from 6 months to 4 years old) were investigated. 50 children composed the study group with monotheraphy by Mexidol and 50 patients--the control group, without any treatment. The EEG examination was done by computer EEG Topography "Brain Surveyor Saico". Using Depakin in combination with Mexidol in the study group of patients with generalized epilepsy, improvement of clinical picture of disease and normalization of EEG patterns in 93% of cases has been observed. In the study group of patients with febrile seizures, normalization of EEG pathological patterns was observed in 82% cases and in 18% its improvement was seen. The relapse of seizures at high temperature was observed in 3 patients. In control group EEG patterns were improved only in 20%, in 48% no positive effect was observed and in 41% the worsening of EEG findings was seen. The relapse of febrile seizures was observed in 26 cases. Mexidol titrated to the target doze of 5mg/kg may be effective in combination with Depakin for treatment of patients with generalized epilepsy and as monotherapy in patients with first episode of febrile seizures.

  6. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    PubMed

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  7. Infraslow Electroencephalographic and Dynamic Resting State Network Activity

    PubMed Central

    Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.

    2017-01-01

    Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586

  8. EEG signatures of arm isometric exertions in preparation, planning and execution.

    PubMed

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    PubMed

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  10. EEG Markers for Attention Deficit Disorder: Pharmacological and Neurofeedback Applications.

    ERIC Educational Resources Information Center

    Sterman, M. Barry

    2000-01-01

    Examined contribution of EEG findings in the classification and treatment of attention deficit and related behavioral problems in children. Found that quantitative EEG methods disclosed patterns of abnormality in children with ADD, suggested improved guidelines for pharmacological treatment, and introduced neurofeedback, a behavioral treatment for…

  11. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  12. [Research on the methods for multi-class kernel CSP-based feature extraction].

    PubMed

    Wang, Jinjia; Zhang, Lingzhi; Hu, Bei

    2012-04-01

    To relax the presumption of strictly linear patterns in the common spatial patterns (CSP), we studied the kernel CSP (KCSP). A new multi-class KCSP (MKCSP) approach was proposed in this paper, which combines the kernel approach with multi-class CSP technique. In this approach, we used kernel spatial patterns for each class against all others, and extracted signal components specific to one condition from EEG data sets of multiple conditions. Then we performed classification using the Logistic linear classifier. Brain computer interface (BCI) competition III_3a was used in the experiment. Through the experiment, it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG, and could obtain good classification results.

  13. Attachment classification, psychophysiology and frontal EEG asymmetry across the lifespan: a review

    PubMed Central

    Gander, Manuela; Buchheim, Anna

    2015-01-01

    In recent years research on physiological response and frontal electroencephalographic (EEG) asymmetry in different patterns of infant and adult attachment has increased. We review research findings regarding associations between attachment classifications and frontal EEG asymmetry, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenocortical axis (HPA). Studies indicate that insecure attachment is related to a heightened adrenocortical activity, heart rate and skin conductance in response to stress, which is consistent with the hypothesis that attachment insecurity leads to impaired emotion regulation. Research on frontal EEG asymmetry also shows a clear difference in the emotional arousal between the attachment groups evidenced by specific frontal asymmetry changes. Furthermore, we discuss neurophysiological evidence of attachment organization and present up-to-date findings of EEG-research with adults. Based on the overall patterns of results presented in this article we identify some major areas of interest and directions for future research. PMID:25745393

  14. Cerveau isolé and pretrigeminal rats.

    PubMed

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1984-01-01

    Cortical and hippocampal EEG activity was analysed in 14 cerveau isole and 8 pretrigerninal rats. In the acute stage, waking EEG patterns were absent in the cerveau isole, whereas sleep EEG patterns were absent in the pretrigeminal preparations. However, already on the second day the EEG waking-sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The behavior of the caudal part was observed in 25 preparations. Although in abortive form, the rats did show some locomotor and grooming behavior, and could be fed orally. The peripheral events of paradoxical sleep appeared only on the fourth or fifth day of survival of the cerveau isole rats. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  15. Prognostic value of EEG in different etiological types of coma.

    PubMed

    Khaburzania, M; Beridze, M

    2013-06-01

    Study aimed at evaluation of prognostic value of standard EEG in different etiology of coma and the influence of etiological factor on the EEG patterns and coma outcome. Totally 175 coma patients were investigated. Patients were evaluated by Glasgow Coma Scale (GCS), clinically and by 16 channel electroencephalography. Auditory evoked potentials studied by EEG -regime for evoked potentials in patients with vegetative state (VS). Patients divided in 8 groups according to coma etiology. All patients were studied for photoreaction, brainstem reflexes, localization of sound and pain, length of coma state and outcome. Brain injury visualized by conventional CT. Outcome defined as death, VS, recovery with disability and without disability. Disability was rated by Disability Rating Scale (DRS). Recovered patients assessed by Mini Mental State Examination (MMSE) scale. Statistics performed by SPSS-11.0. From 175 coma patients 55 patients died, 23 patients found in VS, 97 patients recovered with and without disability. In all etiological groups of coma the background EEG patterns were established. Correspondence analysis of all investigated factors revealed that sound localization had the significant association with EEG delta and theta rhythms and with recovery from coma state (Chi-sqr. =31.10493; p= 0.000001). Among 23 VS patients 9 patients had the signs of MCS and showed the long latency waves (p300) after binaural stimulation. The high amplitude theta frequencies in frontal and temporal lobes significantly correlated with prolongation of latency of cognitive evoked potentials (r=+0.47; p<0.01). Etiological factor had the significant effect on EEG patterns' association with coma outcome only in hemorrhagic and traumatic coma (chi-sqr.=12.95; p<0.005; chi-sqr.=7.92; p<0.03 respectively). Significant correlations established between the delta and theta EEG patterns and coma outcome. Low amplitude decreased power delta and theta frequencies correlated with SND in survived coma patients (r=+0.21; p<0.001; r=+0.27; p<0.001 respectively). Standard EEG is the useful tool for elucidation of coma patients with a high probability to recover as well as those patients, who are at high risk of SND in case of recovery from coma state.

  16. Cerveau isolé and pretrigeminal rat preparations.

    PubMed

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1985-01-01

    Cortical and hippocampal EEG activity was analysed in cerveau isolé and and pretrigeminal rats. In the acute stage, waking EEG patterns were absent in the cerveau isolé, whereas sleep EGG patterns were absent in the preparations. However, already on the second day the EEG waking sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of the preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The rats exhibited some locomotor and grooming behaviour and could be fed orally. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  17. [Video electroencephalographic diagnosis of epileptic and non-epileptic paroxysmal episodes in infants and children at the pre-school age].

    PubMed

    Pérez-Jiménez, Angeles; García-Fernández, Marta; Santiago, M del Mar; Fournier-Del Castillo, M Concepción

    2012-05-21

    The main usefulness of video electroencephalographic (video-EEG) monitoring lies in the fact that it allows proper classification of the type of epileptic seizure and epileptic syndrome, identification of minor seizures, location of the epileptogenic zone and differentiation between epileptic seizures and non-epileptic paroxysmal manifestations (NEPM). In infants and pre-school age children, the clinical signs with which epileptic seizures are expressed differ to those of older children, seizures with bilateral motor signs such as epileptic spasms, tonic and myoclonic seizures predominate, and seizures with interruption of activity or hypomotor seizures, and no prominent automatisms are observed. In children with focal epilepsies, focal and generalised signs are often superposed, both clinically and in the EEG. NEPM may be benign transitory disorders or they can be episodic symptoms of different neurological or psychopathological disorders. NEPM are often observed in children with mental retardation, neurological compromise or autism spectrum disorders, who present epileptic seizures and epileptiform abnormalities in the baseline EEG. It then becomes necessary to determine which episodes correspond to epileptic seizures and which do not. The NEPM that are most frequently registered in the video-EEG in infants and pre-school age children are unexpected sudden motor contractions ('spasms'), introspective tendencies, motor stereotypic movements and paroxysmal sleep disorders.

  18. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  19. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher's Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    PubMed Central

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-01-01

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837

  20. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.

    PubMed

    Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong

    2014-07-24

    Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.

  1. Statistical features of hypnagogic EEG measured by a new scoring system.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1996-11-01

    The purpose of this study was to examine the durations of individual occurrences of each of nine hypnagogic electroencephalographic (EEG) stages and the interchange relationship among these stages. Most of the alpha patterns (stages 1, 2, and 3), ripples (stage 5), and spindles (stage 9) tended to last > 2 minutes. On the other hand, histograms of the durations of time in EEG flattening (stage 4) and vertex sharp wave (stages 6, 7, and 8) patterns had peaks that lasted < 30 seconds. Analysis of the sequences of EEG stage changes demonstrated that shifts to adjacent stages were most common for all stages. A smooth change in EEG stage occurred in the downward or upward direction in the hypnagogic state. This was especially true for the first five stages. EEG stages with vertex sharp waves (stages 6, 7, and 8), however, showed less-smooth changes, with approximately 20% of all changes involving a jump of more than one stage. These results show that the basic EEG activities in the sleep onset period are the alpha, theta, and sleep spindles activities, whereas the activities of vertex sharp waves seem to have a secondary or enhancing role, instead of independent characteristics.

  2. CAP, epilepsy and motor events during sleep: the unifying role of arousal.

    PubMed

    Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni

    2006-08-01

    Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.

  3. Prognostic value of continuous electroencephalography monitoring in children with severe brain damage.

    PubMed

    Lan, Yan-huai; Zhu, Xiao-mei; Zhou, Yuan-feng; Qiu, Peng-ling; Lu, Guo-ping; Sun, Dao-kai; Wang, Yi

    2015-06-01

    The purpose of this study is to determine whether there is a relationship between continuous electroencephalography (EEG) monitoring patterns and prognosis for children with severe brain damage. Patients and The different patterns of EEG were analyzed for 103 children (Glasgow Coma Scale [GCS] score < 8) who were monitored with continuous video-EEG (CVEEG) within 72 hours after the onset of coma. The clinical outcomes were scored and evaluated at hospital discharge by the modified Pediatric Cerebral and Overall Performance Category Scale (PCOPCS). EEG parameters of the different prognosis groups were compared and risk factors for prognosis were identified. Of the 103 children, 36 were in the good prognosis group (PCOPCS scores 1 and 2) and 67 were in the poor prognosis group (PCOPCS scores 3-6). The poor prognosis group had the lower proportion of events in reactive EEG patterns and sleep architecture, and a higher proportion of low-voltage events. Multivariate analyses showed that the lower GCS score and no sleep architecture were significantly associated with poor prognosis. Comatose children with higher GCS score and sleep architecture have better clinical outcomes in terms of morbidity and mortality. Georg Thieme Verlag KG Stuttgart · New York.

  4. The EEG as an index of neuromodulator balance in memory and mental illness.

    PubMed

    Vakalopoulos, Costa

    2014-01-01

    There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  5. Real-time segmentation of burst suppression patterns in critical care EEG monitoring

    PubMed Central

    Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.

    2014-01-01

    Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828

  6. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.

    PubMed

    Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N

    2013-09-30

    Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Measurement and modification of the EEG and related behavior

    NASA Technical Reports Server (NTRS)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we will be able to detect appropriate changes in brain function, and feed this information to on-board computers for modification of mission requirements and/or crew status.

  8. Sedation for electroencephalography with dexmedetomidine or chloral hydrate: a comparative study on the qualitative and quantitative electroencephalogram pattern.

    PubMed

    Fernandes, Magda L; Oliveira, Welser Machado de; Santos, Maria do Carmo Vasconcellos; Gomez, Renato S

    2015-01-01

    Sedation for electroencephalography in uncooperative patients is a controversial issue because majority of sedatives, hypnotics, and general anesthetics interfere with the brain's electrical activity. Chloral hydrate (CH) is typically used for this sedation, and dexmedetomidine (DEX) was recently tested because preliminary data suggest that this drug does not affect the electroencephalogram (EEG). The aim of the present study was to compare the EEG pattern during DEX or CH sedation to test the hypothesis that both drugs exert similar effects on the EEG. A total of 17 patients underwent 2 EEGs on 2 separate occasions, one with DEX and the other with CH. The EEG qualitative variables included the phases of sleep and the background activity. The EEG quantitative analysis was performed during the first 2 minutes of the second stage of sleep. The EEG quantitative variables included density, duration, and amplitude of the sleep spindles and absolute spectral power. The results showed that the qualitative analysis, density, duration, and amplitude of sleep spindles did not differ between DEX and CH sedation. The power of the slow-frequency bands (δ and θ) was higher with DEX, but the power of the faster-frequency bands (α and β) was higher with CH. The total power was lower with DEX than with CH. The differences of DEX and CH in EEG power did not change the EEG qualitative interpretation, which was similar with the 2 drugs. Other studies comparing natural sleep and sleep induced by these drugs are needed to clarify the clinical relevance of the observed EEG quantitative differences.

  9. Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.

    PubMed

    Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P

    2014-03-01

    Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.

  10. Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously.

    PubMed

    Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano

    2015-01-15

    During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Automatic classification of background EEG activity in healthy and sick neonates

    NASA Astrophysics Data System (ADS)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  12. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    PubMed

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  13. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    PubMed Central

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  14. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    ERIC Educational Resources Information Center

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  15. Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures.

    PubMed

    Kerber, Karolin; Dümpelmann, Matthias; Schelter, Björn; Le Van, Pierre; Korinthenberg, Rudolf; Schulze-Bonhage, Andreas; Jacobs, Julia

    2014-07-01

    High frequency oscillations (HFOs) at 80-500 Hz are promising markers of epileptic areas. Several retrospective studies reported that surgical removal of areas generating HFOs was associated with a good seizure outcome. Recent reports suggested that ripple (80-200 Hz) HFO patterns co-existed with different background EEG activities. We hypothesized that the coexisting background EEG pattern may distinguish physiological from epileptic ripples. Rates of HFOs were analyzed in intracranial EEG recordings of 22 patients. Additionally, ripple patterns were classified for each channel depending either as coexisting with a flat or oscillatory background activity. A multi-variate analysis was performed to determine whether removal of areas showing the above EEG markers correlated with seizure outcome. Removal of areas generating high rates of 'fast ripples (>200 Hz)' and 'ripples on a flat background activity' showed a significant correlation with a seizure-free outcome. In contrast, removal of high rates of 'ripples' or 'ripple patterns in a continuously oscillating background' was not significantly associated with seizure outcome. Ripples occurring in an oscillatory background activity may be suggestive of physiological activity, while those on a flat background reflect epileptic activity. Consideration of coexisting background patterns may improve the delineation of the epileptogenic areas using ripple oscillations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Effects of Acute Exercise on Resting EEG in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Huang, Chung-Ju; Huang, Ching-Wen; Hung, Chiao-Ling; Tsai, Yu-Jung; Chang, Yu-Kai; Wu, Chien-Ting; Hung, Tsung-Min

    2018-06-05

    This two stage study examined the effects of acute exercise on resting electroencephalographic (EEG) patterns of children with attention-deficit hyperactivity disorder (ADHD). The first stage compared the neural oscillatory patterns of children with and without ADHD. Resting EEGs were recorded under an open-eyes condition from 24 boys with ADHD and 28 matched controls. The second stage of the study employed a randomized cross-over trial design. The 24 boys with ADHD engaged in a 30-min intervention that consisted of either running on a treadmill or watching a video on alternative days, with resting EEGs recorded before and after treatment. The first stage found that children with ADHD exhibited significantly higher theta/beta ratios over the midline electrodes sites than controls. The second stage further indicated that children with ADHD displayed smaller theta/beta ratios following the exercise condition compared with the video-watching condition. This finding suggests that acute exercise normalizes arousal and alertness of children with ADHD, as reflected in resting EEG readings.

  18. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.

    PubMed

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (omega), field power (sigma) and frequency of field changes (phi), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of omega, sigma and phi could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors omega, sigma and phi for characterizing event-related EEG. The preliminary results show that omega, sigma together with phi have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  19. Noninvasive EEG correlates of overground and stair walking.

    PubMed

    Brantley, Justin A; Luu, Trieu Phat; Ozdemir, Recep; Zhu, Fangshi; Winslow, Anna T; Huang, Helen; Contreras-Vidal, Jose L

    2016-08-01

    Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.

  20. Detection of burst suppression patterns in EEG using recurrence rate.

    PubMed

    Liang, Zhenhu; Wang, Yinghua; Ren, Yongshao; Li, Duan; Voss, Logan; Sleigh, Jamie; Li, Xiaoli

    2014-01-01

    Burst suppression is a unique electroencephalogram (EEG) pattern commonly seen in cases of severely reduced brain activity such as overdose of general anesthesia. It is important to detect burst suppression reliably during the administration of anesthetic or sedative agents, especially for cerebral-protective treatments in various neurosurgical diseases. This study investigates recurrent plot (RP) analysis for the detection of the burst suppression pattern (BSP) in EEG. The RP analysis is applied to EEG data containing BSPs collected from 14 patients. Firstly we obtain the best selection of parameters for RP analysis. Then, the recurrence rate (RR), determinism (DET), and entropy (ENTR) are calculated. Then RR was selected as the best BSP index one-way analysis of variance (ANOVA) and multiple comparison tests. Finally, the performance of RR analysis is compared with spectral analysis, bispectral analysis, approximate entropy, and the nonlinear energy operator (NLEO). ANOVA and multiple comparison tests showed that the RR could detect BSP and that it was superior to other measures with the highest sensitivity of suppression detection (96.49%, P = 0.03). Tracking BSP patterns is essential for clinical monitoring in critically ill and anesthetized patients. The purposed RR may provide an effective burst suppression detector for developing new patient monitoring systems.

  1. [The Influence of the Functioning of Brain Regulatory Systems onto the Voluntary Regulation of Cognitive Performance in Children. Report 2. Neuropsychological and Electrophysiological Assessment of Brain Regulatory Functions in Children Aged 10-12 with Learning Difficulties].

    PubMed

    Semenova, O A; Machinskaya, R I

    2015-01-01

    A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.

  2. Electroencephalography (EEG) for neurological prognostication after cardiac arrest and targeted temperature management; rationale and study design.

    PubMed

    Westhall, Erik; Rosén, Ingmar; Rossetti, Andrea O; van Rootselaar, Anne-Fleur; Kjaer, Troels Wesenberg; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Cronberg, Tobias

    2014-08-16

    Electroencephalography (EEG) is widely used to assess neurological prognosis in patients who are comatose after cardiac arrest, but its value is limited by varying definitions of pathological patterns and by inter-rater variability. The American Clinical Neurophysiology Society (ACNS) has recently proposed a standardized EEG-terminology for critical care to address these limitations. In the TTM-trial, 399 post cardiac arrest patients who remained comatose after rewarming underwent a routine EEG. The presence of clinical seizures, use of sedatives and antiepileptic drugs during the EEG-registration were prospectively documented. A well-defined terminology for interpreting post cardiac arrest EEGs is critical for the use of EEG as a prognostic tool. The TTM-trial is registered at ClinicalTrials.gov (NCT01020916).

  3. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    PubMed

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Standardized Computer-based Organized Reporting of EEG: SCORE

    PubMed Central

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists. PMID:23506075

  5. Frontal-temporal synchronization of EEG signals quantified by order patterns cross recurrence analysis during propofol anesthesia.

    PubMed

    Shalbaf, Reza; Behnam, Hamid; Sleigh, Jamie W; Steyn-Ross, D Alistair; Steyn-Ross, Moira L

    2015-05-01

    Characterizing brain dynamics during anesthesia is a main current challenge in anesthesia study. Several single channel electroencephalogram (EEG)-based commercial monitors like the Bispectral index (BIS) have suggested to examine EEG signal. But, the BIS index has obtained numerous critiques. In this study, we evaluate the concentration-dependent effect of the propofol on long-range frontal-temporal synchronization of EEG signals collected from eight subjects during a controlled induction and recovery design. We used order patterns cross recurrence plot and provide an index named order pattern laminarity (OPL) to assess changes in neuronal synchronization as the mechanism forming the foundation of conscious perception. The prediction probability of 0.9 and 0.84 for OPL and BIS specified that the OPL index correlated more strongly with effect-site propofol concentration. Also, our new index makes faster reaction to transients in EEG recordings based on pharmacokinetic and pharmacodynamic model parameters and demonstrates less variability at the point of loss of consciousness (standard deviation of 0.04 for OPL compared with 0.09 for BIS index). The result show that the OPL index can estimate anesthetic state of patient more efficiently than the BIS index in lightly sedated state with more tolerant of artifacts.

  6. Electrophysiological correlates of brand names.

    PubMed

    Cheung, Mei-chun; Chan, Agnes S; Sze, Sophia L

    2010-11-26

    EEG coherence has been used extensively in the investigation of language processing of different words categories. In contrast, relatively less is known about EEG coherence pattern of processing brand names. The present study aimed to investigate EEG coherence pattern associated with brand names in English and Chinese. EEG coherence of 32 healthy normal participants during 4 reading conditions, including concrete English words, concrete Chinese characters, English brand names and their translated Chinese brand names, were computed and compared. Regardless whether it was in English or Chinese, brand names were generally associated with higher intrahemispheric beta coherence in both the left and right hemispheres than concrete words or characters. Compared to English brand names, Chinese brand names demonstrated increased interhemispheric theta coherence in the frontal and temporal cortical regions. These results suggest that brand names tend to be processed through semantic routes. Similar to proper names and nonwords, they are represented in the lexical systems of both hemispheres. In addition, English and Chinese brand names are processed similarly at the semantic level and the difference in EEG coherence patterns associated with English and Chinese brand names is more likely due to phonological and orthographic processing that are associated with English and Chinese, respectively. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    ERIC Educational Resources Information Center

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  8. EEG in connection with coma.

    PubMed

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  9. Filter bank common spatial patterns in mental workload estimation.

    PubMed

    Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H

    2015-01-01

    EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.

  10. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.

    PubMed

    Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter

    2017-01-15

    Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Cyclic alternating pattern and interictal epileptiform discharges during morning sleep after sleep deprivation in temporal lobe epilepsy.

    PubMed

    Giorgi, Filippo Sean; Maestri, Michelangelo; Guida, Melania; Carnicelli, Luca; Caciagli, Lorenzo; Ferri, Raffaele; Bonuccelli, Ubaldo; Bonanni, Enrica

    2017-08-01

    Sleep deprivation (SD) increases the occurrence of interictal epileptiform discharges (IED) compared to basal EEG in temporal lobe epilepsy (TLE). In adults, EEG after SD is usually performed in the morning after SD. We aimed to evaluate whether morning sleep after SD bears additional IED-inducing effects compared with nocturnal physiological sleep, and whether changes in sleep stability (described by the cyclic alternating pattern-CAP) play a significant role. Adult patients with TLE underwent in-lab night polysomnography (n-PSG) and, within 7days from n-PSG, they underwent also a morning EEG after night SD (SD-EEG). We included only TLE patients in which both recordings showed IED. SD-EEG consisted of waking up patients at 2:00 AM and performing video EEG at 8:00 AM. For both recordings, we obtained the following markers for the first sleep cycle: IED/h (Spike Index, SI), sleep macrostructure, microstructure (NREM CAP rate; A1, A2 and A3 Indices), and SI association with CAP variables. The macrostructure of the first sleep cycle was similar in n-PSG and morning SD-EEG, whereas CAP rate and SI were significantly higher in SD-EEG. SI increase was selectively associated with CAP phases. SD increases the instability of morning recovery sleep compared with n-PSG, and particularly enhances CAP A1 phases, which are associated with the majority of IED. Thus, higher instability of morning recovery sleep may account at least in part for the increased IED yield in SD-EEG in TLE patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Pain Ratings, Psychological Functioning and Quantitative EEG in a Controlled Study of Chronic Back Pain Patients

    PubMed Central

    Schmidt, Stefan; Naranjo, José Raúl; Brenneisen, Christina; Gundlach, Julian; Schultz, Claudia; Kaube, Holger; Hinterberger, Thilo; Jeanmonod, Daniel

    2012-01-01

    Objectives Several recent studies report the presence of a specific EEG pattern named Thalamocortical Dysrhythmia (TCD) in patients with severe chronic neurogenic pain. This is of major interest since so far no neuroscientific indicator of chronic pain could be identified. We investigated whether a TCD-like pattern could be found in patients with moderate chronic back pain, and we compared patients with neuropathic and non-neuropathic pain components. We furthermore assessed the presence of psychopathology and the degree of psychological functioning and examined whether the strength of the TCD-related EEG markers is correlated with psychological symptoms and pain ratings. Design Controlled clinical trial with age and sex matched healthy controls. Methods Spontaneous EEG was recorded in 37 back pain patients and 37 healthy controls. Results We were not able to observe a statistically significant TCD effect in the EEG data of the whole patient group, but a subsample of patients with evidence for root damage showed a trend in this direction. Pain patients showed markedly increased psychopathology. In addition, patients' ratings of pain intensity within the last 1 to 12 months showed strong correlations with EEG power, while psychopathology was correlated to the peak frequency. Conclusion Out of several possible interpretations the most likely conclusion is that only patients with severe pain as well as root lesions with consecutive thalamic deafferentation develop the typical TCD pattern. Our primary method of defining ‘neuropathic pain’ could not reliably determine if such a deafferentation was present. Nevertheless the analysis of a specific subsample as well as correlations between pain ratings, psychopathology and EEG power and peak frequency give some support to the TCD concept. Trial Registration ClinicalTrials.gov NCT00744575 PMID:22431961

  13. Electroencephalographic features of convulsive epilepsy in Africa: A multicentre study of prevalence, pattern and associated factors

    PubMed Central

    Kariuki, Symon M.; White, Steven; Chengo, Eddie; Wagner, Ryan G.; Ae-Ngibise, Kenneth A.; Kakooza-Mwesige, Angelina; Masanja, Honorati; Ngugi, Anthony K.; Sander, Josemir W.; Neville, Brian G.; Newton, Charles R.

    2016-01-01

    Objective We investigated the prevalence and pattern of electroencephalographic (EEG) features of epilepsy and the associated factors in Africans with active convulsive epilepsy (ACE). Methods We characterized electroencephalographic features and determined associated factors in a sample of people with ACE in five African sites. Mixed-effects modified Poisson regression model was used to determine factors associated with abnormal EEGs. Results Recordings were performed on 1426 people of whom 751 (53%) had abnormal EEGs, being an adjusted prevalence of 2.7 (95% confidence interval (95% CI), 2.5–2.9) per 1000. 52% of the abnormal EEG had focal features (75% with temporal lobe involvement). The frequency and pattern of changes differed with site. Abnormal EEGs were associated with adverse perinatal events (risk ratio (RR) = 1.19 (95% CI, 1.07–1.33)), cognitive impairments (RR = 1.50 (95% CI, 1.30–1.73)), use of anti-epileptic drugs (RR = 1.25 (95% CI, 1.05–1.49)), focal seizures (RR = 1.09 (95% CI, 1.00–1.19)) and seizure frequency (RR = 1.18 (95% CI, 1.10–1.26) for daily seizures; RR = 1.22 (95% CI, 1.10–1.35) for weekly seizures and RR = 1.15 (95% CI, 1.03–1.28) for monthly seizures)). Conclusions EEG abnormalities are common in Africans with epilepsy and are associated with preventable risk factors. Significance EEG is helpful in identifying focal epilepsy in Africa, where timing of focal aetiologies is problematic and there is a lack of neuroimaging services. PMID:26337840

  14. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    PubMed

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  15. Electroencephalographic characteristics of Iranian schizophrenia patients.

    PubMed

    Chaychi, Irman; Foroughipour, Mohsen; Haghir, Hossein; Talaei, Ali; Chaichi, Ashkan

    2015-12-01

    Schizophrenia is a prevalent psychiatric disease with heterogeneous causes that is diagnosed based on history and mental status examination. Applied electrophysiology is a non-invasive method to investigate the function of the involved brain areas. In a previously understudied population, we examined acute phase electroencephalography (EEG) records along with pertinent Positive and Negative Syndrome Scale (PANSS) and Mini Mental State Examination (MMSE) scores for each patient. Sixty-four hospitalized patients diagnosed to have schizophrenia in Ebn-e-Sina Hospital were included in this study. PANSS and MMSE were completed and EEG tracings for every patient were recorded. Also, EEG tracings were recorded for 64 matched individuals of the control group. Although the predominant wave pattern in both patients and controls was alpha, theta waves were almost exclusively found in eight (12.5 %) patients with schizophrenia. Pathological waves in schizophrenia patients were exclusively found in the frontal brain region, while identified pathological waves in controls were limited to the temporal region. No specific EEG finding supported laterality in schizophrenia patients. PANSS and MMSE scores were significantly correlated with specific EEG parameters (all P values <0.04). Patients with schizophrenia demonstrate specific EEG patterns and show a clear correlation between EEG parameters and PANSS and MMSE scores. These characteristics are not observed in all patients, which imply that despite an acceptable specificity, they are not applicable for the majority of schizophrenia patients. Any deduction drawn based on EEG and scoring systems is in need of larger studies incorporating more patients and using better functional imaging techniques for the brain.

  16. The physiological correlates of Kundalini Yoga meditation: a study of a yoga master.

    PubMed

    Arambula, P; Peper, E; Kawakami, M; Gibney, K H

    2001-06-01

    This study explores the physiological correlates of a highly practiced Kundalini Yoga meditator. Thoracic and abdominal breathing patterns, heart rate (HR), occipital parietal electroencephalograph (EEG), skin conductance level (SCL), and blood volume pulse (BVP) were monitored during prebaseline, meditation, and postbaseline periods. Visual analyses of the data showed a decrease in respiration rate during the meditation from a mean of 11 breaths/min for the pre- and 13 breaths/min for the postbaseline to a mean of 5 breaths/min during the meditation, with a predominance of abdominal/diaphragmatic breathing. There was also more alpha EEG activity during the meditation (M = 1.71 microV) compared to the pre- (M = .47 microV) and postbaseline (M = .78 microV) periods, and an increase in theta EEG activity immediately following the meditation (M = .62 microV) compared to the pre-baseline and meditative periods (each with M = .26 microV). These findings suggest that a shift in breathing patterns may contribute to the development of alpha EEG, and those patterns need to be investigated further.

  17. The study of cognitive processes in the brain EEG during the perception of bistable images using wavelet skeleton

    NASA Astrophysics Data System (ADS)

    Runnova, Anastasiya E.; Zhuravlev, Maksim O.; Pysarchik, Alexander N.; Khramova, Marina V.; Grubov, Vadim V.

    2017-03-01

    In the paper we study the appearance of the complex patterns in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. A new method based on the calculation of the maximum energy component for the continuous wavelet transform (skeletons) is proposed. Skeleton analysis allows us to identify specific patterns in the EEG data set, appearing in the perception of ambiguous objects. Thus, it becomes possible to diagnose some cognitive processes associated with the concentration of attention and recognition of complex visual objects. The article presents the processing results of experimental data for 6 male volunteers.

  18. Prognostic value of electroencephalography (EEG) for brain injury after cardiopulmonary resuscitation.

    PubMed

    Feng, Guibo; Jiang, Guohui; Li, Zhiwei; Wang, Xuefeng

    2016-06-01

    Cardiac arrest (CA) patients can experience neurological sequelae or even death after successful cardiopulmonary resuscitation (CPR) due to cerebral hypoxia- and ischemia-reperfusion-mediated brain injury. Thus, it is important to perform early prognostic evaluations in CA patients. Electroencephalography (EEG) is an important tool for determining the prognosis of hypoxic-ischemic encephalopathy due to its real-time measurement of brain function. Based on EEG, burst suppression, a burst suppression ratio >0.239, periodic discharges, status epilepticus, stimulus-induced rhythmic, periodic or ictal discharges, non-reactive EEG, and the BIS value based on quantitative EEG may be associated with the prognosis of CA after successful CPR. As measures of neural network integrity, the values of small-world characteristics of the neural network derived from EEG patterns have potential applications.

  19. Seizures and EEG features in 74 patients with genetic-dysmorphic syndromes.

    PubMed

    Alfei, Enrico; Raviglione, Federico; Franceschetti, Silvana; D'Arrigo, Stefano; Milani, Donatella; Selicorni, Angelo; Riva, Daria; Zuffardi, Orsetta; Pantaleoni, Chiara; Binelli, Simona

    2014-12-01

    Epilepsy is one of the most common findings in chromosome aberrations. Types of seizures and severity may significantly vary both between different conditions and within the same aberration. Hitherto specific seizures and EEG patterns are identified for only few syndromes. We studied 74 patients with defined genetic-dysmorphic syndromes with and without epilepsy in order to assess clinical and electroencephalographic features, to compare our observation with already described electro-clinical phenotypes, and to identify putative electroencephalographic and/or seizure characteristics useful to address the diagnosis. In our population, 10 patients had chromosomal disorders, 19 microdeletion or microduplication syndromes, and 32 monogenic syndromes. In the remaining 13, syndrome diagnosis was assessed on clinical grounds. Our study confirmed the high incidence of epilepsy in genetic-dysmorphic syndromes. Moreover, febrile seizures and neonatal seizures had a higher incidence compared to general population. In addition, more than one third of epileptic patients had drug-resistant epilepsy. EEG study revealed poor background organization in 42 patients, an excess of diffuse rhythmic activities in beta, alpha or theta frequency bands in 34, and epileptiform patterns in 36. EEG was completely normal only in 20 patients. No specific electro-clinical pattern was identified, except for inv-dup15, Angelman, and Rett syndromes. Nevertheless some specific conditions are described in detail, because of notable differences from what previously reported. Regarding the diagnostic role of EEG, we found that--even without any epileptiform pattern--the generation of excessive rhythmic activities in different frequency bandwidths might support the diagnosis of a genetic syndrome. © 2014 Wiley Periodicals, Inc.

  20. Reproducibility of EEG-fMRI results in a patient with fixation-off sensitivity.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Bongiovanni, Luigi Giuseppe; Cerini, Roberto; Fiaschi, Antonio; Manganotti, Paolo

    2014-07-01

    Blood oxygenation level-dependent (BOLD) activation associated with interictal epileptiform discharges in a patient with fixation-off sensitivity (FOS) was studied using a combined electroencephalography-functional magnetic resonance imaging (EEG-fMRI) technique. An automatic approach for combined EEG-fMRI analysis and a subject-specific hemodynamic response function was used to improve general linear model analysis of the fMRI data. The EEG showed the typical features of FOS, with continuous epileptiform discharges during elimination of central vision by eye opening and closing and fixation; modification of this pattern was clearly visible and recognizable. During all 3 recording sessions EEG-fMRI activations indicated a BOLD signal decrease related to epileptiform activity in the parietal areas. This study can further our understanding of this EEG phenomenon and can provide some insight into the reliability of the EEG-fMRI technique in localizing the irritative zone.

  1. Defining and quantifying users' mental Imagery-based BCI skills: a first step.

    PubMed

    Lotte, Fabien; Jeunet, Camille

    2018-05-17

    While promising for many applications, Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are still scarcely used outside laboratories, due to a poor reliability. It is thus necessary to study and fix this reliability issue. Doing so requires the use of appropriate reliability metrics to quantify both the classification algorithm and the BCI user's performances. So far, Classification Accuracy (CA) is the typical metric used for both aspects. However, we argue in this paper that CA is a poor metric to study BCI users' skills. Here, we propose a definition and new metrics to quantify such BCI skills for Mental Imagery (MI) BCIs, independently of any classification algorithm. Approach: We first show in this paper that CA is notably unspecific, discrete, training data and classifier dependent, and as such may not always reflect successful self-modulation of EEG patterns by the user. We then propose a definition of MI-BCI skills that reflects how well the user can self-modulate EEG patterns, and thus how well he could control an MI-BCI. Finally, we propose new performance metrics, classDis, restDist and classStab that specifically measure how distinct and stable the EEG patterns produced by the user are, independently of any classifier. Main results: By re-analyzing EEG data sets with such new metrics, we indeed confirmed that CA may hide some increase in MI-BCI skills or hide the user inability to self-modulate a given EEG pattern. On the other hand, our new metrics could reveal such skill improvements as well as identify when a mental task performed by a user was no different than rest EEG. Significance: Our results showed that when studying MI-BCI users' skills, CA should be used with care, and complemented with metrics such as the new ones proposed. Our results also stressed the need to redefine BCI user training by considering the different BCI subskills and their measures. To promote the complementary use of our new metrics, we provide the Matlab code to compute them for free and open-source. © 2018 IOP Publishing Ltd.

  2. Frontal brain electrical activity (EEG) and heart rate in response to affective infant-directed (ID) speech in 9-month-old infants.

    PubMed

    Santesso, Diane L; Schmidt, Louis A; Trainor, Laurel J

    2007-10-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy.

  3. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  4. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2018-01-01

    The aim of our current study is to check whether multifractal patterns of the electroencephalographic (EEG) signals of normal and epileptic patients are statistically similar or different. In this regard, the generalized Hurst exponent (GHE) method is used for robust estimation of the multifractals in each type of EEG signals, and three powerful statistical tests are performed to check existence of differences between estimated GHEs from healthy control subjects and epileptic patients. The obtained results show that multifractals exist in both types of EEG signals. Particularly, it was found that the degree of fractal is more pronounced in short variations of normal EEG signals than in short variations of EEG signals with seizure free intervals. In contrary, it is more pronounced in long variations of EEG signals with seizure free intervals than in normal EEG signals. Importantly, both parametric and nonparametric statistical tests show strong evidence that estimated GHEs of normal EEG signals are statistically and significantly different from those with seizure free intervals. Therefore, GHEs can be efficiently used to distinguish between healthy and patients suffering from epilepsy.

  5. Common and Distinctive Patterns of Cognitive Dysfunction in Children With Benign Epilepsy Syndromes.

    PubMed

    Cheng, Dazhi; Yan, Xiuxian; Gao, Zhijie; Xu, Keming; Zhou, Xinlin; Chen, Qian

    2017-07-01

    Childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes are the most common forms of benign epilepsy syndromes. Although cognitive dysfunctions occur in children with both childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes, the similarity between their patterns of underlying cognitive impairments is not well understood. To describe these patterns, we examined multiple cognitive functions in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes. In this study, 43 children with childhood absence epilepsy, 47 children with benign childhood epilepsy with centrotemporal spikes, and 64 control subjects were recruited; all received a standardized assessment (i.e., computerized test battery) assessing processing speed, spatial skills, calculation, language ability, intelligence, visual attention, and executive function. Groups were compared in these cognitive domains. Simple regression analysis was used to analyze the effects of epilepsy-related clinical variables on cognitive test scores. Compared with control subjects, children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes showed cognitive deficits in intelligence and executive function, but performed normally in language processing. Impairment in visual attention was specific to patients with childhood absence epilepsy, whereas impaired spatial ability was specific to the children with benign childhood epilepsy with centrotemporal spikes. Simple regression analysis showed syndrome-related clinical variables did not affect cognitive functions. This study provides evidence of both common and distinctive cognitive features underlying the relative cognitive difficulties in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes. Our data suggest that clinicians should pay particular attention to the specific cognitive deficits in children with childhood absence epilepsy and benign childhood epilepsy with centrotemporal spikes, to allow for more discriminative and potentially more effective interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  7. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    PubMed

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    PubMed Central

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  9. Using a virtual training program to train community neurologist on EEG reading skills.

    PubMed

    Ochoa, Juan; Naritoku, Dean K

    2012-01-01

    EEG training requires iterative exposure of different patterns with continuous feedback from the instructor. This training is traditionally acquired through a traditional fellowship program, but only 28% of neurologists in training plan to do a fellowship in EEG. The purpose of this study was to determine the value of online EEG training to improve EEG knowledge among general neurologists. The participants were general neurologists invited through bulk e-mail and paid a fee to enroll in the virtual EEG program. A 40-question pretest exam was performed before training. The training included 4 online learning units about basic EEG principles and 40 online clinical EEG tutorials. In addition there were weekly live teleconferences for Q&A sessions. At the end of the program, the participants were asked to complete a posttest exam. Fifteen of 20 participants successfully completed the program and took both the pre- and posttest exams. All the subjects scored significantly higher in the posttest compared to their baseline score. The average score in the pretest evaluation was 61.7% and the posttest average was 87.8% (p = .0002, two-tailed). Virtual EEG training can improve EEG knowledge among community neurologists.

  10. Long-Term Clinical and Electroencephalography (EEG) Consequences of Idiopathic Partial Epilepsies.

    PubMed

    Dörtcan, Nimet; Tekin Guveli, Betul; Dervent, Aysin

    2016-05-03

    BACKGROUND Idiopathic partial epilepsies of childhood (IPE) affect a considerable proportion of children. Three main electroclinical syndromes of IPE are the Benign Childhood Epilepsy with Centro-temporal Spikes (BECTS), Panayiotopoulos Syndrome (PS), and Childhood Epilepsy with Occipital Paroxysms (CEOP). In this study we investigated the long-term prognosis of patients with IPE and discussed the semiological and electroencephalography (EEG) data in terms of syndromic characteristics. MATERIAL AND METHODS This study included a group of consecutive patients with IPE who had been followed since 1990. Demographic and clinical variables were investigated. Patients were divided into 3 groups - A: Cases suitable for a single IPE (BECTS, PS and CEOP); B: cases with intermediate characteristics within IPEs; and C: cases with both IPE and IGE characteristics. Long-term data regarding the individual seizure types and EEG findings were re-evaluated. RESULTS A total of 61 patients were included in the study. Mean follow-up duration was 7.8 ± 4.50 years. The mean age at onset of seizures was 7.7 years. There were 40 patients in group A 40, 14 in group B, and 7 in group C. Seizure and EEG characteristics were also explored independently from the syndromic approach. Incidence of autonomic seizures is considerably high at 2-5 years and incidence of oromotor seizures is high at age 9-11 years. The EEG is most abnormal at 6-8 years. The vast majority (86%) of epileptic activity (EA) with parietooccipital is present at 2-5 years, whereas EA with fronto-temporal or multiple sites become more abundant between ages 6 and 11. CONCLUSIONS Results of the present study provide support for the age-related characteristics of the seizures and EEGs in IPE syndromes. Acknowledgement of those phenomena may improve the management of IPEs and give a better estimate of the future consequences.

  11. Estimating the mutual information of an EEG-based Brain-Computer Interface.

    PubMed

    Schlögl, A; Neuper, C; Pfurtscheller, G

    2002-01-01

    An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.

  12. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  13. Changes in EEG alpha power to different disgust elicitors: the specificity of mutilations.

    PubMed

    Sarlo, Michela; Buodo, Giulia; Poli, Silvia; Palomba, Daniela

    2005-07-15

    It is unclear in the literature whether the various disgust elicitors are differentially processed by the brain and/or able to elicit distinct psychophysiological response patterns. On the other hand, disgusting stimuli depicting mutilations have been proved to elicit a distinct autonomic response pattern and to demand greater attentional resources, as compared with other unpleasant visual stimuli. In this EEG study, 34 participants viewed 4 film-clips depicting surgery, cockroach invasion, human attack and neutral landscape during EEG recording, and then rated the clips for valence, arousal and the basic emotions. Independent of location, the highest cortical activation was found during the viewing of the surgery scene. Moreover, the above activation was prominent over the right posterior regions.

  14. Explaining Entropy responses after a noxious stimulus, with or without neuromuscular blocking agents, by means of the raw electroencephalographic and electromyographic characteristics.

    PubMed

    Aho, A J; Lyytikäinen, L-P; Yli-Hankala, A; Kamata, K; Jäntti, V

    2011-01-01

    Entropy™, an anaesthetic EEG monitoring method, yields two parameters: State Entropy (SE) and Response Entropy (RE). SE reflects the hypnotic level of the patient. RE covers also the EMG-dominant part of the frequency spectrum, reflecting the upper facial EMG response to noxious stimulation. We studied the EEG, EMG, and Entropy values before and after skin incision, and the effect of rocuronium on Entropy and EMG at skin incision during sevoflurane-nitrous oxide (N₂O) anaesthesia. Thirty-eight patients were anaesthetized with sevoflurane-N₂O or sevoflurane-N₂O-rocuronium. The biosignal was stored and analysed off-line to detect EEG patterns, EMG, and artifacts. The signal, its power spectrum, SE, RE, and RE-SE values were analysed before and after skin incision. The EEG arousal was classified as β (increase in over 8 Hz activity and decrease in under 4 Hz activity with a typical β pattern) or δ (increase in under 4 Hz activity with the characteristic rhythmic δ pattern and a decrease in over 8 Hz activity). The EEG arousal appeared in 17 of 19 and 15 of 19 patients (NS), and the EMG arousal in 0 of 19 and 13 of 19 patients (P<0.01) with and without rocuronium, respectively. Both β (n=30) and EMG arousals increased SE and RE. The δ arousal (n=2) decreased both SE and RE. A significant increase in RE-SE values was only seen in patients without rocuronium. During sevoflurane-N₂O anaesthesia, both EEG and EMG arousals were seen. β and δ arousals had opposite effects on the Entropy values. The EMG arousal was abolished by rocuronium at the train of four level 0/4.

  15. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  16. EEG power during waking and NREM sleep in primary insomnia.

    PubMed

    Wu, You Meme; Pietrone, Regina; Cashmere, J David; Begley, Amy; Miewald, Jean M; Germain, Anne; Buysse, Daniel J

    2013-10-15

    Pathophysiological models of insomnia invoke the concept of 24-hour hyperarousal, which could lead to symptoms and physiological findings during waking and sleep. We hypothesized that this arousal could be seen in the waking electroencephalogram (EEG) of individuals with primary insomnia (PI), and that waking EEG power would correlate with non-REM (NREM) EEG. Subjects included 50 PI and 32 good sleeper controls (GSC). Five minutes of eyes closed waking EEG were collected at subjects' usual bedtimes, followed by polysomnography (PSG) at habitual sleep times. An automated algorithm and visual editing were used to remove artifacts from waking and sleep EEGs, followed by power spectral analysis to estimate power from 0.5-32 Hz. We did not find significant differences in waking or NREM EEG spectral power of PI and GSC. Significant correlations between waking and NREM sleep power were observed across all frequency bands in the PI group and in most frequency bands in the GSC group. The absence of significant differences between groups in waking or NREM EEG power suggests that our sample was not characterized by a high degree of cortical arousal. The consistent correlations between waking and NREM EEG power suggest that, in samples with elevated NREM EEG beta activity, waking EEG power may show a similar pattern.

  17. Use of parallel computing for analyzing big data in EEG studies of ambiguous perception

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Grubov, Vadim V.; Kirsanov, Daniil V.

    2018-02-01

    Problem of interaction between human and machine systems through the neuro-interfaces (or brain-computer interfaces) is an urgent task which requires analysis of large amount of neurophysiological EEG data. In present paper we consider the methods of parallel computing as one of the most powerful tools for processing experimental data in real-time with respect to multichannel structure of EEG. In this context we demonstrate the application of parallel computing for the estimation of the spectral properties of multichannel EEG signals, associated with the visual perception. Using CUDA C library we run wavelet-based algorithm on GPUs and show possibility for detection of specific patterns in multichannel set of EEG data in real-time.

  18. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    NASA Astrophysics Data System (ADS)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  19. Prognostic EEG patterns in patients resuscitated from cardiac arrest with particular focus on Generalized Periodic Epileptiform Discharges (GPEDs).

    PubMed

    Milani, P; Malissin, I; Tran-Dinh, Y R; Deye, N; Baud, F; Lévy, B I; Kubis, N

    2014-04-01

    We assessed clinical and early electrophysiological characteristics, in particular Generalized Periodic Epileptiform Discharges (GPEDs) patterns, of consecutive patients during a 1-year period, hospitalized in the Intensive Care Unit (ICU) after resuscitation following cardiac arrest (CA). Consecutive patients resuscitated from cardiac arrest (CA) with first EEG recordings within 48hours were included. Clinical data were collected from hospital records, in particular therapeutic hypothermia. Electroencephalograms (EEGs) were re-analyzed retrospectively. Sixty-two patients were included. Forty-two patients (68%) were treated with therapeutic hypothermia according to international guidelines. Global mortality was 74% but not significantly different between patients who benefited from therapeutic hypothermia compared to those who did not. All the patients who did not have an initial background activity (36/62; 58%) died. By contrast, initial background activity was present in 26/62 (42%) and among these patients, 16/26 (61%) survived. Electroencephalography demonstrated GPEDs patterns in 5 patients, all treated by therapeutic hypothermia and antiepileptic drugs. One of these survived and showed persistent background activity with responsiveness to benzodiazepine intravenous injection. Patients presenting suppressed background activity, even when treated by hypothermia, have a high probability of poor outcome. Thorough analysis of EEG patterns might help to identify patients with a better chance of survival. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  1. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  2. Approach and withdrawal motivation in schizophrenia: an examination of frontal brain asymmetric activity.

    PubMed

    Horan, William P; Wynn, Jonathan K; Mathis, Ian; Miller, Gregory A; Green, Michael F

    2014-01-01

    Although motivational disturbances are common in schizophrenia, their neurophysiological and psychological basis is poorly understood. This electroencephalography (EEG) study examined the well-established motivational direction model of asymmetric frontal brain activity in schizophrenia. According to this model, relative left frontal activity in the resting EEG reflects enhanced approach motivation tendencies, whereas relative right frontal activity reflects enhanced withdrawal motivation tendencies. Twenty-five schizophrenia outpatients and 25 healthy controls completed resting EEG assessments of frontal asymmetry in the alpha frequency band (8-12 Hz), as well as a self-report measure of behavioral activation and inhibition system (BIS/BAS) sensitivity. Patients showed an atypical pattern of differences from controls. On the EEG measure patients failed to show the left lateralized activity that was present in controls, suggesting diminished approach motivation. On the self-report measure, patients reported higher BIS sensitivity than controls, which is typically interpreted as heightened withdrawal motivation. EEG asymmetry scores did not significantly correlate with BIS/BAS scores or with clinical symptom ratings among patients. The overall pattern suggests a motivational disturbance in schizophrenia characterized by elements of both diminished approach and elevated withdrawal tendencies.

  3. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma.

    PubMed

    Grippo, A; Carrai, R; Scarpino, M; Spalletti, M; Lanzo, G; Cossu, C; Peris, A; Valente, S; Amantini, A

    2017-06-01

    Investigation of the utility of association between electroencephalogram (EEG) and somatosensory-evoked potentials (SEPs) for the prediction of neurological outcome in comatose patients resuscitated after cardiac arrest (CA) treated with therapeutic hypothermia, according to different recording times after CA. Glasgow Coma Scale, EEG and SEPs performed at 12, 24 and 48-72 h after CA were assessed in 200 patients. Outcome was evaluated by Cerebral Performance Category 6 months after CA. Within 12 h after CA, grade 1 EEG predicted good outcome and bilaterally absent (BA) SEPs predicted poor outcome. Because grade 1 EEG and BA-SEPs were never found in the same patient, the recording of both EEG and SEPs allows us to correctly prognosticate a greater number of patients with respect to the use of a single test within 12 h after CA. At 48-72 h after CA, both grade 2 EEG and BA-SEPs predicted poor outcome with FPR=0.0%. When these neurophysiological patterns are both present in the same patient, they confirm and strengthen their prognostic value, but because they also occurred independently in eight patients, poor outcome is predictable in a greater number of patients. The combination of EEG/SEP findings allows prediction of good and poor outcome (within 12 h after CA) and of poor outcome (after 48-72 h). Recording of EEG and SEPs in the same patients allows always an increase in the number of cases correctly classified, and an increase of the reliability of prognostication in a single patient due to concordance of patterns. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Brain-Computer Interface Based on Generation of Visual Images

    PubMed Central

    Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander

    2011-01-01

    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206

  5. Postictal psychosis and its electrophysiological correlates in invasive EEG: a case report study and literature review.

    PubMed

    Kuba, Robert; Brázdil, Milan; Rektor, Ivan

    2012-04-01

    We identified two patients with medically refractory temporal lobe epilepsy, from whom intracranial EEG recordings were obtained at the time of postictal psychosis. Both patients had mesial temporal epilepsy associated with hippocampal sclerosis. In both patients, the postictal psychosis was associated with a continual "epileptiform" EEG pattern that differed from their interictal and ictal EEG findings (rhythmical slow wave and "abortive" spike-slow wave complex activity in the right hippocampus and lateral temporal cortex in case 1 and a periodic pattern of triphasic waves in the contacts recording activity from the left anterior cingulate gyrus). Some cases of postictal psychosis might be caused by the transient impairment of several limbic system structures due to the "continual epileptiform discharge" in some brain regions. Case 2 is the first report of a patient with TLE in whom psychotic symptoms were associated with the epileptiform impairment of the anterior cingulate gyrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. High-Frequency EEG Variations in Children with Autism Spectrum Disorder during Human Faces Visualization

    PubMed Central

    Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard

    2017-01-01

    Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811

  7. EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA).

    PubMed

    Pastena, Lucio; Faralli, Fabio; Mainardi, Giovanni; Gagliardi, Riccardo

    2005-11-01

    The narcotic effect of nitrogen impairs diver performance and limits dive profiles, especially for deep dives using compressed air. It would be helpful to establish measurable correlates of nitrogen narcosis. The authors observed the electroencephalogram (EEG) of 10 subjects, ages 22-27 yr, who breathed air during a 3-min compression to a simulated depth of 80 msw (9 ATA). The EEG from a 19-electrode cap was recorded for 20 min while the subject reclined on a cot with eyes closed, first at 1 ATA before the dive and again at 9 ATA. Signals were analyzed using Fast Fourier Transform and brain mapping for frequency domains 0-4 Hz, 4-7 Hz, 7-12 Hz, and 12-15 Hz. Student's paired t-test and correlation tests were used to compare results for the two conditions. Two EEG patterns were observed. The first was an increase in delta and theta activity in all cortical regions that appeared in the first 2 min at depth and was related to exposure time. The second was an increase in delta and theta activity and shifting of alpha activity to the frontal regions at minute 6 of breathing air at 9 ATA and was related to the narcotic effects of nitrogen. If confirmed by studies with larger case series, this EEG pattern could be used to identify nitrogen narcosis for various gas mixtures and prevent the dangerous impact of nitrogen on diver performance.

  8. Multifractal analysis of real and imaginary movements: EEG study

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  9. Predictive Value of an Early Amplitude Integrated Electroencephalogram and Neurologic Examination

    PubMed Central

    Pappas, Athina; McDonald, Scott A.; Laptook, Abbot R.; Bara, Rebecca; Ehrenkranz, Richard A.; Tyson, Jon E.; Goldberg, Ronald; Donovan, Edward F.; Fanaroff, Avroy A.; Das, Abhik; Poole, W. Kenneth; Walsh, Michele; Higgins, Rosemary D.; Welsh, Cherie; Salhab, Walid; Carlo, Waldemar A.; Poindexter, Brenda; Stoll, Barbara J.; Guillet, Ronnie; Finer, Neil N.; Stevenson, David K.; Bauer, Charles R.

    2011-01-01

    OBJECTIVE: To examine the predictive validity of the amplitude integrated electroencephalogram (aEEG) and stage of encephalopathy among infants with hypoxic-ischemic encephalopathy (HIE) eligible for therapeutic whole-body hypothermia. DESIGN: Neonates were eligible for this prospective study if moderate or severe HIE occurred at <6 hours and an aEEG was obtained at <9 hours of age. The primary outcome was death or moderate/severe disability at 18 months. RESULTS: There were 108 infants (71 with moderate HIE and 37 with severe HIE) enrolled in the study. aEEG findings were categorized as normal, with continuous normal voltage (n = 12) or discontinuous normal voltage (n = 12), or abnormal, with burst suppression (n = 22), continuous low voltage (n = 26), or flat tracing (n = 36). At 18 months, 53 infants (49%) experienced death or disability. Severe HIE and an abnormal aEEG were related to the primary outcome with univariate analysis, whereas severe HIE alone was predictive of outcome with multivariate analysis. Addition of aEEG pattern to HIE stage did not add to the predictive value of the model; the area under the curve changed from 0.72 to 0.75 (P = .19). CONCLUSIONS: The aEEG background pattern did not significantly enhance the value of the stage of encephalopathy at study entry in predicting death and disability among infants with HIE. PMID:21669899

  10. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  11. Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.

    PubMed

    Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D

    2017-09-01

    We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.

  12. The effects of increased fluid viscosity on stationary characteristics of EEG signal in healthy adults

    PubMed Central

    Jestrović, I.; Coyle, J. L.

    2014-01-01

    Electroencephalography (EEG) systems can enable us to study cerebral activation patterns during performance of swallowing tasks and possibly infer about the nature of abnormal neurological conditions causing swallowing difficulties. While it is well known that EEG signals are non-stationary, there are still open questions regarding the stationarity of EEG during swallowing activities and how the EEG stationarity is affected by different viscosities of the fluids that are swallowed by subjects during these swallowing activities. In the present study, we investigated the EEG signal collected during swallowing tasks by collecting data from 55 healthy adults (ages 18–65). Each task involved the deliberate swallowing of boluses of fluids of different viscosities. Using time-frequency tests with surrogates, we showed that the EEG during swallowing tasks could be considered non-stationary. Furthermore, the statistical tests and linear regression showed that the parameters of fluid viscosity, sex, and different brain regions significantly influenced the index of non-stationarity values. Therefore, these parameters should be considered in future investigations which use EEG during swallowing activities. PMID:25245522

  13. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    PubMed

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study

    NASA Astrophysics Data System (ADS)

    Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H.

    2015-08-01

    Objective. Our experiments explored the effect of visual stimuli degradation on cognitive workload. Approach. We investigated the subjective assessment, event-related potentials (ERPs) as well as electroencephalogram (EEG) as measures of cognitive workload. Main results. These experiments confirm that degradation of visual stimuli increases cognitive workload as assessed by subjective NASA task load index and confirmed by the observed P300 amplitude attenuation. Furthermore, the single-trial multi-level classification using features extracted from ERPs and EEG is found to be promising. Specifically, the adopted single-trial oscillatory EEG/ERP detection method achieved an average accuracy of 85% for discriminating 4 workload levels. Additionally, we found from the spatial patterns obtained from EEG signals that the frontal parts carry information that can be used for differentiating workload levels. Significance. Our results show that visual stimuli can modulate cognitive workload, and the modulation can be measured by the single trial EEG/ERP detection method.

  15. Electroencephalography in the Diagnosis of Genetic Generalized Epilepsy Syndromes

    PubMed Central

    Seneviratne, Udaya; Cook, Mark J.; D’Souza, Wendyl Jude

    2017-01-01

    Genetic generalized epilepsy (GGE) consists of several syndromes diagnosed and classified on the basis of clinical features and electroencephalographic (EEG) abnormalities. The main EEG feature of GGE is bilateral, synchronous, symmetric, and generalized spike-wave complex. Other classic EEG abnormalities are polyspikes, epileptiform K-complexes and sleep spindles, polyspike-wave discharges, occipital intermittent rhythmic delta activity, eye-closure sensitivity, fixation-off sensitivity, and photoparoxysmal response. However, admixed with typical changes, atypical epileptiform discharges are also commonly seen in GGE. There are circadian variations of generalized epileptiform discharges. Sleep, sleep deprivation, hyperventilation, intermittent photic stimulation, eye closure, and fixation-off are often used as activation techniques to increase the diagnostic yield of EEG recordings. Reflex seizure-related EEG abnormalities can be elicited by the use of triggers such as cognitive tasks and pattern stimulation during the EEG recording in selected patients. Distinct electrographic abnormalities to help classification can be identified among different electroclinical syndromes. PMID:28993753

  16. Music effects on EEG in intrusive and withdrawn mothers with depressive symptoms.

    PubMed

    Tornek, Alexandra; Field, Tiffany; Hernandez-Reif, Maria; Diego, Miguel; Jones, Nancy

    2003-01-01

    The EEG patterns of 48 intrusive and withdrawn mothers with depressive symptoms were assessed following a 20-minute music session to determine if the music had mood-altering effects. Half the mothers listened to classical music while half listened to rock music. Intrusive mothers were expected to have more positive responses and more symmetrical EEG following the calming classical music, while withdrawn mothers were expected to have a more positive response and symmetrical EEG following the energizing rock music. Although more positive EEGs were noted for rock music in both groups, only the withdrawn mothers showed a significant change in EEG toward symmetry following rock music, and only the intrusive mothers showed a decrease in cortisol levels following the rock music. Their State Anxiety Inventory (STAI) anxiety levels also decreased, while the Profile of Mood States (POMS) depressed mood levels decreased significantly for all four groups following music.

  17. Topological properties of flat electroencephalography's state space

    NASA Astrophysics Data System (ADS)

    Ken, Tan Lit; Ahmad, Tahir bin; Mohd, Mohd Sham bin; Ngien, Su Kong; Suwa, Tohru; Meng, Ong Sie

    2016-02-01

    Neuroinverse problem are often associated with complex neuronal activity. It involves locating problematic cell which is highly challenging. While epileptic foci localization is possible with the aid of EEG signals, it relies greatly on the ability to extract hidden information or pattern within EEG signals. Flat EEG being an enhancement of EEG is a way of viewing electroencephalograph on the real plane. In the perspective of dynamical systems, Flat EEG is equivalent to epileptic seizure hence, making it a great platform to study epileptic seizure. Throughout the years, various mathematical tools have been applied on Flat EEG to extract hidden information that is hardly noticeable by traditional visual inspection. While these tools have given worthy results, the journey towards understanding seizure process completely is yet to be succeeded. Since the underlying structure of Flat EEG is dynamic and is deemed to contain wealthy information regarding brainstorm, it would certainly be appealing to explore in depth its structures. To better understand the complex seizure process, this paper studies the event of epileptic seizure via Flat EEG in a more general framework by means of topology, particularly, on the state space where the event of Flat EEG lies.

  18. How Long Should Routine EEG Be Recorded to Get Relevant Information?

    PubMed

    Doudoux, Hannah; Skaare, Kristina; Geay, Thomas; Kahane, Philippe; Bosson, Jean L; Sabourdy, Cécile; Vercueil, Laurent

    2017-03-01

    The optimal duration of routine EEG (rEEG) has not been determined on a clinical basis. This study aims to determine the time required to obtain relevant information during rEEG with respect to the clinical request. All rEEGs performed over 3 months in unselected patients older than 14 years in an academic hospital were analyzed retrospectively. The latency required to obtain relevant information was determined for each rEEG by 2 independent readers blinded to the clinical data. EEG final diagnoses and latencies were analyzed with respect to the main clinical requests: subacute cognitive impairment, spells, transient focal neurologic manifestation or patients referred by epileptologists. From 430 rEEGs performed in the targeted period, 364 were analyzed: 92% of the pathological rEEGs were provided within the first 10 minutes of recording. Slowing background activity was diagnosed from the beginning, whereas interictal epileptiform discharges were recorded over time. Moreover, the time elapsed to demonstrate a pattern differed significantly in the clinical groups: in patients with subacute cognitive impairment, EEG abnormalities appeared within the first 10 minutes, whereas in the other groups, data could be provided over time. Patients with subacute cognitive impairment differed from those in the other groups significantly in the elapsed time required to obtain relevant information during rEEG, suggesting that 10-minute EEG recordings could be sufficient, arguing in favor of individualized rEEG. However, this conclusion does not apply to intensive care unit patients.

  19. [EEG features during olfactory stimulation in drug dependence persons].

    PubMed

    Batukhtina, E I; Nevidimova, T I; Vetlugina, T P; Kokorina, N P; Bokhan, N A

    2013-01-01

    Power spectra analysis EEG was used for baseline interval and during olfactory stimulation in drug dependence and healthy persons. Intergroup differences of EEG spectra were related with enhancement of cortex biopotential power in narcological patients at parietal and temporal sites. Interhemispheres features of frequency bands contribution in EEG spectra were identified. Increased biopotential power in drug dependence persons was observed at left temporal hemisphere in high-frequency bands in baseline interval and during olfactory stimulation. Increased power of alpha activity was typical for right temporal hemisphere in narcological patients as compare to healthy persons. Detected neurophysiological patterns may be related with psychological and behavioral features of addictive disorders.

  20. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2017-01-01

    Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.

  1. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study.

    PubMed

    Duffy, Frank H; Als, Heidelise

    2012-06-26

    The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.

  2. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    PubMed

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-09-04

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands.

  3. Parallel ridge pattern on dermoscopy: observation in non-melanoma cases*

    PubMed Central

    Fracaroli, Tainá Scalfoni; Lavorato, Fernanda Guedes; Maceira, Juan Piñeiro; Barcaui, Carlos

    2013-01-01

    The acral melanoma is the most prevalent type of melanoma in the non-Caucasian population, and dermoscopy is a useful tool for earlier diagnosis and differentiation from benign lesions. The dermoscopic pattern often associated with melanoma on the volar skin is the parallel ridge, with 99% specificity according to the literature. However, this pattern can also occur in several benign acral lesions, so it is important to make a good interpretation of this pattern, along with the clinical history and evolution. PMID:24068145

  4. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  5. Brain-computer interface using wavelet transformation and naïve bayes classifier.

    PubMed

    Bassani, Thiago; Nievola, Julio Cesar

    2010-01-01

    The main purpose of this work is to establish an exploratory approach using electroencephalographic (EEG) signal, analyzing the patterns in the time-frequency plane. This work also aims to optimize the EEG signal analysis through the improvement of classifiers and, eventually, of the BCI performance. In this paper a novel exploratory approach for data mining of EEG signal based on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis is introduced and applied. The CWT allows the representation of time-frequency patterns of the signal's information content by WC qualiatative analysis. Results suggest that the proposed methodology is capable of identifying regions in time-frequency spectrum during the specified task of BCI. Furthermore, an example of a region is identified, and the patterns are classified using a Naïve Bayes Classifier (NBC). This innovative characteristic of the process justifies the feasibility of the proposed approach to other data mining applications. It can open new physiologic researches in this field and on non stationary time series analysis.

  6. TopoToolbox: using sensor topography to calculate psychologically meaningful measures from event-related EEG/MEG.

    PubMed

    Tian, Xing; Poeppel, David; Huber, David E

    2011-01-01

    The open-source toolbox "TopoToolbox" is a suite of functions that use sensor topography to calculate psychologically meaningful measures (similarity, magnitude, and timing) from multisensor event-related EEG and MEG data. Using a GUI and data visualization, TopoToolbox can be used to calculate and test the topographic similarity between different conditions (Tian and Huber, 2008). This topographic similarity indicates whether different conditions involve a different distribution of underlying neural sources. Furthermore, this similarity calculation can be applied at different time points to discover when a response pattern emerges (Tian and Poeppel, 2010). Because the topographic patterns are obtained separately for each individual, these patterns are used to produce reliable measures of response magnitude that can be compared across individuals using conventional statistics (Davelaar et al. Submitted and Huber et al., 2008). TopoToolbox can be freely downloaded. It runs under MATLAB (The MathWorks, Inc.) and supports user-defined data structure as well as standard EEG/MEG data import using EEGLAB (Delorme and Makeig, 2004).

  7. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  8. Clinical features of benign epilepsy of childhood with centrotemporal spikes in chinese children

    PubMed Central

    Liu, Meng-Jia; Su, Xiao-jun; MD, Xiu-Yu Shi; Wu, Ge-fei; Zhang, Yu-qin; Gao, Li; Wang, Wei; Liao, Jian-xiang; Wang, Hua; Mai, Jian-ning; Gao, Jing-yun; Shu, Xiao-mei; Huang, Shao-ping; Zhang, Li; Zou, Li-Ping

    2017-01-01

    Abstract This multicenter clinical trial was conducted to examine current practice of benign epilepsy with centrotemporal spikes and especially address the question that in what circumstances 1 antiepileptic drug (AED) should be preferred. Twenty-five medical centers participate in this clinical trial. The general information, clinical information, and treatment status were collected under the guidance of clinicians and then analyzed. Difference between different treatment groups was compared, and usefulness of the most commonly used AEDs was evaluated. A total of 1817 subjects were collected. The average age of the subject was 8.81 years. The average age of onset is 6.85 years (1–14 years). Male-to-female ratio is 1.13:1. A total of 62.9% of the patients are receiving monotherapies, and 10.6% are receiving multidrug therapy. Both age and course of disease of treated rolandic epilepsy (RE) patients are significantly different from those of untreated patients. Bilateral findings on electroencephalography (EEG) are less seen in patients with monotherapy compared with patients with multidrug therapy. Except for 25.4% patients not taking any AEDs, oxcarbazepine (OXC), sodium valproate (VPA), and levetiracetam (LEV) are the most commonly used 3 AEDs. VPA and LEV are commonly used in add-on therapy. OXC and LEV are more effective as monotherapy than VPA. Age of onset of Chinese RE patients is 6.85 years. Bilateral findings on EEG could be a risk factor to require multidrug therapy. In Chinese patients, OXC, VPA, and LEV are most commonly used AEDs as monotherapy and OXC and LEV are more effective than VPA. PMID:28121917

  9. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  10. [Are subcortical signs in the EEG a reliable indication of brain stem displacement and impaction processes by intracranial space-occupying processes? A comparative computer tomography-electroencephalography study].

    PubMed

    Zettler, H; Järisch, M; Leonhard, T

    1985-01-01

    Within the scope of an elektroencephalographic-computertomographic comperative study carried out in 430 patients, the concurrence of secondary brain stem damage due to mass displacement and herniation processes and parroxysmal generalised slow activity in the EEG ("intermittant frontal delta rhythms", "projected discharges", "subcortical signs") in intracranial space-occupying processes were studied among others. The occurrence of the EEG pattern was independent of the presence of brain stem displacements in about 20 and 25 per cent, respectively, of the 152 patients with supratentorial space occupations. The absence of the characteristics on 80 per cent of the patients with clear CT criteria for a secondary brain stem impairment shows that it is not suitable as a warning sign of an imminent intracranial decompensation and that in particular from the non-occurrence in the EEG no contribution to the operative risk and to the choice of the time of the operation can be derived. A relation between the occurrence of paroxysmal slow activity and the acuity of the course of the disease or the degree of malignity of cerebral tumours could not be verified. Possible causes of the inconstant occurrence of this EEG pattern in brain stem alterations are discussed.

  11. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    PubMed Central

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p < 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  12. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants.

    PubMed

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcomes. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency fc = 90% (SEF-90), which is derived from EEG recordings in preterm infants. A total of 22 preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at ~32 wk postmenstrual age. The SEF-90 was derived from two-channel EEG recordings. Compared with the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (P = 0.005) and right (P < 0.0001) hemispheres. Notably, the left and right hemispheres showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short-term cortical adaptation and a long-term neural adaptation manifested as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants.

  13. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.

    PubMed

    Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung

    2017-06-14

    Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.

  14. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  15. The long-term course of temporal lobe epilepsy: From unilateral to bilateral interictal epileptiform discharges in repeated video-EEG monitorings.

    PubMed

    Gollwitzer, Stephanie; Scott, Catherine A; Farrell, Fiona; Bell, Gail S; de Tisi, Jane; Walker, Matthew C; Wehner, Tim; Sander, Josemir W; Hamer, Hajo M; Diehl, Beate

    2017-03-01

    Bilateral interictal epileptiform discharges (IED) and ictal patterns are common in temporal lobe epilepsy (TLE) and have been associated with decreased chances of seizure freedom after epilepsy surgery. It is unclear whether secondary epileptogenesis, although demonstrated in experimental models, exists in humans and may account for progression of epilepsy. We reviewed consecutive video-EEG recordings from 1992 to 2014 repeated at least two years apart (mean interval 6.14years) in 100 people diagnosed with TLE. Ictal EEG patterns and IED remained restricted to one hemisphere in 36 people (group 1), 46 exhibited bilateral abnormalities from the first recording (group 2), 18 progressed from unilateral to bilateral EEG pathology over time (group 3). No significant differences between the three groups were seen with respect to age at epilepsy onset, duration, or underlying pathology. Extra-temporal IED during the first EEG recording were associated with an increased risk of developing bilateral epileptiform changes over time (hazard ratio 3.67; 95% CI 1.4, 9.4). Our findings provide some support of progression in TLE and raise the possibility of secondary epileptogenesis in humans. The development of an independent contra-lateral epileptogenic focus is known to be associated with a less favorable surgical outcome. We defined reliable EEG markers for an increased risk of progression to more widespread or independent bitemporal epileptogenicity at an early stage, thus allowing for individualized pre-surgical counselling. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analysis of bioelectric records and fabrication of phototype sleep analysis equipment

    NASA Technical Reports Server (NTRS)

    Kellaway, P.

    1972-01-01

    A computer-analysis technique was used to evaluate the changes in the waking EEGs of 5 normal subjects which occurred during the oral administration of flurazepam hydrochloride (Dalmane). While the subjects were receiving the drug, there was an increase in the amount of beta (14-38 c/sec) activity in fronto-central EEG leads in all 5 subjects. This increase in beta activity was characterized by a highly consistent increase in the number of waves that occurred during an EEG recording interval of fixed duration and by a less consistent increase in average wave amplitude. There was no detectable change in mean EEG wavelength (frequency) within the beta frequency range. The EEG patterns reverted to their baseline condition during 2-3 weeks after withdrawal of the drug. Analysis of the alpha, theta and delta components of the EEG indicated no changes during or following administration of the drug. This study clearly illustrates the usefulness of specific computer-analysis techniques in the characterization and quantification of sleep-promoting drugs upon the EEG of the normal young adults in the waking state. Two preamplifiers and 150 EEG monitoring caps with electrodes were delivered to MSC.

  17. Electroencephalography and Brain MRI Patterns in Encephalopathy.

    PubMed

    Wabulya, Angela; Lesser, Ronald P; Llinas, Rafael; Kaplan, Peter W

    2016-04-01

    Using electroencephalography (EEG) and histology in patients with diffuse encephalopathy, Gloor et al reported that paroxysmal synchronous discharges (PSDs) on EEG required combined cortical gray (CG) and "subcortical" gray (SCG) matter pathology, while polymorphic delta activity (PDA) occurred in patients with white matter pathology. In patients with encephalopathy, we compared EEG findings and magnetic resonance imaging (MRI) to determine if MRI reflected similar pathological EEG correlations. Retrospective case control study of 52 cases with EEG evidence of encephalopathy and 50 controls without evidence of encephalopathy. Review of clinical, EEG and MRI data acquired within 4 days of each other. The most common EEG finding in encephalopathy was background slowing, in 96.1%. We found PSDs in 0% of cases with the combination of CG and SCG abnormalities. Although 13.5% (n=7) had PSDs on EEG; 3 of these had CG and 4 had SCG abnormalities. A total of 73.1% (38/52) had white matter abnormalities-of these 28.9% (11/38) had PDA. PSDs were found with either CG or "SCG" MRI abnormalities and did not require a combination of the two. In agreement with Gloor et al, PDA occurred with white matter MRI abnormalities in the absence of gray matter abnormalities. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  18. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    PubMed Central

    Gupta, Rishabh; Falk, Tiago H.

    2017-01-01

    Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021

  19. Application of Independent Component Analysis for the Data Mining of Simultaneous EEG-fMRI: Preliminary Experience on Sleep Onset

    PubMed Central

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A.; Park, Hyunwook; Yoo, Seung-Schik

    2010-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with the ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta- and alpha-rhythms that are sleep onset related EEG signatures along with the subsequent neural circuitries from a sleep deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable. PMID:19922343

  20. Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset.

    PubMed

    Lee, Jong-Hwan; Oh, Sungsuk; Jolesz, Ferenc A; Park, Hyunwook; Yoo, Seung-Schik

    2009-01-01

    The simultaneous acquisition of electroencephalogram (EEG) and functional MRI (fMRI) signals is potentially advantageous because of the superior resolution that is achieved in both the temporal and spatial domains, respectively. However, ballistocardiographic artifacts along with ocular artifacts are a major obstacle for the detection of the EEG signatures of interest. Since the sources corresponding to these artifacts are independent from those producing the EEG signatures, we applied the Infomax-based independent component analysis (ICA) technique to separate the EEG signatures from the artifacts. The isolated EEG signatures were further utilized to model the canonical hemodynamic response functions (HRFs). Subsequently, the brain areas from which these EEG signatures originated were identified as locales of activation patterns from the analysis of fMRI data. Upon the identification and subsequent evaluation of brain areas generating interictal epileptic discharge (IED) spikes from an epileptic subject, the presented method was successfully applied to detect the theta and alpha rhythms that are sleep onset-related EEG signatures along with the subsequent neural circuitries from a sleep-deprived volunteer. These results suggest that the ICA technique may be useful for the preprocessing of simultaneous EEG-fMRI acquisitions, especially when a reference paradigm is unavailable.

  1. Patient prognosis based on feature extraction, selection and classification of EEG periodic activity.

    PubMed

    Sánchez-González, Alain; García-Zapirain, Begoña; Maestro Saiz, Iratxe; Yurrebaso Santamaría, Izaskun

    2015-01-01

    Periodic activity in electroencephalography (PA-EEG) is shown as comprising a series of repetitive wave patterns that may appear in different cerebral regions and are due to many different pathologies. The diagnosis based on PA-EEG is an arduous task for experts in Clinical Neurophysiology, being mainly based on other clinical features of patients. Considering this difficulty in the diagnosis it is also very complicated to establish the prognosis of patients who present PA-EEG. The goal of this paper is to propose a method capable of determining patient prognosis based on characteristics of the PA-EEG activity. The approach, based on a parallel classification architecture and a majority vote system has proven successful by obtaining a success rate of 81.94% in the classification of patient prognosis of our database.

  2. Mahalanobis Distance-Based Classifiers are Able to Recognize EEG Patterns by Using Few EEG Electrodes

    DTIC Science & Technology

    2001-10-25

    Mouriño 3 , Angela Cattini 4 , Serenella Salinari 4 , Maria Grazia Marciani 2,5 and Febo Cincotti 5 1 Dip. Fisiologia umana e Farmacologia...Performing Organization Name(s) and Address(es) Dip. Fisiologia umana e Farmacologia, Università "La Sapienza", Rome, ITALY Performing Organization

  3. Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study

    ERIC Educational Resources Information Center

    Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger

    2014-01-01

    A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…

  4. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    PubMed

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  5. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  6. Classification of EEG Signals Based on Pattern Recognition Approach.

    PubMed

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

  7. Classification of EEG Signals Based on Pattern Recognition Approach

    PubMed Central

    Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed

    2017-01-01

    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190

  8. Stability of Early EEG Background Patterns After Pediatric Cardiac Arrest.

    PubMed

    Abend, Nicholas S; Xiao, Rui; Kessler, Sudha Kilaru; Topjian, Alexis A

    2018-05-01

    We aimed to determine whether EEG background characteristics remain stable across discrete time periods during the acute period after resuscitation from pediatric cardiac arrest. Children resuscitated from cardiac arrest underwent continuous conventional EEG monitoring. The EEG was scored in 12-hour epochs for up to 72 hours after return of circulation by an electroencephalographer using a Background Category with 4 levels (normal, slow-disorganized, discontinuous/burst-suppression, or attenuated-featureless) or 2 levels (normal/slow-disorganized or discontinuous/burst-suppression/attenuated-featureless). Survival analyses and mixed-effects ordinal logistic regression models evaluated whether the EEG remained stable across epochs. EEG monitoring was performed in 89 consecutive children. When EEG was assessed as the 4-level Background Category, 30% of subjects changed category over time. Based on initial Background Category, one quarter of the subjects changed EEG category by 24 hours if the initial EEG was attenuated-featureless, by 36 hours if the initial EEG was discontinuous or burst-suppression, by 48 hours if the initial EEG was slow-disorganized, and never if the initial EEG was normal. However, regression modeling for the 4-level Background Category indicated that the EEG did not change over time (odds ratio = 1.06, 95% confidence interval = 0.96-1.17, P = 0.26). Similarly, when EEG was assessed as the 2-level Background Category, 8% of subjects changed EEG category over time. However, regression modeling for the 2-level category indicated that the EEG did not change over time (odds ratio = 1.02, 95% confidence interval = 0.91-1.13, P = 0.75). The EEG Background Category changes over time whether analyzed as 4 levels (30% of subjects) or 2 levels (8% of subjects), although regression analyses indicated that no significant changes occurred over time for the full cohort. These data indicate that the Background Category is often stable during the acute 72 hours after pediatric cardiac arrest and thus may be a useful EEG assessment metric in future studies, but that some subjects do have EEG changes over time and therefore serial EEG assessments may be informative.

  9. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.

    PubMed

    Teli, Mohammad Nayeem; Anderson, Charles

    2009-01-01

    Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.

  10. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    PubMed Central

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP < 1.0 predicted sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  11. L1 norm based common spatial patterns decomposition for scalp EEG BCI.

    PubMed

    Li, Peiyang; Xu, Peng; Zhang, Rui; Guo, Lanjin; Yao, Dezhong

    2013-08-06

    Brain computer interfaces (BCI) is one of the most popular branches in biomedical engineering. It aims at constructing a communication between the disabled persons and the auxiliary equipments in order to improve the patients' life. In motor imagery (MI) based BCI, one of the popular feature extraction strategies is Common Spatial Patterns (CSP). In practical BCI situation, scalp EEG inevitably has the outlier and artifacts introduced by ocular, head motion or the loose contact of electrodes in scalp EEG recordings. Because outlier and artifacts are usually observed with large amplitude, when CSP is solved in view of L2 norm, the effect of outlier and artifacts will be exaggerated due to the imposing of square to outliers, which will finally influence the MI based BCI performance. While L1 norm will lower the outlier effects as proved in other application fields like EEG inverse problem, face recognition, etc. In this paper, we present a new CSP implementation using the L1 norm technique, instead of the L2 norm, to solve the eigen problem for spatial filter estimation with aim to improve the robustness of CSP to outliers. To evaluate the performance of our method, we applied our method as well as the standard CSP and the regularized CSP with Tikhonov regularization (TR-CSP), on both the peer BCI dataset with simulated outliers and the dataset from the MI BCI system developed in our group. The McNemar test is used to investigate whether the difference among the three CSPs is of statistical significance. The results of both the simulation and real BCI datasets consistently reveal that the proposed method has much higher classification accuracies than the conventional CSP and the TR-CSP. By combining L1 norm based Eigen decomposition into Common Spatial Patterns, the proposed approach can effectively improve the robustness of BCI system to EEG outliers and thus be potential for the actual MI BCI application, where outliers are inevitably introduced into EEG recordings.

  12. Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat

    NASA Astrophysics Data System (ADS)

    Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi

    2010-07-01

    Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.

  13. Changes in the electroencephalogram during anaesthesia and their physiological basis.

    PubMed

    Hagihira, S

    2015-07-01

    The use of EEG monitors to assess the level of hypnosis during anaesthesia has become widespread. Anaesthetists, however, do not usually observe the raw EEG data: they generally pay attention only to the Bispectral Index (BIS™) and other indices calculated by EEG monitors. This abstracted information only partially characterizes EEG features. To properly appreciate the availability and reliability of EEG-derived indices, it is necessary to understand how raw EEG changes during anaesthesia. With hemi-frontal lead EEGs obtained under volatile anaesthesia or propofol anaesthesia, the dominant EEG frequency decreases and the amplitude increases with increasing concentrations of anaesthetic. Looking more closely, the EEG changes are more complicated. At surgical concentrations of anaesthesia, spindle waves (alpha range) become dominant. At deeper levels, this activity decreases, and theta and delta waves predominate. At even deeper levels, EEG waveform changes into a burst and suppression pattern, and finally becomes flat. EEG waveforms vary in the presence of noxious stimuli (surgical skin incision), which is not always reflected in BIS™, or other processed EEG indices. Spindle waves are adequately sensitive, however, to noxious stimuli: under surgical anaesthesia they disappear when noxious stimuli are applied, and reappear when adequate analgesia is obtained. To prevent awareness during anaesthesia, I speculate that the most effective strategy is to administer anaesthetic agents in such a way as to maintain anaesthesia at a level where spindle waves predominate. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical neurophysiological activation patterns might provide a helpful guide for rehabilitation strategies to treat the deficiencies in these children with LD. © EEG and Clinical Neuroscience Society (ECNS) 2015.

  15. Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study.

    PubMed

    Zich, Catharina; Debener, Stefan; De Vos, Maarten; Frerichs, Stella; Maurer, Stefanie; Kranczioch, Cornelia

    2015-08-01

    The mental practice of movements has been suggested as a promising add-on therapy to facilitate motor recovery after stroke. In the case of mentally practised movements, electroencephalogram (EEG) can be utilized to provide feedback about an otherwise covert act. The main target group for such an intervention are elderly patients, though research so far is largely focused on young populations (<30 years). The present study therefore aimed to examine the influence of age on the neural correlates of covert movements (CMs) in a real-time EEG neurofeedback framework. CM-induced event-related desynchronization (ERD) was studied in young (mean age: 23.6 years) and elderly (mean age: 62.7 years) healthy adults. Participants performed covert and overt hand movements. CMs were based on kinesthetic motor imagery (MI) or quasi-movements (QM). Based on previous studies investigating QM in the mu frequency range (8-13Hz) QM were expected to result in more lateralized ERD% patterns and accordingly higher classification accuracies. Independent of CM strategy the elderly were characterized by a significantly reduced lateralization of ERD%, due to stronger ipsilateral ERD%, and in consequence, reduced classification accuracies. QM were generally perceived as more vivid, but no differences were evident between MI and QM in ERD% or classification accuracies. EEG feedback enhanced task-related activity independently of strategy and age. ERD% measures of overt and covert movements were strongly related in young adults, whereas in the elderly ERD% lateralization is dissociated. In summary, we did not find evidence in support of more pronounced ERD% lateralization patterns in QM. Our finding of a less lateralized activation pattern in the elderly is in accordance to previous research and with the idea that compensatory processes help to overcome neurodegenerative changes related to normal ageing. Importantly, it indicates that EEG neurofeedback studies should place more emphasis on the age of the potential end-users. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Behavioral Reactivity and Approach-Withdrawal Bias in Infancy

    PubMed Central

    Hane, Amie Ashley; Fox, Nathan A.; Henderson, Heather A.; Marshall, Peter J.

    2008-01-01

    Seven hundred and seventy nine infants were screened at 4 months of age for motor and emotional reactivity. At age 9 months, infants who showed extreme patterns of motor and negative (n = 75) or motor and positive (n = 73) reactivity and an unselected control group (n = 86) were administered the Laboratory Temperament Assessment Battery (Lab-TAB), and baseline electroencephalogram (EEG) data were collected. Negatively reactive infants showed significantly more avoidance than positively reactive infants and displayed a pattern of right frontal EEG asymmetry. Positively reactive infants exhibited significantly more approach behavior than controls and exhibited a pattern of left frontal asymmetry. Results support the notion that approach-withdrawal bias underlies reactivity in infancy. PMID:18793079

  17. Two Different Populations within the Healthy Elderly: Lack of Conflict Detection in Those at Risk of Cognitive Decline

    PubMed Central

    Sánchez-Moguel, Sergio M.; Alatorre-Cruz, Graciela C.; Silva-Pereyra, Juan; González-Salinas, Sofía; Sanchez-Lopez, Javier; Otero-Ojeda, Gloria A.; Fernández, Thalía

    2018-01-01

    During healthy aging, inhibitory processing is affected at the sensorial, perceptual, and cognitive levels. The assessment of event-related potentials (ERPs) during the Stroop task has been used to study age-related decline in the efficiency of inhibitory processes. Studies using ERPs have found that the P300 amplitude increases and the N500 amplitude is attenuated in healthy elderly adults compared to those in young adults. On the other hand, it has been reported that theta excess in resting EEG with eyes closed is a good predictor of cognitive decline during aging 7 years later, while a normal EEG increases the probability of not developing cognitive decline. The behavioral and ERP responses during a Counting-Stroop task were compared between 22 healthy elderly subjects with normal EEG (Normal-EEG group) and 22 healthy elderly subjects with an excess of EEG theta activity (Theta-EEG group). Behaviorally, the Normal-EEG group showed a higher behavioral interference effect than the Theta-EEG group. ERP patterns were different between the groups, and two facts are highlighted: (a) the P300 amplitude was higher in the Theta-EEG group, with both groups showing a P300 effect in almost all electrodes, and (b) the Theta-EEG group did not show an N500 effect. These results suggest that the diminishment in inhibitory control observed in the Theta-EEG group may be compensated by different processes in earlier stages, which would allow them to perform the task with similar efficiency to that of participants with a normal EEG. This study is the first to show that healthy elderly subjects with an excess of theta EEG activity not only are at risk of developing cognitive decline but already have a cognitive impairment. PMID:29375352

  18. Two Different Populations within the Healthy Elderly: Lack of Conflict Detection in Those at Risk of Cognitive Decline.

    PubMed

    Sánchez-Moguel, Sergio M; Alatorre-Cruz, Graciela C; Silva-Pereyra, Juan; González-Salinas, Sofía; Sanchez-Lopez, Javier; Otero-Ojeda, Gloria A; Fernández, Thalía

    2017-01-01

    During healthy aging, inhibitory processing is affected at the sensorial, perceptual, and cognitive levels. The assessment of event-related potentials (ERPs) during the Stroop task has been used to study age-related decline in the efficiency of inhibitory processes. Studies using ERPs have found that the P300 amplitude increases and the N500 amplitude is attenuated in healthy elderly adults compared to those in young adults. On the other hand, it has been reported that theta excess in resting EEG with eyes closed is a good predictor of cognitive decline during aging 7 years later, while a normal EEG increases the probability of not developing cognitive decline. The behavioral and ERP responses during a Counting-Stroop task were compared between 22 healthy elderly subjects with normal EEG (Normal-EEG group) and 22 healthy elderly subjects with an excess of EEG theta activity (Theta-EEG group). Behaviorally, the Normal-EEG group showed a higher behavioral interference effect than the Theta-EEG group. ERP patterns were different between the groups, and two facts are highlighted: (a) the P300 amplitude was higher in the Theta-EEG group, with both groups showing a P300 effect in almost all electrodes, and (b) the Theta-EEG group did not show an N500 effect. These results suggest that the diminishment in inhibitory control observed in the Theta-EEG group may be compensated by different processes in earlier stages, which would allow them to perform the task with similar efficiency to that of participants with a normal EEG. This study is the first to show that healthy elderly subjects with an excess of theta EEG activity not only are at risk of developing cognitive decline but already have a cognitive impairment.

  19. Source localization of small sharp spikes: low resolution electromagnetic tomography (LORETA) reveals two distinct cortical sources.

    PubMed

    Zumsteg, Dominik; Andrade, Danielle M; Wennberg, Richard A

    2006-06-01

    We have investigated the cortical sources and electroencephalographic (EEG) characteristics of small sharp spikes (SSS) by using statistical non-parametric mapping (SNPM) of low resolution electromagnetic tomography (LORETA). We analyzed 7 SSS patterns (501 individual SSS) in 6 patients who underwent sleep EEG studies with 29 or 23 scalp electrodes. The scalp signals were averaged time-locked to the SSS peak activity and subjected to SNPM of LORETA values. All 7 SSS patterns (mean 72 individual SSS, range 11-200) revealed a very similar and highly characteristic transhemispheric oblique scalp voltage distribution comprising a first negative field maximum over ipsilateral lateral temporal areas, followed by a second negative field maximum over the contralateral subtemporal region approximately 30 ms later. SNPM-LORETA consistently localized the first component into the ipsilateral posterior insular region, and the second component into ipsilateral posterior mesial temporo-occipital structures. SSS comprise an amalgam of two sequential, distinct cortical components, showing a very uniform and peculiar EEG pattern and cortical source solutions. As such, they must be clearly distinguished from interictal epileptiform discharges in patients with epilepsy. The awareness of these peculiar EEG characteristics may increase our ability to differentiate SSS from interictal epileptiform activity. The finding of a posterior insular source might serve as an inspiration for new physiological considerations regarding these enigmatic waveforms.

  20. Epileptic seizure classification of EEG time-series using rational discrete short-time fourier transform.

    PubMed

    Samiee, Kaveh; Kovács, Petér; Gabbouj, Moncef

    2015-02-01

    A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.

  1. Underlying neurological dysfunction in children with language, speech or learning difficulties and a verbal IQ--performance IQ discrepancy.

    PubMed

    Meulemans, J; Goeleven, A; Zink, I; Loyez, L; Lagae, L; Debruyne, F

    2012-01-01

    We investigated the relationship between possible underlying neurological dysfunction and a significant discrepancy between verbal IQ/performance IQ (VIQ-PIQ) in children with language, speech or learning difficulties. In a retrospective study, we analysed data obtained from intelligence testing and neurological evaluation in 49 children with a significant VIQ-PIQ discrepancy (> or = 25 points) who were referred because of language, speech or learning difficulties to the Multidisciplinary University Centre for Logopedics and Audiology (MUCLA) of the University Hospitals of Leuven, Belgium. The group of children broke down into a group of 35 children with PIQ > VIQ and a group of 14 children with VIQ > PIQ. In the first group, neurological data were present for 24 children. The neurological history and clinical neurological examination were normal in all cases. Brain MRI was performed in 15 cases and proved to be normal in all children. Brain activity was assessed with long-term video EEG monitoring in ten children. In two children, the EEG results were abnormal: there was an epileptic focus in one child and a manifest alteration in the EEG typical of Landau-Kleffner syndrome in the other. In the second group of 14 children whose VIQ was higher than the PIQ, neurological data were available for ten children. Neurological history and clinical neurological examination were normal in all cases. Brain MRI was performed in five cases and was normal in all children. EEG monitoring was performed in one child. This revealed benign childhood epilepsy with centrotemporal spikes. In a small number of children (9%) with speech, language and learning difficulties and a discrepancy between VIQ and PIQ, an underlying neurological abnormality is present. We recommend referring children with a significant VIQ-PIQ mismatch to a paediatric neurologist. As an epileptic disorder seems to be the most common underlying neurological pathology in this specific group of children, EEG monitoring should be recommended in these children. Neuro-imaging should only be used in selected patients.

  2. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls - a large case control study

    PubMed Central

    2012-01-01

    Background The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Methods Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Results Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P < 0.0001). Ten randomly generated split half replications demonstrated high-average classification success (C, 88.5%; ASD, 86.0%). Still higher success was obtained in the more restricted age sub-samples using the jackknifing technique: 2- to 4-year-olds (C, 90.6%; ASD, 98.1%); 4- to 6-year-olds (C, 90.9%; ASD 99.1%); and 6- to 12-year-olds (C, 98.7%; ASD, 93.9%). Coherence loadings demonstrated reduced short-distance and reduced, as well as increased, long-distance coherences for the ASD-groups, when compared to the controls. Average spectral loading per factor was wide (10.1 Hz). Conclusions Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks. PMID:22730909

  3. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  4. NREM Arousal Parasomnias and Their Distinction from Nocturnal Frontal Lobe Epilepsy: A Video EEG Analysis

    PubMed Central

    Derry, Christopher P.; Harvey, A. Simon; Walker, Matthew C.; Duncan, John S.; Berkovic, Samuel F.

    2009-01-01

    Study Objectives. To describe the semiological features of NREM arousal parasomnias in detail and identify features that can be used to reliably distinguish parasomnias from nocturnal frontal lobe epilepsy (NFLE). Design. Systematic semiologial evaluation of parasomnias and NFLE seizures recorded on video-EEG monitoring. Patients. 120 events (57 parasomnias, 63 NFLE seizures) from 44 subjects (14 males). Interventions. The presence or absence of 68 elemental clinical features was determined in parasomnias and NFLE seizures. Qualitative analysis of behavior patterns and ictal EEG was undertaken. Statistical analysis was undertaken using established techniques. Results. Elemental clinical features strongly favoring parasomnias included: interactive behavior, failure to wake after event, and indistinct offset (all P < 0.001). Cluster analysis confirmed differences in both the frequency and combination of elemental features in parasomnias and NFLE. A diagnostic decision tree generated from these data correctly classified 94% of events. While sleep stage at onset was discriminatory (82% of seizures occurred during stage 1 or 2 sleep, with 100% of parasomnias occurring from stage 3 or 4 sleep), ictal EEG features were less useful. Video analysis of parasomnias identified three principal behavioral patterns: arousal behavior (92% of events); non-agitated motor behavior (72%); distressed emotional behavior (51%). Conclusions Our results broadly support the concept of confusion arousals, somnambulism and night terrors as prototypical behavior patterns of NREM parasomnias, but as a hierarchical continuum rather than distinct entities. Our observations provide an evidence base to assist in the clinical diagnosis of NREM parasomnias, and their distinction from NFLE seizures, on semiological grounds. Citation: Derry CP; Harvey AS; Walker MC; Duncan JS; Berkovic SF. NREM arousal parasomnias and their distinction from nocturnal frontal lobe epilepsy: a video EEG analysis. SLEEP 2009;32(12):1637-1644. PMID:20041600

  5. Comparative sensitivity of quantitative EEG (QEEG) spectrograms for detecting seizure subtypes.

    PubMed

    Goenka, Ajay; Boro, Alexis; Yozawitz, Elissa

    2018-02-01

    To assess the sensitivity of Persyst version 12 QEEG spectrograms to detect focal, focal with secondarily generalized, and generalized onset seizures. A cohort of 562 seizures from 58 patients was analyzed. Successive recordings with 2 or more seizures during continuous EEG monitoring for clinical indications in the ICU or EMU between July 2016 and January 2017 were included. Patient ages ranged from 5 to 64 years (mean = 36 years). There were 125 focal seizures, 187 secondarily generalized and 250 generalized seizures from 58 patients analyzed. Seizures were identified and classified independently by two epileptologists. A correlate to the seizure pattern in the raw EEG was sought in the QEEG spectrograms in 4-6 h EEG epochs surrounding the identified seizures. A given spectrogram was interpreted as indicating a seizure, if at the time of a seizure it showed a visually significant departure from the pre-event baseline. Sensitivities for seizure detection using each spectrogram were determined for each seizure subtype. Overall sensitivities of the QEEG spectrograms for detecting seizures ranged from 43% to 72%, with highest sensitivity (402/562,72%) by the seizure detection trend. The asymmetry spectrogram had the highest sensitivity for detecting focal seizures (117/125,94%). The FFT spectrogram was most sensitive for detecting secondarily generalized seizures (158/187, 84%). The seizure detection trend was the most sensitive for generalized onset seizures (197/250,79%). Our study suggests that different seizure types have specific patterns in the Persyst QEEG spectrograms. Identifying these patterns in the EEG can significantly increase the sensitivity for seizure identification. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. Comparative study of three sonoelastographic scores for differentiation between benign and malignant cervical lymph nodes.

    PubMed

    Lenghel, Lavinia Manuela; Botar Jid, Carolina; Bolboaca, Sorana D; Ciortea, Cristiana; Vasilescu, Dan; Baciut, Grigore; Dudea, Sorin M

    2015-06-01

    The aim of the study was to explore the diagnostic value of three different sonoelastographic scoring systems (labeled S1-S3) for the differentiation between benign and malignant cervical lymph nodes. The authors propose a six pattern scoring system of the elastographic images with pattern 1 - representing purely soft nodes, pattern 2 - predominantly soft nodes, pattern 3 - predominantly soft nodes with focal had area, pattern 4 - predominantly hard node, pattern 5 - entirely hard node and pattern 6 - node with necrosis. The sonoelastographic images of 50 benign and 70 malignant lymph nodes were assessed. The area under the ROC curve (AUROC) for the differentiation between benign vs. malignant and benign vs. metastatic nodes were analyzed for the three scoring systems. When all the malignant lymph nodes were considered, the S1 score showed an AUROC=0.873 (95%CI [0.805-0.918], where CI=confidence interval; p<0.001), sensibility (Se)=58.57%, and specificity (Sp)=96%. For S2 score the AUROC was 0.890 (95%CI [0.824-0.933], p<0.001), Se=92.86%, and Sp=72%. For S3 score, the AUROC was 0.852 (95%CI [0.778-0.902], p<0.001), Se=64.29%, and Sp=94%). When lymphomatous nodes were excluded, for S1 the AUROC was 0.884 (95%CI [0.809-0.932], p<0.001), Se=64%, and Sp=96%. For S2 the AUROC was 0.894 (95%CI [0.818-0.939], p<0.001), Se=92%, and Sp=72%. For S3, the AUROC was 0.856 (95%CI [0.771-0.911], p<0.001), Se=66%, and Sp=94%. In the S3 scoring system, setting the benign vs. malignant cut off at pattern 3 increases the sensibility (41-65%) with minimal loss of specificity (96-94%). From the gray-scale and Doppler criteria, changes of the nodular margins and the presence of the vessels in the cortical part of the lymph node showed both very high sensibility and specificity, the others criteria taken into account had either very good sensibility with low specificity or high specificity and low sensibility. Our study suggests that there are no significant differences between the three scoring systems in terms of overall diagnostic value. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. TopoToolbox: Using Sensor Topography to Calculate Psychologically Meaningful Measures from Event-Related EEG/MEG

    PubMed Central

    Tian, Xing; Poeppel, David; Huber, David E.

    2011-01-01

    The open-source toolbox “TopoToolbox” is a suite of functions that use sensor topography to calculate psychologically meaningful measures (similarity, magnitude, and timing) from multisensor event-related EEG and MEG data. Using a GUI and data visualization, TopoToolbox can be used to calculate and test the topographic similarity between different conditions (Tian and Huber, 2008). This topographic similarity indicates whether different conditions involve a different distribution of underlying neural sources. Furthermore, this similarity calculation can be applied at different time points to discover when a response pattern emerges (Tian and Poeppel, 2010). Because the topographic patterns are obtained separately for each individual, these patterns are used to produce reliable measures of response magnitude that can be compared across individuals using conventional statistics (Davelaar et al. Submitted and Huber et al., 2008). TopoToolbox can be freely downloaded. It runs under MATLAB (The MathWorks, Inc.) and supports user-defined data structure as well as standard EEG/MEG data import using EEGLAB (Delorme and Makeig, 2004). PMID:21577268

  8. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation

    PubMed Central

    Adamchic, Ilya; Toth, Timea; Hauptmann, Christian; Tass, Peter Alexander

    2014-01-01

    Acoustic Coordinated Reset (CR) neuromodulation is a patterned stimulation with tones adjusted to the patient's dominant tinnitus frequency, which aims at desynchronizing pathological neuronal synchronization. In a recent proof-of-concept study, CR therapy, delivered 4–6 h/day more than 12 weeks, induced a significant clinical improvement along with a significant long-lasting decrease of pathological oscillatory power in the low frequency as well as γ band and an increase of the α power in a network of tinnitus-related brain areas. As yet, it remains unclear whether CR shifts the brain activity toward physiological levels or whether it induces clinically beneficial, but nonetheless abnormal electroencephalographic (EEG) patterns, for example excessively decreased δ and/or γ. Here, we compared the patients' spontaneous EEG data at baseline as well as after 12 weeks of CR therapy with the spontaneous EEG of healthy controls by means of Brain Electrical Source Analysis source montage and standardized low-resolution brain electromagnetic tomography techniques. The relationship between changes in EEG power and clinical scores was investigated using a partial least squares approach. In this way, we show that acoustic CR neuromodulation leads to a normalization of the oscillatory power in the tinnitus-related network of brain areas, most prominently in temporal regions. A positive association was found between the changes in tinnitus severity and the normalization of δ and γ power in the temporal, parietal, and cingulate cortical regions. Our findings demonstrate a widespread CR-induced normalization of EEG power, significantly associated with a reduction of tinnitus severity. PMID:23907785

  9. Marked EEG worsening following Levetiracetam overdose: How a pharmacological issue can confound coma prognosis.

    PubMed

    Bouchier, Baptiste; Demarquay, Geneviève; Guérin, Claude; André-Obadia, Nathalie; Gobert, Florent

    2017-01-01

    Levetiracetam is an anti-epileptic drug commonly used in intensive care when seizure is suspected as a possible cause of coma. We propose to question the cofounding effect of Levetiracetam during the prognostication process in a case of anoxic coma. We report the story of a young woman presenting a comatose state following a hypoxic cardiac arrest. After a first EEG presenting an intermediate EEG pattern, a seizure suspicion led to prescribe Levetiracetam. The EEG showed then the appearance of burst suppression, which was compatible with a very severe pattern of post-anoxic coma. This aggravation was in fact related to an overdose of Levetiracetam (the only medication introduced recently) and was reversible after Levetiracetam cessation. The increased plasmatic dosages of Levetiracetam confirming this overdose could have been favoured by a moderate reduction of renal clearance, previously underestimated because of a low body-weight. This EEG dynamic was unexpected under Levetiracetam and could sign a functional instability after anoxia. Burst suppression is classically observed with high doses of anaesthetics, but is not expected after a minor anti-epileptic drug. This report proposes that Levetiracetam tolerance might not be straightforward after brain lesions and engages us to avoid confounding factors during the awakening prognostication, which is mainly based on the severity of the EEG. Hence, prognosis should not be decided on an isolated parameter, especially if the dynamic is atypical after a new prescription, even for well-known drugs. For any suspicion, the drug's dosage and replacement should be managed before any premature care's withdrawal. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Night and day variations of sleep in patients with disorders of consciousness.

    PubMed

    Wislowska, Malgorzata; Del Giudice, Renata; Lechinger, Julia; Wielek, Tomasz; Heib, Dominik P J; Pitiot, Alain; Pichler, Gerald; Michitsch, Gabriele; Donis, Johann; Schabus, Manuel

    2017-03-21

    Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also by its circadian organization. In the present study we investigated whether brain dynamics of patients with disorders of consciousness systematically change between day and night. We recorded ~24 h EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of sleep spindles and slow waves did not systematically vary between day and night in patients, whereas day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious but not unaware patients.

  11. Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA.

    PubMed

    Labounek, René; Bridwell, David A; Mareček, Radek; Lamoš, Martin; Mikl, Michal; Slavíček, Tomáš; Bednařík, Petr; Baštinec, Jaromír; Hluštík, Petr; Brázdil, Milan; Jan, Jiří

    2018-01-01

    Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.

  12. Contribution of EEG in transient neurological deficits.

    PubMed

    Lozeron, Pierre; Tcheumeni, Nadine Carole; Turki, Sahar; Amiel, Hélène; Meppiel, Elodie; Masmoudi, Sana; Roos, Caroline; Crassard, Isabelle; Plaisance, Patrick; Benbetka, Houria; Guichard, Jean-Pierre; Houdart, Emmanuel; Baudoin, Hélène; Kubis, Nathalie

    2018-01-01

    Identification of stroke mimics and 'chameleons' among transient neurological deficits (TND) is critical. Diagnostic workup consists of a brain imaging study, for a vascular disease or a brain tumour and EEG, for epileptiform discharges. The precise role of EEG in this diagnostic workup has, however, never been clearly delineated. However, this could be crucial in cases of atypical or incomplete presentation with consequences on disease management and treatment. We analysed the EEG patterns on 95 consecutive patients referred for an EEG within 7 days of a TND with diagnostic uncertainty. Patients were classified at the discharge or the 3-month follow-up visit as: 'ischemic origin', 'migraine aura', 'focal seizure', and 'other'. All patients had a brain imaging study. EEG characteristics were correlated to the TND symptoms, imaging study, and final diagnosis. Sixty four (67%) were of acute onset. Median symptom duration was 45 min. Thirty two % were 'ischemic', 14% 'migraine aura', 19% 'focal seizure', and 36% 'other' cause. EEGs were recorded with a median delay of 1.6 day after symptoms onset. Forty EEGs (42%) were abnormal. Focal slow waves were the most common finding (43%), also in the ischemic group (43%), whether patients had a typical presentation or not. Epileptiform discharges were found in three patients, one with focal seizure and two with migraine aura. Non-specific EEG focal slowing is commonly found in TND, and may last several days. We found no difference in EEG presentation between stroke mimics and stroke chameleons, and between other diagnoses.

  13. The effect of CPAP treatment on EEG of OSAS patients.

    PubMed

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P < 0.05), while FD of EEG increased in rapid eye movement (REM) sleep (P < 0.05). Meanwhile, zDFD were decreased remarkably in both NREM and REM sleep after CPAP therapy (P < 0.05, respectively). CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  14. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.

    PubMed

    Leamy, Darren J; Kocijan, Juš; Domijan, Katarina; Duffin, Joseph; Roche, Richard Ap; Commins, Sean; Collins, Ronan; Ward, Tomas E

    2014-01-28

    Brain-Computer Interfaces (BCI) can potentially be used to aid in the recovery of lost motor control in a limb following stroke. BCIs are typically used by subjects with no damage to the brain therefore relatively little is known about the technical requirements for the design of a rehabilitative BCI for stroke. 32-channel electroencephalogram (EEG) was recorded during a finger-tapping task from 10 healthy subjects for one session and 5 stroke patients for two sessions approximately 6 months apart. An off-line BCI design based on Filter Bank Common Spatial Patterns (FBCSP) was implemented to test and compare the efficacy and accuracy of training a rehabilitative BCI with both stroke-affected and healthy data. Stroke-affected EEG datasets have lower 10-fold cross validation results than healthy EEG datasets. When training a BCI with healthy EEG, average classification accuracy of stroke-affected EEG is lower than the average for healthy EEG. Classification accuracy of the late session stroke EEG is improved by training the BCI on the corresponding early stroke EEG dataset. This exploratory study illustrates that stroke and the accompanying neuroplastic changes associated with the recovery process can cause significant inter-subject changes in the EEG features suitable for mapping as part of a neurofeedback therapy, even when individuals have scored largely similar with conventional behavioural measures. It appears such measures can mask this individual variability in cortical reorganization. Consequently we believe motor retraining BCI should initially be tailored to individual patients.

  15. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.

    PubMed

    Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo

    2017-12-01

    Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.

  17. Individual neurophysiological profile in external effects investigation

    NASA Astrophysics Data System (ADS)

    Schastlivtseva, Daria; Tatiana Kotrovskaya, D..

    Cortex biopotentials are the significant elements in human psychophysiological individuality. Considered that cortical biopotentials are diverse and individually stable, therefore there is the existence of certain dependence between the basic properties of higher nervous activity and cerebral bioelectric activity. The main purpose of the study was to reveal the individual neurophysiological profile and CNS initial functional state manifestation in human electroencephalogram (EEG) under effect of inert gases (argon, xenon, helium), hypoxia, pressure changes (0.02 and 0.2 MPa). We obtained 5-minute eyes closed background EEG on 19 scalp positions using Ag/AgCl electrodes mounted in an electrode cap. All EEG signals were re-referenced to average earlobes; Fast Furies Transformation analysis was used to calculate the relative power spectrum of delta-, theta-, alpha- and beta frequency band in artifact-free EEG. The study involved 26 healthy men who provided written informed consent, aged 20 to 35 years. Data obtained depend as individual EEG type and initial central nervous functional state as intensity, duration and mix of factors. Pronounced alpha rhythm in the raw EEG correlated with their adaptive capacity under studied factor exposure. Representation change and zonal distribution perversion of EEG alpha rhythm were accompanied by emotional instability, increased anxiety and difficulty adapting subjects. High power factor or combination factor with psychological and emotional or physical exertion minimizes individual EEG pattern.

  18. Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials.

    PubMed

    Ratti, Elena; Waninger, Shani; Berka, Chris; Ruffini, Giulio; Verma, Ajay

    2017-01-01

    Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.

  19. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  20. [Development of a Computer-aided Diagnosis System to Distinguish between Benign and Malignant Mammary Tumors in Dynamic Magnetic Resonance Images: Automatic Detection of the Position with the Strongest Washout Effect in the Tumor].

    PubMed

    Miyazaki, Yoshiaki; Tabata, Nobuyuki; Taroura, Tomomi; Shinozaki, Kenji; Kubo, Yuichiro; Tokunaga, Eriko; Taguchi, Kenichi

    We propose a computer-aided diagnostic (CAD) system that uses time-intensity curves to distinguish between benign and malignant mammary tumors. Many malignant tumors show a washout pattern in time-intensity curves. Therefore, we designed a program that automatically detects the position with the strongest washout effect using the technique, such as the subtraction technique, which extracts only the washout area in the tumor, and by scanning data in 2×2 pixel region of interest (ROI). Operation of this independently developed program was verified using a phantom system that simulated tumors. In three cases of malignant tumors, the washout pattern detection rate in images with manually set ROI was ≤6%, whereas the detection rate with our novel method was 100%. In one case of a benign tumor, when the same method was used, we checked that there was no washout effect and detected the persistent pattern. Thus, the distinction between benign and malignant tumors using our method was completely consistent with the pathological diagnoses made. Our novel method is therefore effective for differentiating between benign and malignant mammary tumors in dynamic magnetic resonance images.

  1. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy.

    PubMed

    Vulliemoz, S; Rodionov, R; Carmichael, D W; Thornton, R; Guye, M; Lhatoo, S D; Michel, C M; Duncan, J S; Lemieux, L

    2010-02-15

    EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional < event-related > designs based solely on the visual identification of IED. Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Electroencephalography in Mesial Temporal Lobe Epilepsy: A Review

    PubMed Central

    Javidan, Manouchehr

    2012-01-01

    Electroencephalography (EEG) has an important role in the diagnosis and classification of epilepsy. It can provide information for predicting the response to antiseizure drugs and to identify the surgically remediable epilepsies. In temporal lobe epilepsy (TLE) seizures could originate in the medial or lateral neocortical temporal region, and many of these patients are refractory to medical treatment. However, majority of patients have had excellent results after surgery and this often relies on the EEG and magnetic resonance imaging (MRI) data in presurgical evaluation. If the scalp EEG data is insufficient or discordant, invasive EEG recording with placement of intracranial electrodes could identify the seizure focus prior to surgery. This paper highlights the general information regarding the use of EEG in epilepsy, EEG patterns resembling epileptiform discharges, and the interictal, ictal and postictal findings in mesial temporal lobe epilepsy using scalp and intracranial recordings prior to surgery. The utility of the automated seizure detection and computerized mathematical models for increasing yield of non-invasive localization is discussed. This paper also describes the sensitivity, specificity, and predictive value of EEG for seizure recurrence after withdrawal of medications following seizure freedom with medical and surgical therapy. PMID:22957235

  3. The Role of Imitation in the Observed Heterogeneity in EEG Mu Rhythm in Autism and Typical Development

    ERIC Educational Resources Information Center

    Bernier, Raphael; Aaronson, Benjamin; McPartland, James

    2013-01-01

    Dysfunction in an execution/observation matching system, or mirror neuron system, has been proposed to contribute to the social deficits observed in Autism Spectrum Disorder (ASD). Atypical activity in this system, as reflected in attenuation of the EEG mu rhythm, has been demonstrated in several studies; however, normative patterns of activity…

  4. Post-acute stroke patients use brain-computer interface to activate electrical stimulation.

    PubMed

    Tan, H G; Kong, K H; Shee, C Y; Wang, C C; Guan, C T; Ang, W T

    2010-01-01

    Through certain mental actions, our electroencephalogram (EEG) can be regulated to operate a brain-computer interface (BCI), which translates the EEG patterns into commands that can be used to operate devices such as prostheses. This allows paralyzed persons to gain direct brain control of the paretic limb, which could open up many possibilities for rehabilitative and assistive applications. When using a BCI neuroprosthesis in stroke, one question that has surfaced is whether stroke patients are able to produce a sufficient change in EEG that can be used as a control signal to operate a prosthesis.

  5. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  6. Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms

    PubMed Central

    Zhang, Zhiwen; Duan, Feng; Zhou, Xin; Meng, Zixuan

    2017-01-01

    Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI pattern recognition system that is based on complex algorithms for classifying MI EEG signals. In electrooculogram (EOG) artifact preprocessing, band-pass filtering is performed to obtain the frequency band of MI-related signals, and then, canonical correlation analysis (CCA) combined with wavelet threshold denoising (WTD) is used for EOG artifact preprocessing. We propose a regularized common spatial pattern (R-CSP) algorithm for EEG feature extraction by incorporating the principle of generic learning. A new classifier combining the K-nearest neighbor (KNN) and support vector machine (SVM) approaches is used to classify four anisomerous states, namely, imaginary movements with the left hand, right foot, and right shoulder and the resting state. The highest classification accuracy rate is 92.5%, and the average classification accuracy rate is 87%. The proposed complex algorithm identification method can significantly improve the identification rate of the minority samples and the overall classification performance. PMID:28874909

  7. Effects of non-pharmacological pain treatments on brain states

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Askew, Robert L.; Fregni, Felipe; Witkop, Gregory; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2013-01-01

    Objective To (1) evaluate the effects of a single session of four non-pharmacological pain interventions, relative to a sham tDCS procedure, on pain and electroencephalogram- (EEG-) assessed brain oscillations, and (2) determine the extent to which procedure-related changes in pain intensity are associated with changes in brain oscillations. Methods 30 individuals with spinal cord injury and chronic pain were given an EEG and administered measures of pain before and after five procedures (hypnosis, meditation, transcranial direct current stimulation [tDCS], and neurofeedback) and a control sham tDCS procedure. Results Each procedure was associated with a different pattern of changes in brain activity, and all active procedures were significantly different from the control procedure in at least three bandwidths. Very weak and mostly non-significant associations were found between changes in EEG-assessed brain activity and pain. Conclusions Different non-pharmacological pain treatments have distinctive effects on brain oscillation patterns. However, changes in EEG-assessed brain oscillations are not significantly associated with changes in pain, and therefore such changes do not appear useful for explaining the benefits of these treatments. Significance The results provide new findings regarding the unique effects of four non-pharmacological treatments on pain and brain activity. PMID:23706958

  8. Neuropsychological findings associated with Panayiotopoulos syndrome in three children.

    PubMed

    Hodges, Samantha L; Gabriel, Marsha T; Perry, M Scott

    2016-01-01

    Panayiotopoulos syndrome is a common idiopathic benign epilepsy that has a peak age of onset in early childhood. The syndrome is multifocal and shows significant electroencephalogram (EEG) variability, with occipital predominance. Although a benign syndrome often refers to the absence of neurological and neuropsychological deficits, the syndrome has recently been associated with cognitive impairments. Also, despite frequent occipital EEG abnormalities, research regarding the visual functioning of patients is less reported and often contradictory. The purpose of this study was to gain additional knowledge regarding the neurocognitive functioning of patients with Panayiotopoulos syndrome and specifically to address any visual processing deficits associated with the syndrome. Following diagnosis of the syndrome based on typical clinical and electrophysiological criteria, three patients, aged 5, 8, and 10years were referred by epileptologists for neuropsychological evaluation. Neuropsychological findings suggest that the patients had notable impairments on visual memory tasks, especially in comparison with verbal memory. Further, they demonstrated increased difficulty on picture memory suggesting difficulty retaining information from a crowded visual field. Two of the three patients showed weakness in visual processing speed, which may account for weaker retention of complex visual stimuli. Abilities involving attention were normal for all patients, suggesting that inattention is not responsible for these visual deficits. Academically, the patients were weak in numerical operations and spelling, which both rely partially on visual memory and may affect achievement in these areas. Overall, the results suggest that patients with Panayiotopoulos syndrome may have visual processing and visual memory problems that could potentially affect their academic capabilities. Identifying such difficulties may be helpful in creating educational and remedial assistance programs for children with this syndrome, as well as developing appropriate presentation of information to these children in school. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The role of diffusion-weighted MR imaging for differentiating benign from malignant bile duct strictures.

    PubMed

    Park, Hyun Jeong; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Seo-youn; Lee, Soon Jin; Choi, Dongil

    2014-04-01

    To assess the added value of diffusion-weighted imaging (DWI) to conventional magnetic resonance imaging (MRI) for differentiating benign from malignant bile duct strictures. Twenty-seven patients with a benign stricture and 42 patients with a malignant stricture who had undergone gadoxetic acid-enhanced MRI with DWI were enrolled. Qualitative (signal intensity, dynamic enhancement pattern) and quantitative (wall thickness and length) analyses were performed. Two observers independently reviewed a set of conventional MRI and a combined set of conventional MRI and DWI, and receiver operating characteristic (ROC) curve analysis was assessed. Benign strictures showed isointensity (18.5-70.4 %) and a similar enhancement pattern (22.2 %) to that of normal bile duct more frequently than malignant strictures (0-40.5 % and 0 %) on conventional MRI (P < 0.05). Malignant strictures (90.5-92.9 %) showed hypervascularity on arterial and portal venous phase images more frequently than benign strictures (37.0-70.4 %) (P < 0.01) On DWI, all malignant strictures showed hyperintensity compared with benign cases (70.4 %) (P < 0.001). Malignant strictures were significantly thicker and longer than benign strictures (P < 0.001). The diagnostic performance of both observers improved significantly after additional review of DWI. Adding DWI to conventional MRI is more helpful for differentiating benign from malignant bile duct strictures than conventional MRI alone. • Accurate diagnosis and exclusion of benign strictures of bile duct are important. • Diffusion-weighted MRI helps to distinguish benign from malignant bile duct strictures. • DWI plus conventional MRI provides superior diagnostic accuracy to conventional MRI alone.

  10. Long-term EEG in patients with the ring chromosome 20 epilepsy syndrome.

    PubMed

    Freire de Moura, Maria; Flores-Guevara, Roberto; Gueguen, Bernard; Biraben, Arnaud; Renault, Francis

    2016-05-01

    The recognizable electroencephalography (EEG) pattern of ring chromosome 20 epilepsy syndrome can be missing in patients with r(20) chromosomal anomaly, and may be found in patients with frontal lobe epilepsy of other origin. This study aims to search for more specific EEG signs by using long-term recordings and measuring the duration of paroxysmal anomalies. The series included 12 adult patients with r(20) anomaly, and 12 controls without any chromosomal aberration. We measured the duration of every paroxysmal burst and calculated the sum of their durations for each long-term EEG recording. We compared patients to controls using the Mann-Whitney U-test. Every patient showed long-lasting paroxysmal EEG bursts, up to 60 min; controls did not show any bursts longer than 60 s (p < 0.0001). The total duration of paroxysmal anomalies was significantly longer in patients (31-692 min) compared to controls (0-48 min) (p < 0.0001). Thus, long-term recordings enhance the contribution of EEG methods for characterizing the ring 20 chromosome epilepsy syndrome. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  11. EEG Correlates of Ten Positive Emotions.

    PubMed

    Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan

    2017-01-01

    Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants' ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as 'encouragement' for awe, gratitude, hope, inspiration, pride, 'playfulness' for amusement, joy, interest, and 'harmony' for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions.

  12. [Electroencephalographic effects of chlorphenesin carbamate, a new central muscle relaxant, in rabbits (author's transl)].

    PubMed

    Watanabe, S; Araki, H; Kawasaki, H; Ueki, S

    1977-05-01

    Electroencephalographic (EEG) effects of chlorphenesin carbamate were investigated in rabbits with chronic electrode implants, and compared with those of chlormezanone and methocarbamol. Chlorphenesin carbamate (50 mg/kg i.v., 100 mg/kg i.d.) induced a drowsy pattern of spontaneous EEG consisting of high voltage slow waves in the cortex and amygdala, and desynchronization of hippocampal theta waves. Chlormezanone also elicited similar EEG changes but such were much more potent than chlorphenesin carbamate. Methocarbamol showed no effect on spontaneous EEG. Chlorphenesin carbamate caused sedation in this period and muscle relaxation was more potent than that of chlormezanone. The EEG arousal response to auditory stimulation and to electric stimulation of the posterior hypothalamus, centromedian thalamus and mesencephalic reticular formation was slightly depressed by chlorphenesin carbamate. Chlorphenesin carbamate, as with chlormezanone, markedly depressed the limbic afterdischarges elicited by hippocampal stimulation. These EEG effects of chlorphenesin carbamate were qualitatively similar to but much weaker than those of chlormezanone, whereas the muscle relaxant effect of chlorphenesin carbamate was more potent than that of chlormezanone.

  13. Electroencephalography for children with autistic spectrum disorder: a sedation protocol.

    PubMed

    Keidan, Ilan; Ben-Menachem, Erez; Tzadok, Michal; Ben-Zeev, Bruria; Berkenstadt, Haim

    2015-02-01

    To report the effectiveness and efficiency of a predetermined sedation protocol for providing sedation for electroencephalograph (EEG) studies in children with autism. Sleep EEG has been advocated for the majority of children with autism spectrum disorder. In most cases, sedation is required to allow adequate studies. Most sedation drugs have negative effects on the EEG pattern. The sedation protocol we adopted included chloral hydrate, dexmedetomidine, and ketamine and was evaluated prospectively for 2 years. One hundred and eighty-three children with autistic spectrum disorder were sedated with the described drug protocol that was efficient, provided adequate EEG readings, and was not associated with serious adverse events. Our protocol kept costs to a minimum but provided appropriate escalation in care when required. © 2014 John Wiley & Sons Ltd.

  14. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.

    PubMed

    Roy, Rinku; Sikdar, Debdeep; Mahadevappa, Manjunatha; Kumar, C S

    2018-05-19

    A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with "one against one" multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future. The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ᅟ.

  15. MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

    PubMed

    Chowdhury, Rasheda Arman; Zerouali, Younes; Hedrich, Tanguy; Heers, Marcel; Kobayashi, Eliane; Lina, Jean-Marc; Grova, Christophe

    2015-11-01

    The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG-MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.

  16. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    PubMed

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Etiological associations and outcome predictors of acute electroencephalography in childhood encephalitis.

    PubMed

    Mohammad, Shekeeb S; Soe, Samantha M; Pillai, Sekhar C; Nosadini, Margherita; Barnes, Elizabeth H; Gill, Deepak; Dale, Russell C

    2016-10-01

    To examine EEG features in a retrospective 13-year cohort of children with encephalitis. 354 EEGs from 119 patients during their admission were rated blind using a proforma with demonstrated inter-rater reliability (mean k=0.78). Patients belonged to 12 etiological groups that could be grouped into infectious and infection-associated (n=47), immune-mediated (n=36) and unknown (n=33). EEG features were analyzed between groups and for risk of abnormal Liverpool Outcome Score and drug resistant epilepsy (DRE) at last follow up. 86% children had an abnormal first EEG and 89% had at least one abnormal EEG. 55% had an abnormal outcome, and 13% had DRE after median follow-up of 7.3years (2.0-15.8years). Reactive background on first EEGs (9/11, p=0.04) and extreme spindles (4/11, p<0.001) distinguished patients with anti-N-Methyl-d-Aspartate Receptor encephalitis. Non-reactive EEG background (48% first EEGs) predicted abnormal outcome (OR 3.8, p<0.001). A shifting focal seizure pattern, seen in FIRES (4/5), anti-voltage gated potassium channel (2/3), Mycoplasma (1/10), other viral (1/10) and other unknown (1/28) encephalitis, was most predictive of DRE after multivariable analysis (OR 11.9, p<0.001). Non-reactive EEG background and the presence of shifting focal seizures resembling migrating partial seizures of infancy are predictors of abnormal outcome and DRE respectively in childhood encephalitis. EEG is a sensitive but non-discriminatory marker of childhood encephalitis. We highlight the EEG features that predict abnormal outcome and DRE. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  18. Electroencephalography for diagnosis and prognosis of acute encephalitis.

    PubMed

    Sutter, Raoul; Kaplan, Peter W; Cervenka, Mackenzie C; Thakur, Kiran T; Asemota, Anthony O; Venkatesan, Arun; Geocadin, Romergryko G

    2015-08-01

    To confirm the previously identified EEG characteristics for HSV encephalitis and to determine the diagnostic and predictive value of electroencephalography (EEG) features for etiology and outcome of acute encephalitis in adults. In addition, we sought to investigate their independence from possible clinical confounders. This study was performed in the Intensive Care Units of two academic tertiary care centers. From 1997 to 2011, all consecutive patients with acute encephalitis who received one or more EEGs were included. Examination of the diagnostic and predictive value of EEG patterns regarding etiology, clinical conditions, and survival was performed. The main outcome measure was in-hospital death. Of 103 patients with encephalitis, EEGs were performed in 76 within a median of 1 day (inter quartile range 0.5-3) after admission. Mortality was 19.7%. Higher proportions of periodic discharges (PDs) (p=0.029) and focal slowing (p=0.017) were detected in Herpes Simplex virus (HSV) encephalitis as compared to non-HSV encephalitis, while clinical characteristics did not differ. Normal EEG remained the strongest association with a low relative risk for death in multivariable analyses (RR<0.001, p<0.001) adjusting for confounders as coma, global cerebral edema and mechanical ventilation. None of the patients with a normal EEG had a GCS of 15. Normal EEG predicted survival independently from possible confounders, highlighting the prognostic value of EEG in evaluating patients with encephalitis. EEG revealed higher proportions of PDs along with focal slowing in HSV encephalitis as compared to other etiologies. EEG significantly adds to clinical, diagnostic and prognostic information in patients with acute encephalitis. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Information-Theoretical Analysis of EEG Microstate Sequences in Python.

    PubMed

    von Wegner, Frederic; Laufs, Helmut

    2018-01-01

    We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG) measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A-D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  20. Computer-aided diagnosis of alcoholism-related EEG signals.

    PubMed

    Acharya, U Rajendra; S, Vidya; Bhat, Shreya; Adeli, Hojjat; Adeli, Amir

    2014-12-01

    Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Elucidating the Dark Side of Envy: Distinctive Links of Benign and Malicious Envy With Dark Personalities

    PubMed Central

    Lange, Jens; Paulhus, Delroy L.; Crusius, Jan

    2017-01-01

    Researchers have recently drawn a contrast between two forms of envy: benign and malicious envy. In three studies (total N = 3,123), we challenge the assumption that malicious envy is destructive, whereas benign envy is entirely constructive. Instead, both forms have links with the Dark Triad of personality. Benign envy is associated with Machiavellian behaviors, whereas malicious envy is associated with both Machiavellian and psychopathic behaviors. In Study 1, this pattern emerged from meta-analyzed trait correlations. In Study 2, a manipulation affecting the envy forms mediated an effect on antisocial behavioral intentions. Study 3 replicated these patterns by linking envy to specific antisocial behaviors and their impact on status in the workplace. Together, our correlational and experimental results suggest that the two forms of envy can both be malevolent. Instead of evaluating envy’s morality, we propose to focus on its functional value. PMID:29271287

  2. Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients.

    PubMed

    Thomas, C; Hestermann, U; Walther, S; Pfueller, U; Hack, M; Oster, P; Mundt, C; Weisbrod, M

    2008-02-01

    Delirium in the elderly results in increased morbidity, mortality and functional decline. Delirium is underdiagnosed, particularly in dementia. To increase diagnostic accuracy, we investigated whether maintenance of activation assessed by EEG discriminates delirium in association with dementia (D+D) from dementia without delirium (DP) and cognitively unimpaired elderly subjects (CU). Routine and quantitative EEG (rEEG/qEEG) with additional prolonged activation (3 min eyes open period) were evaluated in hospitalised elderly patients with acute geriatric disease. Patients were assigned post hoc to three comparable groups (D+D/DP/CU) by expert consensus based on DSM-IV criteria. Dementia diagnosis was confirmed using cognitive and functional tests and caregiver rating (IQCODE, Informed Questionnaire of Cognitive Decline in the Elderly). While rEEG at rest showed low accuracy for a diagnosis of delirium, qEEG in DP and CU revealed a specific activation pattern of high significance found to be absent in the D+D group. Stepwise logistic regression confirmed that differentiation of D+D from DP was best resolved using activated upper alpha and delta power density which, compared with rEEG, enabled an 11% increase in diagnostic correctness to 83%, resulting in 67% sensitivity and 91% specificity. Among frail CU and D+D subjects, almost 90% were correctly classified. Dementia associated with delirium can be discriminated reliably from dementia alone in a meaningful clinical setting. Thus EEG evaluation in chronic encephalopathy should be optimised by a simple activation task and spectral analysis, particularly in the elderly with dementia.

  3. Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson's disease.

    PubMed

    Jech, Robert; Růzicka, Evzen; Urgosík, Dusan; Serranová, Tereza; Volfová, Markéta; Nováková, Olga; Roth, Jan; Dusek, Petr; Mecír, Petr

    2006-05-01

    We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off. Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and 2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure repeated after DBS STN was switched on. With DBS switched on, the dominant EEG frequency increased from 9.44+/-1.3 to 9.71+/-1.3 Hz (P<0.01) while its relative spectral power dropped by 11% on average (P<0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP (P<0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P<0.01; color pattern: P<0.05). Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system. Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.

  4. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness

    PubMed Central

    King, J.R.; Faugeras, F.; Gramfort, A.; Schurger, A.; El Karoui, I.; Sitt, J.D.; Rohaut, B.; Wacongne, C.; Labyt, E.; Bekinschtein, T.; Cohen, L.; Naccache, L.; Dehaene, S.

    2017-01-01

    Detecting residual consciousness in unresponsive patients is a major clinical concern and a challenge for theoretical neuroscience. To tackle this issue, we recently designed a paradigm that dissociates two electro-encephalographic (EEG) responses to auditory novelty. Whereas a local change in pitch automatically elicits a mismatch negativity (MMN), a change in global sound sequence leads to a late P300b response. The latter component is thought to be present only when subjects consciously perceive the global novelty. Unfortunately, it can be difficult to detect because individual variability is high, especially in clinical recordings. Here, we show that multivariate pattern classifiers can extract subject-specific EEG patterns and predict single-trial local or global novelty responses. We first validate our method with 38 high-density EEG, MEG and intracranial EEG recordings. We empirically demonstrate that our approach circumvents the issues associated with multiple comparisons and individual variability while improving the statistics. Moreover, we confirm in control subjects that local responses are robust to distraction whereas global responses depend on attention. We then investigate 104 vegetative state (VS), minimally conscious state (MCS) and conscious state (CS) patients recorded with high-density EEG. For the local response, the proportion of significant decoding scores (M = 60%) does not vary with the state of consciousness. By contrast, for the global response, only 14% of the VS patients' EEG recordings presented a significant effect, compared to 31% in MCS patients' and 52% in CS patients'. In conclusion, single-trial multivariate decoding of novelty responses provides valuable information in non-communicating patients and paves the way towards real-time monitoring of the state of consciousness. PMID:23859924

  5. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.

    PubMed

    Kim, Hyun-Chul; Yoo, Seung-Schik; Lee, Jong-Hwan

    2015-01-01

    Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Abnormal EEG Power Spectra in Acute Transient Global Amnesia: A Quantitative EEG Study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Todini, Federico; Di Blasi, Chiara; Mazzucchi, Edoardo; Brunetti, Valerio; Della Marca, Giacomo

    2018-06-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by retrograde and anterograde amnesia without other neurological deficits. Although electroencephalography (EEG) methods are commonly used in both clinical and research setting with TGA patients, few studies have investigated neurophysiological pattern in TGA using quantitative EEG (qEEG). The main aim of the present study was to extend these previous findings by exploring EEG power spectra differences between patients with acute TGA and healthy controls using the exact low-resolution brain electromagnetic tomography software (eLORETA). EEG was recorded during 5 minutes of resting state. Sixteen patients (mean age: 66.81 ± 7.94 years) during acute TGA and 16 healthy subjects were enrolled. All patients showed hippocampal or parahippocampal signal abnormalities in diffusion-weighted magnetic resonance imaging performed from 2 to 5 days after the onset of TGA. Compared with healthy controls, TGA patients showed a decrease of theta power localized in the temporal lobe (Brodmann areas, BAs 21-22-38) and frontal lobe (BAs 8-9-44-45). A decrease of EEG beta power in the bilateral precuneus (BA 7) and in the bilateral postcentral gyrus (BAs 3-4-5) was also observed in TGA individuals. Taken together, our results could reflect the neurophysiological substrate of the severe impairment of both episodic memory and autobiographical memory which affect TGA patients during the acute phase.

  7. Nitrous oxide has different effects on the EEG and somatosensory evoked potentials during isoflurane anaesthesia in patients.

    PubMed

    Porkkala, T; Jäntti, V; Kaukinen, S; Häkkinen, V

    1997-04-01

    Electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) are altered by inhalation anaesthesia. Nitrous oxide is commonly used in combination with volatile anaesthetics. We have studied the effects of nitrous oxide on both EEG and SEPs simultaneously during isoflurane burst-suppression anaesthesia. Twelve ASA I-II patients undergoing abdominal or orthopaedic surgery were anaesthetized with isoflurane by mask. After intubation and relaxation the isoflurane concentration was increased to a level at which an EEG burst-suppression pattern occurred (mean isoflurane end-tidal concentration 1.9 (SD 0.2) %. With a stable isoflurane concentration, the patients received isoflurane-air-oxygen and isoflurane-nitrous oxide-oxygen (FiO2 0.4) in a randomized cross-over manner. EEG and SEPs were simultaneously recorded before, and after wash-out or wash-in periods for nitrous oxide. The proportion of EEG suppressions as well as SEP amplitudes for cortical N20 were calculated. The proportion of EEG suppressions decreased from 53.5% to 34% (P < 0.05) when air was replaced by nitrous oxide. At the same time, the cortical N20 amplitude was reduced by 69% (P < 0.01). The results suggest that during isoflurane anaesthesia, nitrous oxide has a different effect on EEG and cortical SEP at the same time. The effects of nitrous oxide may be mediated by cortical and subcortical generators.

  8. Epileptic seizure detection in EEG signal using machine learning techniques.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2018-03-01

    Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

  9. Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study.

    PubMed

    Grossi, Enzo; Olivieri, Chiara; Buscema, Massimo

    2017-04-01

    Multi-Scale Ranked Organizing Map coupled with Implicit Function as Squashing Time algorithm(MS-ROM/I-FAST) is a new, complex system based on Artificial Neural networks (ANNs) able to extract features of interest in computerized EEG through the analysis of few minutes of their EEG without any preliminary pre-processing. A proof of concept study previously published showed accuracy values ranging from 94%-98% in discerning subjects with Mild Cognitive Impairment and/or Alzheimer's Disease from healthy elderly people. The presence of deviant patterns in simple resting state EEG recordings in autism, consistent with the atypical organization of the cerebral cortex present, prompted us in applying this potent analytical systems in search of a EEG signature of the disease. The aim of the study is to assess how effectively this methodology distinguishes subjects with autism from typically developing ones. Fifteen definite ASD subjects (13 males; 2 females; age range 7-14; mean value = 10.4) and ten typically developing subjects (4 males; 6 females; age range 7-12; mean value 9.2) were included in the study. Patients received Autism diagnoses according to DSM-V criteria, subsequently confirmed by the ADOS scale. A segment of artefact-free EEG lasting 60 seconds was used to compute input values for subsequent analyses. MS-ROM/I-FAST coupled with a well-documented evolutionary system able to select predictive features (TWIST) created an invariant features vector input of EEG on which supervised machine learning systems acted as blind classifiers. The overall predictive capability of machine learning system in sorting out autistic cases from normal control amounted consistently to 100% with all kind of systems employed using training-testing protocol and to 84% - 92.8% using Leave One Out protocol. The similarities among the ANN weight matrixes measured with apposite algorithms were not affected by the age of the subjects. This suggests that the ANNs do not read age-related EEG patterns, but rather invariant features related to the brain's underlying disconnection signature. This pilot study seems to open up new avenues for the development of non-invasive diagnostic testing for the early detection of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Awareness during drowsiness: dynamics and electrophysiological correlates

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    During drowsy periods, performance on tasks requiring continuous attention becomes intermittent. Previously, we have reported that during drowsy periods of intermittent performance, 7 of 10 participants performing an auditory detection task exhibited episodes of non-responding lasting about 18 s (Makeig & Jung, 1996). Further, the time patterns of these episodes were repeated precisely in subsequent sessions. The 18-s cycles were accompanied by counterbalanced power changes within two frequency bands in the vertex EEG (near 4 Hz and circa 40 Hz). In the present experiment, performance patterns and concurrent EEG spectra were examined in four participants performing a continuous visuomotor compensatory tracking task in 15-20 minute bouts during a 42-hour sleep deprivation study. During periods of good performance, participants made compensatory trackball movements about twice per second, attempting to keep a target disk near a central ring. Autocorrelations of time series representing the distance of the target disk from the ring centre showed that during periods of poor performance marked near-18-s cycles in performance again appeared. There were phases of poor or absent performance accompanied by an increase in EEG power that was largest at 3-4 Hz. These studies show that in drowsy humans, opening and closing of the gates of behavioural awareness is marked not by the appearance of (12-14 Hz) sleep spindles, but by prominent EEG amplitude changes in the low theta band. Further, both EEG and behavioural changes during drowsiness often exhibit stereotyped 18-s cycles.

  11. Deep Learning and Insomnia: Assisting Clinicians With Their Diagnosis.

    PubMed

    Shahin, Mostafa; Ahmed, Beena; Hamida, Sana Tmar-Ben; Mulaffer, Fathima Lamana; Glos, Martin; Penzel, Thomas

    2017-11-01

    Effective sleep analysis is hampered by the lack of automated tools catering to disordered sleep patterns and cumbersome monitoring hardware. In this paper, we apply deep learning on a set of 57 EEG features extracted from a maximum of two EEG channels to accurately differentiate between patients with insomnia or controls with no sleep complaints. We investigated two different approaches to achieve this. The first approach used EEG data from the whole sleep recording irrespective of the sleep stage (stage-independent classification), while the second used only EEG data from insomnia-impacted specific sleep stages (stage-dependent classification). We trained and tested our system using both healthy and disordered sleep collected from 41 controls and 42 primary insomnia patients. When compared with manual assessments, an NREM + REM based classifier had an overall discrimination accuracy of 92% and 86% between two groups using both two and one EEG channels, respectively. These results demonstrate that deep learning can be used to assist in the diagnosis of sleep disorders such as insomnia.

  12. On analysis of electroencephalogram by multiresolution-based energetic approach

    NASA Astrophysics Data System (ADS)

    Sevindir, Hulya Kodal; Yazici, Cuneyt; Siddiqi, A. H.; Aslan, Zafer

    2013-10-01

    Epilepsy is a common brain disorder where the normal neuronal activity gets affected. Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy. On a standard EEG some abnormalities indicate epileptic activity. EEG signals like many biomedical signals are highly non-stationary by their nature. For the investigation of biomedical signals, in particular EEG signals, wavelet analysis have found prominent position in the study for their ability to analyze such signals. Wavelet transform is capable of separating the signal energy among different frequency scales and a good compromise between temporal and frequency resolution is obtained. The present study is an attempt for better understanding of the mechanism causing the epileptic disorder and accurate prediction of occurrence of seizures. In the present paper following Magosso's work [12], we identify typical patterns of energy redistribution before and during the seizure using multiresolution wavelet analysis on Kocaeli University's Medical School's data.

  13. Assessing severity of obstructive sleep apnea by fractal dimension sequence analysis of sleep EEG

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, X. C.; Luo, L.; Shao, J.; Zhang, C.; Ma, J.; Wang, G. F.; Liu, Y.; Peng, C.-K.; Fang, J.

    2009-10-01

    Different sleep stages are associated with distinct dynamical patterns in EEG signals. In this article, we explored the relationship between the sleep architecture and fractal dimension (FD) of sleep EEG. In particular, we applied the FD analysis to the sleep EEG of patients with obstructive sleep apnea-hypopnea syndrome (OSAHS), which is characterized by recurrent oxyhemoglobin desaturation and arousals from sleep, a disease which received increasing public attention due to its significant potential impact on health. We showed that the variation of FD reflects the macrostructure of sleep. Furthermore, the fast fluctuation of FD, as measured by the zero-crossing rate of detrended FD (zDFD), is a useful indicator of sleep disturbance, and therefore, correlates with apnea-hypopnea index (AHI), and hourly number of blood oxygen saturation (SpO 2) decreases greater than 4%, as obstructive apnea/hypopnea disturbs sleep architecture. For practical purpose, a modified index combining zDFD of EEG and body mass index (BMI) may be useful for evaluating the severity of OSAHS symptoms.

  14. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

    PubMed Central

    Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.

    2017-01-01

    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310

  15. The Landau-Kleffner Syndrome

    PubMed Central

    Pearl, Phillip L.; Carrazana, Enrique J.; Holmes, Gregory L.

    2001-01-01

    Landau-Kleffner syndrome (LKS), or acquired epileptiform aphasia, is an epilepsy syndrome involving progressive neuropsychological impairment related to the appearance of paroxysmal electroencephalograph (EEG) activity. LKS appears to share a common pathophysiologic mechanism with continuous spike-wave of sleep (CSWS), acquired epileptic opercular syndrome (AEOS), and even benign childhood epilepsy with centrotemporal spikes (BECTS), with differentiating factors including age of onset, area of primary epileptogenicity, and severity of clinical presentation. This article covers the clinical, diagnostic, therapeutic, and prognostic features of LKS. In a child with autistic spectrum disorder, the presence of a fluctuating clinical course or regression should raise suspicion for the presence of associated epilepsy. PMID:15309183

  16. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    PubMed

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  18. Changes in trait brainwave power and coherence, state and trait anxiety after three-month transcendental meditation (TM) practice.

    PubMed

    Tomljenović, Helena; Begić, Dražen; Maštrović, Zora

    2016-03-01

    The amount of studies showing different benefits of practicing meditation is growing. EEG brainwave patterns objectively reflect both the cognitive processes and objects of meditation. This study aimed to examine the effects of transcendental meditation (TM) practice on baseline EEG brainwave patterns (outside of meditation) and to examine weather TM reduces state and trait anxiety. Standard EEG recordings were conducted on volunteer participants (N=12), all students or younger employed people, before and after a three-month meditation training. Artifact-free 100-second epochs were selected and analyzed by Fast Fourier Transformation (FFT) analysis. Endlers Multidimensional Anxiety Scales (EMAS) were used to assess anxiety levels. Power (μV(2)) and coherence levels were compared in the alpha, beta, theta and delta frequency band. Changes in EEG patterns after meditation practice were found mostly in the theta band. An interaction effect was found on the left hemisphere (p<0.10). Theta power decreased on the left, but not on the right hemisphere. Increased theta coherence was found overall and in the central, temporal and occipital areas (p<0.10). Decrease in alpha power was found on channels T3 (p<0.10), O1 (p<0.05) and O2 (p<0.10). An interaction effect was found in the delta frequency band (p<0.06), too. A trend for power decreasing was found on the left, and a trend for power increasing on the right hemisphere. Also, power decreased on channel O1 (p<0.10). In the beta frequency band, a decrease was found on channel O2 (p<0.10). Trait anxiety did not differ, but a decrease in state anxiety and cognitive worry was found (p<0.05). Obtained results confirm the effects of TM on some baseline EEG brainwave patterns and state anxiety, suggesting that the left hemisphere is more sensitive to meditation practice. Most of the changes were found in the occipital and temporal areas, less in the central and frontal areas. State anxiety decreased after TM practice. Findings suggest TM practice could be helpful in treating different kinds of disorders, especially anxiety disorders.

  19. [Prognostic factors after cardiac arrest. Usefulness of early video-electroencephalogram].

    PubMed

    Arméstar, Fernando; Becerra Cuñat, Juan Luis; León Chan, Yariela; Mesalles Sanjuan, Eduard; Moreno, José Antonio; Jiménez González, Marta; Roca, Josep

    2015-05-08

    Predictors of unfavorable outcome in patients after cardiopulmonary arrest (CPA) are important to make decisions about the limitation of therapeutic efforts. The aim was to analyze the clinical variables in the prognosis of patients recovered after CPA. Retrospective study on comatose patients with recovered CPA. The variables were: age, sex, Glasgow Coma Score (GCS), pupillary light reflex, other variables related to CPA (cause, duration, witnessed or not witnessed), myoclonic status and electroencephalographic (EEG) patterns. Fifty patients were studied. The variables associated with mortality were the absence of pupillary light reflex (hazard ratio [HR] 0.277, 95% confidence interval [95% CI] 0.103-0.741, P=.01), a low GCS (HR 0.701, 95% CI 0.542-0.908, P=.007) and myoclonic state (HR 0.38, 95% CI 0.176-0.854, P=.01). We evaluated the EEG patterns in 22 patients. No statistical significance was observed. The absence of pupillary light reflex, a low GCS and myoclonic state are prognostic factors in patients recovered after a CPA. The EEG patterns showed a nonsignificant association with prognosis. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  20. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  1. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  2. Anterior EEG asymmetries and opponent process theory.

    PubMed

    Kline, John P; Blackhart, Ginette C; Williams, William C

    2007-03-01

    The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.

  3. EEG asymmetry at 10 months of age: are temperament trait predictors different for boys and girls?

    PubMed

    Gartstein, Maria A; Bell, Martha Ann; Calkins, Susan D

    2014-09-01

    Frontal EEG asymmetry patterns represent markers of individual differences in emotion reactivity and regulation, with right hemisphere activation linked with withdrawal behaviors/emotions (e.g., fear), and activation of the left hemisphere associated with approach (e.g., joy, anger). In the present study, gender was examined as a potential moderator of links between infant temperament at 5 months, and frontal EEG asymmetry patterns recorded during an Arm Restraint procedure at 10 months of age. Positive Affectivity/Surgency (PAS), Negative Emotionality (NE), and Orienting/Regulatory Capacity (ORC) were considered as predictors, with PAS emerging as significant for males; higher levels translating into greater right-frontal activation later in infancy. For females, ORC accounted for a significant portion of the frontal asymmetry scores, with higher ORC being associated with greater right-frontal activation. The moderating influence of gender noted in this study is discussed in the context of implications for discrepancies in rates/symptoms of psychopathology later in childhood. © 2014 Wiley Periodicals, Inc.

  4. Déjà vu phenomenon-related EEG pattern. Case report.

    PubMed

    Vlasov, P N; Chervyakov, A V; Gnezditskii, V V

    2013-01-01

    Déjà vu (DV, from French déjà vu - "already seen") is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. This study aimed to record the EEG pattern of déjà vu. The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12-16 h). In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta-delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Two types of déjà vu are suggested to exist: "pathological-epileptic" déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and "nonpathological-nonepileptic" déjà vu, which is characteristic of healthy people and psychological phenomenon.

  5. Déjà vu phenomenon-related EEG pattern. Case report☆

    PubMed Central

    Vlasov, P.N.; Chervyakov, A.V.; Gnezditskii, V.V.

    2013-01-01

    Background Déjà vu (DV, from French déjà vu — “already seen”) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of déjà vu. Methods The subjects participated in a survey concerning déjà vu characteristics and underwent ambulatory EEG monitoring (12–16 h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right temporal lobe region and, in some cases, ended with slow-wave theta–delta activity over the right hemisphere. There were no epileptic discharges in healthy respondents during DV. Conclusion Two types of déjà vu are suggested to exist: “pathological-epileptic” déjà vu, characteristic of patients with epilepsy and equivalent to an epileptic seizure, and “nonpathological-nonepileptic” déjà vu, which is characteristic of healthy people and psychological phenomenon. PMID:25667847

  6. Regularized Filters for L1-Norm-Based Common Spatial Patterns.

    PubMed

    Wang, Haixian; Li, Xiaomeng

    2016-02-01

    The l1 -norm-based common spatial patterns (CSP-L1) approach is a recently developed technique for optimizing spatial filters in the field of electroencephalogram (EEG)-based brain computer interfaces. The l1 -norm-based expression of dispersion in CSP-L1 alleviates the negative impact of outliers. In this paper, we further improve the robustness of CSP-L1 by taking into account noise which does not necessarily have as large a deviation as with outliers. The noise modelling is formulated by using the waveform length of the EEG time course. With the noise modelling, we then regularize the objective function of CSP-L1, in which the l1-norm is used in two folds: one is the dispersion and the other is the waveform length. An iterative algorithm is designed to resolve the optimization problem of the regularized objective function. A toy illustration and the experiments of classification on real EEG data sets show the effectiveness of the proposed method.

  7. Using the nonlinear control of anaesthesia-induced hypersensitivity of EEG at burst suppression level to test the effects of radiofrequency radiation on brain function

    PubMed Central

    Lipping, Tarmo; Rorarius, Michael; Jäntti, Ville; Annala, Kari; Mennander, Ari; Ferenets, Rain; Toivonen, Tommi; Toivo, Tim; Värri, Alpo; Korpinen, Leena

    2009-01-01

    Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed. PMID:19615084

  8. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals

    PubMed Central

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-01

    The electroencephalogram (EEG) signal represents a subject’s specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems. PMID:29364848

  9. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.

    PubMed

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-24

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.

  10. Unfavorable surgical outcomes in partial epilepsy with secondary bilateral synchrony: Intracranial electroencephalography study.

    PubMed

    Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Chu, Kon; Kim, Manho; Chung, Chun-Kee; Jung, Ki-Young; Lee, Sang Kun

    2016-05-01

    Secondary bilateral synchrony (SBS) indicates bilaterally synchronous epileptiform discharges arising from a focal cortical origin. The present study aims to investigate SBS in partial epilepsy with regard to surgical outcomes and intracranial EEG findings. We retrospectively reviewed consecutive patients who underwent epilepsy surgery following extraoperative intracranial electroencephalography (EEG) study from 2008 to 2012. The presence of SBS was determined based upon the results of scalp EEG monitoring performed for presurgical evaluations. We reviewed scalp EEG, neuroimaging, intracranial EEG findings, and surgical outcomes in patients with SBS. We found 12 patients with SBS who were surgically treated for intractable partial epilepsy. Nine (75%) patients had lateralized ictal semiology and only two (16.6%) patients showed localized ictal onset in scalp EEG. Brain MRI showed epileptogenic lesion in three (25%) patients. Intracranial EEG demonstrated that ictal onset zone was widespread or non-localized in six (50%) patients. Low-voltage fast activity was the most common ictal onset EEG pattern. Rapid propagation of ictal onset was noted in 10 (83.3%) patients. Eleven patients underwent resective epilepsy surgery and only two patients (18.2%) achieved seizure-freedom (median follow-up 56 months). MRI-visible brain lesions were associated with favorable outcomes (p=0.024). Patients with SBS, compared to frontal lobe epilepsy without SBS, showed lesser localization in ictal onset EEG (p=0.029) and more rapid propagation during evolution of ictal rhythm (p=0.015). The present results suggested that resective surgery for partial epilepsy with SBS should be decided carefully, especially in case of nonlesional epilepsy. Poor localization and rapid spread of ictal onset were prominent in intracranial EEG, which might contribute to incomplete resection of the epileptogenic zone and poor surgical outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    NASA Technical Reports Server (NTRS)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or .0139% (4/28627). After review of the value of the EEG as a screening tool, the US Navy now uses EEG only for certain clinical indications (head injury, unexplained loss of consciousness, family history of epilepsy, and abnormal neurological exam). Currently the US Navy does not use EEG for screening for any flight applicant without a neurologic indication. In the US Navy, an electroencephalographic pattern is determined to be epileptiform by a neurologist.

  12. The Effect of Fentanyl on Bispectral Index (BIS) Values and Recall

    DTIC Science & Technology

    2002-12-01

    BIS Values CHAPTER ONE: INTRODUCTION Anesthesia has three main components known as the anesthesia triad: hypnosis (loss of consciousness), adequate...monitor, the primary way to estimate level of hypnosis was through changes in vital signs and the anesthesia provider’s previous experiences. Many...different EEG patterns. Another reason that EEG is difficult to use for assessing hypnosis is that most anesthesia providers use multiple classes of

  13. Changes in Resting EEG in Colombian Ex-combatants ith Antisocial Personality Disorder.

    PubMed

    Ramos, Claudia; Duque-Grajales, Jon; Rendón, Jorge; Montoya-Betancur, Alejandro; Baena, Ana; Pineda, David; Tobón, Carlos

    Although the social and economic consequences of Colombian internal conflicts mainly affected the civilian population, they also had other implications. The ex-combatants, the other side of the conflict, have been the subject of many studies that question their personality structures and antisocial features. Results suggest that ex-combatants usually have characteristics of an antisocial personality disorder (ASPD) that is related with their behaviour. Quantitative EEG (qEEG) was used to evaluate differences in cortical activity patterns between an ex-combatants group and a control group. The Psychopathy Checklist-Revised (PCL-R) was used to assess the presence of ASPD in the ex-combatants group, as well as the Diagnostic Interview for Genetic Studies (DIGS) for other mental disorders classified in the DCI-10. There are significant differences in psychopathy levels between groups, as well as in alpha-2 and beta waves, especially in left temporal and frontal areas for alpha-2 waves and left temporal-central regions for beta waves. qEEG measurements allow spectral resting potential to be differentiated between groups that are related with features typically involved in antisocial personality disorder, and to correlate them with patterns in the questionnaires and clinical interview. Copyright © 2017 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  14. Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing.

    PubMed

    Dottori, Martin; Sedeño, Lucas; Martorell Caro, Miguel; Alifano, Florencia; Hesse, Eugenia; Mikulan, Ezequiel; García, Adolfo M; Ruiz-Tagle, Amparo; Lillo, Patricia; Slachevsky, Andrea; Serrano, Cecilia; Fraiman, Daniel; Ibanez, Agustin

    2017-06-19

    Developing effective and affordable biomarkers for dementias is critical given the difficulty to achieve early diagnosis. In this sense, electroencephalographic (EEG) methods offer promising alternatives due to their low cost, portability, and growing robustness. Here, we relied on EEG signals and a novel information-sharing method to study resting-state connectivity in patients with behavioral variant frontotemporal dementia (bvFTD) and controls. To evaluate the specificity of our results, we also tested Alzheimer's disease (AD) patients. The classification power of the ensuing connectivity patterns was evaluated through a supervised classification algorithm (support vector machine). In addition, we compared the classification power yielded by (i) functional connectivity, (ii) relevant neuropsychological tests, and (iii) a combination of both. BvFTD patients exhibited a specific pattern of hypoconnectivity in mid-range frontotemporal links, which showed no alterations in AD patients. These functional connectivity alterations in bvFTD were replicated with a low-density EEG setting (20 electrodes). Moreover, while neuropsychological tests yielded acceptable discrimination between bvFTD and controls, the addition of connectivity results improved classification power. Finally, classification between bvFTD and AD patients was better when based on connectivity than on neuropsychological measures. Taken together, such findings underscore the relevance of EEG measures as potential biomarker signatures for clinical settings.

  15. Infant EEG and temperament negative affectivity: Coherence of vulnerabilities to mothers' perinatal depression.

    PubMed

    Lusby, Cara M; Goodman, Sherryl H; Yeung, Ellen W; Bell, Martha Ann; Stowe, Zachary N

    2016-11-01

    Associations between infants' frontal EEG asymmetry and temperamental negative affectivity (NA) across infants' first year of life and the potential moderating role of maternal prenatal depressive symptoms were examined prospectively in infants (n = 242) of mothers at elevated risk for perinatal depression. In predicting EEG, in the context of high prenatal depressive symptoms, infant NA and frontal EEG asymmetry were negatively associated at 3 months of age and positively associated by 12 months of age. By contrast, for low depression mothers, infant NA and EEG were not significantly associated at any age. Postnatal depressive symptoms did not add significantly to the models. Dose of infants' exposure to maternal depression mattered: infants exposed either pre- or postnatally shifted from a positive association at 3 months to a negative association at 12 months; those exposed both pre- and postnatally shifted from a negative association at 3 months to a positive association at 12 months. Prenatal relative to postnatal exposure did not matter for patterns of association between NA and EEG. The findings highlight the importance of exploring how vulnerabilities at two levels of analysis, behavioral and psychophysiological, co-occur over the course of infancy and in the context of mothers' depressive symptomatology.

  16. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  17. EEG Correlates of Ten Positive Emotions

    PubMed Central

    Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan

    2017-01-01

    Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants’ ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as ‘encouragement’ for awe, gratitude, hope, inspiration, pride, ‘playfulness’ for amusement, joy, interest, and ‘harmony’ for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions. PMID:28184194

  18. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  19. Evaluation of the language profile in children with rolandic epilepsy and developmental dysphasia: Evidence for distinct strengths and weaknesses.

    PubMed

    Verly, M; Gerrits, R; Lagae, L; Sunaert, S; Rommel, N; Zink, I

    2017-07-01

    Although benign, rolandic epilepsy (RE) or benign childhood epilepsy with centro-temporal spikes is often associated with language impairment. Recently, fronto-rolandic EEG abnormalities have been described in children with developmental dysphasia (DD), suggesting an interaction between language impairment and interictal epileptiform discharges. To investigate if a behavioral-linguistic continuum between RE and DD exists, a clinical prospective study was carried out to evaluate the language profile of 15 children with RE and 22 children with DD. Language skills were assessed using an extensive, standardized test battery. Language was found to be impaired in both study groups, however RE and DD were associated with distinct language impairment profiles. Children with RE had difficulties with sentence comprehension, semantic verbal fluency and auditory short-term memory, which are unrelated to age of epilepsy onset and laterality of epileptic focus. In children with DD, sentence comprehension and verbal fluency were among their relative strengths, whereas sentence and lexical production constituted relative weaknesses. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Benign mesial temporal lobe epilepsy: A clinical cohort and literature review.

    PubMed

    AlQassmi, Amal; Burneo, Jorge G; McLachlan, Richard S; Mirsattari, Seyed M

    2016-12-01

    We present a single-center retrospective study of benign mesial temporal lobe epilepsy (bMTLE) between 1995 and 2014. Hospital records and clinic charts were reviewed. The clinical, Eelectroencephalographic (EEG), imaging features, and response to treatment with antiepileptic drugs (AEDs) were documented. Patients were included in this study if they were seizure-free for a minimum of 24months with or without an AED. Twenty-seven patients were identified. There were 19 (70%) females, mean age at first seizure was 32.2 (range: 15-80years). In all patients, seizures were mild, and seizure freedom was readily achieved with the initiation of AED therapy. Sixteen patients (59%) had mesial temporal sclerosis (MTS). In three patients, we attempted to discontinue AED therapy after a prolonged period of remission (5-8years), but all had seizure recurrence within 2 to 4weeks. Not all temporal lobe epilepsy is refractory to medication, despite the presence of MTS. Until clinical trials indicate otherwise, surgery is not indicated but life-long medical treatment is advocated. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. EEG resolutions in detecting and decoding finger movements from spectral analysis

    PubMed Central

    Xiao, Ran; Ding, Lei

    2015-01-01

    Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720

  2. Implicit motor learning promotes neural efficiency during laparoscopy.

    PubMed

    Zhu, Frank F; Poolton, Jamie M; Wilson, Mark R; Hu, Yong; Maxwell, Jon P; Masters, Rich S W

    2011-09-01

    An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery.

  3. Epileptic seizure onset detection based on EEG and ECG data fusion.

    PubMed

    Qaraqe, Marwa; Ismail, Muhammad; Serpedin, Erchin; Zulfi, Haneef

    2016-05-01

    This paper presents a novel method for seizure onset detection using fused information extracted from multichannel electroencephalogram (EEG) and single-channel electrocardiogram (ECG). In existing seizure detectors, the analysis of the nonlinear and nonstationary ECG signal is limited to the time-domain or frequency-domain. In this work, heart rate variability (HRV) extracted from ECG is analyzed using a Matching-Pursuit (MP) and Wigner-Ville Distribution (WVD) algorithm in order to effectively extract meaningful HRV features representative of seizure and nonseizure states. The EEG analysis relies on a common spatial pattern (CSP) based feature enhancement stage that enables better discrimination between seizure and nonseizure features. The EEG-based detector uses logical operators to pool SVM seizure onset detections made independently across different EEG spectral bands. Two fusion systems are adopted. In the first system, EEG-based and ECG-based decisions are directly fused to obtain a final decision. The second fusion system adopts an override option that allows for the EEG-based decision to override the fusion-based decision in the event that the detector observes a string of EEG-based seizure decisions. The proposed detectors exhibit an improved performance, with respect to sensitivity and detection latency, compared with the state-of-the-art detectors. Experimental results demonstrate that the second detector achieves a sensitivity of 100%, detection latency of 2.6s, and a specificity of 99.91% for the MAJ fusion case. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electroencephalographic profiles for differentiation of disorders of consciousness

    PubMed Central

    2013-01-01

    Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892

  5. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.

    PubMed

    Kuo, Terry B J; Yang, Cheryl C H

    2004-06-15

    To explore interactions between cerebral cortical and autonomic functions in different sleep-wake states. Active waking (AW), quiet sleep (QS), and paradoxical sleep (PS) of adult male Wistar-Kyoto rats (WKY) on their daytime sleep were compared. Ten WKY. All rats had electrodes implanted for polygraphic recordings. One week later, a 6-hour daytime sleep-wakefulness recording session was performed. A scatterplot analysis of electroencephalogram (EEG) slow-wave magnitude (0.5-4 Hz) and heart rate variability (HRV) was applied in each rat. The EEG slow-wave-RR interval scatterplot from all of the recordings revealed a propeller-like pattern. If the scatterplot was divided into AW, PS, and QS according to the corresponding EEG mean power frequency and nuchal electromyogram, the EEG slow wave-RR interval relationship became nil, negative, and positive for AW, PS, and QS, respectively. A significant negative relationship was found for EEG slow-wave and high-frequency power of HRV (HF) coupling during PS and for EEG slow wave and low-frequency power of HRV to HF ratio (LF/HF) coupling during QS. The optimal time lags for the slow wave-LF/HF relationship were different between PS and QS. Bradycardia noted in QS and PS was related to sympathetic suppression and vagal excitation, respectively. The EEG slow wave-HRV scatterplot may provide unique insights into studies of sleep, and such a relationship may delineate the sleep-state-dependent fluctuations in autonomic nervous system activity.

  6. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  7. Practical use of the raw electroencephalogram waveform during general anesthesia: the art and science.

    PubMed

    Bennett, Cambell; Voss, Logan J; Barnard, John P M; Sleigh, James W

    2009-08-01

    Quantitative electroencephalogram (qEEG) monitors are often used to estimate depth of anesthesia and intraoperative recall during general anesthesia. As with any monitor, the processed numerical output is often misleading and has to be interpreted within a clinical context. For the safe clinical use of these monitors, a clear mental picture of the expected raw electroencephalogram (EEG) patterns, as well as a knowledge of the common EEG artifacts, is absolutely necessary. This has provided the motivation to write this tutorial. We describe, and give examples of, the typical EEG features of adequate general anesthesia, effects of noxious stimulation, and adjunctive drugs. Artifacts are commonly encountered and may be classified as arising from outside the head, from the head but outside the brain (commonly frontal electromyogram), or from within the brain (atypical or pathologic). We include real examples of clinical problem-solving processes. In particular, it is important to realize that an artifactually high qEEG index is relatively common and may result in dangerous anesthetic drug overdose. The anesthesiologist must be certain that the qEEG number is consistent with the apparent state of the patient, the doses of various anesthetic drugs, and the degree of surgical stimulation, and that the qEEG number is consistent with the appearance of the raw EEG signal. Any discrepancy must be a stimulus for the immediate critical examination of the patient's state using all the available information rather than reactive therapy to "treat" a number.

  8. Improving Generalization Based on l1-Norm Regularization for EEG-Based Motor Imagery Classification

    PubMed Central

    Zhao, Yuwei; Han, Jiuqi; Chen, Yushu; Sun, Hongji; Chen, Jiayun; Ke, Ang; Han, Yao; Zhang, Peng; Zhang, Yi; Zhou, Jin; Wang, Changyong

    2018-01-01

    Multichannel electroencephalography (EEG) is widely used in typical brain-computer interface (BCI) systems. In general, a number of parameters are essential for a EEG classification algorithm due to redundant features involved in EEG signals. However, the generalization of the EEG method is often adversely affected by the model complexity, considerably coherent with its number of undetermined parameters, further leading to heavy overfitting. To decrease the complexity and improve the generalization of EEG method, we present a novel l1-norm-based approach to combine the decision value obtained from each EEG channel directly. By extracting the information from different channels on independent frequency bands (FB) with l1-norm regularization, the method proposed fits the training data with much less parameters compared to common spatial pattern (CSP) methods in order to reduce overfitting. Moreover, an effective and efficient solution to minimize the optimization object is proposed. The experimental results on dataset IVa of BCI competition III and dataset I of BCI competition IV show that, the proposed method contributes to high classification accuracy and increases generalization performance for the classification of MI EEG. As the training set ratio decreases from 80 to 20%, the average classification accuracy on the two datasets changes from 85.86 and 86.13% to 84.81 and 76.59%, respectively. The classification performance and generalization of the proposed method contribute to the practical application of MI based BCI systems. PMID:29867307

  9. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    PubMed Central

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  10. Preliminary Results of Acoustic Radiation Force Impulse Imaging by Combined Qualitative and Quantitative Analyses for Evaluation of Breast Lesions.

    PubMed

    Wang, Lin; Wan, Cai-Feng; Du, Jing; Li, Feng-Hua

    2018-04-15

    The purpose of this study was to evaluate the application of a new elastographic technique, acoustic radiation force impulse (ARFI) imaging, and its diagnostic performance for characterizing breast lesions. One hundred consecutive female patients with 126 breast lesions were enrolled in our study. After routine breast ultrasound examinations, the patients underwent ARFI elasticity imaging. Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (Siemens Medical Solutions, Mountain View, CA) were used to qualitatively and quantitatively analyze the elasticity and hardness of tumors. A receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of ARFI for discrimination between benign and malignant breast lesions. Pathologic analysis revealed 40 lesions in the malignant group and 86 lesions in the benign group. Different VTI patterns were observed in benign and malignant breast lesions. Eighty lesions (93.0%) of benign group had pattern 1, 2, or 3, whereas all pattern 4b lesions (n = 20 [50.0%]) were malignant. Regarding the quantitative analysis, the mean VTI-to-B-mode area ratio, internal shear wave velocity, and marginal shear wave velocity of benign lesions were statistically significantly lower than those of malignant lesions (all P < .001). The cutoff point for a scoring system constructed to evaluate the diagnostic performance of ARFI was estimated to be between 3 and 4 points for malignancy, with sensitivity of 77.5%, specificity of 96.5%, accuracy of 90.5%, and an area under the curve of 0.933. The application of ARFI technology has shown promising results by noninvasively providing substantial complementary information and could potentially serve as an effective diagnostic tool for differentiation between benign and malignant breast lesions. © 2018 by the American Institute of Ultrasound in Medicine.

  11. Benign-malignant mass classification in mammogram using edge weighted local texture features

    NASA Astrophysics Data System (ADS)

    Rabidas, Rinku; Midya, Abhishek; Sadhu, Anup; Chakraborty, Jayasree

    2016-03-01

    This paper introduces novel Discriminative Robust Local Binary Pattern (DRLBP) and Discriminative Robust Local Ternary Pattern (DRLTP) for the classification of mammographic masses as benign or malignant. Mass is one of the common, however, challenging evidence of breast cancer in mammography and diagnosis of masses is a difficult task. Since DRLBP and DRLTP overcome the drawbacks of Local Binary Pattern (LBP) and Local Ternary Pattern (LTP) by discriminating a brighter object against the dark background and vice-versa, in addition to the preservation of the edge information along with the texture information, several edge-preserving texture features are extracted, in this study, from DRLBP and DRLTP. Finally, a Fisher Linear Discriminant Analysis method is incorporated with discriminating features, selected by stepwise logistic regression method, for the classification of benign and malignant masses. The performance characteristics of DRLBP and DRLTP features are evaluated using a ten-fold cross-validation technique with 58 masses from the mini-MIAS database, and the best result is observed with DRLBP having an area under the receiver operating characteristic curve of 0.982.

  12. Distribution patterns of microcalcifications in suspected thyroid carcinoma: a classification method helpful for diagnosis.

    PubMed

    Ning, Chun-Ping; Ji, Qing-Lian; Fang, Shi-Bao; Wang, Hong-Qiao; Zhong, Yan-Mi; Niu, Hai-Tao

    2018-06-01

    The aim of this study was to compare the distribution patterns of microcalcifications in thyroid cancers with benign cases. In total, 358 patients having microcalcifications on ultrasonography were analysed. Microcalcifications were categorised according to the distribution patterns: (I) microcalcifications inside one (a) or more (b) suspected nodules, (II) microcalcifications not only inside but also surrounding a suspected single (a) or multiple (b) nodules, and (III) focal (a) or diffuse (b) microcalcifications in the absence of any suspected nodule. Differences in distribution patterns of microcalcifications in benign and malignant thyroid lesions were compared. We found that the distribution patterns of microcalcifications differed between malignant (n = 325) and benign lesions (n = 117) (X 2 = 9.926, p < 0.01). Benign lesions were classified as type Ia (66.7%), type Ib (29.1%) or type IIIa (4.3%). The specificity of type II and type IIIb in diagnosing malignant cases was 100%. Among malignant lesions, 172 locations were classified as type Ia, 106 as type Ib, 12 as type IIa, 7 as IIb, 7 as type IIIa and 19 as type IIIb. Accompanying Hashimoto thyroiditis was most frequent in type III (51.6%). Types II and IIIb are highly specific for cancer detection. Microcalcifications outside a nodule and those detected in the absence of any nodule should therefore be reviewed carefully in clinical practice. • A method to classify distribution patterns of thyroid microcalcifications is presented. • Distribution features of microcalcifications are useful for diagnosing thyroid cancers. • Microcalcifications outside a suspicious nodule are highly specific for thyroid cancers. • Microcalcifications without suspicious nodules should also alert the physician to thyroid cancers.

  13. Multivariate temporal dictionary learning for EEG.

    PubMed

    Barthélemy, Q; Gouy-Pailler, C; Isaac, Y; Souloumiac, A; Larue, A; Mars, J I

    2013-04-30

    This article addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical approaches use a fixed Gabor dictionary to analyze EEG signals, this article proposes a data-driven method to obtain an adapted dictionary. To reach an efficient dictionary learning, appropriate spatial and temporal modeling is required. Inter-channels links are taken into account in the spatial multivariate model, and shift-invariance is used for the temporal model. Multivariate learned kernels are informative (a few atoms code plentiful energy) and interpretable (the atoms can have a physiological meaning). Using real EEG data, the proposed method is shown to outperform the classical multichannel matching pursuit used with a Gabor dictionary, as measured by the representative power of the learned dictionary and its spatial flexibility. Moreover, dictionary learning can capture interpretable patterns: this ability is illustrated on real data, learning a P300 evoked potential. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Resting State EEG-based biometrics for individual identification using convolutional neural networks.

    PubMed

    Lan Ma; Minett, James W; Blu, Thierry; Wang, William S-Y

    2015-08-01

    Biometrics is a growing field, which permits identification of individuals by means of unique physical features. Electroencephalography (EEG)-based biometrics utilizes the small intra-personal differences and large inter-personal differences between individuals' brainwave patterns. In the past, such methods have used features derived from manually-designed procedures for this purpose. Another possibility is to use convolutional neural networks (CNN) to automatically extract an individual's best and most unique neural features and conduct classification, using EEG data derived from both Resting State with Open Eyes (REO) and Resting State with Closed Eyes (REC). Results indicate that this CNN-based joint-optimized EEG-based Biometric System yields a high degree of accuracy of identification (88%) for 10-class classification. Furthermore, rich inter-personal difference can be found using a very low frequency band (0-2Hz). Additionally, results suggest that the temporal portions over which subjects can be individualized is less than 200 ms.

  15. Video electroencephalogram telemetry in temporal lobe epilepsy

    PubMed Central

    Mani, Jayanti

    2014-01-01

    Temporal lobe epilepsy (TLE) is the most commonly encountered medically refractory epilepsy. It is also the substrate of refractory epilepsy that gives the most gratifying results in any epilepsy surgery program, with a minimum use of resources. Correlation of clinical behavior and the ictal patterns during ictal behavior is mandatory for success at epilepsy surgery. Video electroencephalogram (EEG) telemetry achieves this goal and hence plays a pivotal role in pre-surgical assessment. The role of telemetry is continuously evolving with the advent of digital EEG technology, of high-resolution volumetric magnetic resonance imaging and other functional imaging techniques. Most of surgical selection in patients with TLE can be done with a scalp video EEG monitoring. However, the limitations of the scalp EEG technique demand invasive recordings in a selected group of TLE patients. This subset of the patients can be a challenge to the epileptologist. PMID:24791089

  16. Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network.

    PubMed

    Karayiannis, Nicolaos B; Mukherjee, Amit; Glover, John R; Ktonas, Periklis Y; Frost, James D; Hrachovy, Richard A; Mizrahi, Eli M

    2006-04-01

    This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.

  17. Chronic alcohol abuse and the acute sedative and neurophysiologic effects of midazolam.

    PubMed

    Bauer, L O; Gross, J B; Meyer, R E; Greenblatt, D J

    1997-10-01

    The aim of the present investigation was to examine benzodiazepine sensitivity in abstinent alcoholics. For this purpose, two escalating doses of the benzodiazepine midazolam were i.v. administered to nine alcohol-dependent patients after 2-3 weeks of abstinence and 12 healthy, non-alcoholic volunteers. A variety of dependent measures were examined, including the power spectrum of the resting electroencephalogram (EEG) and evoked EEG responses, saccadic eye movements, self-reported sedation, and vigilance task performance. Analyses revealed a significant association between plasma midazolam levels and changes in EEG beta power, pattern shift visual evoked potential amplitude, heart rate, and saccade amplitude and velocity. The patient and control groups differed significantly in the onset latencies of their saccadic eye movements, and marginally in EEG beta power, both before and after midazolam. However, no differences were detected between the groups in the dose of midazolam required to produce sedation or in midazolam's neurophysiological effects.

  18. EEG frontal asymmetry related to pleasantness of music perception in healthy children and cochlear implanted users.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio

    2012-01-01

    Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.

  19. Epilepsy

    MedlinePlus

    ... made great strides in detecting patterns of abnormal electrical activity in the brain that cause epileptic seizures. A technology to measure brain activity, called electroencephalography (EEG), became ...

  20. Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report.

    PubMed

    Khaing, Myo; Lim, Kheng-Seang; Tan, Chong-Tin

    2014-09-01

    We report a patient with juvenile myoclonic epilepsy who subsequently developed temporal lobe epilepsy, which gradually became clinically dominant. Video telemetry revealed both myoclonic seizures and temporal lobe seizures. The temporal lobe seizures were accompanied by a focal recruiting rhythm with rapid generalisation on EEG, in which the ictal EEG pattern during the secondary generalised phase was morphologically similar to the ictal pattern during myoclonic seizures. The secondary generalised seizures of the focal epilepsy responded to sodium valproate, similar to the myoclonic epilepsy. In this rare case of coexistent Juvenile Myoclonic Epilepsy and Temporal lobe epilepsy, the possibility of focal epilepsy recruiting a generalised epileptic network was proposed and discussed.

  1. Acquired auditory agnosia in childhood and normal sleep electroencephalography subsequently diagnosed as Landau-Kleffner syndrome: a report of three cases.

    PubMed

    van Bogaert, Patrick; King, Mary D; Paquier, Philippe; Wetzburger, Catherine; Labasse, Catherine; Dubru, Jean-Marie; Deonna, Thierry

    2013-06-01

      We report three cases of Landau-Kleffner syndrome (LKS) in children (two females, one male) in whom diagnosis was delayed because the sleep electroencephalography (EEG) was initially normal.   Case histories including EEG, positron emission tomography findings, and long-term outcome were reviewed.   Auditory agnosia occurred between the age of 2 years and 3 years 6 months, after a period of normal language development. Initial awake and sleep EEG, recorded weeks to months after the onset of language regression, during a nap period in two cases and during a full night of sleep in the third case, was normal. Repeat EEG between 2 months and 2 years later showed epileptiform discharges during wakefulness and strongly activated by sleep, with a pattern of continuous spike-waves during slow-wave sleep in two patients. Patients were diagnosed with LKS and treated with various antiepileptic regimens, including corticosteroids. One patient in whom EEG became normal on hydrocortisone is making significant recovery. The other two patients did not exhibit a sustained response to treatment and remained severely impaired.   Sleep EEG may be normal in the early phase of acquired auditory agnosia. EEG should be repeated frequently in individuals in whom a firm clinical diagnosis is made to facilitate early treatment. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  2. A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.

    PubMed

    St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R

    2017-05-03

    Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role of EEG recording context and design conditions that are clearly social or nonsocial.

  3. [Time-organization of EEG patterns' structure in anxiety and phobic disorders].

    PubMed

    Sviatogor, I A; Mokhovikova, I A

    2005-01-01

    Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.

  4. [The role of non-NMDA glutamate receptors in the EEG effects of chronic administration of noopept GVS-111 in awake rats].

    PubMed

    Kovalev, G I; Vorob'ev, V V

    2002-01-01

    Participation of the non-NMDA glutamate receptor subtype in the formation of the EEG frequency spectrum was studied in wakeful rats upon a long-term (10 x 0.2 mg/kg, s.c.) administration of the nootropic dipeptide GVS-111 (noopept or N-phenylacetyl-L-prolyglycine ethylate). The EEGs were measured with electrodes implanted into somatosensor cortex regions, hippocampus, and a cannula in the lateral ventricle. The acute reactions (characteristic of nootropes) in the alpha and beta ranges of EEG exhibited inversion after the 6th injection of noopept and almost completely vanished after the 9th injection. Preliminary introduction of the non-NMDA antagonist GDEE (glutamic acid diethyl ester) in a dose of 1 mumole into the lateral ventricle restored the EEG pattern observed upon the 6th dose of GVS-111. The role of glutamate receptors in the course of a prolonged administration of nootropes, as well as the possible mechanisms accounting for a difference in the action of GVS-111 and piracetam are discussed.

  5. Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.

    PubMed

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou

    2018-01-01

    Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.

  6. A machine learning approach for automated wide-range frequency tagging analysis in embedded neuromonitoring systems.

    PubMed

    Montagna, Fabio; Buiatti, Marco; Benatti, Simone; Rossi, Davide; Farella, Elisabetta; Benini, Luca

    2017-10-01

    EEG is a standard non-invasive technique used in neural disease diagnostics and neurosciences. Frequency-tagging is an increasingly popular experimental paradigm that efficiently tests brain function by measuring EEG responses to periodic stimulation. Recently, frequency-tagging paradigms have proven successful with low stimulation frequencies (0.5-6Hz), but the EEG signal is intrinsically noisy in this frequency range, requiring heavy signal processing and significant human intervention for response estimation. This limits the possibility to process the EEG on resource-constrained systems and to design smart EEG based devices for automated diagnostic. We propose an algorithm for artifact removal and automated detection of frequency tagging responses in a wide range of stimulation frequencies, which we test on a visual stimulation protocol. The algorithm is rooted on machine learning based pattern recognition techniques and it is tailored for a new generation parallel ultra low power processing platform (PULP), reaching performance of more that 90% accuracy in the frequency detection even for very low stimulation frequencies (<1Hz) with a power budget of 56mW. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Differences in the perceived music pleasantness between monolateral cochlear implanted and normal hearing children assessed by EEG.

    PubMed

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Graziani, I; Cherubino, P; Astolfi, L; Marsella, P; Colosimo, A; Babiloni, Fabio

    2013-01-01

    The perception of the music in cochlear implanted (CI) patients is an important aspect of their quality of life. In fact, the pleasantness of the music perception by such CI patients can be analyzed through a particular analysis of EEG rhythms. Studies on healthy subjects show that exists a particular frontal asymmetry of the EEG alpha rhythm which can be correlated with pleasantness of the perceived stimuli (approach-withdrawal theory). In particular, here we describe differences between EEG activities estimated in the alpha frequency band for a monolateral CI group of children and a normal hearing one during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns related to the normal hearing group refers to a higher pleasantness perception when compared to the cerebral activity of the monolateral CI patients. In fact, the present results support the statement that a monolateral CI group could perceive the music in a less pleasant way when compared to normal hearing children.

  8. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

    PubMed Central

    Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2017-01-01

    In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403

  9. The Profile of Heparanase Expression Distinguishes Differentiated Thyroid Carcinoma from Benign Neoplasms

    PubMed Central

    Matos, Leandro Luongo; Suarez, Eloah Rabello; Theodoro, Thérèse Rachell; Trufelli, Damila Cristina; Melo, Carina Mucciolo; Garcia, Larissa Ferraz; Oliveira, Olivia Capela Grimaldi; Matos, Maria Graciela Luongo; Kanda, Jossi Ledo; Nader, Helena Bonciani; Martins, João Roberto Maciel; Pinhal, Maria Aparecida Silva

    2015-01-01

    Introduction The search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions. Methods HPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated. Results The expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions. Conclusions This study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis. PMID:26488476

  10. The effects of mild hypothermia on thiopental-induced electroencephalogram burst suppression.

    PubMed

    Kim, J H; Kim, S H; Yoo, S K; Kim, J Y; Nam, Y T

    1998-07-01

    Thiopental intravenous injections before temporary clipping and mild hypothermia have protective effects in the setting of cerebral ischemia, and are used clinically in some centers. However, it is not known whether mild hypothermia affects thiopental-induced electroencephalogram (EEG) burst suppression. In this study, the authors compared the onset and duration of EEG suppression by thiopental in normothermic (n=10) and mildly hypothermic (n=10) patients undergoing cerebral aneurysm surgery. Spectral analysis was used to compare the prethiopentonal continuous EEG patterns in normothermic and mild hypothermic patients. The patients' body temperatures were controlled by a circulating water mattress and intravenous fluids (normothermia = 36.4+/-0.1 degrees C, mild hypothermia = 33.3+/-0.1 degrees C). Immediately before temporary clipping, thiopental sodium (5 mg/kg) was administered intravenously. Onset time (the amount of time from thiopental injection to the first complete EEG suppression), duration of suppression (the amount of time from the first complete EEG suppression to recovery on continuous EEG from burst suppression), and maximum duration of isoelectric EEG (the longest time interval between two bursts during burst suppression) were measured. Onset time was shortened (25.8+/-1.4 versus 43.5+/-5.6 seconds), and duration of suppression (531.0+/-56.6 versus 165.0+/-16.9 seconds) and the maximum duration of isoelectric EEG (47.7+/-5.8 versus 22.8+/-2.0 seconds) were prolonged in the patients with mild hypothermia. In two normothermic patients, the standard dose of thiopental did not produce burst suppression, but only a mild decrease in spectral edge frequency. The authors concluded that the effects of mild hypothermia on thiopental-induced EEG suppression are not simply additive, but synergistic.

  11. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  12. Topographical characteristics and principal component structure of the hypnagogic EEG.

    PubMed

    Tanaka, H; Hayashi, M; Hori, T

    1997-07-01

    The purpose of the present study was to identify the dominant topographic components of electroencephalographs (EEG) and their behavior during the waking-sleeping transition period. Somnography of nocturnal sleep was recorded on 10 male subjects. Each recording, from "lights-off" to 5 minutes after the appearance of the first sleep spindle, was analyzed. The typical EEG patterns during hypnagogic period were classified into nine EEG stages. Topographic maps demonstrated that the dominant areas of alpha-band activity moved from the posterior areas to anterior areas along the midline of the scalp. In delta-, theta-, and sigma-band activities, the differences of EEG amplitude between the focus areas (the dominant areas) and the surrounding areas increased as a function of EEG stage. To identify the dominant topographic components, a principal component analysis was carried out on a 12-channel EEG data set for each of six frequency bands. The dominant areas of alpha 2- (9.6-11.4 Hz) and alpha 3- (11.6-13.4 Hz) band activities moved from the posterior to anterior areas, respectively. The distribution of alpha 2-band activity on the scalp clearly changed just after EEG stage 3 (alpha intermittent, < 50%). On the other hand, alpha 3-band activity became dominant in anterior areas after the appearance of vertex sharp-wave bursts (EEG stage 7). For the sigma band, the amplitude of extensive areas from the frontal pole to the parietal showed a rapid rise after the onset of stage 7 (the appearance of vertex sharp-wave bursts). Based on the results, sleep onset process probably started before the onset of sleep stage 1 in standard criteria. On the other hand, the basic sleep process may start before the onset of sleep stage 2 or the manually scored spindles.

  13. Correlation of EEG with neuropsychological status in children with epilepsy.

    PubMed

    Hsu, David A; Rayer, Katherine; Jackson, Daren C; Stafstrom, Carl E; Hsu, Murielle; Ferrazzano, Peter A; Dabbs, Kevin; Worrell, Gregory A; Jones, Jana E; Hermann, Bruce P

    2016-02-01

    To determine correlations of the EEG frequency spectrum with neuropsychological status in children with idiopathic epilepsy. Forty-six children ages 8-18 years old with idiopathic epilepsy were retrospectively identified and analyzed for correlations between EEG spectra and neuropsychological status using multivariate linear regression. In addition, the theta/beta ratio, which has been suggested as a clinically useful EEG marker of attention-deficit hyperactivity disorder (ADHD), and an EEG spike count were calculated for each subject. Neuropsychological status was highly correlated with posterior alpha (8-15 Hz) EEG activity in a complex way, with both positive and negative correlations at lower and higher alpha frequency sub-bands for each cognitive task in a pattern that depends on the specific cognitive task. In addition, the theta/beta ratio was a specific but insensitive indicator of ADHD status in children with epilepsy; most children both with and without epilepsy have normal theta/beta ratios. The spike count showed no correlations with neuropsychological status. (1) The alpha rhythm may have at least two sub-bands which serve different purposes. (2) The theta/beta ratio is not a sensitive indicator of ADHD status in children with epilepsy. (3) The EEG frequency spectrum correlates more robustly with neuropsychological status than spike count analysis in children with idiopathic epilepsy. (1) The role of posterior alpha rhythms in cognition is complex and can be overlooked if EEG spectral resolution is too coarse or if neuropsychological status is assessed too narrowly. (2) ADHD in children with idiopathic epilepsy may involve different mechanisms from those in children without epilepsy. (3) Reliable correlations with neuropsychological status require longer EEG samples when using spike count analysis than when using frequency spectra. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  15. Post-task Effects on EEG Brain Activity Differ for Various Differential Learning and Contextual Interference Protocols

    PubMed Central

    Henz, Diana; John, Alexander; Merz, Christian; Schöllhorn, Wolfgang I.

    2018-01-01

    A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI) and in the differential learning (DL) approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG) brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL) to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL), and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8) in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4) were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8) showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2) after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and somatosensory system during DL practice. CI seems to activate specifically executively controlled processing in anterior brain areas. We discuss the obtained patterns of post-training EEG traces as evidence for different underlying neural processes in CI, DL, and repetitive learning at the early stage of motor learning. PMID:29445334

  16. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation.

    PubMed

    Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie

    2016-01-01

    Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children and adults, and potentially patients not suited for magnetic resonance imaging technologies.

  17. Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol.

    PubMed

    Yeom, Seul-Ki; Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used.

  18. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies. PMID:25927439

  19. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.

    PubMed

    Samuel, Oluwarotimi Williams; Geng, Yanjuan; Li, Xiangxin; Li, Guanglin

    2017-10-28

    To control multiple degrees of freedom (MDoF) upper limb prostheses, pattern recognition (PR) of electromyogram (EMG) signals has been successfully applied. This technique requires amputees to provide sufficient EMG signals to decode their limb movement intentions (LMIs). However, amputees with neuromuscular disorder/high level amputation often cannot provide sufficient EMG control signals, and thus the applicability of the EMG-PR technique is limited especially to this category of amputees. As an alternative approach, electroencephalograph (EEG) signals recorded non-invasively from the brain have been utilized to decode the LMIs of humans. However, most of the existing EEG based limb movement decoding methods primarily focus on identifying limited classes of upper limb movements. In addition, investigation on EEG feature extraction methods for the decoding of multiple classes of LMIs has rarely been considered. Therefore, 32 EEG feature extraction methods (including 12 spectral domain descriptors (SDDs) and 20 time domain descriptors (TDDs)) were used to decode multiple classes of motor imagery patterns associated with different upper limb movements based on 64-channel EEG recordings. From the obtained experimental results, the best individual TDD achieved an accuracy of 67.05 ± 3.12% as against 87.03 ± 2.26% for the best SDD. By applying a linear feature combination technique, an optimal set of combined TDDs recorded an average accuracy of 90.68% while that of the SDDs achieved an accuracy of 99.55% which were significantly higher than those of the individual TDD and SDD at p < 0.05. Our findings suggest that optimal feature set combination would yield a relatively high decoding accuracy that may improve the clinical robustness of MDoF neuroprosthesis. The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.

  20. Epileptic seizure detection from EEG signals with phase-amplitude cross-frequency coupling and support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Jiang; Cai, Lihui; Chen, Yingyuan; Qin, Yingmei

    2018-03-01

    As a pattern of cross-frequency coupling (CFC), phase-amplitude coupling (PAC) depicts the interaction between the phase and amplitude of distinct frequency bands from the same signal, and has been proved to be closely related to the brain’s cognitive and memory activities. This work utilized PAC and support vector machine (SVM) classifier to identify the epileptic seizures from electroencephalogram (EEG) data. The entropy-based modulation index (MI) matrixes are used to express the strength of PAC, from which we extracted features as the input for classifier. Based on the Bonn database, which contains five datasets of EEG segments obtained from healthy volunteers and epileptic subjects, a 100% classification accuracy is achieved for identifying seizure ictal from healthy data, and an accuracy of 97.67% is reached in the classification of ictal EEG signals from inter-ictal EEGs. Based on the CHB-MIT database which is a group of continuously recorded epileptic EEGs by scalp electrodes, a 97.50% classification accuracy is obtained and a raising sign of MI value is found at 6s before seizure onset. The classification performance in this work is effective, and PAC can be considered as a useful tool for detecting and predicting the epileptic seizures and providing reference for clinical diagnosis.

  1. BNDF heterozygosity is associated with memory deficits and alterations in cortical and hippocampal EEG power.

    PubMed

    Geist, Phillip A; Dulka, Brooke N; Barnes, Abigail; Totty, Michael; Datta, Subimal

    2017-08-14

    Brain derived neurotrophic factor (BDNF) plays a pivotal role in structural plasticity, learning, and memory. Electroencephalogram (EEG) spectral power in the cortex and hippocampus has also been correlated with learning and memory. In this study, we investigated the effect of globally reduced BDNF levels on learning behavior and EEG power via BDNF heterozygous (KO) rats. We employed several behavioral tests that are thought to depend on cortical and hippocampal plasticity to varying degrees: novel object recognition, a test that is reliant on a variety of cognitive systems; contextual fear, which is highly hippocampal-dependent; and cued fear, which has been shown to be amygdala-dependent. We also examined the effects of BDNF reduction on cortical and hippocampal EEG spectral power via chronically implanted electrodes in the motor cortex and dorsal hippocampus. We found that BDNF KO rats were impaired in novelty recognition and fear memory retention, while hippocampal EEG power was decreased in slow waves and increased in fast waves. Interestingly, our results, for the first time, show sexual dimorphism in each of our tests. These results support the hypothesis that BDNF drives both cognitive plasticity and coordinates EEG activity patterns, potentially serving as a link between the two. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Methodological considerations for the evaluation of EEG mapping data: a practical example based on a placebo/diazepam crossover trial.

    PubMed

    Jähnig, P; Jobert, M

    1995-01-01

    Quantitative EEG is a sensitive method for measuring pharmacological effects on the central nervous system. Nowadays, computers enable EEG data to be stored and spectral parameters to be computed for signals obtained from a large number of electrode locations. However, the statistical analysis of such vast amounts of EEG data is complicated due to the limited number of subjects usually involved in pharmacological studies. In the present study, data from a trial aimed at comparing diazepam and placebo were used to investigate different properties of EEG mapping data and to compare different methods of data analysis. Both the topography and the temporal changes of EEG activity were investigated using descriptive data analysis, which is based on an inspection of patterns of pd values (descriptive p values) assessed for all pair-wise tests for differences in time or treatment. An empirical measure (tri-mean) for the computation of group maps is suggested, allowing a better description of group effects with skewed data of small samples size. Finally, both the investigation of maps based on principal component analysis and the notion of distance between maps are discussed and applied to the analysis of the data collected under diazepam treatment, exemplifying the evaluation of pharmacodynamic drug effects.

  3. Atypical EEG power correlates with indiscriminately friendly behavior in internationally adopted children.

    PubMed

    Tarullo, Amanda R; Garvin, Melissa C; Gunnar, Megan R

    2011-03-01

    While effects of institutional care on behavioral development have been studied extensively, effects on neural systems underlying these socioemotional and attention deficits are only beginning to be examined. The current study assessed electroencephalogram (EEG) power in 18-month-old internationally adopted, postinstitutionalized children (n = 37) and comparison groups of nonadopted children (n = 47) and children internationally adopted from foster care (n = 39). For their age, postinstitutionalized children had an atypical EEG power distribution, with relative power concentrated in lower frequency bands compared with nonadopted children. Both internationally adopted groups had lower absolute alpha power than nonadopted children. EEG power was not related to growth at adoption or to global cognitive ability. Atypical EEG power distribution at 18 months predicted indiscriminate friendliness and poorer inhibitory control at 36 months. Both postinstitutionalized and foster care children were more likely than nonadopted children to exhibit indiscriminate friendliness. Results are consistent with a cortical hypoactivation model of the effects of early deprivation on neural development and provide initial evidence associating this atypical EEG pattern with indiscriminate friendliness. Outcomes observed in the foster care children raise questions about the specificity of institutional rearing as a risk factor and emphasize the need for broader consideration of the effects of early deprivation and disruptions in care. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  4. Decoding English Alphabet Letters Using EEG Phase Information

    PubMed Central

    Wang, YiYan; Wang, Pingxiao; Yu, Yuguo

    2018-01-01

    Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG) contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM) with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8). These results may provide a new approach for brain-computer interface techniques (BCI) and may deepen our understanding of EEG oscillations in cognition. PMID:29467615

  5. From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging.

    PubMed

    Tomescu, M I; Rihs, T A; Rochas, V; Hardmeier, M; Britz, J; Allali, G; Fuhr, P; Eliez, S; Michel, C M

    2018-06-01

    While many insights on brain development and aging have been gained by studying resting-state networks with fMRI, relating these changes to cognitive functions is limited by the temporal resolution of fMRI. In order to better grasp short-lasting and dynamically changing mental activities, an increasing number of studies utilize EEG to define resting-state networks, thereby often using the concept of EEG microstates. These are brief (around 100 ms) periods of stable scalp potential fields that are influenced by cognitive states and are sensitive to neuropsychiatric diseases. Despite the rising popularity of the EEG microstate approach, information about age changes is sparse and nothing is known about sex differences. Here we investigated age and sex related changes of the temporal dynamics of EEG microstates in 179 healthy individuals (6-87 years old, 90 females, 204-channel EEG). We show strong sex-specific changes in microstate dynamics during adolescence as well as at older age. In addition, males and females differ in the duration and occurrence of specific microstates. These results are of relevance for the comparison of studies in populations of different age and sex and for the understanding of the changes in neuropsychiatric diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Automated diagnosis of autism: in search of a mathematical marker.

    PubMed

    Bhat, Shreya; Acharya, U Rajendra; Adeli, Hojjat; Bairy, G Muralidhar; Adeli, Amir

    2014-01-01

    Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-the-art review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEG-based diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder.

  7. Atypical EEG Power Correlates With Indiscriminately Friendly Behavior in Internationally Adopted Children

    PubMed Central

    Tarullo, Amanda R.; Garvin, Melissa C.; Gunnar, Megan R.

    2012-01-01

    While effects of institutional care on behavioral development have been studied extensively, effects on neural systems underlying these socioemotional and attention deficits are only beginning to be examined. The current study assessed electroencephalogram (EEG) power in 18-month-old internationally adopted, post-institutionalized children (n = 37) and comparison groups of non-adopted children (n = 47) and children internationally adopted from foster care (n = 39). For their age, post-institutionalized children had an atypical EEG power distribution, with relative power concentrated in lower frequency bands compared to non-adopted children. Both internationally adopted groups had lower absolute alpha power than non-adopted children. EEG power was not related to growth at adoption or to global cognitive ability. Atypical EEG power distribution at 18 months predicted indiscriminate friendliness and poorer inhibitory control at 36 months. Both post-institutionalized and foster care children were more likely than non-adopted children to exhibit indiscriminate friendliness. Results are consistent with a cortical hypoactivation model of the effects of early deprivation on neural development and provide initial evidence associating this atypical EEG pattern with indiscriminate friendliness. Outcomes observed in the foster care children raise questions about the specificity of institutional rearing as a risk factor and emphasize the need for broader consideration of the effects of early deprivation and disruptions in care. PMID:21171750

  8. Characteristics of 106 spontaneous mammary tumours appearing in Sprague-Dawley female rats.

    PubMed Central

    Okada, M.; Takeuchi, J.; Sobue, M.; Kataoka, K.; Inagaki, Y.; Shigemura, M.; Chiba, T.

    1981-01-01

    Pathological studies were undertaken on 106 mammary tumours (89 benign, 17 malignant) appearing spontaneously in 95 normal female Sprague-Dawley rats which were killed at Day 756. The benign tumours comprised those with a predominant acinar hyperplasia and those with adenomatous or fibroadenomatous pattern. No significant differences were found histochemically between the acinar cells of the benign tumours and of the lactating gland, except that the amount of fibrous interstitial connective tissue was larger in the former. 3H- or 35S-glycosaminoglycan synthesis by the benign tumours was found to be much higher. The prolactin value in the plasma of the benign-tumour-bearing rats was about 27 times that of 6-month-old virgin rats, and similar to that of rats on the 7th day post partum. Carcinomatous proliferation of tubuloacinar cells could be seen in 5 of the 89 benign tumours. The incidence of benign tumours increases with the age of the rats. Images Fig. 1 Fig. 2 Fig. 3 PMID:7248153

  9. Driving behavior recognition using EEG data from a simulated car-following experiment.

    PubMed

    Yang, Liu; Ma, Rui; Zhang, H Michael; Guan, Wei; Jiang, Shixiong

    2018-07-01

    Driving behavior recognition is the foundation of driver assistance systems, with potential applications in automated driving systems. Most prevailing studies have used subjective questionnaire data and objective driving data to classify driving behaviors, while few studies have used physiological signals such as electroencephalography (EEG) to gather data. To bridge this gap, this paper proposes a two-layer learning method for driving behavior recognition using EEG data. A simulated car-following driving experiment was designed and conducted to simultaneously collect data on the driving behaviors and EEG data of drivers. The proposed learning method consists of two layers. In Layer I, two-dimensional driving behavior features representing driving style and stability were selected and extracted from raw driving behavior data using K-means and support vector machine recursive feature elimination. Five groups of driving behaviors were classified based on these two-dimensional driving behavior features. In Layer II, the classification results from Layer I were utilized as inputs to generate a k-Nearest-Neighbor classifier identifying driving behavior groups using EEG data. Using independent component analysis, a fast Fourier transformation, and linear discriminant analysis sequentially, the raw EEG signals were processed to extract two core EEG features. Classifier performance was enhanced using the adaptive synthetic sampling approach. A leave-one-subject-out cross validation was conducted. The results showed that the average classification accuracy for all tested traffic states was 69.5% and the highest accuracy reached 83.5%, suggesting a significant correlation between EEG patterns and car-following behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement

    NASA Astrophysics Data System (ADS)

    Shenoy Handiru, Vikram; Vinod, A. P.; Guan, Cuntai

    2017-08-01

    Objective. In electroencephalography (EEG)-based brain-computer interface (BCI) systems for motor control tasks the conventional practice is to decode motor intentions by using scalp EEG. However, scalp EEG only reveals certain limited information about the complex tasks of movement with a higher degree of freedom. Therefore, our objective is to investigate the effectiveness of source-space EEG in extracting relevant features that discriminate arm movement in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on supervised factor analysis that models the data from source-space EEG. To this end, we computed the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our approach provided an average decoding accuracy of 71% for the classification of hand movement in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis on the spectral characteristics of source-space EEG indicates that the slow cortical potentials from a set of cortical source dipoles reveal discriminative information regarding the movement parameter, direction. Significance. This study presents evidence that low-frequency components in the source space play an important role in movement kinematics, and thus it may lead to new strategies for BCI-based neurorehabilitation.

  11. Temporal coding of brain patterns for direct limb control in humans.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Neuper, Christa

    2010-01-01

    For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain-computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom - grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  12. Multifractal and wavelet analysis of epileptic seizures

    NASA Astrophysics Data System (ADS)

    Dick, Olga E.; Mochovikova, Irina A.

    The aim of the study is to develop quantitative parameters of human electroencephalographic (EEG) recordings with epileptic seizures. We used long-lasting recordings from subjects with epilepsy obtained as part of their clinical investigation. The continuous wavelet transform of the EEG segments and the wavelet-transform modulus maxima method enable us to evaluate the energy spectra of the segments, to fin lines of local maximums, to gain the scaling exponents and to construct the singularity spectra. We have shown that the significant increase of the global energy with respect to background and the redistribution of the energy over the frequency range are observed in the patterns involving the epileptic activity. The singularity spectra expand so that the degree of inhomogenety and multifractality of the patterns enhances. Comparing the results gained for the patterns during different functional probes such as open and closed eyes or hyperventilation we demonstrate the high sensitivity of the analyzed parameters (the maximal global energy, the width and asymmetry of the singularity spectrum) for detecting the epileptic patterns.

  13. Multimodal neuroelectric interface development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Rosipal, Roman; Clanton, Sam T.; Matthews, Bryan; Hibbs, Andrew D.; Matthews, Robert; Krupka, Michael

    2003-01-01

    We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies for computer interfaces using electroencephalogram (EEG) signals; 3) a flexible computation framework for neuroelectric interface research; and d) noncontact sensors, which measure electromyogram or EEG signals without resistive contact to the body.

  14. [Effects of transcranial magnetotherapy on electroencephalographic parameters in females with overactive urinary bladder].

    PubMed

    Neĭmark, A I; Klyzhina, E A; Neĭmark, B A; Mel'nik, M A

    2007-01-01

    Urodynamic parameters and bioelectric brain activity were studied in 30 females aged 24-66 years with overactive bladder (OAB) before and after transcranial magnetotherapy. It was found that OAB patients have disorders of bioelectric brain activity by two types of EEG patterns (I.A. Svyatogor classification)--thalamic and stem, Patients with thalamic type EEG benefit more from magnetotherapy higher efficacy of which manifests with regress of clinical symptoms and urodynamic improvement.

  15. EEG data reduction by means of autoregressive representation and discriminant analysis procedures.

    PubMed

    Blinowska, K J; Czerwosz, L T; Drabik, W; Franaszczuk, P J; Ekiert, H

    1981-06-01

    A program for automatic evaluation of EEG spectra, providing considerable reduction of data, was devised. Artefacts were eliminated in two steps: first, the longer duration eye movement artefacts were removed by a fast and simple 'moving integral' methods, then occasional spikes were identified by means of a detection function defined in the formalism of the autoregressive (AR) model. The evaluation of power spectra was performed by means of an FFT and autoregressive representation, which made possible the comparison of both methods. The spectra obtained by means of the AR model had much smaller statistical fluctuations and better resolution, enabling us to follow the time changes of the EEG pattern. Another advantage of the autoregressive approach was the parametric description of the signal. This last property appeared to be essential in distinguishing the changes in the EEG pattern. In a drug study the application of the coefficients of the AR model as input parameters in the discriminant analysis, instead of arbitrary chosen frequency bands, brought a significant improvement in distinguishing the effects of the medication. The favourable properties of the AR model are connected with the fact that the above approach fulfils the maximum entropy principle. This means that the method describes in a maximally consistent way the available information and is free from additional assumptions, which is not the case for the FFT estimate.

  16. Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia.

    PubMed

    Harris, Deborah L; Weston, Philip J; Williams, Christopher E; Pleasants, Anthony B; Battin, Malcolm R; Spooner, Claire G; Harding, Jane E

    2011-11-01

    To determine whether there is a relationship between electroencephalography patterns and hypoglycemia, by using simultaneous cot-side amplitude integrated electroencephalography (aEEG) and continuous interstitial glucose monitoring, and whether non-glucose cerebral fuels modified these patterns. Eligible babies were ≥ 32 weeks gestation, at risk for hypoglycemia, and admitted to the neonatal intensive care unit. Electrodes were placed in C3-P3, C4-P4 O1-O2 montages. A continuous interstitial glucose sensor was placed subcutaneously, and blood glucose was measured by using the glucose oxidase method. Non-glucose cerebral fuels were measured at study entry, exit, and during recognized hypoglycemia. A total of 101 babies were enrolled, with a median weight of 2179 g and gestation of 35 weeks. Twenty-four of the babies had aEEG recordings, and glucose concentrations were low (< 2.6 mM). There were 103 episodes of low glucose concentrations lasting 5 to 475 minutes, but no observable changes in aEEG variables. Plasma concentrations of lactate, beta-hydroxybutyrate, and glycerol were low and did not alter during hypoglycemia. Cot-side aEEG was not useful for the detection of neurological changes during mild hypoglycemia. Plasma concentrations of non-glucose cerebral fuels were low and unlikely to provide substantial neuroprotection. Copyright © 2011 Mosby, Inc. All rights reserved.

  17. Positive and Negative Emotionality at Age 3 Predicts Change in Frontal EEG Asymmetry across Early Childhood.

    PubMed

    Goldstein, Brandon L; Shankman, Stewart A; Kujawa, Autumn; Torpey-Newman, Dana C; Dyson, Margaret W; Olino, Thomas M; Klein, Daniel N

    2018-04-24

    Depression is characterized by low positive emotionality (PE) and high negative emotionality (NE), as well as asymmetries in resting electroencephalography (EEG) alpha power. Moreover, frontal asymmetry has itself been linked to PE, NE, and related constructs. However, little is known about associations of temperamental PE and NE with resting EEG asymmetries in young children and whether this association changes as a function of development. In a longitudinal study of 254 three-year old children, we assessed PE and NE at age 3 using a standard laboratory observation procedure. Frontal EEG asymmetries were assessed at age 3 and three years later at age 6. We observed a significant three-way interaction of preschool PE and NE and age at assessment for asymmetry at F3-F4 electrode sites, such that children with both low PE and high NE developed a pattern of increasingly lower relative left-frontal cortical activity over time. In addition, F7-F8 asymmetry was predicted by a PE by time interaction, such that the frontal asymmetry in children with high PE virtually disappeared by age 6. Overall, these findings suggest that early temperament is associated with developmental changes in frontal asymmetry, and that the combination of low PE and high NE predicts the development of the pattern of frontal symmetry that is associated with depression.

  18. Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks

    NASA Astrophysics Data System (ADS)

    Omedes, Jason; Iturrate, Iñaki; Minguez, Javier; Montesano, Luis

    2015-10-01

    Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.

  19. Video/EEG aspects of early-infantile epileptic encephalopathy with suppression-bursts (Ohtahara syndrome).

    PubMed

    Fusco, L; Pachatz, C; Di Capua, M; Vigevano, F

    2001-11-01

    Early-infantile epileptic encephalopathy (EIEE) with suppression-bursts is a severe neonatal epileptic encephalopathy. The etiology is multiple, with cerebral malformations as the more frequent. We review the clinical and video/EEG aspects of eight infants with EIEE. These infants, aged between 4 and 70 days at the time of video/EEG recordings, were studied in relation to their clinical and video/EEG characteristics, evolution, persistence of suppression-burst pattern and etiology. Seven of the eight infants showed an ictal clinical sign correlated to the burst of the suppression-burst pattern, four of whom died within 11 months of age. The other three are alive. One, now aged 4 years, underwent surgery for hemimegalencephaly and is seizure-free, with good neurological outcome. One, now aged 9 months, was pyridoxine-dependent and she is seizure-free, and with normal neurological evolution under pyridoxine therapy. One, now aged 3 years and 9 months, is seizure-free, but with severe neurological and cognitive impairment. The only child who did not show a clinical ictal correlation of burst is also alive, now aged 3 years and 9 months, with drug-resistant epilepsy, and severe neurological and cognitive deficits. With regard to the etiology, three showed structural abnormalities, two more showed some signs of prenatal origin of neurological disease, and three had metabolic etiology. Our study confirms that EIEE is a severe age-dependent early epileptic encephalopathy. The etiology is mostly malformative. The prognosis is poor regarding motor and cognitive development, seizures, as well as life expectancies. The presence of an ictal burst of the suppression-burst pattern usually correlates with a negative outcome.

  20. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination

    PubMed Central

    Stamoulis, Catherine; Schomer, Donald L.; Chang, Bernard S.

    2013-01-01

    How a seizure terminates is still under-studied and, despite its clinical importance, remains an obscure phase of seizure evolution. Recent studies of seizure-related scalp EEGs at frequencies >100 Hz suggest that neural activity, in the form of oscillations and/or neuronal network interactions, may play an important role in preictal/ictal seizure evolution [2, 31]. However, the role of high-frequency activity in seizure termination, is unknown, if it exists at all. Using information theoretic measures of network coordination, this study investigated ictal and immediate postictal neurodynamic interactions encoded in scalp EEGs from a relatively small sample of 8 patients with focal epilepsy and multiple seizures originating in temporal and/or frontal brain regions, at frequencies ≤100 Hz and >100 Hz, respectively. Despite some heterogeneity in the dynamics of these interactions, consistent patterns were also estimated. Specifically, in several seizures, linear or non-linear increase in high-frequency neuronal coordination during ictal intervals, coincided with a corresponding decrease in coordination at frequencies <100 Hz, suggesting a potential interference role of high-frequency activity, to disrupt abnormal ictal synchrony at lower frequencies. These changes in network synchrony started at least 20–30 sec prior to seizure offset, depending on the seizure duration. Opposite patterns were estimated at frequencies ≤100 Hz in several seizures. These results raise the possibility that high-frequency interference may occur in the form of progressive network coordination during the ictal interval, which continues during the postictal interval. This may be one of several possible mechanisms that facilitate seizure termination. In fact, inhibition of pairwise interactions between EEGs by other signals in their spatial neighborhood, quantified by negative interaction information, was estimated at frequencies ≤100 Hz, at least in some seizures. PMID:23608198

  1. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    PubMed

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation.

    PubMed

    Olejarczyk, Elzbieta; Bogucki, Piotr; Sobieszek, Aleksander

    2017-01-01

    Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.

  3. Different modes of data processing and statistical testing applied to the same set of pharmaco-EEG recordings: effects on the evaluation of a selective and reversible MAO A inhibitor (brofaromine).

    PubMed

    Reimann, I W; Jobert, M; Gleiter, C H; Turri, M; Bieck, P R; Herrmann, W M

    1996-01-01

    The comparison of two different modes of data processing and two different approaches to statistical testing both applied to the same set of EEG recordings was the main objective of this pharmacological study. Brofaromine (CGP 11,305 A), a new selective and reversible monoamine oxidase type A inhibitor was used as an example for investigating a potentially antidepressant drug in clinical development. The two modes of pharmaco-EEG (PEEG) data processing differed mainly in the sampling frequency and definition of spectral parameters. Patterns of significant changes were noted in terms of descriptive data analysis using either a nonparametric Wilcoxon signed-rank test or an ANOVA of transformed data, as suggested by Conover and Iman. These data clearly demonstrate that slight discrepancies in the results may simply arise from differences in data processing and statistical approach applied. In spite of these discrepancies, the pattern of brofaromine-induced PEEG changes was very similar regardless of the mode of data handling used.

  4. The role of transvaginal power Doppler ultrasound in the differential diagnosis of benign intrauterine focal lesions.

    PubMed

    Cogendez, Ebru; Eken, Meryem Kurek; Bakal, Nuray; Gun, Ismet; Kaygusuz, Ecmel Isik; Karateke, Ates

    2015-10-01

    The purpose of this prospective study was to assess the role of power Doppler imaging in the differential diagnosis of benign intrauterine focal lesions such as endometrial polyps and submucous myomas using the characteristics of power Doppler flow mapping. A total of 480 premenopausal patients with abnormal uterine bleeding were evaluated by transvaginal ultrasonography (TVS) searching for intrauterine pathology. Sixty-four patients with a suspicious focal endometrial lesion received saline infusion sonography (SIS) after TVS. Fifty-eight patients with focal endometrial lesions underwent power Doppler ultrasound (PDUS). Three different vascular flow patterns were defined: Single vessel pattern, multiple vessel pattern, and circular flow pattern. Finally, hysteroscopic resection was performed in all cases, and Doppler flow characteristics were then compared with the final histopathological findings. Histopathological results were as follows: endometrial polyp: 40 (69 %), submucous myoma: 18 (31 %). Of the cases with endometrial polyps, 80 % demonstrated a single vessel pattern, 7.5 % a multiple vessel pattern, and 0 % a circular pattern. Vascularization was not observed in 12.5 % of patients with polyps. Of the cases with submucousal myomas, 72.2 % demonstrated a circular flow pattern, 27.8 % a multiple vessel pattern, and none of them showed a single vessel pattern. The sensitivity, specificity, and positive and negative predictive values of the single vessel pattern in diagnosing endometrial polyps were 80, 100, 100, and 69.2 %, respectively; and for the circular pattern in diagnosing submucous myoma, these were 72.2, 100, 100, and 88.9 %, respectively. Power Doppler blood flow mapping is a useful, practical, and noninvasive diagnostic method for the differential diagnosis of benign intrauterine focal lesions. Especially in cases of recurrent abnormal uterine bleeding, recurrent abortion, and infertility, PDUS can be preferred as a first-line diagnostic method.

  5. Biocybernetic factors in human perception and memory

    NASA Technical Reports Server (NTRS)

    Lai, D. C.

    1975-01-01

    The objective of this research is to develop biocybernetic techniques for use in the analysis and development of skills required for the enhancement of concrete images of the 'eidetic' type. The scan patterns of the eye during inspection of scenes are treated as indicators of the brain's strategy for the intake of visual information. The authors determine the features that differentiate visual scan patterns associated with superior imagery from scan patterns associated with inferior imagery, and simultaneously differentiate the EEG features correlated with superior imagery from those correlated with inferior imagery. A closely-coupled man-machine system has been designed to generate image enhancement and to train the individual to exert greater voluntary control over his own imagery. The models for EEG signals and saccadic eye movement in the man-machine system have been completed. The report describes the details of these models and discusses their usefulness.

  6. Sensitivity of quantitative EEG for seizure identification in the intensive care unit.

    PubMed

    Haider, Hiba A; Esteller, Rosana; Hahn, Cecil D; Westover, M Brandon; Halford, Jonathan J; Lee, Jong W; Shafi, Mouhsin M; Gaspard, Nicolas; Herman, Susan T; Gerard, Elizabeth E; Hirsch, Lawrence J; Ehrenberg, Joshua A; LaRoche, Suzette M

    2016-08-30

    To evaluate the sensitivity of quantitative EEG (QEEG) for electrographic seizure identification in the intensive care unit (ICU). Six-hour EEG epochs chosen from 15 patients underwent transformation into QEEG displays. Each epoch was reviewed in 3 formats: raw EEG, QEEG + raw, and QEEG-only. Epochs were also analyzed by a proprietary seizure detection algorithm. Nine neurophysiologists reviewed raw EEGs to identify seizures to serve as the gold standard. Nine other neurophysiologists with experience in QEEG evaluated the epochs in QEEG formats, with and without concomitant raw EEG. Sensitivity and false-positive rates (FPRs) for seizure identification were calculated and median review time assessed. Mean sensitivity for seizure identification ranged from 51% to 67% for QEEG-only and 63%-68% for QEEG + raw. FPRs averaged 1/h for QEEG-only and 0.5/h for QEEG + raw. Mean sensitivity of seizure probability software was 26.2%-26.7%, with FPR of 0.07/h. Epochs with the highest sensitivities contained frequent, intermittent seizures. Lower sensitivities were seen with slow-frequency, low-amplitude seizures and epochs with rhythmic or periodic patterns. Median review times were shorter for QEEG (6 minutes) and QEEG + raw analysis (14.5 minutes) vs raw EEG (19 minutes; p = 0.00003). A panel of QEEG trends can be used by experts to shorten EEG review time for seizure identification with reasonable sensitivity and low FPRs. The prevalence of false detections confirms that raw EEG review must be used in conjunction with QEEG. Studies are needed to identify optimal QEEG trend configurations and the utility of QEEG as a screening tool for non-EEG personnel. This study provides Class II evidence that QEEG + raw interpreted by experts identifies seizures in patients in the ICU with a sensitivity of 63%-68% and FPR of 0.5 seizures per hour. © 2016 American Academy of Neurology.

  7. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice

    PubMed Central

    Chella, Federico; D'Andrea, Antea; Basti, Alessio; Pizzella, Vittorio; Marzetti, Laura

    2017-01-01

    Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz), the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST). The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i) the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii) the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of considering the effects of the reference choice in the interpretation and comparison of the results of bispectral analysis of scalp EEG. PMID:28559790

  8. Specific features of cytological and colposcopical pattern in pregnant women with benign cervix uteri pathology in anamnesis.

    PubMed

    Bysaha, Nataliya Yu

    2016-01-01

    a tendency of increasing incidence of the cervix uteri precancer and cancer in women of reproductive age is noticed recently being related to the growth of number of the sexually-transmitted infections. The cervix uteri pathology incidence in women of fertile age is 20-25%. to study the specific features of the cytological and colposcopical pattern in pregnant patients with benign cervix uteri pathology in the anamnesis and the character of its change post partum. we have examined 195 women during their pregnancy and 3-5 months post partum. All pregnant women, alongside with generally accepted clinical and laboratory examinations, were subjected to the simple and extended colposcopy, cytology of the targeted smears and, according to indications, the histological studies of bioptate. according to the results of the colcoscopical studies and the signs of the cervix uteri pathology found, the patients were divided into several groups. A control group included 49 pregnant women. The clinical and instrumental examination of 146 women with cervix uteri pathology has been carried out both during pregnancy and post partum. the structure of the clinical forms of benign and premalignant changes in the cervix uteri epithelium in pregnant patients has been found. Specific features of the cytological and colposcopical pattern in pregnant patients with benign cervix uteri pathology in anamnesis have been studied. The relationship between the parity of pregnancy, delivery, route of delivery and regress of both benign and premalignant changes in the cervix uteri epithelium 3-5 months post partum has been determined.

  9. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials.

    PubMed

    Finke, Mareike; Billinger, Martin; Büchner, Andreas

    Cochlear implants (CIs) restore hearing to the profoundly deaf by direct electrical stimulation of the auditory nerve. To provide an optimal electrical stimulation pattern the CI must be individually fitted to each CI user. To date, CI fitting is primarily based on subjective feedback from the user. However, not all CI users are able to provide such feedback, for example, small children. This study explores the possibility of using the electroencephalogram (EEG) to objectively determine if CI users are able to hear differences in tones presented to them, which has potential applications in CI fitting or closed loop systems. Deviant and standard stimuli were presented to 12 CI users in an active auditory oddball paradigm. The EEG was recorded in two sessions and classification of the EEG data was performed with shrinkage linear discriminant analysis. Also, the impact of CI artifact removal on classification performance and the possibility to reuse a trained classifier in future sessions were evaluated. Overall, classification performance was above chance level for all participants although performance varied considerably between participants. Also, artifacts were successfully removed from the EEG without impairing classification performance. Finally, reuse of the classifier causes only a small loss in classification performance. Our data provide first evidence that EEG can be automatically classified on single-trial basis in CI users. Despite the slightly poorer classification performance over sessions, classifier and CI artifact correction appear stable over successive sessions. Thus, classifier and artifact correction weights can be reused without repeating the set-up procedure in every session, which makes the technique easier applicable. With our present data, we can show successful classification of event-related cortical potential patterns in CI users. In the future, this has the potential to objectify and automate parts of CI fitting procedures.

  10. Video-EEG recordings in full-term neonates of diabetic mothers: observational study.

    PubMed

    Castro Conde, José Ramón; González González, Nieves Luisa; González Barrios, Desiré; González Campo, Candelaria; Suárez Hernández, Yaiza; Sosa Comino, Elena

    2013-11-01

    To determine whether full-term newborn infants of diabetic mothers (IDM) present immature/disorganised EEG patterns in the immediate neonatal period, and whether there was any relationship with maternal glycaemic control. Cohort study with an incidental sample performed in a tertiary hospital neonatal unit. 23 IDM and 22 healthy newborns born between 2010 and 2013. All underwent video-EEG recording lasting >90 min at 48-72 h of life. We analysed the percentage of indeterminate sleep, transient sharp waves per hour and mature-for-gestational age EEG patterns (discontinuity, maximum duration of interburst interval (IBI), asynchrony, asymmetry, δ brushes, encoches frontales and α/θ rolandic activity). The group of IDM was divided into two subgroups according to maternal HbA1c: (1) HbA1c≥6% and (2) HbA1c<6%. Compared with healthy newborns, IDM presented significantly higher percentage of indeterminate sleep (57% vs 25%; p<0.001), discontinuity (2.5% vs 0%; p=0.044) and δ brushes in the bursts (6% vs 3%; p=0.024); higher duration of IBI (0.3 s vs 0 s; p=0.017); fewer encoches frontales (7/h vs 35/h; p<0.001), reduced θ/α rolandic activity (3/h vs 9/h; p<0.001); and more transient sharp waves (25/h vs 5/h; p<0.001). IDM with maternal HbA1c≥6% showed greater percentage of δ brushes in the burst (14% vs 4%; p=0.007). Full-term IDM newborns showed video-EEG features of abnormal development of brain function. Maternal HbA1c levels<6% during pregnancy could minimise the risk of cerebral dysmaturity.

  11. Neural network detects the effects of p-CPA pre-treatment on brain electrophysiology in a rat model of focal brain injury.

    PubMed

    Sinha, Rakesh Kumar; Aggarwal, Yogender

    2009-04-01

    To examine the performance of Artificial Neural Network (ANN) in evaluation of the effects of pretreatment of para-Chlorophenylalanine (p-CPA), a serotonin blocker, in experimental brain injury. Continuous 4 h digital electroencephalogram (EEG) recordings from male Charles Foster rats and its power spectrum analysis by using fast Fourier transform (FFT) were performed in two experimental (i) drug untreated injury group; (ii) p-CPA pretreated injury group as well as a control group. The EEG power spectrum data were tested by ANN containing 60 nodes in input layer, weighted from the digital values of power spectrum from 0 to 30 Hz, 18 nodes in hidden layer and an output node. The effects of injury and of the drug pretreatment were confirmed with the help of calculation of edematous swelling in the brain. The changes in EEG spectral patterns were compared with the ANN and the accuracy was determined in terms of percent (%). Overall performance of the network was found the best in control group (97.9%) in comparison to p-CPA untreated injury group (96.3%) and p-CPA pretreated injury group (71.9%). The decrease in accuracy in p-CPA pretreated injury group of subjects have occurred due to increase in misclassified patterns due to faster recovery in brain cortical potentials. EEG spectrum analysis with ANN was found successful in identifying the changes due to brain swelling as well as the effect of pretreatment of p-CPA in focal brain injury condition. Thus, the training and testing of ANN with EEG power spectra can be used as an effective diagnostic tool for early prediction and monitoring of brain injury as well as the effects of drugs in this condition.

  12. Seizure semiology and electroencephalography in young children with lesional temporal lobe epilepsy.

    PubMed

    Lv, Rui-Juan; Sun, Zhen-Rong; Cui, Tao; Shao, Xiao-Qiu

    2014-02-01

    This study aimed to discuss the clinical features of seizure semiology and electroencephalography (EEG) in young children with lesional temporal lobe epilepsy (TLE). Children with lesional TLE received presurgical evaluation for intractable epilepsy. They were followed up for more than one year after temporal lobectomy. We reviewed the medical history and video-EEG monitoring of children with TLE to analyze the semiology of seizures and EEG findings and compared the semiology of seizures and EEG findings of childhood TLE and adult TLE. A total of 84 seizures were analyzed in 11 children (aged 23-108 months). The age of seizure onset was from 1 month to 26 months (a mean of 17.6 months). All of the patients exhibited prominent motor manifestations including epileptic spasm, tonic seizure, and unilateral clonic seizure. Seven children manifested behavioral arrest similar to an automotor seizure in adult TLE but with a shorter duration and higher frequency. The automatisms were typically orofacial, whereas manual automatisms were rarely observed. The EEG recordings revealed that diffuse discharge patterns were more common in younger children, whereas focal or unilateral patterns were more typical in older children. All of the patients were seizure-free after temporal lobectomy with more than one-year follow-up. All of the children had a mental development delay or regression; however, there was improvement after surgery, especially in those with surgery performed early. In contrast to TLE in adults, young children with lesional TLE probably represent a distinct nosological and probably less homogeneous syndrome. Although they had generalized clinical and electrographic features, resective epilepsy surgery should be considered as early as possible to obtain seizure control and improvement in mental development. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Modeling temporal sequences of cognitive state changes based on a combination of EEG-engagement, EEG-workload, and heart rate metrics

    PubMed Central

    Stikic, Maja; Berka, Chris; Levendowski, Daniel J.; Rubio, Roberto F.; Tan, Veasna; Korszen, Stephanie; Barba, Douglas; Wurzer, David

    2014-01-01

    The objective of this study was to investigate the feasibility of physiological metrics such as ECG-derived heart rate and EEG-derived cognitive workload and engagement as potential predictors of performance on different training tasks. An unsupervised approach based on self-organizing neural network (NN) was utilized to model cognitive state changes over time. The feature vector comprised EEG-engagement, EEG-workload, and heart rate metrics, all self-normalized to account for individual differences. During the competitive training process, a linear topology was developed where the feature vectors similar to each other activated the same NN nodes. The NN model was trained and auto-validated on combat marksmanship training data from 51 participants that were required to make “deadly force decisions” in challenging combat scenarios. The trained NN model was cross validated using 10-fold cross-validation. It was also validated on a golf study in which additional 22 participants were asked to complete 10 sessions of 10 putts each. Temporal sequences of the activated nodes for both studies followed the same pattern of changes, demonstrating the generalization capabilities of the approach. Most node transition changes were local, but important events typically caused significant changes in the physiological metrics, as evidenced by larger state changes. This was investigated by calculating a transition score as the sum of subsequent state transitions between the activated NN nodes. Correlation analysis demonstrated statistically significant correlations between the transition scores and subjects' performances in both studies. This paper explored the hypothesis that temporal sequences of physiological changes comprise the discriminative patterns for performance prediction. These physiological markers could be utilized in future training improvement systems (e.g., through neurofeedback), and applied across a variety of training environments. PMID:25414629

  14. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  15. Analysis of Brain Recurrence

    NASA Astrophysics Data System (ADS)

    Frilot, Clifton; Kim, Paul Y.; Carrubba, Simona; McCarty, David E.; Chesson, Andrew L.; Marino, Andrew A.

    Analysis of Brain Recurrence (ABR) is a method for extracting physiologically significant information from the electroencephalogram (EEG), a non-stationary electrical output of the brain, the ultimate complex dynamical system. ABR permits quantification of temporal patterns in the EEG produced by the non-autonomous differential laws that govern brain metabolism. In the context of appropriate experimental and statistical designs, ABR is ideally suited to the task of interpreting the EEG. Present applications of ABR include discovery of a human magnetic sense, increased mechanistic understanding of neuronal membrane processes, diagnosis of degenerative neurological disease, detection of changes in brain metabolism caused by weak environmental electromagnetic fields, objective characterization of the quality of human sleep, and evaluation of sleep disorders. ABR has important beneficial implications for the development of clinical and experimental neuroscience.

  16. Creutzfeldt-Jakob Disease

    MedlinePlus

    ... CJD: Electroencephalogram (EEG) measures the brain's patterns of electrical activity similar to the way an electrocardiogram (ECG) measures the heart's electrical activity. Brain magnetic resonance imaging (MRI) can detect ...

  17. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    PubMed

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  18. Application of Tsallis Entropy to EEG: Quantifying the Presence of Burst Suppression After Asphyxial Cardiac Arrest in Rats

    PubMed Central

    Zhang, Dandan; Jia, Xiaofeng; Ding, Haiyan; Ye, Datian; Thakor, Nitish V.

    2011-01-01

    Burst suppression (BS) activity in EEG is clinically accepted as a marker of brain dysfunction or injury. Experimental studies in a rodent model of brain injury following asphyxial cardiac arrest (CA) show evidence of BS soon after resuscitation, appearing as a transitional recovery pattern between isoelectricity and continuous EEG. The EEG trends in such experiments suggest varying levels of uncertainty or randomness in the signals. To quantify the EEG data, Shannon entropy and Tsallis entropy (TsEn) are examined. More specifically, an entropy-based measure named TsEn area (TsEnA) is proposed to reveal the presence and the extent of development of BS following brain injury. The methodology of TsEnA and the selection of its parameter are elucidated in detail. To test the validity of this measure, 15 rats were subjected to 7 or 9 min of asphyxial CA. EEG recordings immediately after resuscitation from CA were investigated and characterized by TsEnA. The results show that TsEnA correlates well with the outcome assessed by evaluating the rodents after the experiments using a well-established neurological deficit score (Pearson correlation = 0.86, p ⪡ 0.01). This research shows that TsEnA reliably quantifies the complex dynamics in BS EEG, and may be useful as an experimental or clinical tool for objective estimation of the gravity of brain damage after CA. PMID:19695982

  19. [EEG frequency and regional properties in patients with paranoid schizophrenia: effects of positive and negative symptomatology prevalence].

    PubMed

    Bochkarev, V K; Kirenskaya, A V; Tkachenko, A A; Samylkin, D V; Novototsky-Vlasov, V Yu; Kovaleva, M E

    2015-01-01

    EEG changes in schizophrenic patients are caused by a multitude of factors related to clinical heterogeneity of the disease, current state of patients, and conducted therapy. EEG spectral analysis remains an actual methodical approach for the investigation of the neurophysiological mechanisms of the disease. The goal of the investigation was the study of frequency and regional EEG correlating with the intensity of productive and negative disorders. Models of summary prevalence of positive/negative disorders and evidence of concrete clinical indices of the PANSS scale were used. Spectral characteristics of background EEG in the frequency range of 1-60 Hz were studied in 35 patients with paranoid schizophrenia free from psychoactive medication and in 19 healthy volunteers. It was established that the main index of negative symptomatology in summary assessment was diffuse increase of spectral power of gamma and delta ranges. Deficient states with the predominance of volitional disorders were characterized by a lateralized increase of spectral power of beta-gamma ranges in the left hemisphere, and of delta range - in frontal areas of this hemisphere. Positive symptomatology was noticeably less reflected in EEG changes than negative ones. An analysis of psychopathological symptom complexes revealed the significance of spatially structured EEG patterns in the beta range: for the delusion disturbances with psychic automatism phenomena - in frontal areas of the left hemisphere, and for the paranoid syndrome with primary interpretative delusion - in cortical areas of the right hemisphere.

  20. Sleep EEG of Microcephaly in Zika Outbreak.

    PubMed

    Kanda, Paulo Afonso Medeiros; Aguiar, Aline de Almeida Xavier; Miranda, Jose Lucivan; Falcao, Alexandre Loverde; Andrade, Claudia Suenia; Reis, Luigi Neves Dos Santos; Almeida, Ellen White R Bacelar; Bello, Yanes Brum; Monfredinho, Arthur; Kanda, Rafael Guimaraes

    2018-01-01

    Microcephaly (MC), previously considered rare, is now a health emergency of international concern because of the devastating Zika virus pandemic outbreak of 2015. The authors describe the electroencephalogram (EEG) findings in sleep EEG of epileptic children who were born with microcephaly in areas of Brazil with active Zika virus transmission between 2014 and 2017. The authors reviewed EEGs from 23 children. Nine were females (39.2%), and the age distribution varied from 4 to 48 months. MC was associated with mother positive serology to toxoplasmosis (toxo), rubella (rub), herpes, and dengue (1 case); toxo (1 case); chikungunya virus (CHIKV) (1 case); syphilis (1 case); and Zika virus (ZIKV) (10 cases). In addition, 1 case was associated with perinatal hypoxia and causes of 9 cases remain unknown. The main background EEG abnormality was diffuse slowing (10 cases), followed by classic (3 cases) and modified (5 cases) hypsarrhythmia. A distinct EEG pattern was seen in ZIKV (5 cases), toxo (2 cases), and undetermined cause (1 case). It was characterized by runs of frontocentrotemporal 4.5-13 Hz activity (7 cases) or diffuse and bilateral runs of 18-24 Hz (1 case). In ZIKV, this rhythmic activity was associated with hypsarrhythmia or slow background. Further studies are necessary to determine if this association is suggestive of ZIKV infection. The authors believe that EEG should be included in the investigation of all newly diagnosed congenital MC, especially those occurring in areas of autochthonous transmission of ZIKV.

  1. [Electroencephalography and epileptology in the 20th century].

    PubMed

    Karbowski, K

    1995-12-05

    In 1875, Caton was already able to detect cerebral electric currents during experimental studies in animals. In 1914, Cybulski and Jeleńska-Macieszyna reported on the increase of current-intensity during a focal motor epileptic seizure. In 1929 in Jena, Berger revolutionized the study of epilepsy with his paper on the human electroencephalogram 'Uber das Elektrenkephalogramm des Menschen'. His discovery and further publications as well as later works of numerous researchers, especially F. and E. Gibbs, Lennox, Penfield and Jasper, made it possible to distinguish different forms of 'little' epileptic seizures and to separate them from nonepileptic paroxysmal disorders. New epileptic syndromes could be singled out, as e.g. the symptomatic epilepsy of childhood with variable clinical manifestations of seizures and slow spike-wave complexes in the EEG (Lennox-Gastaut syndrome) or the benign partial epilepsy of childhood with centrotemporal EEG spikes. In these fields, as well as for the epileptic seizures in newborns and babies and for the differentiation between epileptic and nonepileptic twilight states in later stages of life, the EEG remains an indispensable tool in the CT and MRI era. It also contributes largely to the diagnosis of nonepileptic cerebral illness such as herpes simplex encephalitis, subacute sclerosing panencephalitis van Bogaert and Creutzfeldt-Jakob disease. Since the introduction of phenobarbital by Hauptmann in 1912, the palet of effective drugs against epilepsy, such as phenytoin, carbamazepine, valproate and benzodiazepines used for status-epilepticus treatment, became essentially larger. The value of newer substances (vigabatrin, progabide, gabapentin, lamotrigin) can't be estimated actually.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The use of serum free light chain dimerization patterns assist in the diagnosis of AL amyloidosis.

    PubMed

    Gatt, Moshe E; Kaplan, Batia; Yogev, Dean; Slyusarevsky, Elana; Pogrebijski, Galina; Golderman, Sizilia; Kukuy, Olga; Livneh, Avi

    2018-05-16

    The discrimination between benign and malignant forms of plasma cell dyscrasia (PCD) is often difficult. Free light chain monomer-dimer pattern analysis (FLC-MDPA) may assist in solving this dilemma and distinguish between AL amyloidosis and benign PCD. Serum samples of patients with AL amyloidosis and benign PCD were analysed in a blinded manner. Quantitative Western blotting was performed to estimate dimerization and clonality indices, and thereby determine the source of the tested samples, as derived either from benign or malignant PCD. The findings obtained by the FLC-MDPA were compared with the actual diagnosis. Of 37 samples from patients with active AL amyloidosis, 34 (91·9%) fulfilled dimerization criteria for diagnosis of AL amyloidosis. Of the 45 samples from patients with benign PCD, 10 (21·2%) tested falsely positive or gave an inconclusive result. Thus, the sensitivity of the analysis was 92·5% with a remarkable negative predictive value of 91·9%. In addition, of 20 patients who were in complete or very good partial remission, only one tested positive. By multivariate analysis, FLC-MDPA was the best independent marker predicting AL amyloidosis (odds ratio of 84). The FLC-MDPA offers a highly effective tool in the diagnostic assessment of patients with PCD. © 2018 John Wiley & Sons Ltd.

  3. Application of Sonoelastography in Differential Diagnosis of Benign and Malignant Thyroid Nodules.

    PubMed

    Esfahanian, Fatemeh; Aryan, Arvin; Ghajarzadeh, Mahsa; Yazdi, Meisam Hosein; Nobakht, Nasir; Burchi, Mehdi

    2016-01-01

    Sonoelastography is a new ultrasound method which could be helpful to determine which thyroid nodule is malignant. We designed this study to evaluate the accuracy of sonoelastography in differentiating of benign and malignant thyroid nodules in Iranian patients. Forty thyroid nodules in forty consecutive patients who had been referred for sonography-guided fine-needle aspiration biopsy were evaluated. Gray scale ultrasound and elastosonography by real-time, freehand technique applied for all patients. Elastography findings were classified into four groups. Nodules which were classified as patterns 1 or 2 in elastogram evaluation were classified as benign and probably malignant if elastogram scans were patterns 3 and 4 of elastogram scan. Mean age ± standard deviation (SD) was 42.2 ± 12.6 years, and mean ± SD thyroid-stimulating hormone level was 1.4 ± 1.9 IU/ml. Thirty-five cases (87.5%) were female and 5 (12.5%) were male. Histological examination indicated 27 (67.5%) benign and 13 (32.5%) malignant nodules. The most elastogram score was 2 (50%) followed by score 3. The cut-off point of 2 considered as the best value to differentiate benign and malignant thyroid nodules with sensitivity and specificity of 61% and 78% (area under the curve = 0.76, 95% confidence interval: 0.6-0.92, P = 0.007). Sonoelastography could help to differentiate benign and malignant thyroid nodules. As our sample size was limited, larger studies are recommended.

  4. False positive or negative results of shear-wave elastography in differentiating benign from malignant breast masses: analysis of clinical and ultrasonographic characteristics.

    PubMed

    Kim, Mi Young; Choi, Nami; Yang, Jung-Hyun; Yoo, Young Bum; Park, Kyoung Sik

    2015-10-01

    Shear-wave elastography (SWE) has the potential to improve diagnostic performance of conventional ultrasound (US) in differentiating benign from malignant breast masses. To investigate false positive or negative results of SWE in differentiating benign from malignant breast masses and to analyze clinical and imaging characteristics of the masses with false SWE findings. From May to October 2013, 166 breast lesions of 164 consecutive women (mean age, 45.3 ± 10.1 years) who had been scheduled for biopsy were included. Conventional US and SWE were performed in all women before biopsy. Clinical, ultrasonographic morphologic features and SWE parameters (pattern classification and standard deviation [SD]) were recorded and compared with the histopathology results. Patient and lesion factors in the "true" and "false" groups were compared. Of the 166 masses, 118 (71.1%) were benign and 48 (28.9%) were malignant. False SWE features were more frequently observed in benign masses. False positive rates of benign masses and false negative rates of malignancy were 53% and 8.2%, respectively, using SWE pattern analysis and were 22.4% and 10.3%, respectively, using SD values. A lesion boundary of the masses on US (P = 0.039) and younger patient age (P = 0.047) were significantly associated with false SWE findings. These clinical and ultrasonographic features need to be carefully evaluated in performance and interpretation of SWE examinations. © The Foundation Acta Radiologica 2014.

  5. Spike persistence and normalization in benign epilepsy with centrotemporal spikes - Implications for management.

    PubMed

    Kim, Hunmin; Kim, Soo Yeon; Lim, Byung Chan; Hwang, Hee; Chae, Jong-Hee; Choi, Jieun; Kim, Ki Joong; Dlugos, Dennis J

    2018-05-10

    This study was performed 1) to determine the timing of spike normalization in patients with benign epilepsy with centrotemporal spikes (BECTS); 2) to identify relationships between age of seizure onset, age of spike normalization, years of spike persistence and treatment; and 3) to assess final outcomes between groups of patients with or without spikes at the time of medication tapering. Retrospective analysis of BECTS patients confirmed by clinical data, including age of onset, seizure semiology and serial electroencephalography (EEG) from diagnosis to remission. Age at spike normalization, years of spike persistence, and time of treatment onset to spike normalization were assessed. Final seizure and EEG outcome were compared between the groups with or without spikes at the time of AED tapering. One hundred and thirty-four patients were included. Mean age at seizure onset was 7.52 ± 2.11 years. Mean age at spike normalization was 11.89 ± 2.11 (range: 6.3-16.8) years. Mean time of treatment onset to spike normalization was 4.11 ± 2.13 (range: 0.24-10.08) years. Younger age of seizure onset was correlated with longer duration of spike persistence (r = -0.41, p < 0.001). In treated patients, spikes persisted for 4.1 ± 1.95 years, compared with 2.9 ± 1.97 years in untreated patients. No patients had recurrent seizures after AED was discontinued, regardless of the presence/absence of spikes at time of AED tapering. Years of spike persistence was longer in early onset BECTS patients. Treatment with AEDs did not shorten years of spike persistence. Persistence of spikes at time of treatment withdrawal was not associated with seizure recurrence. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Annual Research Report on Projects of the Armed Forces Radiobiology Research Institute, 1 October 1979 - 30 September 1980.

    DTIC Science & Technology

    1980-09-30

    by radio- immunoassay after doses of high-energy electrons (1). Both cGMP and cAMP were reduced maximally 10 minutes after exposure in the cerebellum...rays, high-energy electrons , or neutrons. Using the probes diphenylhexatriene and anilinonaphthalene sulfonate, fluorescence inten- sity was reduced to...energy electrons . Alterations in the EEG patterns were observed only at radiation doses of 10 krad. No effect was obtained at 5 krad. EEG amplitude and

  7. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    ERIC Educational Resources Information Center

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  8. EEG alpha frequency correlates of burnout and depression: The role of gender.

    PubMed

    Tement, Sara; Pahor, Anja; Jaušovec, Norbert

    2016-02-01

    EEG alpha frequency band biomarkers of depression are widely explored. Due to their trait-like features, they may help distinguish between depressive and burnout symptomatology, which is often referred to as "work-related depression". The present correlational study strived to examine whether individual alpha frequency (IAF), power, and coherence in the alpha band can provide evidence for establishing burnout as a separate diagnostic entity. Resting EEG (eyes closed) was recorded in 117 individuals (42 males). In addition, the participants filled-out questionnaires of burnout and depression. Regression analyses highlighted the differential value of IAF and power in predicting burnout and depression. IAF was significantly related to depressive symptomatology, whereas power was linked mostly to burnout. Moreover, seven out of twelve interactions between EEG indicators and gender were significant. Connectivity patterns were significant for depression displaying gender-related differences. The results offer tentative support for establishing burnout as a separate clinical syndrome. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Stress assessment based on EEG univariate features and functional connectivity measures.

    PubMed

    Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A

    2015-07-01

    The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.

  10. Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: an analysis of the 4-6, 6-8, 8-10 and 10-12 Hz frequency bands.

    PubMed

    Krause, C M; Viemerö, V; Rosenqvist, A; Sillanmäki, L; Aström, T

    2000-05-26

    The reactivity of different narrow electroencephalographic (EEG) frequencies (4-6, 6-8, 8-10 and 10-12 Hz) to three types of emotionally laden film clips (aggressive, sad, neutral) were examined. We observed that different EEG frequency bands responded differently to the three types of film content. In the 4-6 Hz frequency band, the viewing of aggressive film content elicited greater relative synchronization as compared the responses elicited by the viewing of sad and neutral film content. The 6-8 Hz and 8-10 Hz frequency bands exhibited reactivity to the chronological succession of film viewing whereas the responses of the 10-12 Hz frequency band evolved within minutes during film viewing. Our results propose dissociations between the responses of different frequencies within the EEG to different emotion-related stimuli. Narrow frequency band EEG analysis offers an adequate tool for studying cortical activation patterns during emotion-related information processing.

  11. Quantitative EEG and Current Source Density Analysis of Combined Antiepileptic Drugs and Dopaminergic Agents in Genetic Epilepsy: Two Case Studies.

    PubMed

    Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune

    2015-07-01

    Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  12. Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman-Pearson criteria and a support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Chun-mei; Zhang, Chong-ming; Zou, Jun-zhong; Zhang, Jian

    2012-02-01

    The diagnosis of several neurological disorders is based on the detection of typical pathological patterns in electroencephalograms (EEGs). This is a time-consuming task requiring significant training and experience. A lot of effort has been devoted to developing automatic detection techniques which might help not only in accelerating this process but also in avoiding the disagreement among readers of the same record. In this work, Neyman-Pearson criteria and a support vector machine (SVM) are applied for detecting an epileptic EEG. Decision making is performed in two stages: feature extraction by computing the wavelet coefficients and the approximate entropy (ApEn) and detection by using Neyman-Pearson criteria and an SVM. Then the detection performance of the proposed method is evaluated. Simulation results demonstrate that the wavelet coefficients and the ApEn are features that represent the EEG signals well. By comparison with Neyman-Pearson criteria, an SVM applied on these features achieved higher detection accuracies.

  13. Characterization of EEG patterns in brain-injured subjects and controls after a Snoezelen(®) intervention.

    PubMed

    Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto

    2016-11-01

    The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Retained energy-based coding for EEG signals.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-09-01

    The recent use of long-term records in electroencephalography is becoming more frequent due to its diagnostic potential and the growth of novel signal processing methods that deal with these types of recordings. In these cases, the considerable volume of data to be managed makes compression necessary to reduce the bit rate for transmission and storage applications. In this paper, a new compression algorithm specifically designed to encode electroencephalographic (EEG) signals is proposed. Cosine modulated filter banks are used to decompose the EEG signal into a set of subbands well adapted to the frequency bands characteristic of the EEG. Given that no regular pattern may be easily extracted from the signal in time domain, a thresholding-based method is applied for quantizing samples. The method of retained energy is designed for efficiently computing the threshold in the decomposition domain which, at the same time, allows the quality of the reconstructed EEG to be controlled. The experiments are conducted over a large set of signals taken from two public databases available at Physionet and the results show that the compression scheme yields better compression than other reported methods. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. EEG functional connectivity, axon delays and white matter disease.

    PubMed

    Nunez, Paul L; Srinivasan, Ramesh; Fields, R Douglas

    2015-01-01

    Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  16. Prognostic value of amplitude-integrated electroencephalography in neonates with hypernatremic dehydration.

    PubMed

    Tekgunduz, Kadir Şerafettin; Caner, Ibrahim; Eras, Zeynep; Taştekin, Ayhan; Tan, Huseyin; Dinlen, Nurdan

    2014-05-01

    Hypernatremic dehydration in neonates is a condition that develops due to inadequate fluid intake and it may lead to cerebral damage. We aimed to determine whether there was an association between serum sodium levels on admission and aEEG patterns and prognosis, as well as any association between aEEG findings and survival rates and long-term prognosis. The present study included all term infants hospitalized for hypernatremic dehydration in between January 2010 and May 2011. Infants were monitored by aEEG. At 2 years of age, we performed a detailed evaluation to assess the impact of hypernatremic dehydration on the neurodevelopmental outcome. Twenty-one infants were admitted to the neonatal intensive care unit for hypernatremic dehydration. A correlation was found between increased serum sodium levels and aEEG abnormalities. Neurodevelopmental assessment was available for 17 of the 21 infants. The results revealed that hypernatremic dehydration did not adversely affect the long-term outcomes. The follow-up of newborns after discharge is key to determine the risks associated with hypernatremic dehydration. Our results suggest that hypernatremic dehydration had no impact on the long-term outcome. In addition, continuous aEEG monitoring could provide information regarding early prognosis and mortality.

  17. On the use of EEG or MEG brain imaging tools in neuromarketing research.

    PubMed

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Toppi, Jlenia; Aloise, Fabio; Bez, Francesco; Wei, Daming; Kong, Wanzeng; Dai, Jounging; Cincotti, Febo; Mattia, Donatella; Babiloni, Fabio

    2011-01-01

    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries.

  18. On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research

    PubMed Central

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Toppi, Jlenia; Aloise, Fabio; Bez, Francesco; Wei, Daming; Kong, Wanzeng; Dai, Jounging; Cincotti, Febo; Mattia, Donatella; Babiloni, Fabio

    2011-01-01

    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries. PMID:21960996

  19. Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Anbazhagan, Ashwin; Chen, Min; Reutens, David C.

    2017-12-01

    Objective. Epilepsy is a common neurological disorder characterized by recurrent, unprovoked seizures. The search for new treatments for seizures and epilepsy relies upon studies in animal models of epilepsy. To capture data on seizures, many applications require prolonged electroencephalography (EEG) with recordings that generate voluminous data. The desire for efficient evaluation of these recordings motivates the development of automated seizure detection algorithms. Approach. A new seizure detection method is proposed, based on multiple features and a simple thresholding technique. The features are derived from chaos theory, information theory and the power spectrum of EEG recordings and optimally exploit both linear and nonlinear characteristics of EEG data. Main result. The proposed method was tested with real EEG data from an experimental mouse model of epilepsy and distinguished seizures from other patterns with high sensitivity and specificity. Significance. The proposed approach introduces two new features: negative logarithm of adaptive correlation integral and power spectral coherence ratio. The combination of these new features with two previously described features, entropy and phase coherence, improved seizure detection accuracy significantly. Negative logarithm of adaptive correlation integral can also be used to compute the duration of automatically detected seizures.

  20. [Effect of alcohol on electrical organisation in the brain during a visuospatial working memory task and its relationship with the menstrual cycle].

    PubMed

    Sanz-Martin, Araceli; Hernández-González, Marisela; Guevara, Miguel Ángel; Santana, Gloria; Gumá-Díaz, Emilio

    2014-02-01

    The metabolism of alcohol and cognitive functions can vary during the menstrual cycle. Also, both alcohol ingestion and hormonal variations during menstruation have been associated with characteristic changes in electroencephalographic (EEG) activity. AIM. To determine whether EEG activity during a working memory task is affected by acute alcohol consumption, and if these EEG patterns vary in relation to different phases of the menstrual cycle. 24 women who drank a moderate dose of alcohol or placebo during the follicular and early luteal phases of the menstrual cycle. The EEG activity was recorded during performance of viso-spatial working memory task. Although the alcohol did not deteriorate the performance of working memory task, it caused in the EEG a decrease of relative theta power and lower right fronto-parietal correlation in theta and alpha2 bands. Only women who drank alcohol in the follicular phase had a higher relative potency of alpha1, which could indicate a lower level of arousal and attention. These results contribute to a better understanding of the brain mechanisms underlying cognitive changes with alcohol and its relationship to the menstrual cycle.

  1. Pattern classification approach to characterizing solitary pulmonary nodules imaged on high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    McNitt-Gray, Michael F.; Hart, Eric M.; Goldin, Jonathan G.; Yao, Chih-Wei; Aberle, Denise R.

    1996-04-01

    The purpose of our study was to characterize solitary pulmonary nodules (SPN) as benign or malignant based on pattern classification techniques using size, shape, density and texture features extracted from HRCT images. HRCT images of patients with a SPN are acquired, routed through a PACS and displayed on a thoracic radiology workstation. Using the original data, the SPN is semiautomatically contoured using a nodule/background threshold. The contour is used to calculate size and several shape parameters, including compactness and bending energy. Pixels within the interior of the contour are used to calculate several features including: (1) nodule density-related features, such as representative Hounsfield number and moment of inertia, and (2) texture measures based on the spatial gray level dependence matrix and fractal dimension. The true diagnosis of the SPN is established by histology from biopsy or, in the case of some benign nodules, extended follow-up. Multi-dimensional analyses of the features are then performed to determine which features can discriminate between benign and malignant nodules. When a sufficient number of cases are obtained two pattern classifiers, a linear discriminator and a neural network, are trained and tested using a select subset of features. Preliminary data from nine (9) nodule cases have been obtained and several features extracted. While the representative CT number is a reasonably good indicator, it is an inconclusive predictor of SPN diagnosis when considered by itself. Separation between benign and malignant nodules improves when other features, such as the distribution of density as measured by moment of inertia, are included in the analysis. Software has been developed and preliminary results have been obtained which show that individual features may not be sufficient to discriminate between benign and malignant nodules. However, combinations of these features may be able to discriminate between these two classes. With additional cases and more features, we will be able to perform a feature selection procedure and ultimately to train and test pattern classifiers in this discrimination task.

  2. Comparison of Bispectral Index and Entropy values with electroencephalogram during surgical anaesthesia with sevoflurane.

    PubMed

    Aho, A J; Kamata, K; Jäntti, V; Kulkas, A; Hagihira, S; Huhtala, H; Yli-Hankala, A

    2015-08-01

    Concomitantly recorded Bispectral Index® (BIS) and Entropy™ values sometimes show discordant trends during general anaesthesia. Previously, no attempt had been made to discover which EEG characteristics cause discrepancies between BIS and Entropy. We compared BIS and Entropy values, and analysed the changes in the raw EEG signal during surgical anaesthesia with sevoflurane. In this prospective, open-label study, 65 patients receiving general anaesthesia with sevoflurane were enrolled. BIS, Entropy and multichannel digital EEG were recorded. Concurrent BIS and State Entropy (SE) values were selected. Whenever BIS and SE values showed ≥10-unit disagreement for ≥60 s, the raw EEG signal was analysed both in time and frequency domain. A ≥10-unit disagreement ≥60 s was detected 428 times in 51 patients. These 428 episodes accounted for 5158 (11%) out of 45 918 analysed index pairs. During EEG burst suppression, SE was higher than BIS in 35 out of 49 episodes. During delta-theta dominance, BIS was higher than SE in 141 out of 157 episodes. During alpha or beta activity, SE was higher than BIS in all 49 episodes. During electrocautery, both BIS and SE changed, sometimes in the opposite direction, but returned to baseline values after electrocautery. Electromyography caused index disagreement four times (BIS > SE). Certain specific EEG patterns, and artifacts, are associated with discrepancies between BIS and SE. Time and frequency domain analyses of the original EEG improve the interpretation of studies involving BIS, Entropy and other EEG-based indices. NCT01077674. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Which EEG patterns in coma are nonconvulsive status epilepticus?

    PubMed

    Trinka, Eugen; Leitinger, Markus

    2015-08-01

    Nonconvulsive status epilepticus (NCSE) is common in patients with coma with a prevalence between 5% and 48%. Patients in deep coma may exhibit epileptiform EEG patterns, such as generalized periodic spikes, and there is an ongoing debate about the relationship of these patterns and NCSE. The purposes of this review are (i) to discuss the various EEG patterns found in coma, its fluctuations, and transitions and (ii) to propose modified criteria for NCSE in coma. Classical coma patterns such as diffuse polymorphic delta activity, spindle coma, alpha/theta coma, low output voltage, or burst suppression do not reflect NCSE. Any ictal patterns with a typical spatiotemporal evolution or epileptiform discharges faster than 2.5 Hz in a comatose patient reflect nonconvulsive seizures or NCSE and should be treated. Generalized periodic diacharges or lateralized periodic discharges (GPDs/LPDs) with a frequency of less than 2.5 Hz or rhythmic discharges (RDs) faster than 0.5 Hz are the borderland of NCSE in coma. In these cases, at least one of the additional criteria is needed to diagnose NCSE (a) subtle clinical ictal phenomena, (b) typical spatiotemporal evolution, or (c) response to antiepileptic drug treatment. There is currently no consensus about how long these patterns must be present to qualify for NCSE, and the distinction from nonconvulsive seizures in patients with critical illness or in comatose patients seems arbitrary. The Salzburg Consensus Criteria for NCSE [1] have been modified according to the Standardized Terminology of the American Clinical Neurophysiology Society [2] and validated in three different cohorts, with a sensitivity of 97.2%, a specificity of 95.9%, and a diagnostic accuracy of 96.3% in patients with clinical signs of NCSE. Their diagnostic utility in different cohorts with patients in deep coma has to be studied in the future. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015. Published by Elsevier Inc.

  4. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator.

    PubMed

    Khazendar, S; Sayasneh, A; Al-Assam, H; Du, H; Kaijser, J; Ferrara, L; Timmerman, D; Jassim, S; Bourne, T

    2015-01-01

    Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.

  5. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults.

    PubMed

    Ponomarev, Valery A; Mueller, Andreas; Candrian, Gian; Grin-Yatsenko, Vera A; Kropotov, Juri D

    2014-01-01

    To investigate the performance of the spectral analysis of resting EEG, Current Source Density (CSD) and group independent components (gIC) in diagnosing ADHD adults. Power spectra of resting EEG, CSD and gIC (19 channels, linked ears reference, eyes open/closed) from 96 ADHD and 376 healthy adults were compared between eyes open and eyes closed conditions, and between groups of subjects. Pattern of differences in gIC and CSD spectral power between conditions was approximately similar, whereas it was more widely spatially distributed for EEG. Size effect (Cohen's d) of differences in gIC and CSD spectral power between groups of subjects was considerably greater than in the case of EEG. Significant reduction of gIC and CSD spectral power depending on conditions was found in ADHD patients. Reducing power in a wide frequency range in the fronto-central areas is a common phenomenon regardless of whether the eyes were open or closed. Spectral power of local EEG activity isolated by gICA or CSD in the fronto-central areas may be a suitable marker for discrimination of ADHD and healthy adults. Spectral analysis of gIC and CSD provides better sensitivity to discriminate ADHD and healthy adults. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Alpha EEG Frontal Asymmetries during Audiovisual Perception in Cochlear Implant Users. A Study with Bilateral and Unilateral Young Users.

    PubMed

    Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Giannantonio, S; Colosimo, A; Babiloni, F; Vecchiato, G

    2015-01-01

    The aim of the present study is to investigate the variations of the electroencephalographic (EEG) alpha rhythm in order to measure the appreciation of bilateral and unilateral young cochlear implant users during the observation of a musical cartoon. The cartoon has been modified for the generation of three experimental conditions: one with the original audio, another one with a distorted sound and, finally, a mute version. The EEG data have been recorded during the observation of the cartoons in the three experimental conditions. The frontal alpha EEG imbalance has been calculated as a measure of motivation and pleasantness to be compared across experimental populations and conditions. The EEG frontal imbalance of the alpha rhythm showed significant variations during the perception of the different cartoons. In particular, the pattern of activation of normal-hearing children is very similar to the one elicited by the bilateral implanted patients. On the other hand, results related to the unilateral subjects do not present significant variations of the imbalance index across the three cartoons. The presented results suggest that the unilateral patients could not appreciate the difference in the audio format as well as bilaterally implanted and normal hearing subjects. The frontal alpha EEG imbalance is a useful tool to detect the differences in the appreciation of audiovisual stimuli in cochlear implant patients.

  7. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper

    PubMed Central

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R.; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S.

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. PMID:28233641

  8. Electrocortical activity distinguishes between uphill and level walking in humans.

    PubMed

    Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P

    2016-02-01

    The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.

  9. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  10. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    PubMed

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure.

    PubMed

    Khan, James; Mariappan, Ramamani; Venkatraghavan, Lashmi

    2014-07-01

    Changes in electroencephalogram (EEG) patterns correlate well with changes in cerebral perfusion pressure (CPP) and hence entropy and bispectral index values may also correlate with CPP. To highlight the potential application of entropy, an EEG-based anesthetic depth monitor, on indicating cerebral perfusion in patients with increased intracranial pressure (ICP), we report two cases of emergency neurosurgical procedure in patients with raised ICP where anesthesia was titrated to entropy values and the entropy values suddenly increased after cranial decompression, reflecting the increase in CPP. Maintaining systemic blood pressure in order to maintain the CPP is the anesthetic goal while managing patients with raised ICP. EEG-based anesthetic depth monitors may hold valuable information on guiding anesthetic management in patients with decreased CPP for better neurological outcome.

  12. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study.

    PubMed

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Koch, Stefan P; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G; Czisch, Michael

    2012-07-01

    To investigate the neural correlates of lucid dreaming. Parallel EEG/fMRI recordings of night sleep. Sleep laboratory and fMRI facilities. Four experienced lucid dreamers. N/A. Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming.

  13. Usefulness of Tc-99m MDP spine SPECT imaging in differentiating malignant from benign lesions in cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, J.S.; Moon, D.H.; Shin, M.J.

    1994-05-01

    Solitary or a few spinal abnormalities on planar bone scan pose a dilemma in cancer patients. The purpose of this study was to evaluate the usefulness of spine SPECT imaging in differential diagnosis of malignant and benign lesion. Subjects were 54 adult patients with solitary or a few equivocal vertebral lesions on planar bone scan. Spine SPECT imaging was obtained by a triple head SPECT system (TRIAD, Trionix). The final diagnoses were based on data from biopsy, other imaging studies, or minimum 1 year of follow up. Two blind observers reviewed the planar image first, then both planar and SPECTmore » images. The uptake patterns on SPECT images were analyzed, and the diagnostic performance was evaluated by the ROC analysis. Thirty three lesions of 22 patients were malignant, and 60 lesions of 32 patients were benign. Common characteristic patterns of malignant lesions were focal or segmental hot uptake in the body, hot uptake in the body and pedicle, and cold defect with surrounding hot uptake in the vertebra. Whereas marginal protruding hot uptakes in endplate, and hot uptakes in facet joints were benign. The ROC analysis showed that SPECT improved the diagnostic performance (the area under the ROC curve of two observers for planar image 0.903 and 0.791, for the combination of planar and SPECT : 0.950 and 0.976). In conclusion, the uptake pattern recognition in spine SPECT provides useful information for differential diagnosis of malignant and benign lesions in vertebra. Spine SPECT is a valuable complement in cancer patients with inconclusive findings on planar bone scan.« less

  14. Limited short-term prognostic utility of cerebral NIRS during neonatal therapeutic hypothermia.

    PubMed

    Shellhaas, Renée A; Thelen, Brian J; Bapuraj, Jayapalli R; Burns, Joseph W; Swenson, Aaron W; Christensen, Mary K; Wiggins, Stephanie A; Barks, John D E

    2013-07-16

    We evaluated the utility of amplitude-integrated EEG (aEEG) and regional oxygen saturation (rSO2) measured using near-infrared spectroscopy (NIRS) for short-term outcome prediction in neonates with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia. Neonates with HIE were monitored with dual-channel aEEG, bilateral cerebral NIRS, and systemic NIRS throughout cooling and rewarming. The short-term outcome measure was a composite of neurologic examination and brain MRI scores at 7 to 10 days. Multiple regression models were developed to assess NIRS and aEEG recorded during the 6 hours before rewarming and the 6-hour rewarming period as predictors of short-term outcome. Twenty-one infants, mean gestational age 38.8 ± 1.6 weeks, median 10-minute Apgar score 4 (range 0-8), and mean initial pH 6.92 ± 0.19, were enrolled. Before rewarming, the most parsimonious model included 4 parameters (adjusted R(2) = 0.59; p = 0.006): lower values of systemic rSO2 variability (p = 0.004), aEEG bandwidth variability (p = 0.019), and mean aEEG upper margin (p = 0.006), combined with higher mean aEEG bandwidth (worse discontinuity; p = 0.013), predicted worse short-term outcome. During rewarming, lower systemic rSO2 variability (p = 0.007) and depressed aEEG lower margin (p = 0.034) were associated with worse outcome (model-adjusted R(2) = 0.49; p = 0.005). Cerebral NIRS data did not contribute to either model. During day 3 of cooling and during rewarming, loss of physiologic variability (by systemic NIRS) and invariant, discontinuous aEEG patterns predict poor short-term outcome in neonates with HIE. These parameters, but not cerebral NIRS, may be useful to identify infants suitable for studies of adjuvant neuroprotective therapies or modification of the duration of cooling and/or rewarming.

  15. Age-Related Neural Oscillation Patterns During the Processing of Temporally Manipulated Speech.

    PubMed

    Rufener, Katharina S; Oechslin, Mathias S; Wöstmann, Malte; Dellwo, Volker; Meyer, Martin

    2016-05-01

    This EEG-study aims to investigate age-related differences in the neural oscillation patterns during the processing of temporally modulated speech. Viewing from a lifespan perspective, we recorded the electroencephalogram (EEG) data of three age samples: young adults, middle-aged adults and older adults. Stimuli consisted of temporally degraded sentences in Swedish-a language unfamiliar to all participants. We found age-related differences in phonetic pattern matching when participants were presented with envelope-degraded sentences, whereas no such age-effect was observed in the processing of fine-structure-degraded sentences. Irrespective of age, during speech processing the EEG data revealed a relationship between envelope information and the theta band (4-8 Hz) activity. Additionally, an association between fine-structure information and the gamma band (30-48 Hz) activity was found. No interaction, however, was found between acoustic manipulation of stimuli and age. Importantly, our main finding was paralleled by an overall enhanced power in older adults in high frequencies (gamma: 30-48 Hz). This occurred irrespective of condition. For the most part, this result is in line with the Asymmetric Sampling in Time framework (Poeppel in Speech Commun 41:245-255, 2003), which assumes an isomorphic correspondence between frequency modulations in neurophysiological patterns and acoustic oscillations in spoken language. We conclude that speech-specific neural networks show strong stability over adulthood, despite initial processes of cortical degeneration indicated by enhanced gamma power. The results of our study therefore confirm the concept that sensory and cognitive processes undergo multidirectional trajectories within the context of healthy aging.

  16. EEG classification of emotions using emotion-specific brain functional network.

    PubMed

    Gonuguntla, V; Shafiq, G; Wang, Y; Veluvolu, K C

    2015-08-01

    The brain functional network perspective forms the basis to relate mechanisms of brain functions. This work analyzes the network mechanisms related to human emotion based on synchronization measure - phase-locking value in EEG to formulate the emotion specific brain functional network. Based on network dissimilarities between emotion and rest tasks, most reactive channel pairs and the reactive band corresponding to emotions are identified. With the identified most reactive pairs, the subject-specific functional network is formed. The identified subject-specific and emotion-specific dynamic network pattern show significant synchrony variation in line with the experiment protocol. The same network pattern are then employed for classification of emotions. With the study conducted on the 4 subjects, an average classification accuracy of 62 % was obtained with the proposed technique.

  17. Utility of Neurodiagnostic Studies in the Diagnosis of Autoimmune Encephalitis in Children.

    PubMed

    Albert, Dara V; Pluto, Charles P; Weber, Amanda; Vidaurre, Jorge; Barbar-Smiley, Fatima; Abdul Aziz, Rabheh; Driest, Kyla; Bout-Tabaku, Sharon; Ruess, Lynne; Rusin, Jerome A; Morgan-Followell, Bethanie

    2016-02-01

    Autoimmune encephalitis is currently a clinical diagnosis without widely accepted diagnostic criteria, often leading to a delay in diagnosis. The utility of magnetic resonance imaging (MRI) and electroencephalography (EEG) in this disease is unknown. The objective of this study was to identify disease-specific patterns of neurodiagnostic studies (MRI and EEG) for autoimmune encephalitis in children. We completed a retrospective chart review of encephalopathic patients seen at a large pediatric hospital over a four year interval. Clinical presentation, autoantibody status, and MRI and EEG findings were identified and compared. Individuals with autoantibodies were considered "definite" cases, whereas those without antibodies or those with only thyroperoxidase antibodies were characterized as "suspected." Eighteen patients met the inclusion criteria and autoantibodies were identified in nine of these. The patients with definite autoimmune encephalitis had MRI abnormalities within limbic structures, most notably the anteromedial temporal lobes (56%). Only individuals with suspected disease had nontemporal lobe cortical lesions. Sixteen patients had an EEG and 13 (81%) of these were abnormal. The most common findings were abnormal background rhythm (63%), generalized slowing (50%), focal slowing (43%), and focal epileptiform discharges (31%). Sleep spindle abnormalities occurred in 38% of patients. There were no specific differences in the EEG findings between the definite and suspected cases. Focal EEG findings only correlated with a focal lesion on MRI in a single definite case. Pediatric patients with definite autoimmune encephalitis have a narrow spectrum of MRI abnormalities. Conversely, EEG abnormalities are mostly nonspecific. All patients in our cohort had abnormalities on one or both of these neurodiagnostic studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The impact of age on bispectral index values and EEG bispectrum during anaesthesia with desflurane and halothane in children.

    PubMed

    Tirel, O; Wodey, E; Harris, R; Bansard, J Y; Ecoffey, C; Senhadji, L

    2006-04-01

    The relationship between end-tidal sevoflurane concentration, bispectral index (BIS) and the EEG bispectrum in children appears to be age dependent. The aim of this study was to quantify the BIS values at 1 MAC (minimum alveolar concentration) for desflurane and halothane, and explore the relationship with age for these anaesthetic agents in children. ECG, EEG and BIS were recorded continuously in 90 children aged 6-170 months requiring anaesthesia for elective surgery. Fifty children were anaesthetized with desflurane, and 40 children with halothane. Recordings were performed through to a steady state of 2 MAC, and thereafter at 1 and 0.5 MAC, respectively. The bispectrum of the EEG was estimated using MATLAB(c) software. A multiple correspondence analysis (MCA) was used. At a steady state of 1 MAC, BIS values were significantly higher with halothane 62 (43-80) than desflurane 34 (18-64). BIS values were significantly correlated with age in both groups: DES (r(2)=0.57; P<0.01) and HALO (r(2)=0.48; P<0.01). Changes in position in the structured model of the MCA (dependent on the pattern of the EEG bispectrum) were different for the two volatile anaesthetic agents. In children, BIS values are linked to age irrespective of the volatile anaesthetic agent used. The difference in BIS values for different agents at the same MAC can be explained by the specific effect on the EEG bispectrum induced by each anaesthetic agent, bringing into question the ability of the EEG bispectrum to accurately determine the depth of anaesthesia.

  19. Evaluation of Dry Sensors for Neonatal EEG Recordings.

    PubMed

    Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J; Reese, James J; Massaro, An N; Conry, Joan A; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N

    2016-04-01

    Neonatal seizures are a common neurologic diagnosis in neonatal intensive care units, occurring in approximately 14,000 newborns annually in the United States. Although the only reliable means of detecting and treating neonatal seizures is with an electroencephalography (EEG) recording, many neonates do not receive an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include (1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, (2) poor signal quality because of improper skin preparation and artifact, and (3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not previously been evaluated on neonates. Sequential and simultaneous recordings with wet and dry sensors were performed for 1 hour on 27 neonates from 35 to 42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8), given the nonsuperimposed sensor positions and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically relevant EEG background and seizure patterns. There was no skin injury after 1 hour of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury.

  20. Utilization of Quantitative EEG Trends for Critical Care Continuous EEG Monitoring: A Survey of Neurophysiologists.

    PubMed

    Swisher, Christa B; Sinha, Saurabh R

    2016-12-01

    Quantitative EEG (QEEG) can be used to assist with review of large amounts of data generated by critical care continuous EEG monitoring. This study aimed to identify current practices regarding the use of QEEG in critical care continuous EEG monitoring of critical care patients. An online survey was sent to 796 members of the American Clinical Neurophysiology Society (ACNS), instructing only neurophysiologists to participate. The survey was completed by 75 neurophysiologists that use QEEG in their practice. Survey respondents reported that neurophysiologists and neurophysiology fellows are most likely to serve as QEEG readers (97% and 52%, respectively). However, 21% of respondents reported nonneurophysiologists are also involved with QEEG interpretation. The majority of nonneurophysiologist QEEG data review is aimed to alert neurophysiologists to periods of concern, but 22% reported that nonneurophysiologists use QEEG to directly guide clinical care. Quantitative EEG was used most frequently for seizure detection (92%) and burst suppression monitoring (59%). A smaller number of respondents use QEEG for monitoring the depth of sedation (29%), ischemia detection (28%), vasospasm detection (28%) and prognosis after cardiac arrest (21%). About half of the respondents do not review every page of the raw critical care continuous EEG record when using QEEG. Respondents prefer a panel of QEEG trends displayed as hemispheric data, when applicable. There is substantial variability regarding QEEG trend preferences for seizure detection and ischemia detection. QEEG is being used by neurophysiologists and nonneurophysiologists for applications beyond seizure detection, but practice patterns vary widely. There is a need for standardization of QEEG methods and practices.

  1. Evaluation of Dry Sensors for Neonatal EEG recordings

    PubMed Central

    Fridman, Igor; Cordeiro, Malaika; Rais-Bahrami, Khodayar; McDonald, Neil J.; Reese, James J.; Massaro, An N.; Conry, Joan A.; Chang, Taeun; Soussou, Walid; Tsuchida, Tammy N.

    2015-01-01

    Introduction Neonatal seizures are a common neurologic diagnosis in Neonatal Intensive Care Units (NICUs), occurring in approximately 14,000 newborns annually in the US. While the only reliable means of detecting and treating neonatal seizures is with an EEG recording, many neonates do not get an EEG or experience delays in getting them. Barriers to obtaining neonatal EEGs include: 1) lack of skilled EEG technologists to apply conventional wet electrodes to delicate neonatal skin, 2) poor signal quality due to improper skin preparation and artifact, 3) extensive time needed to apply electrodes. Dry sensors have the potential to overcome these obstacles but have not been previously evaluated on neonates. Methods Sequential and simultaneous recordings with wet and dry sensors were performed for one hour on 27 neonates from 35-42.5 weeks postmenstrual age. Recordings were analyzed for correlation and amplitude, and were reviewed by neurophysiologists. Performance of dry sensors on simulated vernix was examined. Results Analysis of dry and wet signals showed good time-domain correlation (reaching >0.8) given the non-superimposed sensor positions, and similar power spectral density curves. Neurophysiologist reviews showed no statistically significant difference between dry and wet data on most clinically-relevant EEG background and seizure patterns. There was no skin injury after 1 hr of dry sensor recordings. In contrast to wet electrodes, impedance and electrical artifact of dry sensors were largely unaffected by simulated vernix. Conclusions Dry sensors evaluated in this study have the potential to provide high-quality, timely EEG recordings on neonates with less risk of skin injury. PMID:26562208

  2. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    PubMed Central

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  3. [Voluntary alpha-power increasing training impact on the heart rate variability].

    PubMed

    Bazanova, O M; Balioz, N V; Muravleva, K B; Skoraia, M V

    2013-01-01

    In order to study the effect of the alpha EEG power increasing training at heart rate variability (HRV) as the index of the autonomic regulation of cognitive functions there were follow tasks: (1) to figure out the impact of biofeedback in the voluntary increasing the power in the individual high-frequency alpha-band effect on heart rate variability and related characteristics of cognitive and emotional spheres, (2) to determine the nature of the relationship between alpha activity indices and heart rate variability, depending on the alpha-frequency EEG pattern at rest (3) to examine how the individual alpha frequency EEG pattern is reflected in changes HRV as a result of biofeedback training. Psychometric indicators of cognitive performance, the characteristics of the alpha-EEG activity and heart rate variability (HRV) as LF/HF and pNN50 were recorded in 27 healthy men aged 18-34 years, before, during, and after 10 sessions of training of voluntary increase in alpha power in the individual high-frequency alpha band with eyes closed. To determine the biofeedback effect on the alpha power increasing training, data subjects are compared in 2 groups: experimental (14) with the real and the control group (13 people)--with mock biofeedback. The follow up effect of trainings was studied through month over the 10 training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, decreased anxiety and frontal EMG, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did change neither cognitive performance, nor HRV indices. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. The positive correlation between the alpha-peak frequency and pNN50 in patients with initially low, but negative--those with high baseline alpha frequency explains the multidirectional biofeedback effects on HRV in low and high alpha frequency subjects. The individual alpha-frequency EEG pattern determines the effectiveness of the alpha EEG biofeedback training in changing heart rate variability, which provides a basis for predicting the results and develop individual approaches to the biofeedback technology implementation that can be used in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.

  4. Effectiveness of the Benign and Malignant Diagnosis of Mediastinal and Hilar Lymph Nodes by Endobronchial Ultrasound Elastography.

    PubMed

    Huang, Haidong; Huang, Zhiang; Wang, Qin; Wang, Xinan; Dong, Yuchao; Zhang, Wei; Zarogoulidis, Paul; Man, Yan-Gao; Schmidt, Wolfgang Hohenforst; Bai, Chong

    2017-01-01

    Background and Objectives: Endobronchial ultrasound elastography is a new technique for describing the stiffness of tissue during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). The aims of this study were to investigate the diagnostic value of Endobronchial ultrasound (EBUS) elastography for distinguishing the difference between benign and malignant lymph nodes among mediastinal and hilar lymph node. Materials and Methods: From June 2015 to August 2015, 47 patients confirmed of mediastinal and hilar lymph node enlargement through examination of Computed tomography (CT) were enrolled, and a total of 78 lymph nodes were evaluated by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). EBUS-guided elastography of lymph nodes was performed prior to EBUS-TBNA. A convex probe EBUS was used with a new EBUS processor to assess elastographic patterns that were classified based on color distribution as follows: Type 1, predominantly non-blue (green, yellow and red); Type 2, part blue, part non-blue (green, yellow and red); Type 3, predominantly blue. Pathological determination of malignant or benign lymph nodes was used as the gold standard for this study. The elastographic patterns were compared with the final pathologic results from EBUS-TBNA. Results: On pathological evaluation of the lymph nodes, 45 were benign and 33 were malignant. The lymph nodes that were classified as Type 1 on endobronchial ultrasound elastography were benign in 26/27 (96.3%) and malignant in 1/27 (3.7%); for Type 2 lymph nodes, 15/20 (75.0%) were benign and 5/20 (25.0%) were malignant; Type 3 lymph nodes were benign in 4/31 (12.9%) and malignant in 27/31 (87.1%). In classifying Type 1 as 'benign' and Type 3 as 'malignant,' the sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy rates were 96.43%, 86.67%, 87.10%, 96.30%, 91.38%, respectively. Conclusion: EBUS elastography of mediastinal and hilar lymph nodes is a noninvasive technique that can be performed reliably and may be helpful in the prediction of benign and malignant lymph nodes among mediastinal and hilar lymph node during EBUS-TBNA.

  5. Functional characterization of liver-associated lymphocytes in patients with liver metastasis.

    PubMed

    Winnock, M; Garcia-Barcina, M; Huet, S; Bernard, P; Saric, J; Bioulac-Sage, P; Gualde, N; Balabaud, C

    1993-10-01

    The liver-associated lymphocytes (LAL) population is mainly composed of cells with natural killer (NK) activity expressing the CD3+/-CD56+ phenotype. No evident difference has been found in the phenotypic data between patients with benign or malignant liver disease. In this study, the cytotoxic pattern of this population has been characterized from patients who underwent an operation for benign or metastatic liver disease. LAL were isolated by sinusoidal high-pressure lavage from partial hepatectomies. Phenotype was characterized by flow cytometry, and cytotoxicity was evaluated by standard 4-hour 51Cr release assays against NK and lymphokine-activated killer (LAK)-sensitive targets. In patients with benign liver disease, LAL showed spontaneous high levels of NK activity and LAK activity compared with peripheral blood lymphocytes. In patients with metastatic liver disease, no difference was observed in the levels of NK activity between LAL and peripheral blood, and the level of LAK activity was far lower than that expressed in patients with benign liver disease. These results show that the cytotoxic pattern of peripheral blood lymphocytes does not mirror that of LAL. In patients with benign liver disease, LAL are in a state of activation, whereas the decreased level of LAL cytotoxicity in patients with metastatic liver disease suggests that the cytotoxic activity of these cells could be inhibited by the presence of suppressive factors.

  6. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    PubMed

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  7. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement

    PubMed Central

    Gramigna, Cristina; Franceschetti, Silvana

    2016-01-01

    Although rehabilitation robotics seems to be a promising therapy in the rehabilitation of the upper limb in stroke patients, consensus is still lacking on its additive effects. Therefore, there is a need for determining the possible success of robotic interventions on selected patients, which in turn determine the necessity for new investigating instruments supporting the treatment decision-making process and customization. The objective of the work presented in this preliminary study was to verify that fully robot assistance would not affect the physiological oscillatory cortical activity related to a functional movement in healthy subjects. Further, the clinical results following the robotic treatment of a chronic stroke patient, who positively reacted to the robotic intervention, were analyzed and discussed. First results show that there is no difference in EEG activation pattern between assisted and no-assisted movement in healthy subjects. Even more importantly, the patient's pretreatment EEG activation pattern in no-assisted movement was completely altered, while it recovered to a quasi-physiological one in robot-assisted movement. The functional improvement following treatment was large. Using pretreatment EEG recording during robot-assisted movement might be a valid approach to assess the potential ability of the patient for recovering. PMID:27057546

  8. Low-Rank Linear Dynamical Systems for Motor Imagery EEG.

    PubMed

    Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo

    2016-01-01

    The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.

  9. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Maglione, Anton Giulio; Colosimo, Alfredo; Babiloni, Fabio

    2014-05-01

    To date, no objective measure of the pleasantness of music perception by children with cochlear implants has been reported. The EEG alpha asymmetries of pre-frontal cortex activation are known to relate to emotional/affective engagement in a perceived stimulus. More specifically, according to the "withdrawal/approach" model, an unbalanced de-synchronization of the alpha activity in the left prefrontal cortex has been associated with a positive affective state/approach toward a stimulus, and an unbalanced de-synchronization of the same activity in the right prefrontal cortex with a negative affective state/withdrawal from a stimulus. In the present study, High-Resolution EEG with Source Reconstruction was used to compare the music-induced alpha asymmetries of the prefrontal cortex in a group of prelingually deaf implanted children and in a control group of normal-hearing children. Six normal-hearing and six age-matched deaf children using a unilateral cochlear implants underwent High-Resolution EEG recordings as they were listening to a musical cartoon. Musical stimuli were delivered in three versions: Normal, Distort (reverse audio flow) and Mute. The EEG alpha rhythm asymmetry was analyzed: Power Spectral Density was calculated for each Region of Interest, together with a right-left imbalance index. A map of cortical activation was then reconstructed on a realistic cortical model. Asymmetries of EEG alpha rhythm in the prefrontal cortices were observed in both groups. In the normal-hearing children, the asymmetries were consistent with the withdrawal/approach model, whereas in cochlear implant users they were not. Moreover, in implanted children a different pattern of alpha asymmetries in extrafrontal cortical areas was noticed as compared to normal-hearing subjects. The peculiar pattern of alpha asymmetries in implanted children's prefrontal cortex in response to musical stimuli suggests an inability by these subjects to discriminate normal from dissonant music and to appreciate the pleasantness of normal music. High-Resolution EEG may prove to be a promising tool for objectively measuring prefrontal cortex alpha asymmetries in child cochlear implant users. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.

    PubMed

    Stropahl, Maren; Bauer, Anna-Katharina R; Debener, Stefan; Bleichner, Martin G

    2018-01-01

    Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

  12. Differences between state entropy and bispectral index during analysis of identical electroencephalogram signals: a comparison with two randomised anaesthetic techniques.

    PubMed

    Pilge, Stefanie; Kreuzer, Matthias; Karatchiviev, Veliko; Kochs, Eberhard F; Malcharek, Michael; Schneider, Gerhard

    2015-05-01

    It is claimed that bispectral index (BIS) and state entropy reflect an identical clinical spectrum, the hypnotic component of anaesthesia. So far, it is not known to what extent different devices display similar index values while processing identical electroencephalogram (EEG) signals. To compare BIS and state entropy during analysis of identical EEG data. Inspection of raw EEG input to detect potential causes of erroneous index calculation. Offline re-analysis of EEG data from a randomised, single-centre controlled trial using the Entropy Module and an Aspect A-2000 monitor. Klinikum rechts der Isar, Technische Universität München, Munich. Forty adult patients undergoing elective surgery under general anaesthesia. Blocked randomisation of 20 patients per anaesthetic group (sevoflurane/remifentanil or propofol/remifentanil). Isolated forearm technique for differentiation between consciousness and unconsciousness. Prediction probability (PK) of state entropy to discriminate consciousness from unconsciousness. Correlation and agreement between state entropy and BIS from deep to light hypnosis. Analysis of raw EEG compared with index values that are in conflict with clinical examination, with frequency measures (frequency bands/Spectral Edge Frequency 95) and visual inspection for physiological EEG patterns (e.g. beta or delta arousal), pathophysiological features such as high-frequency signals (electromyogram/high-frequency EEG or eye fluttering/saccades), different types of electro-oculogram or epileptiform EEG and technical artefacts. PK of state entropy was 0.80 and of BIS 0.84; correlation coefficient of state entropy with BIS 0.78. Nine percent BIS and 14% state entropy values disagreed with clinical examination. Highest incidence of disagreement occurred after state transitions, in particular for state entropy after loss of consciousness during sevoflurane anaesthesia. EEG sequences which led to false 'conscious' index values often showed high-frequency signals and eye blinks. High-frequency EEG/electromyogram signals were pooled because a separation into EEG and fast electro-oculogram, for example eye fluttering or saccades, on the basis of a single EEG channel may not be very reliable. These signals led to higher Spectral Edge Frequency 95 and ratio of relative beta and gamma band power than EEG signals, indicating adequate unconscious classification. The frequency of other artefacts that were assignable, for example technical artefacts, movement artefacts, was negligible and they were excluded from analysis. High-frequency signals and eye blinks may account for index values that falsely indicate consciousness. Compared with BIS, state entropy showed more false classifications of the clinical state at transition between consciousness and unconsciousness.

  13. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    PubMed Central

    Merica, Helli; Fortune, Ronald D.

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) – in fitting the data well – successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for timing the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the pattern of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1–4, using data from 30 healthy subjects aged 20–30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG. PMID:21886801

  14. Response Rates to Anticonvulsant Trials in Patients with Triphasic-Wave EEG Patterns of Uncertain Significance.

    PubMed

    O'Rourke, Deirdre; Chen, Patrick M; Gaspard, Nicolas; Foreman, Brandon; McClain, Lauren; Karakis, Ioannis; Mahulikar, Advait; Westover, M Brandon

    2016-04-01

    Generalized triphasic waves (TPWs) occur in both metabolic encephalopathies and non-convulsive status epilepticus (NCSE). Empiric trials of benzodiazepines (BZDs) or non-sedating AED (NSAEDs) are commonly used to differentiate the two, but the utility of such trials is debated. The goal of this study was to assess response rates of such trials and investigate whether metabolic profile differences affect the likelihood of a response. Three institutions within the Critical Care EEG Monitoring Research Consortium retrospectively identified patients with unexplained encephalopathy and TPWs who had undergone a trial of BZD and/or NSAEDs to differentiate between ictal and non-ictal patterns. We assessed responder rates and compared metabolic profiles of responders and non-responders. Response was defined as resolution of the EEG pattern and either unequivocal improvement in encephalopathy or appearance of previously absent normal EEG patterns, and further categorized as immediate (within <2 h of trial initiation) or delayed (>2 h from trial initiation). We identified 64 patients with TPWs who had an empiric trial of BZD and/or NSAED. Most patients (71.9%) were admitted with metabolic derangements and/or infection. Positive clinical responses occurred in 10/53 (18.9%) treated with BZDs. Responses to NSAEDs occurred in 19/45 (42.2%), being immediate in 6.7%, delayed but definite in 20.0%, and delayed but equivocal in 15.6%. Overall, 22/64 (34.4%) showed a definite response to either BZDs or NSAEDs, and 7/64 (10.9%) showed a possible response. Metabolic differences of responders versus non-responders were statistically insignificant, except that the 48-h low value of albumin in the BZD responder group was lower than in the non-responder group. Similar metabolic profiles in patients with encephalopathy and TPWs between responders and non-responders to anticonvulsants suggest that predicting responders a priori is difficult. The high responder rate suggests that empiric trials of anticonvulsants indeed provide useful clinical information. The more than twofold higher response rate to NSAEDs suggests that this strategy may be preferable to BZDs. Further prospective investigation is warranted.

  15. Response Rates to Anticonvulsant Trials in Patients with Triphasic-Wave EEG Patterns of Uncertain Significance

    PubMed Central

    O’Rourke, Deirdre; Chen, Patrick M.; Gaspard, Nicolas; Foreman, Brandon; McClain, Lauren; Karakis, Ioannis; Mahulikar, Advait

    2016-01-01

    Background Generalized triphasic waves (TPWs) occur in both metabolic encephalopathies and non-convulsive status epilepticus (NCSE). Empiric trials of benzodiazepines (BZDs) or non-sedating AED (NSAEDs) are commonly used to differentiate the two, but the utility of such trials is debated. The goal of this study was to assess response rates of such trials and investigate whether metabolic profile differences affect the likelihood of a response. Methods Three institutions within the Critical Care EEG Monitoring Research Consortium retrospectively identified patients with unexplained encephalopathy and TPWs who had undergone a trial of BZD and/or NSAEDs to differentiate between ictal and non-ictal patterns. We assessed responder rates and compared metabolic profiles of responders and non-responders. Response was defined as resolution of the EEG pattern and either unequivocal improvement in encephalopathy or appearance of previously absent normal EEG patterns, and further categorized as immediate (within <2 h of trial initiation) or delayed (>2 h from trial initiation). Results We identified 64 patients with TPWs who had an empiric trial of BZD and/or NSAED. Most patients (71.9 %) were admitted with metabolic derangements and/or infection. Positive clinical responses occurred in 10/53 (18.9 %) treated with BZDs. Responses to NSAEDs occurred in 19/45 (42.2 %), being immediate in 6.7 %, delayed but definite in 20.0 %, and delayed but equivocal in 15.6 %. Overall, 22/64 (34.4 %) showed a definite response to either BZDs or NSAEDs, and 7/64 (10.9 %) showed a possible response. Metabolic differences of responders versus non-responders were statistically insignificant, except that the 48-h low value of albumin in the BZD responder group was lower than in the non-responder group. Conclusions Similar metabolic profiles in patients with encephalopathy and TPWs between responders and non-responders to anticonvulsants suggest that predicting responders a priori is difficult. The high responder rate suggests that empiric trials of anticonvulsants indeed provide useful clinical information. The more than twofold higher response rate to NSAEDs suggests that this strategy may be preferable to BZDs. Further prospective investigation is warranted. PMID:26013921

  16. Neural correlates of emotional responses to music: an EEG study.

    PubMed

    Daly, Ian; Malik, Asad; Hwang, Faustina; Roesch, Etienne; Weaver, James; Kirke, Alexis; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-06-24

    This paper presents an EEG study into the neural correlates of music-induced emotions. We presented participants with a large dataset containing musical pieces in different styles, and asked them to report on their induced emotional responses. We found neural correlates of music-induced emotion in a number of frequencies over the pre-frontal cortex. Additionally, we found a set of patterns of functional connectivity, defined by inter-channel coherence measures, to be significantly different between groups of music-induced emotional responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. [Study of correlation dimension on EEG].

    PubMed

    Yang, Hao; Fang, Liang; He, Wei

    2004-02-01

    The study of non-linear EEG is of great significance in clinical practice and research work. This paper has gone into the feasibility of calculating the correlation dimension and has developed some subjects with the characters of correlation dimension and the difference under four conditions: (1) passive eyes closed(PEC); (2) mental arithmetic with eyes closed(MAEC); (3) passive eyes open(PEO); (4) mental reasoning with eyes open (MRED). The results show it is feasible and meaningful to calculate correlation dimension and the correlation dimension can reflect the regular patterns of mental activity.

  18. Systematic Review of Bilateral Independent Periodic Discharges Written for Topical Journal Subject on Periodic Discharges.

    PubMed

    Freund, Brin; Kaplan, Peter W

    2018-05-01

    Periodic discharges (PDs) are EEG patterns that may have important clinical and prognostic implications. There are different subtypes of PDs that are delineated by their location, and each type may have different meaning regarding prognosis and clinical associations. Bilateral independent PDs are a subtype that have not been analyzed recently and remain poorly understood. In this article, we systematically review the literature to better describe bilateral independent PDs regarding underlying neuropathology, neuroimaging, and neuroexamination correlates, seizure incidence, EEG characteristics, their comparison with other PD subtypes, and prognostic meaning.

  19. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills.

    PubMed

    Mahmoudi, Babak; Erfanian, Abbas

    2006-11-01

    Mental imagination is the essential part of the most EEG-based communication systems. Thus, the quality of mental rehearsal, the degree of imagined effort, and mind controllability should have a major effect on the performance of electro-encephalogram (EEG) based brain-computer interface (BCI). It is now well established that mental practice using motor imagery improves motor skills. The effects of mental practice on motor skill learning are the result of practice on central motor programming. According to this view, it seems logical that mental practice should modify the neuronal activity in the primary sensorimotor areas and consequently change the performance of EEG-based BCI. For developing a practical BCI system, recognizing the resting state with eyes opened and the imagined voluntary movement is important. For this purpose, the mind should be able to focus on a single goal for a period of time, without deviation to another context. In this work, we are going to examine the role of mental practice and concentration skills on the EEG control during imaginative hand movements. The results show that the mental practice and concentration can generally improve the classification accuracy of the EEG patterns. It is found that mental training has a significant effect on the classification accuracy over the primary motor cortex and frontal area.

  20. Neurocognitive and neurobehavioral disabilities in Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes.

    PubMed

    Raha, Sarbani; Shah, Urvashi; Udani, Vrajesh

    2012-11-01

    The aims of this study were to assess the cognitive and behavioral problems of patients with Epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes and to review their EEG (electroencephalography) findings and treatment options. Fourteen patients with ESES were evaluated and treated in 2010. Nine children had continuous spike and wave during slow-wave sleep (CSWS)/ESES syndrome, 3 had Atypical BECTS (benign epilepsy with centrotemporal spikes), 1 had Opercular syndrome, and 1 had Landau-Kleffner syndrome. The duration of ESES ranged from 6 to 52 months. Eleven (91%) children had behavioral issues, most prominent being hyperactivity. Seven of the 13 children (53%) showed evidence of borderline to moderate cognitive impairment. A total of 28 EEG findings of ESES were analyzed for SWI (spike-wave index). Antiepileptic drugs received by the patients included valproate, clobazam, levetiracetam, and others. Eleven patients had been treated with oral steroids and it was found to be efficacious in seven (63%). Disabilities caused by ESES affect multiple domains. Patients with an SWI>50% should be followed up frequently with neuropsychological assessments. Steroids appear to be effective, although there is a need to standardize the dose and duration of treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Expression of the pituitary tumor transforming gene (PTTG1) in pheochromocytoma as a potential marker for distinguishing benign versus malignant tumors.

    PubMed

    Haji Amousha, Mohamad Reza; Sabetkish, Nastaran; Sabet Kish, Nastaran; Heshmat, Ramin; Rajabiani, Afsaneh; Saffar, Hiva; Haghpanah, Vahid; Tavangar, Seyed Mohammad

    2015-01-01

    The Distinction between malignant and benign pheochromocytoma has always been a diagnostic challenge over the last decades. To date, the only reliable criterion is metastasis. The aim of the present study was to investigate the possible expression of pituitary-tumor transforming gene (PTTG1) and retinoblastoma (Rb) in benign and malignant pheochromocytoma. Paraffin blocks of 44 and 11 patients diagnosed with benign and malignant pheochromocytoma were collected. Parameters such as sex, age, tumor size, necrosis, and histological features were compared between the benign and malignant groups as well as immunohistochemical labeling using specific antibodies. PTTG1 showed negative expression in all (44) benign and 9 out of 11 (81.8%) malignant tumors with only 2 out of 11 (18.2%) malignant tumors showed positive reactivity for PTTG1 (P: 0.037) with spindle cell histological pattern in both of them (P: 0.013). Although Rb expression in malignant tumors (81.8%) was slightly more than the benign ones (52.3%), no statistically significant correlation was observed (P: 0.087). These results suggest that PTTG1 immunostaining may play a key role in distinguishing between benign and malignant phaeochromocytoma. However, larger studies are necessary to confirm the outcomes of the present study.

  2. Sustained Attention in Real Classroom Settings: An EEG Study.

    PubMed

    Ko, Li-Wei; Komarov, Oleksii; Hairston, W David; Jung, Tzyy-Ping; Lin, Chin-Teng

    2017-01-01

    Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra.

  3. Sustained Attention in Real Classroom Settings: An EEG Study

    PubMed Central

    Ko, Li-Wei; Komarov, Oleksii; Hairston, W. David; Jung, Tzyy-Ping; Lin, Chin-Teng

    2017-01-01

    Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention task within a real classroom environment. Eighteen healthy students were instructed to recognize as fast as possible special visual targets that were displayed during regular university lectures. Sorting their EEG spectra with respect to response times, which indicated the level of visual alertness to randomly introduced visual stimuli, revealed significant changes in the brain oscillation patterns. The results of power-frequency analysis demonstrated a relationship between variations in the EEG spectral dynamics and impaired performance in the sustained attention task. Across subjects and sessions, prolongation of the response time was preceded by an increase in the delta and theta EEG powers over the occipital region, and decrease in the beta power over the occipital and temporal regions. Meanwhile, implementation of the complex attention task paradigm into a real-world classroom setting makes it possible to investigate specific mutual links between brain activities and factors that cause impaired behavioral performance, such as development and manifestation of classroom mental fatigue. The findings of the study set a basis for developing a system capable of estimating the level of visual attention during real classroom activities by monitoring changes in the EEG spectra. PMID:28824396

  4. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia?

    PubMed

    Tomescu, Miralena I; Rihs, Tonia A; Becker, Robert; Britz, Juliane; Custo, Anna; Grouiller, Frédéric; Schneider, Maude; Debbané, Martin; Eliez, Stephan; Michel, Christoph M

    2014-08-01

    Previous studies have repeatedly found altered temporal characteristics of EEG microstates in schizophrenia. The aim of the present study was to investigate whether adolescents affected by the 22q11.2 deletion syndrome (22q11DS), known to have a 30 fold increased risk to develop schizophrenia, already show deviant EEG microstates. If this is the case, temporal alterations of EEG microstates in 22q11DS individuals could be considered as potential biomarkers for schizophrenia. We used high-density (204 channel) EEG to explore between-group microstate differences in 30 adolescents with 22q11DS and 28 age-matched controls. We found an increased presence of one microstate class (class C) in the 22q11DS adolescents with respect to controls that was associated with positive prodromal symptoms (hallucinations). A previous across-age study showed that the class C microstate was more present during adolescence and a combined EEG-fMRI study associated the class C microstate with the salience resting state network, a network known to be dysfunctional in schizophrenia. Therefore, the increased class C microstates could be indexing the increased risk of 22q11DS individuals to develop schizophrenia if confirmed by our ongoing longitudinal study comparing both the adult 22q11DS individuals with and without schizophrenia, as well as schizophrenic individuals with and without 22q11DS. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator

    PubMed Central

    Khazendar, S.; Sayasneh, A.; Al-Assam, H.; Du, H.; Kaijser, J.; Ferrara, L.; Timmerman, D.; Jassim, S.; Bourne, T.

    2015-01-01

    Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. Results: The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered. PMID:25897367

  7. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals

    PubMed Central

    Trujillo, Logan T.; Stanfield, Candice T.; Vela, Ruben D.

    2017-01-01

    Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration—interaction complexity CI(X), and integration I(X)—as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG reference. CI(X) is a statistical measure of the system entropy accounted for by interactions among its elements, whereas I(X) indexes the overall deviation from statistical independence of the individual elements of a system. We recorded 72 channels of scalp EEG from human participants who sat in a wakeful resting state (interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the EEG signals were computed using four different EEG references: linked-mastoids (LM) reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation, and an infinity (INF) reference estimated via the Reference Electrode Standardization Technique (REST). Fourier-based power spectral density (PSD), a standard measure of resting state activity, was computed for comparison and as a check of data integrity and quality. We also performed dipole source modeling in order to assess the accuracy of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals. CI(X) was largest for the LAP transformation, smallest for the LM reference, and at intermediate values for the AVG and INF references. I(X) was smallest for the LAP transformation, largest for the LM reference, and at intermediate values for the AVG and INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished between resting-state conditions (larger values for eyes-open vs. eyes-closed). These findings occurred in the context of the overall expected pattern of resting state PSD. Dipole modeling showed that simulated scalp EEG-level CI(X) and I(X) reflected changes in underlying neural source dependencies, but only for higher levels of integration and with highest accuracy for the LAP transformation. Our observations suggest that the Laplacian-transformation should be preferred for the computation of scalp-level CI(X) and I(X) due to its positive impact on EEG signal quality and statistics, reduction of volume-conduction, and the higher accuracy this provides when estimating scalp-level EEG complexity and integration. PMID:28790884

  8. Classification of burst and suppression in the neonatal electroencephalogram

    NASA Astrophysics Data System (ADS)

    Löfhede, J.; Löfgren, N.; Thordstein, M.; Flisberg, A.; Kjellmer, I.; Lindecrantz, K.

    2008-12-01

    Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.

  9. Neurophysiological differences between patients clinically at high risk for schizophrenia and neurotypical controls--first steps in development of a biomarker.

    PubMed

    Duffy, Frank H; D'Angelo, Eugene; Rotenberg, Alexander; Gonzalez-Heydrich, Joseph

    2015-11-02

    Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.

  10. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination.

    PubMed

    Stamoulis, Catherine; Schomer, Donald L; Chang, Bernard S

    2013-08-01

    How a seizure terminates is still under-studied and, despite its clinical importance, remains an obscure phase of seizure evolution. Recent studies of seizure-related scalp EEGs at frequencies >100 Hz suggest that neural activity, in the form of oscillations and/or neuronal network interactions, may play an important role in preictal/ictal seizure evolution (Andrade-Valenca et al., 2011; Stamoulis et al., 2012). However, the role of high-frequency activity in seizure termination, is unknown, if it exists at all. Using information theoretic measures of network coordination, this study investigated ictal and immediate postictal neurodynamic interactions encoded in scalp EEGs from a relatively small sample of 8 patients with focal epilepsy and multiple seizures originating in temporal and/or frontal brain regions, at frequencies ≤ 100 Hz and >100 Hz, respectively. Despite some heterogeneity in the dynamics of these interactions, consistent patterns were also estimated. Specifically, in several seizures, linear or non-linear increase in high-frequency neuronal coordination during ictal intervals, coincided with a corresponding decrease in coordination at frequencies <100 Hz, suggesting a potential interference role of high-frequency activity, to disrupt abnormal ictal synchrony at lower frequencies. These changes in network synchrony started at least 20-30s prior to seizure offset, depending on the seizure duration. Opposite patterns were estimated at frequencies ≤ 100 Hz in several seizures. These results raise the possibility that high-frequency interference may occur in the form of progressive network coordination during the ictal interval, which continues during the postictal interval. This may be one of several possible mechanisms that facilitate seizure termination. In fact, inhibition of pairwise interactions between EEGs by other signals in their spatial neighborhood, quantified by negative interaction information, was estimated at frequencies ≤ 100 Hz, at least in some seizures. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  12. Study of heart-brain interactions through EEG, ECG, and emotions

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.

  13. Neural Correlates of Dream Lucidity Obtained from Contrasting Lucid versus Non-Lucid REM Sleep: A Combined EEG/fMRI Case Study

    PubMed Central

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I.; Koch, Stefan P.; Holsboer, Florian; Steiger, Axel; Obrig, Hellmuth; Sämann, Philipp G.; Czisch, Michael

    2012-01-01

    Study Objectives: To investigate the neural correlates of lucid dreaming. Design: Parallel EEG/fMRI recordings of night sleep. Setting: Sleep laboratory and fMRI facilities. Participants: Four experienced lucid dreamers. Interventions: N/A. Measurements and Results: Out of 4 participants, one subject had 2 episodes of verified lucid REM sleep of sufficient length to be analyzed by fMRI. During lucid dreaming the bilateral precuneus, cuneus, parietal lobules, and prefrontal and occipito-temporal cortices activated strongly as compared with non-lucid REM sleep. Conclusions: In line with recent EEG data, lucid dreaming was associated with a reactivation of areas which are normally deactivated during REM sleep. This pattern of activity can explain the recovery of reflective cognitive capabilities that are the hallmark of lucid dreaming. Citation: Dresler M; Wehrle R; Spoormaker VI; Koch SP; Holsboer F; Steiger A; Obrig H; Sämann PG; Czisch M. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/fMRI case study. SLEEP 2012;35(7):1017–1020. PMID:22754049

  14. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.

    PubMed

    Luo, An; Sullivan, Thomas J

    2010-04-01

    We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.

  15. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    PubMed

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  16. Deep learning with convolutional neural networks for EEG decoding and visualization.

    PubMed

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  17. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study

    PubMed Central

    Castelnovo, Anna; Riedner, Brady A.; Smith, Richard F.; Tononi, Giulio; Boly, Melanie; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Methods: Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Results: Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1–4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Conclusions: Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. Citation: Castelnovo A, Riedner BA, Smith RF, Tononi G, Boly M, Benca RM. Scalp and source power topography in sleepwalking and sleep terrors: a high-density EEG study. SLEEP 2016;39(10):1815–1825. PMID:27568805

  18. Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition.

    PubMed

    Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime

    2014-10-15

    Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Performance-informed EEG analysis reveals mixed evidence for EEG signatures unique to the processing of time.

    PubMed

    Schlichting, Nadine; de Jong, Ritske; van Rijn, Hedderik

    2018-06-20

    Certain EEG components (e.g., the contingent negative variation, CNV, or beta oscillations) have been linked to the perception of temporal magnitudes specifically. However, it is as of yet unclear whether these EEG components are really unique to time perception or reflect the perception of magnitudes in general. In the current study we recorded EEG while participants had to make judgments about duration (time condition) or numerosity (number condition) in a comparison task. This design allowed us to directly compare EEG signals between the processing of time and number. Stimuli consisted of a series of blue dots appearing and disappearing dynamically on a black screen. Each stimulus was characterized by its duration and the total number of dots that it consisted of. Because it is known that tasks like these elicit perceptual interference effects that we used a maximum-likelihood estimation (MLE) procedure to determine, for each participant and dimension separately, to what extent time and numerosity information were taken into account when making a judgement in an extensive post hoc analysis. This approach enabled us to capture individual differences in behavioral performance and, based on the MLE estimates, to select a subset of participants who suppressed task-irrelevant information. Even for this subset of participants, who showed no or only small interference effects and thus were thought to truly process temporal information in the time condition and numerosity information in the number condition, we found CNV patterns in the time-domain EEG signals for both tasks that was more pronounced in the time-task. We found no substantial evidence for differences between the processing of temporal and numerical information in the time-frequency domain.

  20. Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol

    PubMed Central

    Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9–11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used. PMID:29121108

  1. Network analysis of EEG related functional MRI changes due to medication withdrawal in focal epilepsy

    PubMed Central

    Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.

    2015-01-01

    Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444

  2. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation efficiency compared with MDFA. Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure. Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA. PMID:25741277

  3. Decoding of Ankle Flexion and Extension from Cortical Current Sources Estimated from Non-invasive Brain Activity Recording Methods.

    PubMed

    Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue

    2017-01-01

    The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.

  4. A new EEG measure using the 1D cluster variation method

    NASA Astrophysics Data System (ADS)

    Maren, Alianna J.; Szu, Harold H.

    2015-05-01

    A new information measure, drawing on the 1-D Cluster Variation Method (CVM), describes local pattern distributions (nearest-neighbor and next-nearest neighbor) in a binary 1-D vector in terms of a single interaction enthalpy parameter h for the specific case where the fractions of elements in each of two states are the same (x1=x2=0.5). An example application of this method would be for EEG interpretation in Brain-Computer Interfaces (BCIs), especially in the frontier of invariant biometrics based on distinctive and invariant individual responses to stimuli containing an image of a person with whom there is a strong affiliative response (e.g., to a person's grandmother). This measure is obtained by mapping EEG observed configuration variables (z1, z2, z3 for next-nearest neighbor triplets) to h using the analytic function giving h in terms of these variables at equilibrium. This mapping results in a small phase space region of resulting h values, which characterizes local pattern distributions in the source data. The 1-D vector with equal fractions of units in each of the two states can be obtained using the method for transforming natural images into a binarized equi-probability ensemble (Saremi & Sejnowski, 2014; Stephens et al., 2013). An intrinsically 2-D data configuration can be mapped to 1-D using the 1-D Peano-Hilbert space-filling curve, which has demonstrated a 20 dB lower baseline using the method compared with other approaches (cf. SPIE ICA etc. by Hsu & Szu, 2014). This CVM-based method has multiple potential applications; one near-term one is optimizing classification of the EEG signals from a COTS 1-D BCI baseball hat. This can result in a convenient 3-D lab-tethered EEG, configured in a 1-D CVM equiprobable binary vector, and potentially useful for Smartphone wireless display. Longer-range applications include interpreting neural assembly activations via high-density implanted soft, cellular-scale electrodes.

  5. De novo status epilepticus with isolated aphasia.

    PubMed

    Flügel, Dominique; Kim, Olaf Chan-Hi; Felbecker, Ansgar; Tettenborn, Barbara

    2015-08-01

    Sudden onset of aphasia is usually due to stroke. Rapid diagnostic workup is necessary if reperfusion therapy is considered. Ictal aphasia is a rare condition but has to be excluded. Perfusion imaging may differentiate acute ischemia from other causes. In dubious cases, EEG is required but is time-consuming and laborious. We report a case where we considered de novo status epilepticus as a cause of aphasia without any lesion even at follow-up. A 62-year-old right-handed woman presented to the emergency department after nurses found her aphasic. She had undergone operative treatment of varicosis 3 days earlier. Apart from hypertension and obesity, no cardiovascular risk factors and no intake of medication other than paracetamol were reported. Neurological examination revealed global aphasia and right pronation in the upper extremity position test. Computed tomography with angiography and perfusion showed no abnormalities. Electroencephalogram performed after the CT scan showed left-sided slowing with high-voltage rhythmic 2/s delta waves but no clear ictal pattern. Intravenous lorazepam did improve EEG slightly, while aphasia did not change. Lumbar puncture was performed which likely excluded encephalitis. Magnetic resonance imaging showed cortical pathological diffusion imaging (restriction) and cortical hyperperfusion in the left parietal region. Intravenous anticonvulsant therapy under continuous EEG resolved neurological symptoms. The patient was kept on anticonvulsant therapy. Magnetic resonance imaging after 6 months showed no abnormalities along with no clinical abnormalities. Magnetic resonance imaging findings were only subtle, and EEG was without clear ictal pattern, so the diagnosis of aphasic status remains with some uncertainty. However, status epilepticus can mimic stroke symptoms and has to be considered in patients with aphasia even when no previous stroke or structural lesions are detectable and EEG shows no epileptic discharges. Epileptic origin is favored when CT or MR imaging reveal no hypoperfusion. In this case, MRI was superior to CT in detecting hyperperfusion. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  7. Pharmacological classification of herbal extracts by means of comparison to spectral EEG signatures induced by synthetic drugs in the freely moving rat.

    PubMed

    Dimpfel, Wilfried

    2013-09-16

    Herbal extracts targeting at the brain remain a continuous challenge to pharmacology. Usually, a number of different animal tests have to be performed in order to find a potential clinical use. Due to manifold possibly active ingredients biochemical approaches are difficult. A more holistic approach using a neurophysiological technique has been developed earlier in order to characterise synthetic drugs. Stereotactic implantation of four semi-microelectrodes into frontal cortex, hippocampus, striatum and reticular formation of rats allowed continuous wireless monitoring of field potentials (EEG) before and after drug intake. After frequency analysis (Fast Fourier Transformation) electric power was calculated for 6 ranges (delta, theta, alpha1, alpha2, beta1 and beta2). Data from 14 synthetic drugs - tested earlier and representative for different clinical indications - were taken for construction of discriminant functions showing the projection of the frequency patterns in a six-dimensional graph. Quantitative analysis of the EEG frequency pattern from the depth of the brain succeeded in discrimination of drug effects according to their known clinical indication (Dimpfel and Schober, 2003). Extracts from Valerian root, Ginkgo leaves, Paullinia seed, Hop strobile, Rhodiola rosea root and Sideritis scardica herb were tested now under identical conditions. Classification of these extracts based on the matrix from synthetic drugs revealed that Valerian root and hop induced a pattern reminiscent of physiological sleep. Ginkgo and Paullinia appeared in close neighbourhood of stimulatory drugs like caffeine or to an analgesic profile (tramadol). Rhodiola and Sideritis developed similar frequency patterns comparable to a psychostimulant drug (methylphenidate) as well to an antidepressive drug (paroxetine). © 2013 The Author. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Polyclonal chromosomal evolution in a benign mixed salivary gland tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, J.; Ekedahl, C.

    1987-10-01

    Banding analyses of a human benign pleomorphic adenoma in the parotid gland revealed a polyclonal pattern where structural rearrangements predominated. These deviations were different from the anomalies previously observed in 100 mixed tumors. The reason found for the differences in all likelihood was x-ray treatment of tuberculous lymphadenitis in the neck during childhood. Implications regarding origin and development of pleomorphic adenomas are discussed.

  9. Differentiating malignant from benign breast tumors on acoustic radiation force impulse imaging using fuzzy-based neural networks with principle component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Hsiao-Chuan; Chou, Yi-Hong; Tiu, Chui-Mei; Hsieh, Chi-Wen; Liu, Brent; Shung, K. Kirk

    2017-03-01

    Many modalities have been developed as screening tools for breast cancer. A new screening method called acoustic radiation force impulse (ARFI) imaging was created for distinguishing breast lesions based on localized tissue displacement. This displacement was quantitated by virtual touch tissue imaging (VTI). However, VTIs sometimes express reverse results to intensity information in clinical observation. In the study, a fuzzy-based neural network with principle component analysis (PCA) was proposed to differentiate texture patterns of malignant breast from benign tumors. Eighty VTIs were randomly retrospected. Thirty four patients were determined as BI-RADS category 2 or 3, and the rest of them were determined as BI-RADS category 4 or 5 by two leading radiologists. Morphological method and Boolean algebra were performed as the image preprocessing to acquire region of interests (ROIs) on VTIs. Twenty four quantitative parameters deriving from first-order statistics (FOS), fractal dimension and gray level co-occurrence matrix (GLCM) were utilized to analyze the texture pattern of breast tumors on VTIs. PCA was employed to reduce the dimension of features. Fuzzy-based neural network as a classifier to differentiate malignant from benign breast tumors. Independent samples test was used to examine the significance of the difference between benign and malignant breast tumors. The area Az under the receiver operator characteristic (ROC) curve, sensitivity, specificity and accuracy were calculated to evaluate the performance of the system. Most all of texture parameters present significant difference between malignant and benign tumors with p-value of less than 0.05 except the average of fractal dimension. For all features classified by fuzzy-based neural network, the sensitivity, specificity, accuracy and Az were 95.7%, 97.1%, 95% and 0.964, respectively. However, the sensitivity, specificity, accuracy and Az can be increased to 100%, 97.1%, 98.8% and 0.985, respectively if PCA was performed to reduce the dimension of features. Patterns of breast tumors on VTIs can effectively be recognized by quantitative texture parameters, and differentiated malignant from benign lesions by fuzzy-based neural network with PCA.

  10. Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.

    PubMed

    Kirby, Marie K; Ramaker, Ryne C; Roberts, Brian S; Lasseigne, Brittany N; Gunther, David S; Burwell, Todd C; Davis, Nicholas S; Gulzar, Zulfiqar G; Absher, Devin M; Cooper, Sara J; Brooks, James D; Myers, Richard M

    2017-04-17

    Current diagnostic tools for prostate cancer lack specificity and sensitivity for detecting very early lesions. DNA methylation is a stable genomic modification that is detectable in peripheral patient fluids such as urine and blood plasma that could serve as a non-invasive diagnostic biomarker for prostate cancer. We measured genome-wide DNA methylation patterns in 73 clinically annotated fresh-frozen prostate cancers and 63 benign-adjacent prostate tissues using the Illumina Infinium HumanMethylation450 BeadChip array. We overlaid the most significantly differentially methylated sites in the genome with transcription factor binding sites measured by the Encyclopedia of DNA Elements consortium. We used logistic regression and receiver operating characteristic curves to assess the performance of candidate diagnostic models. We identified methylation patterns that have a high predictive power for distinguishing malignant prostate tissue from benign-adjacent prostate tissue, and these methylation signatures were validated using data from The Cancer Genome Atlas Project. Furthermore, by overlaying ENCODE transcription factor binding data, we observed an enrichment of enhancer of zeste homolog 2 binding in gene regulatory regions with higher DNA methylation in malignant prostate tissues. DNA methylation patterns are greatly altered in prostate cancer tissue in comparison to benign-adjacent tissue. We have discovered patterns of DNA methylation marks that can distinguish prostate cancers with high specificity and sensitivity in multiple patient tissue cohorts, and we have identified transcription factors binding in these differentially methylated regions that may play important roles in prostate cancer development.

  11. The human brain pacemaker: Synchronized infra-slow neurovascular coupling in patients undergoing non-pulsatile cardiopulmonary bypass.

    PubMed

    Zanatta, Paolo; Toffolo, Gianna Maria; Sartori, Elisa; Bet, Anna; Baldanzi, Fabrizio; Agarwal, Nivedita; Golanov, Eugene

    2013-05-15

    In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm). Under deep anesthesia, the EEG bursts suppression pattern was highly correlative with BFV oscillations. Hence, a detailed quantitative picture of the coupling between electrical brain activity and BFV was derived, both in deep and moderate anesthesia, via linear and non linear processing of EEG-PV and BFV signals, resorting to widely used measures of signal coupling such as frequency of oscillations, coherence, Granger causality and cross-approximate entropy. Results strongly suggest the existence of coupling between EEG-PV and BFV. In moderate anesthesia EEG-PV mean dominant frequency is similar to frequency of BFV oscillations (0.065±0.010Hz vs 0.045±0.019Hz); coherence between the two signals was significant in about 55% of subjects, and the Granger causality suggested an EEG-PV→BFV causal effect direction. The strength of the coupling increased with deepening anesthesia, as EEG-PV oscillations mean dominant frequency virtually coincided with the BFV peak frequency (0.062±0.017Hz vs 0.060±0.024Hz), and coherence became significant in a larger number (65%) of subjects. Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals. Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Classification of spontaneous EEG signals in migraine

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; De Carlo, F.; de Tommaso, M.; Lucente, M.

    2007-08-01

    We set up a classification system able to detect patients affected by migraine without aura, through the analysis of their spontaneous EEG patterns. First, the signals are characterized by means of wavelet-based features, than a supervised neural network is used to classify the multichannel data. For the feature extraction, scale-dependent and scale-independent methods are considered with a variety of wavelet functions. Both the approaches provide very high and almost comparable classification performances. A complete separation of the two groups is obtained when the data are plotted in the plane spanned by two suitable neural outputs.

  13. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  14. [Neurofeedback for the treatment of chronic tinnitus : Review and future perspectives].

    PubMed

    Kleinjung, T; Thüring, C; Güntensperger, D; Neff, P; Meyer, M

    2018-03-01

    Neurofeedback is a noninvasive neuromodulation technique employing real-time display of brain activity in terms of electroencephalography (EEG) signals to teach self-regulation of distinct patterns of brain activity or influence brain activity in a targeted manner. The benefit of this approach for control of symptoms in attention deficit disorders, hyperactivity, depression, and migraine has been proven. Studies in recent years have also repeatedly shown this treatment to improve tinnitus symptoms, although it has not become established as routine therapy. The primary focus of this review is the rational of EEG neurofeedback for tinnitus treatment and the currently available data from published studies. Furthermore, alternative neurofeedback protocols using real-time functional magnetic resonance imaging (fMRI) measurements for tinnitus control are considered. Finally, this article highlights how modern EEG analysis (source localization, connectivity) and the improving understanding of tinnitus pathology can contribute to development of more focused neurofeedback protocols for more sustainable control of tinnitus.

  15. Understanding the impact of TV commercials: electrical neuroimaging.

    PubMed

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  16. Neuroelectrical Decomposition of Spontaneous Brain Activity Measured with Functional Magnetic Resonance Imaging

    PubMed Central

    Liu, Zhongming; de Zwart, Jacco A.; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H.

    2014-01-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

  17. Effect of immobilization on the EEG of the baboon. Comparison with telemetry results from unrestricted animals

    NASA Technical Reports Server (NTRS)

    Bert, J.; Collomb, H.

    1980-01-01

    The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.

  18. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  19. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  20. EEG Derived Neuronal Dynamics during Meditation: Progress and Challenges

    PubMed Central

    Kaur, Chamandeep; Singh, Preeti

    2015-01-01

    Meditation advances positivity but how these behavioral and psychological changes are brought can be explained by understanding neurophysiological effects of meditation. In this paper, a broad spectrum of neural mechanics under a variety of meditation styles has been reviewed. The overall aim of this study is to review existing scientific studies and future challenges on meditation effects based on changing EEG brainwave patterns. Albeit the existing researches evidenced the hold for efficacy of meditation in relieving anxiety and depression and producing psychological well-being, more rigorous studies are required with better design, considering client variables like personality characteristics to avoid negative effects, randomized controlled trials, and large sample sizes. A bigger number of clinical trials that concentrate on the use of meditation are required. Also, the controversial subject of epileptiform EEG changes and other adverse effects during meditation has been raised. PMID:26770834

  1. Postnatal development of EEG patterns, catecholamine contents and myelination, and effect of hyperthyroidism in Suncus brain.

    PubMed

    Takeuchi, T; Sitizyo, K; Harada, E

    1998-03-01

    The postnatal development of the central nervous system (CNS) in house musk shrew in the early stage of maturation was studied. The electroencephalogram (EEG) and visual evoked potential (VEP) in association with catecholamine contents and myelin basic protein (MBP) immunoreactivity were carried out from the 1st to the 20th day of postnatal age. Different EEG patterns which were specific to behavioral states (awake and drowsy) were first recorded on the 5th day, and the total power which was obtained by power spectrum analysis increased after this stage. The latencies of all peaks in VEP markedly shortened between the 5th and the 7th day. Noradrenalin (NA) content of the brain showed a slight increase after the 3rd day, and reached maximum levels on the 7th day, which was delayed a few days compared to dopamine (DA). In hyperthyroidism, the peak latency of VEP was shortened and biosynthesis of NA in cerebral cortex and DA in hippocampus was accelerated. The most obvious change in MBP-immunoreactivity of the telencephalon occurred from the 7th to the 10th day. These morphological changes in the brain advanced at the identical time-course to those in the electrophysiological development and increment of DA and NA contents.

  2. Graph theory network function in Parkinson's disease assessed with electroencephalography.

    PubMed

    Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G

    2016-05-01

    To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    PubMed

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate the number of process control tasks between operator and computer-based controller. Simulation results showed that the overall performance of the human-machine system can be improved by using the adaptive automation strategy proposed.

  4. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors.

    PubMed

    Rechache, Nesrin S; Wang, Yonghong; Stevenson, Holly S; Killian, J Keith; Edelman, Daniel C; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A; Meltzer, Paul S; Kebebew, Electron

    2012-06-01

    It is not known whether there are any DNA methylation alterations in adrenocortical tumors. The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors.

  5. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  6. Nonlinear Directed Interactions Between HRV and EEG Activity in Children With TLE.

    PubMed

    Schiecke, Karin; Pester, Britta; Piper, Diana; Benninger, Franz; Feucht, Martha; Leistritz, Lutz; Witte, Herbert

    2016-12-01

    Epileptic seizure activity influences the autonomic nervous system (ANS) in different ways. Heart rate variability (HRV) is used as indicator for alterations of the ANS. It was shown that linear, nondirected interactions between HRV and EEG activity before, during, and after epileptic seizure occur. Accordingly, investigations of directed nonlinear interactions are logical steps to provide, e.g., deeper insight into the development of seizure onsets. Convergent cross mapping (CCM) investigates nonlinear, directed interactions between time series by using nonlinear state space reconstruction. CCM is applied to simulated and clinically relevant data, i.e., interactions between HRV and specific EEG components of children with temporal lobe epilepsy (TLE). In addition, time-variant multivariate Autoregressive model (AR)-based estimation of partial directed coherence (PDC) was performed for the same data. Influence of estimation parameters and time-varying behavior of CCM estimation could be demonstrated by means of simulated data. AR-based estimation of PDC failed for the investigation of our clinical data. Time-varying interval-based application of CCM on these data revealed directed interactions between HRV and delta-related EEG activity. Interactions between HRV and alpha-related EEG activity were visible but less pronounced. EEG components mainly drive HRV. The interaction pattern and directionality clearly changed with onset of seizure. Statistical relevant interactions were quantified by bootstrapping and surrogate data approach. In contrast to AR-based estimation of PDC CCM was able to reveal time-courses and frequency-selective views of nonlinear interactions for the further understanding of complex interactions between the epileptic network and the ANS in children with TLE.

  7. Correlation between blood flow velocity in the middle cerebral artery and EEG during cognitive effort.

    PubMed

    Szirmai, Imre; Amrein, Ilona; Pálvölgyi, László; Debreczeni, Róbert; Kamondi, Anita

    2005-06-01

    Cognitive effort modifies blood flow velocity (BFV) in the middle cerebral artery (MCA) which can be recorded by transcranial Doppler sonography (TCD). EEG parameters can be used as indicators of cortical activation. To find temporal and spatial relation between circulatory and bioelectric phenomena, we used combined EEG and TCD measurements during cognitive experiments. Bilateral BFV in the MCAs and 16-channel scalp EEG were recorded during mental arithmetic (MA) and verbal fluency (VF) tests in 12 healthy volunteers. Temporal profile of BFV, heart rate (HR), EEG central frequency (CF), relative alpha power (ralphap), and laterality index (Li) for BFV and CF were statistically analysed. During mental effort, BFV changes showed a reproducible pattern, which was different in MA and VF tests. The Li(BFV) correlated with handedness in 9/12 subjects (75%) in the VF, and in 6/12 subjects (50%) in the MA test. Significant correlation was found between Li(BFV) and Li(CF) during VF (r(2) = 0.69). Li was more indicative for the hemispheric dominance in the VF than in the MA test. During VF test, correlation between HR and BFV was significant in 7/12 subjects. CF and ralphap provide real time assessment of the functional state of the brain tissue during cognition. The correlation between CF and BFV during mental activity suggests a short latency neurogenic and a long latency, supposedly chemical regulation of regional blood flow. Parallel analysis of EEG and flow parameters increases the confidence of determining hemispheric dominance and provides an alternative to study physiological consequences of cognitive processes.

  8. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    PubMed

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  9. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study.

    PubMed

    Castelnovo, Anna; Riedner, Brady A; Smith, Richard F; Tononi, Giulio; Boly, Melanie; Benca, Ruth M

    2016-10-01

    To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes. © 2016 Associated Professional Sleep Societies, LLC.

  10. Intrusions of a drowsy mind: neural markers of phenomenological unpredictability.

    PubMed

    Noreika, Valdas; Canales-Johnson, Andrés; Koh, Justin; Taylor, Mae; Massey, Irving; Bekinschtein, Tristan A

    2015-01-01

    The transition from a relaxed to a drowsy state of mind is often accompanied by hypnagogic experiences: most commonly, perceptual imagery, but also linguistic intrusions, i.e., the sudden emergence of unpredictable anomalies in the stream of inner speech. This study has sought to describe the contents of such intrusions, to verify their association with the progression of sleep onset, and to investigate the electroencephalographic processes associated with linguistic intrusions as opposed to more common hypnagogic perceptual imagery. A single participant attended 10 experimental sessions in the EEG laboratory, where he was allowed to drift into a drowsy state of mind, while maintaining metacognition of his own experiences. Once a linguistic intrusion or a noticeable perceptual image occurred, the participant pressed a button and reported it verbally. An increase in the EEG-defined depth of drowsiness as assessed by the Hori system of sleep onset was observed in the last 20 s before a button press. Likewise, EEG Dimension of Activation values decreased before the button press, indicating that the occurrence of cognitively incongruous experiences coincides with the rapid change of EEG predictability patterns. EEG hemispheric asymmetry analysis showed that linguistic intrusions had a higher alpha and gamma power in the left hemisphere electrodes, whereas perceptual imagery reports were associated with a higher beta power over the right hemisphere. These findings indicate that the modality as well as the incongruence of drowsiness-related hypnagogic experiences is strongly associated with distinct EEG signatures in this participant. Sleep onset may provide a unique possibility to study the neural mechanisms accompanying the fragmentation of the stream of consciousness in healthy individuals.

  11. CT diagnosis and differentiation of benign and malignant varieties of solitary fibrous tumor of the pleura

    PubMed Central

    You, Xiaofang; Sun, Xiwen; Yang, Chunyan; Fang, Yong

    2017-01-01

    Abstract To investigate computed tomography (CT) characteristics of benign and malignant solitary fibrous tumors of the pleura (SFTPs). Preoperative CTs for 60 SFTP cases (49 benign and 11 malignant) with subsequently confirmed diagnoses were retrospectively analyzed. Tumor morphologies included mounded or mushroom umbrella-shape (19 cases, 31.7%), quasi-circular or oval-shape (30 cases, 50%), and growth resembling a casting mould (12 cases, 20%). Maximum tumor diameters were 1.1 to 18.9 cm (average: 6.4 ± 4.8 cm). Fifty-seven cases had clear boundaries, and 3 had partially coarse boundaries. Twenty-seven cases showed homogeneous density; 33, “geographic”-patterned inhomogeneous density; 6, calcifications; 12, intratumor blood vessels; and 3, thick nourishing peritumoral blood vessels. Pleural thickening (regular and irregular) was found adjacent to tumors in 4, compression of adjacent ribs with absorption and cortical sclerosis in 2, and location adjacent to ribs with bony destruction in 1. Four cases had a small amount of lung tissue enfolded along the boundary, 2 had multiple peritumoral pulmonary bullae, and 9 had small ipsilateral pleural effusions. Compared with benign and malignant SFTPs were larger (P < .001), had inhomogeneous density, and were more commonly associated with intratumor blood vessels and pleural effusions (P < .01). CT revealed characteristic patterns in SFTPs, including casting mould-like growth, rich blood supply, and “geographic”-patterned enhancement. In addition, larger tumor size, inhomogeneous intensities, abundant intratumor blood vessels, and pleural effusions were more common with malignancy. Lastly, multislice CT angiography can reveal feeding arteries and help guide surgical management. PMID:29245313

  12. CT diagnosis and differentiation of benign and malignant varieties of solitary fibrous tumor of the pleura.

    PubMed

    You, Xiaofang; Sun, Xiwen; Yang, Chunyan; Fang, Yong

    2017-12-01

    To investigate computed tomography (CT) characteristics of benign and malignant solitary fibrous tumors of the pleura (SFTPs).Preoperative CTs for 60 SFTP cases (49 benign and 11 malignant) with subsequently confirmed diagnoses were retrospectively analyzed.Tumor morphologies included mounded or mushroom umbrella-shape (19 cases, 31.7%), quasi-circular or oval-shape (30 cases, 50%), and growth resembling a casting mould (12 cases, 20%). Maximum tumor diameters were 1.1 to 18.9 cm (average: 6.4 ± 4.8 cm). Fifty-seven cases had clear boundaries, and 3 had partially coarse boundaries. Twenty-seven cases showed homogeneous density; 33, "geographic"-patterned inhomogeneous density; 6, calcifications; 12, intratumor blood vessels; and 3, thick nourishing peritumoral blood vessels. Pleural thickening (regular and irregular) was found adjacent to tumors in 4, compression of adjacent ribs with absorption and cortical sclerosis in 2, and location adjacent to ribs with bony destruction in 1. Four cases had a small amount of lung tissue enfolded along the boundary, 2 had multiple peritumoral pulmonary bullae, and 9 had small ipsilateral pleural effusions. Compared with benign and malignant SFTPs were larger (P < .001), had inhomogeneous density, and were more commonly associated with intratumor blood vessels and pleural effusions (P < .01).CT revealed characteristic patterns in SFTPs, including casting mould-like growth, rich blood supply, and "geographic"-patterned enhancement. In addition, larger tumor size, inhomogeneous intensities, abundant intratumor blood vessels, and pleural effusions were more common with malignancy. Lastly, multislice CT angiography can reveal feeding arteries and help guide surgical management.

  13. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions.

    PubMed

    Mohamed Kamal, Rasha; Hussien Helal, Maha; Wessam, Rasha; Mahmoud Mansour, Sahar; Godda, Iman; Alieldin, Nelly

    2015-06-01

    To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤ 0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤ 0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant breast lesions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity.

    PubMed

    Svensson, W E; Pandian, A J; Hashimoto, H

    2010-10-01

    The aim of this study was to evaluate the use of vascular morphology, around and within the B-mode region of abnormality, for improving the diagnostic accuracy of two of the most common solid breast pathologies. The B-mode and Doppler images of 117 breast cancers and 366 fibroadenomas and lesions with a fibroadenoma-like appearance were reviewed retrospectively and the morphology of the vascular pattern was evaluated. The ratio of external to internal color Doppler, the external vascular pattern and the connecting vessels to internal vessels were assessed and differentiated into benign and malignant vascular patterns. These patterns were correlated with the histological diagnosis. Vascularity was demonstrated in 95 % of cancers and in 46 % of benign lesions with a trend to increasing vascularity in cancers. This provided poor specificity for excluding cancer in fibroadenomas. Variations in vascular pattern were recorded. The observed benign vascular patterns were avascularity, vascularity in the periphery and peripheral marginal vessels connecting with internal vascularity. The observed malignant vascular patterns were radially aligned external vessels with internal vessels being more numerous than external vessels which connected to radial vessels. (Fisher exact test p < 0.0001). Analysis of the vascular morphology improved the sensitivity for identifying cancers from 97 % (B-mode) to 99 % (B-mode and color Doppler) with a minimal reduction in specificity (93.7 to 92.6 %) or accuracy (94.6 to 94.2 %). The presence of vascularity within a lesion, by itself, is no longer a good predictor of malignancy because of the increase in Doppler sensitivity associated with improvements in ultrasound technology. The color Doppler ultrasound vascular pattern morphology improves the accuracy and sensitivity of B-mode image diagnosis, breast cancers and fibroadenomas with a minimal loss of specificity. Any breast lesion with radial rather than marginal connecting vessels should be regarded with suspicion. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Neurocognitive Pattern Analysis.

    DTIC Science & Technology

    1983-08-01

    Brazier and Casby, 1952; Callaway and Harris, 1974; Busk and Galbraith, 1975; Livanov, 1977), but this hypothesis remains unproven due to problems of...of electroencephalographic potentials. Electroercephaloqrph & Clinical Neurophysiolog , 1952, 4P 201-211* Busk , J, and Galbraith, G EEG correlates of

  16. VEP Responses to Op-Art Stimuli

    PubMed Central

    O’Hare, Louise; Clarke, Alasdair D. F.; Pollux, Petra M. J.

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast. PMID:26422207

  17. VEP Responses to Op-Art Stimuli.

    PubMed

    O'Hare, Louise; Clarke, Alasdair D F; Pollux, Petra M J

    2015-01-01

    Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.

  18. [Clinical and neurophysiological manifestations of cerebral asymmetry in cervical dystonia].

    PubMed

    Naryshkin, A G; Skoromets, T A; Gorelik, A L; Egorov, A Iu

    2009-01-01

    Based on the analysis of clinical and neurophysiological data with the use of up-to-date methods of EEG processing, the authors discuss a role of cerebral asymmetry (CA) in the pathogenesis of cervical dystonia (CD). Sixty-seven patients (31 male and 36 female) with CD have been studied. The pathological turn of the head to the right side (RT) was observed in 34 patients, to the left side (LT) - in 33 patients. The uni- or bilateral generalization of dystonic symptoms (Meig's syndrome, laterocollis) was found only in one-third of RT patients. The visual analysis of EEG of RT patients revealed the high level of EEG synchronization with signs of cortical irritation, with the prevalence in the left hemisphere, and the presence of focal epileptiform appearances in the temporal leads of the left or both hemispheres with the left-side prevalence. In LT patients, the EEG presentation was similar to normal but more often represented the variants of EEG-pattern. In these cases, the apparent manifestations of CA were not found. The coherent analysis revealed the formation of the network of coherent links, with bilateral spread, in RT patients. This may suggest the functional inequivalence of the peripersonal space of right and left hand and the dominate significance of striopallidar and thalamic structures of the left hemisphere for the total brain activity.

  19. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.

    2012-01-01

    The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860

  20. Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study

    PubMed Central

    Singh, Harsimrat; Cooper, Robert J.; Wai Lee, Chuen; Dempsey, Laura; Edwards, Andrea; Brigadoi, Sabrina; Airantzis, Dimitrios; Everdell, Nick; Michell, Andrew; Holder, David; Hebden, Jeremy C.; Austin, Topun

    2014-01-01

    Seizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT) and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures. PMID:25161892

Top