Rose, Kathryn V.; Nayegandhi, Amar; Moses, Christopher S.; Beavers, Rebecca; Lavoie, Dawn; Brock, John C.
2012-01-01
The National Park Service (NPS) Inventory and Monitoring (I&M) Program initiated a benthic habitat mapping program in ocean and coastal parks in 2008-2009 in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With more than 80 ocean and Great Lakes parks encompassing approximately 2.5 million acres of submerged territory and approximately 12,000 miles of coastline (Curdts, 2011), this Servicewide Benthic Mapping Program (SBMP) is essential. This report presents an initial gap analysis of three pilot parks under the SBMP: Assateague Island National Seashore (ASIS), Channel Islands National Park (CHIS), and Sleeping Bear Dunes National Lakeshore (SLBE) (fig. 1). The recommended SBMP protocols include servicewide standards (for example, gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). The SBMP requires the inventory and mapping of critical components of coastal and marine ecosystems: bathymetry, geoforms, surface geology, and biotic cover. In order for a park unit benthic inventory to be considered complete, maps of bathymetry and other key components must be combined into a final report (Moses and others, 2010). By this standard, none of the three pilot parks are mapped (inventoried) to completion with respect to submerged resources. After compiling the existing benthic datasets for these parks, this report has concluded that CHIS, with 49 percent of its submerged area mapped, has the most complete benthic inventory of the three. The ASIS submerged inventory is 41 percent complete, and SLBE is 17.5 percent complete.
A Servicewide Benthic Mapping Program for National Parks
Moses, Christopher S.; Nayegandhi, Amar; Beavers, Rebecca; Brock, John
2010-01-01
In 2007, the National Park Service (NPS) Inventory and Monitoring Program directed the initiation of a benthic habitat mapping program in ocean and coastal parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. With 74 ocean and Great Lakes parks stretching over more than 5,000 miles of coastline across 26 States and territories, this Servicewide Benthic Mapping Program (SBMP) is essential. This program will deliver benthic habitat maps and their associated inventory reports to NPS managers in a consistent, servicewide format to support informed management and protection of 3 million acres of submerged National Park System natural and cultural resources. The NPS and the U.S. Geological Survey (USGS) convened a workshop June 3-5, 2008, in Lakewood, Colo., to discuss the goals and develop the design of the NPS SBMP with an assembly of experts (Moses and others, 2010) who identified park needs and suggested best practices for inventory and mapping of bathymetry, benthic cover, geology, geomorphology, and some water-column properties. The recommended SBMP protocols include servicewide standards (such as gap analysis, minimum accuracy, final products) as well as standards that can be adapted to fit network and park unit needs (for example, minimum mapping unit, mapping priorities). SBMP Mapping Process. The SBMP calls for a multi-step mapping process for each park, beginning with a gap assessment and data mining to determine data resources and needs. An interagency announcement of intent to acquire new data will provide opportunities to leverage partnerships. Prior to new data acquisition, all involved parties should be included in a scoping meeting held at network scale. Data collection will be followed by processing and interpretation, and finally expert review and publication. After publication, all digital materials will be archived in a common format. SBMP Classification Scheme. The SBMP will map using the Coastal and Marine Ecological Classification Standard (CMECS) that is being modified to include all NPS needs, such as lacustrine ecosystems and submerged cultural resources. CMECS Version III (Madden and others, 2010) includes components for water column, biotic cover, surface geology, sub-benthic, and geoform. SBMP Data Archiving. The SBMP calls for the storage of all raw data and final products in common-use data formats. The concept of 'collect once, use often' is essential to efficient use of mapping resources. Data should also be shared with other agencies and the public through various digital clearing houses, such as Geospatial One-Stop (http://gos2.geodata.gov/wps/portal/gos). To be most useful for managing submerged resources, the SBMP advocates the inventory and mapping of the five components of marine ecosystems: surface geology, biotic cover, geoform, sub-benthic, and water column. A complete benthic inventory of a park would include maps of bathymetry and the five components of CMECS. The completion of mapping for any set of components, such as bathymetry and surface geology, or a particular theme (for example, submerged aquatic vegetation) should also include a printed report.
USGS-NPS Servicewide Benthic Mapping Program (SBMP) workshop report
Moses, Christopher S.; Nayagandhi, Amar; Brock, John; Beavers, Rebecca
2010-01-01
The National Park Service (NPS) Inventory and Monitoring (I&M) Program recently allocated funds to initiate a benthic mapping program in ocean and Great Lakes parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. Seventy-four (ocean and Great Lakes) parks, spanning more than 5,000 miles of coastline, many affected by increasing coastal storms and other natural and anthropogenic processes, make the development of a Servicewide Benthic Mapping Program (SBMP) timely. The resulting maps and associated reports will be provided to NPS managers in a consistent servicewide format to help park managers protect and manage the 3 million acres of submerged National Park System natural and cultural resources. Of the 74 ocean and Great Lakes park units, the 40 parks with submerged acreage will be the focus in the early years of the SBMP. The NPS and U.S. Geological Survey (USGS) convened a workshop (June 3-5, 2008) in Lakewood, CO. The assembly of experts from the NPS and other Federal and non-Federal agencies clarified the needs and goals of the NPS SBMP and was one of the key first steps in designing the benthic mapping program. The central needs for individual parks, park networks, and regions identified by workshop participants were maps including bathymetry, bottom type, geology, and biology. This workshop, although not an exhaustive survey of data-acquisition technologies, highlighted the more promising technologies being used, existing sources of data, and the need for partnerships to leverage resources. Workshop products include recommended classification schemes and management approaches for consistent application and products similar to other long-term NPS benthic mapping efforts. As part of the SBMP, recommendations from this workshop, including application of an improved version of the Coastal and Marine Ecological Classification Standard (CMECS), will be tested in several pilot parks. In 2008, in conjunction with the findings of this workshop, the NPS funded benthic mapping projects in Glacier Bay National Park and Preserve, Golden Gate National Recreational Area, Sleeping Bear Dunes National Lakeshore, Gulf Islands National Seashore, Virgin Islands National Park, and Virgin Islands Coral Reef National Monument.
NOAA's Use of High-Resolution Imagery
NASA Technical Reports Server (NTRS)
Hund, Erik
2007-01-01
NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.
Particle Mass in Deep-Water Benthic Nepheloid Layers: a Global Synthesis
NASA Astrophysics Data System (ADS)
Mishonov, A. V.; Gardner, W. D.; Richardson, M. J.
2016-12-01
The mass of particles in benthic nepheloid layers in the deep ocean is mapped using profiles of beam attenuation coefficient obtained with transmissometers interfaced with CTDs during WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and other programs during the last four decades using data from over 8000 profiles from >70 cruises. We map the maximum concentration of particle mass near the seafloor and integrate the particle mass throughout the benthic nepheloid layer. In the Atlantic Ocean particle mass is greater in areas where eddy kinetic energy is high in overlying waters. Areas of high bottom particle concentrations and integrated benthic nepheloid layer particle loads include the western North Atlantic beneath the Gulf Stream meanders and eddies, Argentine Basin, parts of the Southern Ocean and areas around South Africa. Particle concentrations are low in most of the Pacific and tropical and subtropical Atlantic away from margins. This synthesis is useful for GEOTRACES and other global programs where knowing particle distribution is critical for understanding trace metal absorption, sediment-water exchange and near-bottom processes. Additionally, our synthesis provides baseline data to identify where mining of metal-rich nodules and metal sulfides on the seafloor may impact the benthic environment.
Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics
NASA Astrophysics Data System (ADS)
Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.
2018-01-01
Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.
California State Waters Map Series Data Catalog
Golden, Nadine E.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.
NASA Astrophysics Data System (ADS)
Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.
2017-12-01
Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in all depth ranges and shows a better accuracy compared to that of classification map produced using only with DII.
NASA Astrophysics Data System (ADS)
Li, Dong; Tang, Cheng; Xia, Chunlei; Zhang, Hua
2017-02-01
Artificial reefs (ARs) are effective means to maintain fishery resources and to restore ecological environment in coastal waters. ARs have been widely constructed along the Chinese coast. However, understanding of benthic habitats in the vicinity of ARs is limited, hindering effective fisheries and aquacultural management. Multibeam echosounder (MBES) is an advanced acoustic instrument capable of efficiently generating large-scale maps of benthic environments at fine resolutions. The objective of this study is to develop a technical approach to characterize, classify, and map shallow coastal areas with ARs using an MBES. An automated classification method is designed and tested to process bathymetric and backscatter data from MBES and transform the variables into simple, easily visualized maps. To reduce the redundancy in acoustic variables, a principal component analysis (PCA) is used to condense the highly collinear dataset. An acoustic benthic map of bottom sediments is classified using an iterative self-organizing data analysis technique (ISODATA). The approach is tested with MBES surveys in a 1.15 km2 fish farm with a high density of ARs off the Yantai coast in northern China. Using this method, 3 basic benthic habitats (sandy bottom, muddy sediments, and ARs) are distinguished. The results of the classification are validated using sediment samples and underwater surveys. Our study shows that the use of MBES is an effective method for acoustic mapping and classification of ARs.
Australian sea-floor survey data, with images and expert annotations.
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Marzinelli, Ezequiel M; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B
2015-01-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.
Australian sea-floor survey data, with images and expert annotations
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B.
2015-01-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research. PMID:26528396
Australian sea-floor survey data, with images and expert annotations
NASA Astrophysics Data System (ADS)
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B.
2015-10-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.
Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.
2010-01-01
Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.
Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska
Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.
2013-01-01
Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.
Mapping of the Seagrass Cover Along the Mediterranean Coast of Turkey Using Landsat 8 Oli Images
NASA Astrophysics Data System (ADS)
Bakirman, T.; Gumusay, M. U.; Tuney, I.
2016-06-01
Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5-10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.
Deep-sea benthic habitats modeling and mapping in a NE Atlantic seamount (Galicia Bank)
NASA Astrophysics Data System (ADS)
Serrano, A.; González-Irusta, J. M.; Punzón, A.; García-Alegre, A.; Lourido, A.; Ríos, P.; Blanco, M.; Gómez-Ballesteros, M.; Druet, M.; Cristobo, J.; Cartes, J. E.
2017-08-01
This study presents the results of seafloor habitat identification and mapping of a NE Atlantic deep seamount. An ;assemble first, predict later; approach has been followed to identify and map the benthic habitats of the Galicia Bank (NW Iberian). Biotic patterns inferred from the survey data have been used to drive the definition of benthic assemblages using multivariate tools. Eight assemblages, four hard substrates and four sedimentary ones, have been described from a matrix of structural species. Distribution of these assemblages was correlated with environmental factors (multibeam and backscatter data) using binomial GAMs. Finally, the distribution model of each assemblage was applied to produce continuous maps and pooled in a final map with the distribution of the main benthic habitats. Depth and substrate type are key factors when determining soft bottom communities, whereas rocky habitat distribution is mainly explained by rock slope and orientation. Enrichment by northern water masses (LSW) arriving to GB and possible zooplankton biomass increase at vertical-steep walls by ;bottom trapping; can explain the higher diversity of habitat providing filter-feeders at slope rocky breaks. These results concerning vulnerable species and habitats, such as Lophelia and Madrepora communities and black and bamboo coral aggregations were the basis of the Spanish proposal of inclusion within the Natura 2000 network. The aim of the present study was to establish the scientific criteria needed for managing and protecting those environmental values.
Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
NASA Astrophysics Data System (ADS)
Zhang, Caiyun
2015-06-01
Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.
Walker, Brian K.; Gilliam, David S.
2013-01-01
Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion investigations. PMID:24282542
Walker, Brian K; Gilliam, David S
2013-01-01
Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion investigations.
NASA Astrophysics Data System (ADS)
Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.
2013-12-01
Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to dominant components of benthic cover compositions (1 - 10's m); and individual benthic cover type scale (0.5-5.0's m), was completed using object based segmentation and semi-automated labelling through membership rules. Accuracy assessment of the satellite image based maps and field data sets scales maps produced with 90% maximum accuracy larger scales and less complex maps, versus 40 % at smaller scale and complex maps. The study showed that current data sets and object based analysis are able to reliable map at various scales and level of complexity covering a variety of extent and environments at various times; as a result science and management can use these tools to assess and understand the ecological processes taking place in coral and SAV environments.
Johnson, Samuel Y.; Cochrane, Guy R.; Golden, Nadine; Dartnell, Peter; Hartwell, Stephen; Cochran, Susan; Watt, Janet
2017-01-01
The California Seafloor and Coastal Mapping Program (CSCMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters. CSCMP began in 2007 when the California Ocean Protection Council (OPC) and the National Oceanic and Atmospheric Administration (NOAA) allocated funding for high-resolution bathymetric mapping, largely to support the California Marine Life Protection Act and to update nautical charts. Collaboration and support from the U.S. Geological Survey and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSCMP provides essential science and data for ocean and coastal management, stimulates and enables research, and raises public education and awareness of coastal and ocean issues. Specific applications include:•Delineation and designation of marine protected areas•Characterization and modeling of benthic habitats and ecosystems•Updating nautical charts•Earthquake hazard assessments•Tsunami hazard assessments•Planning offshore infrastructure•Providing baselines for monitoring change•Input to models of sediment transport, coastal erosion, and coastal flooding•Regional sediment management•Understanding coastal aquifers•Providing geospatial data for emergency response
Effects of Benthic Barriers on Macroinvertebrate Communities
1993-10-01
Aquatic Plant Control Research Program Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne, Andrew C. Miller Environmental...Plant Control Technical Report A-93-5Resear h Program Oct ber 1993 Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne...Effects of benthic barriers on macroinvertebrate communities / by Barry S. Payne, Andrew C. Miller, [and] Thomas Ussery ; prepared for U.S. Army Corps of
Poppe, L.J.; Paskevich, V.F.; Moser, M.S.; DiGiacomo-Cohen, M. L.; Christman, E.B.
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Environmental Protection (CT DEP), Figure 1 - Map of Study Areahas produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research between the USGS and the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies of sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. Anthropogenic wastes, toxic chemicals, and changes in land-use patterns resulting from residential, commercial, and recreational development have stressed the environment of the Sound, causing degradation and potential loss of benthic habitats (Koppelman and others, 1976; Long Island Sound Study, 1994). Detailed maps of the sea floor are needed to help evaluate the extent of adverse impacts and to help wisely manage resources in the future. Therefore, in a continuing effort to better understand Long Island Sound, we are constructing and interpreting sidescan sonar mosaics (complete-coverage acoustic images of the sea floor) within specific areas of special interest (Poppe and Polloni, 1998). The mosaic presented herein, which was produced during survey H11043 by NOAA 's Atlantic Hydrographic Branch, covers approximately 41.1 km2 of the sea floor in north-central Long Island Sound off Branford, Connecticut. Shell bed provides shelter for juvenille skate.The mosaic and its interpretation serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaic also serves as a base map for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for appropriate interpretation of point measurements.
Ackerman, Seth D.; Pappal, Adrienne L.; Huntley, Emily C.; Blackwood, Dann S.; Schwab, William C.
2015-01-01
Sea-floor sample collection is an important component of a statewide cooperative mapping effort between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). Sediment grab samples, bottom photographs, and video transects were collected within Vineyard Sound and Buzzards Bay in 2010 aboard the research vesselConnecticut. This report contains sample data and related information, including analyses of surficial-sediment grab samples, locations and images of sea-floor photography, survey lines along which sea-floor video was collected, and a classification of benthic biota observed in sea-floor photographs and based on the Coastal and Marine Ecological Classification Standard (CMECS). These sample data and analyses information are used to verify interpretations of geophysical data and are an essential part of geologic maps of the sea floor. These data also provide a valuable inventory of benthic habitat and resources. Geographic information system (GIS) data, maps, and interpretations, produced through the USGS and CZM mapping cooperative, are intended to aid efforts to manage coastal and marine resources and to provide baseline information for research focused on coastal evolution and environmental change.
Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre
2014-01-01
Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155
Detection and identification of benthic communities and shoreline features in Biscayne Bay
NASA Technical Reports Server (NTRS)
Kolipinski, M. C.; Higer, A. L.
1970-01-01
Progress made in the development of a technique for identifying and delinating benthic and shoreline communities using multispectral imagery is described. Images were collected with a multispectral scanner system mounted in a C-47 aircraft. Concurrent with the overflight, ecological ground- and sea-truth information was collected at 19 sites in the bay and on the shore. Preliminary processing of the scanner imagery with a CDC 1604 digital computer provided the optimum channels for discernment among different underwater and coastal objects. Automatic mapping of the benthic plants by multiband imagery and the mapping of isotherms and hydrodynamic parameters by digital model can become an effective predictive ecological tool when coupled together. Using the two systems, it appears possible to predict conditions that could adversely affect the benthic communities. With the advent of the ERTS satellites and space platforms, imagery data could be obtained which, when used in conjunction with water-level and meteorological data, would provide for continuous ecological monitoring.
Studies of benthic macroalgal accumulation in coastal estuaries of the Pacific Northwest, USA, were conducted over a 12-year period, including aerial mapping and ground surveys. The results were applied to an assessment framework for eutrophication developed by the European Unio...
California State Waters Map Series--Hueneme Canyon and vicinity, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.
2012-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.
2010-01-01
prevailing benthic habitat was mapped as sediment with little to no microalgal biofilm. Moderate to dense sea- grass meadows of Thalassia testudinum were...dense seagrass meadows of Thalassia testudinum were the dominant primary producers and contributed over 80% of NPP in the region. If the vast majority of...density of the seagrasses Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass) were estimated
NASA Astrophysics Data System (ADS)
Lacharité, Myriam; Brown, Craig J.; Gazzola, Vicki
2018-06-01
The establishment of multibeam echosounders (MBES) as a mainstream tool in ocean mapping has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The bathymetric and backscatter information generated by MBES enables marine scientists to present highly accurate bathymetric data with a spatial resolution closely matching that of terrestrial mapping, and can generate customized thematic seafloor maps to meet multiple ocean management needs. However, when a variety of MBES systems are used, the creation of objective habitat maps can be hindered by the lack of backscatter calibration, due for example, to system-specific settings, yielding relative rather than absolute values. Here, we describe an approach using object-based image analysis to combine 4 non-overlapping and uncalibrated (backscatter) MBES coverages to form a seamless habitat map on St. Anns Bank (Atlantic Canada), a marine protected area hosting a diversity of benthic habitats. The benthoscape map was produced by analysing each coverage independently with supervised classification (k-nearest neighbor) of image-objects based on a common suite of 7 benthoscapes (determined with 4214 ground-truthing photographs at 61 stations, and characterized with backscatter, bathymetry, and bathymetric position index). Manual re-classification based on uncertainty in membership values to individual classes—especially at the boundaries between coverages—was used to build the final benthoscape map. Given the costs and scarcity of MBES surveys in offshore marine ecosystems—particularly in large ecosystems in need of adequate conservation strategies, such as in Canadian waters—developing approaches to synthesize multiple datasets to meet management needs is warranted.
Sediment Profile Imagery as a Toll to Assist Benthic Assessment and Benthic Habitat Mapping
The U.S. EPA Atlantic Ecology Division and the Southern California Coastal Water Research Project (SCCWRP) collaborated in 2008 to explore the use of sediment profile imagery as a tool to assist environmental management, capturing multiple images at each of over 100 stations at a...
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
Ubertini, Martin; Lefebvre, Sébastien; Gangnery, Aline; Grangeré, Karine; Le Gendre, Romain; Orvain, Francis
2012-01-01
The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter) and biological parameters (flora and fauna assemblages, chlorophyll) were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher resuspension effect in summer than in spring, in turn suggesting an important role of macrofauna bioturbation and filter feeding (Cerastoderma edule). PMID:22952910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; May, Cassandra
2014-04-23
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less
Venteris, Erik R.; May, Cassandra J.
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834
Venteris, Erik R; May, Cassandra J
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.
APPLICATION OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY
The Chesapeake Bay Benthic Index of Biotic Integrity (B-161) and the Environmental Monitoring and Assessment Program's Virginian Province Benthic Index (EMAP-VP BI) were applied to 294 sampling events in Chesapeake Bay and the results were compared. These benthic indices are inte...
California State Waters Map Series: offshore of Refugio Beach, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Refugio Beach map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, primarily are composed of soft sediment interrupted by a few carbonate mounds. This homogeneous seafloor of sediment and low-relief bedrock provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms.
NASA Astrophysics Data System (ADS)
Miller, D.; Trembanis, A. C.; Kennedy, E.; Rusch, H.; Rothermel, E.
2016-02-01
The National Park Service has partnered with faculty and students at the University of Delaware to map the length of Assateague Island and sample benthic communities there for two purposes: (1) to provide a complete inventory of benthic habitats and their biota, and (2) to determine if any changes from a pre-storm survey can be ascribed to Superstorm Sandy in 2012. During the 2014 and 2015 field seasons over 75 km2 of high-resolution ( 50 cm/pixel) side-scan sonar and collocated bathymetry were collected with a surface vessel mounted bathy side-scan sonar (EdgeTech 6205), spanning the shore from depths of less than 2 m out to a distance of approximately 1 nautical mile and depths of 10-12 m. Furthermore, we have resampled using standard methodology (modified Young grab and 0.5-mm sieve) a subset of the previously sampled benthic stations that represent all sediment classes identified in prior studies. Additionally, we have obtained novel data with our ROV and AUV assets, including finer scale bottom video and multibeam bathymetry, at specifically chosen locations in order to enhance understanding of the benthic habitat and bottom type changes. In addition to providing a habitat and faunal inventory for resource management purposes, we will compare our side scan and benthic survey data to the pre-storm 2011 data products with comparable coverage. To date we have found that ArcGIS and ENVI sediment classifications agree well with those from the 2011 study, but spatially we note more areas of finer sediments and less of gravel. As was expected, 2014 benthic assemblages differ significantly among sediment classes (PRIMER ANOSIM), and sediment class is the best predictor of the benthic community (PERMANOVA+ distance-based RDA). Our goal here is to use consistent analytical approaches to characterize changes that occur over season and inter-annual time scales. This is a critical step toward attributing sediment, habitat and biological changes to Superstorm Sandy.
Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes
LaFrancois, B.M.; Carlisle, D.M.; Nydick, K.R.; Johnson, B.M.; Baron, Jill S.
2003-01-01
Twenty-two high-elevation lakes (>3000 m) in Rocky Mountain National Park and Indian Peaks Wilderness Area, Colorado, were surveyed during summer 1998 to explore relationships among benthic invertebrates, water chemistry (particularly nitrate concentrations), and other environmental variables. Water samples were collected from the deepest portion of each lake and analyzed for ions and other water chemistry parameters. Benthic invertebrates were collected from the littoral zone using both a sweep net and Hess sampler. Physical and geographical measurements were derived from maps. Relationships among benthic invertebrate assemblages and environmental variables were examined using canonical correspondence analysis, and the importance of sampling methodology and taxonomie resolution on these relationships was evaluated. Choice of sampling methodology strongly influenced the outcome of statistical analyses, whereas taxonomie resolution did not. Presence/absence of benthic invertebrate taxa among the study lakes was best explained by elevation and presence of fish. Relative abundance and density of benthic invertebrate taxa were more strongly influenced by sampling date and water chemistry. Nitrate (NO₃⁻) concentration, potentially on the rise due to regional nitrogen deposition, was unrelated to benthic invertebrate distribution regardless of sampling method or taxonomie resolution.
Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004
Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.
2004-01-01
Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological importance in the Park. Ocean floor bathymetry and sediment type are the building blocks of marine communities. Bottom type and shape affects the kinds of benthic communities that develop in a particular environment as well as the oceanographic conditions that communities are subject to. Accurate mapping of the ocean floor is essential for park manager’s understanding of existing marine communities and will be important in assessing human induced changes (e.g., vessel traffic and commercial fishing), biological change (e.g., rapid sea otter recolonization), and geological processes of change (e.g., deglaciation). Information on animal-habitat relationships, particularly within a marine reserve framework, will be valuable to agencies making decisions about critical habitats, marine reserve design, as well as fishery management. Identification and mapping of benthic habitat provides National Park Service mangers with tools to increase the effectiveness of resource management. The primary objective of this project is to investigate the geological characteristics of the biological habitats of halibut, Dungeness crab, king crab, and Tanner crab within Glacier Bay National Park. Additionally, habitat classification of shallow water regions of Glacier Bay will provide crucial information on the relationship between benthic habitat features and the abundance of benthic prey items for a variety of marine predators, including sea ducks, the rapidly increasing population of sea otters, and other marine mammals.
Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?
NASA Astrophysics Data System (ADS)
Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.
2018-05-01
Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.
INDEX OF ESTUARINE BENTHIC INTEGRITY FOR GULF OF MEXICO ESTUARIES
A benthic index for northern Gulf of Mexico estuaries has been developed and successfully validated by the Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Louisianian Province. The benthic index is a useful indicator of estuarine condition that provi...
NASA Astrophysics Data System (ADS)
de Juan, S.; Lo Iacono, C.; Demestre, M.
2013-01-01
Eleven sites were located on Mediterranean continental shelves to explore the link between the physical characteristics and epibenthic fauna from soft-sediment habitats. These sites, at 32-82 m in depth, were associated with fishing grounds and the trawling intensity was estimated at the site scale to assess the effects of trawling on benthic communities. Each site was surveyed with Multi-Beam (bathymetry and backscatter), side-scan sonar, benthic grabs and a surface dredge. The sites were clustered in three habitat types. Habitat 1, with moderate trawling disturbance, was characterised by homogeneous mud and associated epifauna that was also highly homogeneous across sites. Habitat 2, with sandy mud and scattered gravel and rocks, had a high abundance of sessile suspension feeders that probably attach to the coarser substratum and benefit from the low fishing disturbance in these sites. Habitat 3 included sites with heterogeneous sediments with maërl as the prevailing biocenosis and having the highest species richness, despite being subjected to variable trawling intensity. Statistical models were used to relate environmental parameters and the species abundance. More than 3 physical variables were necessary to explain the epifaunal patterns across sites, including the percentage of mud, sediment heterogeneity and fishing effort. These analyses are an essential step for extrapolating information from benthic samples to the larger scale of habitats, mapped through acoustic surveys. Despite this, a good integration is required between the mapping of physical habitat distribution and the ecological knowledge of communities.
A MORE COST-EFFECTIVE EMAP-ESTUARIES BENTHIC MACROFAUNAL SAMPLING PROTOCOL
The standard benthic macrofaunal sampling protocol in the U.S. Environmental Protection Agency's Pacific Coast Environmental Monitoring and Assessment Program (EMAP) is to collect a minimum of 30 random benthic samples per reporting unit (e.g., estuary) using a 0.1 m2 grab and to...
A MORE COST-EFFECTIVE EMAP BENTHIC MACROFAUNAL SAMPLING PROTOCOL
Benthic macrofaunal sampling protocols in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) are to collect 30 to 50 random benthic macrofauna [defined as animals retained on a 0.5 mm (East and Gulf Coasts, USA) or a 1.0 mm mesh siev...
Andrea Havron; Chris Goldfinger; Sarah Henkel; Bruce G. Marcot; Chris Romsos; Lisa Gilbane
2017-01-01
Resource managers increasingly use habitat suitability map products to inform risk management and policy decisions. Modeling habitat suitability of data-poor species over large areas requires careful attention to assumptions and limitations. Resulting habitat suitability maps can harbor uncertainties from data collection and modeling processes; yet these limitations...
Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling.
Foveau, Aurélie; Vaz, Sandrine; Desroy, Nicolas; Kostylev, Vladimir E
2017-01-01
The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter's purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats.
Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling
Desroy, Nicolas; Kostylev, Vladimir E.
2017-01-01
The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter’s purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats. PMID:28981504
NASA Astrophysics Data System (ADS)
Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex
2018-06-01
Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.
Mapping South San Francisco Bay's seabed diversity for use in wetland restoration planning
Fregoso, Theresa A.; Jaffe, B.; Rathwell, G.; Collins, W.; Rhynas, K.; Tomlin, V.; Sullivan, S.
2006-01-01
Data for an acoustic seabed classification were collected as a part of a California Coastal Conservancy funded bathymetric survey of South Bay in early 2005. A QTC VIEW seabed classification system recorded echoes from a sungle bean 50 kHz echosounder. Approximately 450,000 seabed classification records were generated from an are of of about 30 sq. miles. Ten district acoustic classes were identified through an unsupervised classification system using principle component and cluster analyses. One hundred and sixty-one grab samples and forty-five benthic community composition data samples collected in the study area shortly before and after the seabed classification survey, further refined the ten classes into groups based on grain size. A preliminary map of surficial grain size of South Bay was developed from the combination of the seabed classification and the grab and benthic samples. The initial seabed classification map, the grain size map, and locations of sediment samples will be displayed along with the methods of acousitc seabed classification.
A MORE COST-EFFECTIVE EMAP-W BENTHIC MACROFAUNAL SAMPLE UNIT
The standard EPA West Coast Environmental Monitoring and Assessment Program (EMAP-W) benthic macrofaunal sampling protocol is to collect 30-50 random benthic samples per reporting unit (e.g., estuary, region) using a 0.1 m2 grab and to sort out macrofauna using a 1.0 mm mesh scre...
Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters
NASA Technical Reports Server (NTRS)
Miller, Richard L.; McKee, Brent A.
2004-01-01
High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
A new Concept for High Resolution Benthic Mapping and Data Aquisition: MANSIO-VIATOR
NASA Astrophysics Data System (ADS)
Flögel, S.
2015-12-01
Environmental conditions within sensitive seafloor ecosystems such as cold-seep provinces or cold-water coral reef communities vary temporally and spatially over a wide range of scales. Some of these are regularly monitored via short periods of intense shipborne activity or low resolution, fixed location studies by benthic lander systems. Long term measurements of larger areas and volumes are ususally coupled to costly infrastructure investments such as cabled observatories. In space exploration, a combination of fixed and mobile systems working together are commonly used, e.g. lander systems coupled to rovers, to tackle observational needs that are very similar to deep-sea data aquisition. The analogies between space and deep-sea research motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration under extreme conditions). The program objectives are to identify, develop and verify technological synergies between the robotic exploration of e.g. the moon and the deep-sea. Within ROBEX, the mobility of robots is a vital element for research missions due to valuable scientifice return potential from different sites as opposed to static landers. Within this context, we developed a new mobile crawler system (VIATOR, latin for traveller) and a fixed lander component for energy and data transfer (MANSIO, latin for housing/shelter). This innovative MANSIO-VIATOR system has been developed during the past 2.5 years. The caterpillar driven component is developed to conduct high resolution opitcal mapping and repeated monitoring of physical and biogeochemical parameters along transects. The system operates fully autonomously including navigational components such as camera and laser scanners, as well as marker based near-field navigation used in space technology. This new concept of data aquisition by a submarine crawler in combination with a fixed lander further opens up marine exploration possibilities.
NASA Astrophysics Data System (ADS)
Kutser, Tiit; Vahtmäe, Ele; Martin, Georg
2006-04-01
One of the objectives of monitoring benthic algal cover is to observe short- and long-term changes in species distribution and structure of coastal benthic habitats as indicators of ecological state. Mapping benthic algal cover with conventional methods (diving) provides great accuracy and high resolution, yet is very expensive and is limited by the time and manpower necessary. We measured reflectance spectra of three indicator species for the Baltic Sea: Cladophora glomerata (green macroalgae), Furcellaria lumbricalis (red macroalgae), and Fucus vesiculosus (brown macroalgae) and used a bio-optical model in an attempt to estimate whether these algae are separable from each other and sandy bottom or deep water by means of satellite remote sensing. Our modelling results indicate that to some extent it is possible to map the studied species with multispectral satellite sensors in turbid waters. However, the depths where the macroalgae can be detected are often shallower than the maximum depths where the studied species usually grow. In waters deeper than just a few meters, the differences between the studied bottom types are seen only in band 2 (green) of the multispectral sensors under investigation. It means that multispectral sensors are capable of detecting difference in brightness only in one band which is insufficient for recognition of different bottom types in waters where no or few in situ data are available. Configuration of MERIS spectral bands allows the recognition of red, green and brown macroalgae based on their spectral signatures provided the algal belts are wider than MERIS spatial resolution. Commercial stock of F. lumbricalis in West-Estonian Archipelago covers area where MERIS 300 m spatial resolution is adequate. However, strong attenuation of light in the water column and signal to noise ratio of the sensor do not allow mapping of Furcellaria down to maximum depths where it occurs.
Hart, Kristen M.; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.
2010-01-01
The loggerhead sea turtle Caretta caretta faces declining nest numbers and bycatches from commercial longline fishing in the southeastern USA. Understanding spatial and temporal habitat-use patterns of these turtles, especially reproductive females in the neritic zone, is critical for guiding management decisions. To assess marine turtle habitat use within the Dry Tortugas National Park (DRTO), we used satellite telemetry to identify core-use areas for 7 loggerhead females inter-nesting and tracked in 2008 and 2009. This effort represents the first tracking of DRTO loggerheads, a distinct subpopulation that is 1 of 7 recently proposed for upgrading from threatened to endangered under the US Endangered Species Act. We also used a rapid, high-resolution, digital imaging system to map benthic habitats in turtle core-use areas (i.e. 50% kernel density zones). Loggerhead females were seasonal residents of DRTO for 19 to 51 d, and individual inter-nesting habitats were located within 1.9 km (2008) and 2.3 km (2009) of the nesting beach and tagging site. The core area common to all tagged turtles was 4.2 km2 in size and spanned a depth range of 7.6 to 11.5 m. Mapping results revealed the diversity and distributions of benthic cover available in the core-use area, as well as a heavily used corridor to/from the nesting beach. This combined tagging-mapping approach shows potential for planning and improving the effectiveness of marine protected areas and for developing spatially explicit conservation plans.
Application of Landscape Mosaic Technology to Complement Coral Reef Resource Mapping and Monitoring
2010-10-01
irregular shapes pose a challenge for divers trying to delimit live tissue boundaries. Future improvements in the 3D representation of benthic mosaics...benthic habitats can be especially challenging when the spatial extent of injuries exceeds tens of square meters. These large injuries are often too...the impacts of severe physical disturbance on coral reefs can be especially challenging when large-scale modifications to the reef structure takes
Scientific Literature Review on the Topic of Monitoring and Modeling Seabed Evolution Rates
2014-11-01
measurement techniques Benthic sea-floor characterisation Coastal Mapping/LIDAR Biomass /benthic habitat Climatology XBeach Policy 1.2.2...http://ed.gdr.nrcan.gc.ca/index_e.php On online data base of “Measurements of biomass and productivity of seabed macrobenthic and megabenthic...unknown origin. At one site, long wavelength ripples are present in what is presumed to be sediment composed of broken shells , tidal velocities exceed
Clinch River remedial investigation task 9 -- benthic macroinvertebrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, E.M. Jr.
1994-08-01
This report summarizes the results of Task 9 of the TVA/Department of Energy (DOE) Interagency Agreement supporting DOE`s Clinch River Remedial Investigation. Species lists and densities (numbers/m{sup 2}) of benthic macroinvertebrates sampled at 16 sites in the Clinch River and Poplar Creek embayments of upper Watts Bar Reservoir near Oak Ridge, Tennessee, in March, 1994, are presented and briefly discussed. Data are also analyzed to assess and compare quality of benthic communities at each site, according to methods developed for TVA`s Reservoir Vital Signs Monitoring Program. Results of this study will be incorporated with other program tasks in a comprehensivemore » report prepared by Oak Ridge National Laboratory in 1995, which will, in part, assess the effect of sediment contaminants on benthic macroinvertebrate communities in Watts Bar Reservoir.« less
Benthic contributions to Adriatic and Mediterranean biogeochemical cycles
NASA Astrophysics Data System (ADS)
Capet, Arthur; Lazzari, Paolo; Spagnoli, Federico; Bolzon, Giorgio; Solidoro, Cosimo
2017-04-01
The 3D biogeochemical BFM-OGSTM implementation currently exploited operationally in the Copernicus Marine Environment Monitoring Services Mediterranean Sea Monitoring and Forecasting Centre (CMEMS-Med-MFC; Lazzari et al., 2010) has been complemented with a benthic component. The approach followed that of (Capet et al 2016) and involved a vertically integrated benthic module accounting for the effect of environmental bottom conditions on diagenetic rates (aerobic mineralization, denitrification, nitrification) through transfer functions as well as the effect of waves and bottom currents on sediment deposition and resuspension. A balanced climatological year is simulated for various values of the resuspension parameters, using specifically calibrated transfer functions for the Adriatic Sea and generic formulations for the rest of the Mediterranean basin. The results serves the mapping of distinct provinces of the Adriatic Sea based on the benthic contributions biogeochemical budgets and the seasonal variability of benthic-pelagic fluxes. The differences with the non-benthic reference simulation are highlighted in details regarding the Adriatic, and more generally for the entire Mediterranean Sea. Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella, S., Tonani, M., Crise, A. (2010). Pre-operational short-term forecasts for Mediterranean Sea biogeochemistry. Ocean Science, 6(1), 25-39. Capet, A., Meysman, F. J., Akoumianaki, I., Soetaert, K., & Grégoire, M. (2016). Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Modelling, 101, 83-100.
California State Waters Map Series: offshore of Salt Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Salt Point map area include unconsolidated continental shelf sediments, mixed continental shelf substrate, and hard continental shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Fort Ross, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-12-03
Potential marine benthic habitat types in the Offshore of Fort Ross map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky shelf outcrops and rubble are considered the primary habitat type for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Bodega Head, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-08-06
Potential marine benthic habitats in the Offshore of Bodega Head map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio
2017-11-16
Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.
Eugenio, Francisco; Marcello, Javier; Martin, Javier
2017-01-01
Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones. PMID:29144444
Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.
1996-01-01
Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.
NASA Astrophysics Data System (ADS)
Kelly-Slatten, K.
2013-12-01
In order to construct an accurate cartographic representation of the potential rockfish habitat zone in the San Juan Archipelago, Washington, bathymetric data is needed to form layers within Geographic Information Systems (GIS) that include, but are not limited to, slope, hillshade, and aspect. Backscatter data is also important in order to demonstrate the induration of the marine floor, which in turn may tell the researcher what type of sediment and substrate makes up that part of the benthic region. Once these layers are added to the GIS map, another layer (referred to as Potential Benthic Habitats) is created and inserted. This layer uses the same induration data but groups them into polygons, which are then color-coded and displayed on the map. With all the layers now pictured, it is clear that the intertidal zones are not complete. Aerial photographs are then added to fill in the gaps according to the GPS coordinates associated with the middle section of each picture. When all pictures and layers have been included, the GIS map is a somewhat three-dimensional, color-coordinated, aerial photograph enhanced depiction of Skipjack, Waldron, Orcas, and Sucia Islands. The bathymetric and backscatter data are plugged into Excel to graphically illustrate specific numbers that represent the various potential habitats. The given data support the idea that potential rockfish habitat (Sedimentary Bedrock and Fractured Bedrock) must be closely monitored and maintained in attempt to preserve and conserve the three either threatened or endangered rockfish species within the Puget Sound locale.
NASA Astrophysics Data System (ADS)
Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F.
2016-03-01
Recent technological developments of multibeam echosounder systems (MBES) allow mapping of benthic habitats with unprecedented detail. MBES can now be employed in extremely shallow waters, challenging data acquisition (as these instruments were often designed for deeper waters) and data interpretation (honed on datasets with resolution sometimes orders of magnitude lower). With extremely high-resolution bathymetry and co-located backscatter data, it is now possible to map the spatial distribution of fine scale benthic habitats, even identifying the acoustic signatures of single sponges. In this context, it is necessary to understand which of the commonly used segmentation methods is best suited to account for such level of detail. At the same time, new sampling protocols for precisely geo-referenced ground truth data need to be developed to validate the benthic environmental classification. This study focuses on a dataset collected in a shallow (2-10 m deep) tidal channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a range of classifications, both pixel-based and object-based approaches, including manual, Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and Object Based Image Analysis. Through a comprehensive and accurately geo-referenced ground truth dataset, we were able to identify five different classes of the substrate composition, including sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User, Producer Accuracies and the Kappa statistic) by cross tabulating predicted and reference instances. Overall, pixel based segmentations produced the highest accuracies and the accuracy assessment is strongly dependent on the number of classes chosen for the thematic output. Tidal channels in the Venice Lagoon are extremely important in terms of habitats and sediment distribution, particularly within the context of the new tidal barrier being built. However, they had remained largely unexplored until now, because of the surveying challenges. The application of this remote sensing approach, combined with targeted sampling, opens a new perspective in the monitoring of benthic habitats in view of a knowledge-based management of natural resources in shallow coastal areas.
Gibbs, Ann E.; Cochran, Susan A.; Logan, Joshua B.; Grossman, Eric E.
2007-01-01
A benthic-habitat classification map was created for the park using existing color aerial photography, Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) bathymetric data, georeferenced underwater video, and still photography. Individual habitat polygons were classified using five basic attributes: (1) major structure or substrate, (2) dominant structure, (3) major biologic cover on the substrate, (4) percentage of major biological cover, and (5) geographic zone. Additional information regarding geology, morphology, and coral species were also noted.
Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.
1993-01-01
Benthic invertebrate communities are evaluated as part of the ecological survey component of the U.S. Geological Survey's National Water-Quality Assessment Program. These biological data are collected along with physical and chemical data to assess water-quality conditions and to develop an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. The objectives of benthic invertebrate community characterizations are to (1) develop for each site a list of tax a within the associated stream reach and (2) determine the structure of benthic invertebrate communities within selected habitats of that reach. A nationally consistent approach is used to achieve these objectives. This approach provides guidance on site, reach, and habitat selection and methods and equipment for qualitative multihabitat sampling and semi-quantitative single habitat sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data within and among study units.
California State Waters Map Series: offshore of Santa Barbara, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively utilized Santa Barbara coastal zone, including Arroyo Burro Beach Park, Leadbetter Beach, East Beach, and “Butterfly Beach.” There are ongoing coastal erosion problems associated with both development and natural processes; between 1933–1934 and 1998, cliff erosion in the map area occurred at rates of about 0.1 to 1 m/yr, the largest amount (63 m) occurring at Arroyo Burro in the western part of the map area. In addition, development of the Santa Barbara Harbor, which began in 1928, lead to shoaling west of the harbor as the initial breakwater trapped sand, as well as to coastal erosion east of the harbor. Since 1959, annual harbor dredging has mitigated at least some of the downcoast erosion problems. The Offshore of Santa Barbara map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) San Ysidro Creek, Oak Creek, Montecito Creek, Sycamore Creek, Mission Creek, Arroyo Burro, and Atascadero Creek. The Ventura and Santa Clara Rivers, the mouths of which are about 40 to 50 km southeast of Santa Barbara, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.4° to 0.8°) so that water depths at the 3-nautical-mile limit of California’s State Waters are about 45 m in the east and about 75 m in the west. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Santa Barbara map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie within the Shelf (continental shelf) megahabitat, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.
NASA Astrophysics Data System (ADS)
LaFrance, Monique; King, John W.; Oakley, Bryan A.; Pratt, Sheldon
2014-07-01
Recent interest in offshore renewable energy within the United States has amplified the need for marine spatial planning to direct management strategies and address competing user demands. To assist this effort in Rhode Island, benthic habitat classification maps were developed for two sites in offshore waters being considered for wind turbine installation. Maps characterizing and representing the distribution and extent of benthic habitats are valuable tools for improving understanding of ecosystem patterns and processes, and promoting scientifically-sound management decisions. This project presented the opportunity to conduct a comparison of the methodologies and resulting map outputs of two classification approaches, “top-down” and “bottom-up” in the two study areas. This comparison was undertaken to improve understanding of mapping methodologies and their applicability, including the bottom-up approach in offshore environments where data density tends to be lower, as well as to provide case studies for scientists and managers to consider for their own areas of interest. Such case studies can offer guidance for future work for assessing methodologies and translating them to other areas. The traditional top-down mapping approach identifies biological community patterns based on communities occurring within geologically defined habitat map units, under the concept that geologic environments contain distinct biological assemblages. Alternatively, the bottom-up approach aims to establish habitat map units centered on biological similarity and then uses statistics to identify relationships with associated environmental parameters and determine habitat boundaries. When applied to the two study areas, both mapping approaches produced habitat classes with distinct macrofaunal assemblages and each established statistically strong and significant biotic-abiotic relationships with geologic features, sediment characteristics, water depth, and/or habitat heterogeneity over various spatial scales. The approaches were also able to integrate various data at differing spatial resolutions. The classification outputs exhibited similar results, including the number of habitat classes generated, the number of species defining the classes, the level of distinction of the biological communities, and dominance by tube-building amphipods. These results indicate that both approaches are able to discern a comparable degree of habitat variability and produce cohesive macrofaunal assemblages. The mapping approaches identify broadly similar benthic habitats at the two study sites and methods were able to distinguish the differing levels of heterogeneity between them. The top-down approach to habitat classification was faster and simpler to accomplish with the data available in this study when compared to the bottom-up approach. Additionally, the top-down approach generated full-coverage habitat classes that are clearly delineated and can easily be interpreted by the map user, which is desirable from a management perspective for providing a more complete assessment of the areas of interest. However, a higher level of biological variability was noted in some of the habitat classes created, indicating that the biological communities present in this area are influenced by factors not captured in the broad-scale geological habitat units used in this approach. The bottom-up approach was valuable in its ability to more clearly define macrofaunal assemblages among habitats, discern finer-scale habitat characteristics, and directly assess the degree of macrofaunal assemblage variability captured by the environmental parameters. From a user perspective, the map is more complex, which may be perceived as a limitation, though likely reflects natural gradations in habitat structure and likely presents a more ecologically realistic portrayal of the study areas. Though more comprehensive, the bottom-up approach in this study was limited by the reliance on full-coverage data to create full-coverage habitat classes. Such classes could only be developed when sediment data was excluded, since this point-sample dataset could not be interpolated due to high spatial heterogeneity of the study areas. Given a higher density of bottom samples, this issue could be rectified. While the top-down approach was more appropriate for this study, both approaches were found to be suitable for mapping and classifying benthic habitats. In the United States, objectives for mapping and classification for renewable energy development have not been well established. Therefore, at this time, the best-suited approach primarily depends on mapping objectives, resource availability, data quality and coverage, and geographical location, as these factors impact the types of data included, the analyses and modeling that can be performed, and the biotic-abiotic relationships identified.
Relating remotely sensed optical variability to marine benthic biodiversity.
Herkül, Kristjan; Kotta, Jonne; Kutser, Tiit; Vahtmäe, Ele
2013-01-01
Biodiversity is important in maintaining ecosystem viability, and the availability of adequate biodiversity data is a prerequisite for the sustainable management of natural resources. As such, there is a clear need to map biodiversity at high spatial resolutions across large areas. Airborne and spaceborne optical remote sensing is a potential tool to provide such biodiversity data. The spectral variation hypothesis (SVH) predicts a positive correlation between spectral variability (SV) of a remotely sensed image and biodiversity. The SVH has only been tested on a few terrestrial plant communities. Our study is the first attempt to apply the SVH in the marine environment using hyperspectral imagery recorded by Compact Airborne Spectrographic Imager (CASI). All coverage-based diversity measures of benthic macrophytes and invertebrates showed low but statistically significant positive correlations with SV whereas the relationship between biomass-based diversity measures and SV were weak or lacking. The observed relationships did not vary with spatial scale. SV had the highest independent effect among predictor variables in the statistical models of coverage-derived total benthic species richness and Shannon index. Thus, the relevance of SVH in marine benthic habitats was proved and this forms a prerequisite for the future use of SV in benthic biodiversity assessments.
ENVIRONMENTAL INFLUENCES ON BENTHIC COMMUNITY STRUCTURE IN A GREAT LAKES EMBAYMENT
An Intensified Environmental Monitoring and Assessment Program (EMAP) sampling grid in the St. Louis River estuary of western Lake Superior was used toassess the relationship between surficial sediment characteristics and benthic community structure. Ninety sites within two habit...
NASA Astrophysics Data System (ADS)
Manuputty, Agnestesya; Lumban Gaol, Jonson; Bahri Agus, Syamsul; Wayan Nurjaya, I.
2017-01-01
Seagrass perform a variety of functions within ecosystems, and have both economic and ecological values, therefore it has to be kept sustainable. One of the stages to preserve seagrass ecosystems is monitoring by utilizing thespatial data accurately. The purpose of the study was to assess and compare the accuracy of DII and PCA transformationsfor mapping of seagrass ecosystems. Fieldstudy was carried out in Karang Bongkok and Kotok Island waters, in Agustus 2014 and in March 2015. A WorldView-2 image acquisition date of 5 October 2013 was used in the study. The transformations for image processing data were Depth Invariant Index (DII) and Principle Component Analysis (PCA) using Support Vector Machine (SVM) classification. The result shows that benthic habitat mapping of Karang Bongkok using DII and PCA transformations were 72%and 81% overall’s accuracy respectively, whereas of Kotok Island were 83% and 84% overall’s accuracy respectively. There were seven benthic habitat types found in karang Bongkok waters and in Kotok Island namely seagrass, sand, rubble, coral, logoon, sand mix seagrass, and sand mix rubble. PCA transformation was effectively to improve mapping accuracy of sea grass mapping in Kotok Island and Karang Bongkok.
A small format 35 mm hand-held camera with color infrared slide film was used to map blooms of benthic green macroalgae upon mudflats of Yaquina Bay estuary on the central Oregon coast, U.S.A. Oblique photographs were taken during a series of low tide events, when the intertidal...
NASA Astrophysics Data System (ADS)
Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.
2016-06-01
The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.
Northern Florida reef tract benthic metabolism scaled by remote sensing
Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.
2006-01-01
Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.
Data Delivery and Mapping Over the Web: National Water-Quality Assessment Data Warehouse
Bell, Richard W.; Williamson, Alex K.
2006-01-01
The U.S. Geological Survey began its National Water-Quality Assessment (NAWQA) Program in 1991, systematically collecting chemical, biological, and physical water-quality data from study units (basins) across the Nation. In 1999, the NAWQA Program developed a data warehouse to better facilitate national and regional analysis of data from 36 study units started in 1991 and 1994. Data from 15 study units started in 1997 were added to the warehouse in 2001. The warehouse currently contains and links the following data: -- Chemical concentrations in water, sediment, and aquatic-organism tissues and related quality-control data from the USGS National Water Information System (NWIS), -- Biological data for stream-habitat and ecological-community data on fish, algae, and benthic invertebrates, -- Site, well, and basin information associated with thousands of descriptive variables derived from spatial analysis, like land use, soil, and population density, and -- Daily streamflow and temperature information from NWIS for selected sampling sites.
Seafloor geology and benthic habitats, San Pedro Shelf, southern California
Wong, Florence L.; Dartnell, Peter; Edwards, Brian D.; Phillips, Eleyne L.
2012-01-01
Seafloor samples, videography, still photography, and real-time descriptions of geologic and biologic constituents at or near the seafloor of the San Pedro Shelf, southern California, advance the study of natural and man-made processes on this coastal area off the metropolitan Los Angeles area. Multibeam echo-sounder data collected by the U.S. Geological Survey in 1998 and 1999 guided sampling and camera work in 2004 resulting in a new seafloor character map that shows possible benthic habitats in much higher resolution (4- and 16-m pixels) than previously available. The seafloor is characterized by primarily muddy sand and sand with outcrops of Miocene and Pliocene bedrock along the Palos Verdes Fault Zone. Observed benthic populations indicate low abiotic complexity, low biotic complexity, and low biotic coverage. The data are provided for use in geographic information systems (GIS).
Walker, Brian K
2012-01-01
Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere.
Walker, Brian K.
2012-01-01
Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km) coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0–30 m) benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework for similar regional analyses elsewhere. PMID:22276204
NASA Astrophysics Data System (ADS)
Mulcan, Amanda
This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts.
Poppe, L.J.; Ackerman, S.D.; McMullen, K.Y.; Schattgen, P.T.; Schaer, J.D.; Doran, E.F.
2008-01-01
This report releases echosounder data from the northern part of the National Oceanic and Atmospheric Administration (NOAA) hydrographic survey H11044 in Long Island Sound, off Milford, Connecticut. The data have been interpolated and regridded into a complete-coverage data set and image of the sea floor. The grid produced as a result of the interpolation is at 10-m resolution. These data extend an already published set of reprocessed bathymetric data from the southern part of survey H11044. In Long Island Sound, the U.S. Geological Survey, in cooperation with NOAA and the Connecticut Department of Environmental Protection, is producing detailed maps of the sea floor. Part of the current phase of research involves studies of sea-floor topography and its effect on the distributions of sedimentary environments and benthic habitats. This data set provides a more continuous perspective of the sea floor than was previously available. It helps to define topographic variability and benthic-habitat diversity for the area and improves our understanding of oceanographic processes controlling the distribution of sediments and benthic habitats. Inasmuch as precise information on environmental setting is important for selecting sampling sites and accurately interpreting point measurements, this data set can also serve as a base map for subsequent sedimentological, geochemical, and biological research.
Cross-channel variability in benthic habitat
Vayssieres, Marc; Peterson, Heather
2003-01-01
The Interagency Ecological Program’s Environmental Monitoring Program (EMP) has monitored benthic invertebrates since the mid-1970s. A recent review of the EMP found that the spatial study design of the benthos monitoring element was in need of a thorough reexamination through intense special studies and extensive historic data analyses. This article reports the results of preliminary analyses of historical EMP data focusing on cross-channel variability. Specific questions are: (1) do benthic habitats and community assemblages vary between positions across a river channel? (2) Are benthic samples taken at a single channel position sufficiently representative of benthos assemblages across the channel to characterize long term changes in the benthos community of a particular section of a river?
NASA Astrophysics Data System (ADS)
Relles, Noelle J.
The islands of Bonaire and Curacao, Dutch Caribbean, were both mapped along their leeward coasts for dominant coral community and other benthic cover in the early 1980s. This mapping effort offers a unique baseline for comparing changes in the benthic community of the two islands since that time, particularly given the marked differences between the two islands. Bonaire is well-protected and completely surrounded by a marine protected area (MPA), which includes two no-diving marine reserves; additionally, Bonaire's population is only around 15,000. In contrast, the island of Curacao is home to 140,000 inhabitants and marine protection is limited, with a reef area of 600 ha established as a "paper" park (i.e., little enforcement). Video transects collected by SCUBA over the reefs were collected on Bonaire in January of 2008; when compared to data from 1985, coral cover had declined in the shallowest portion of the reef (< 5 m) and was mostly the result of declines in Acropora spp., whereas head corals increased. Transects closest to the no-diving marine reserves showed higher coral cover and diversity than transects located farther from the reserves. Satellite remote sensing techniques were used to create landscape-scale reef maps along the leeward coasts of both islands, which could differentiate areas of high hard coral cover (> 20%), predominantly sand (> 50%) and areas where hard coral and sand were mixed with soft corals, sea whips and marine plants. These modern maps (2007-09) were groundtruthed using the video data collected on Bonaire for accuracy and then compared to the early 1980s maps of the reefs on both islands. Bonaire experienced declines in coral cover overall and the remaining coral was increasingly patchy; however, changes in patch characteristics were not significant over the time period, but status as a marine reserve and the sheltering of the shoreline did appear to buffer against coral loss. Surprisingly, the island of Curacao did not experience a decline in total coral cover, but did become increasingly patchy, significantly more so than Bonaire. The Curacao Underwater Park afforded no additional protection against coral loss or fragmentation than an adjacent unprotected area of reef. The difference between the two islands in coral loss versus fragmentation has the potential for a unique natural experiment to study the effects of habitat fragmentation in the absence of overall habitat loss at the landscape scale. The Bonaire National Marine Park could benefit by restricting visitors to its most frequented dive sites by increasing the cost of entry into a tiered pay system, thus generating more income for education and management of the park, as well as deterring some divers from these overused sites. Satellite remote sensing-derived maps are useful for rapid reef mapping and can be utilized for comparison to ancillary maps created by more traditional methods. Satellite-derived maps can only distinguish benthic habitats coarsely (3-4 habitat classes) and are only as reliable as their source data, they benefit greatly from fieldwork to determine depth, geographic location, and benthic habitat cover in real time.
NASA Astrophysics Data System (ADS)
Gorska, Natalia; Kowalska-Duda, Ewa; Pniewski, Filip; Latała, Adam
2018-06-01
The study has been motivated by the development of the hydroacoustic techniques for mapping and classifying the benthic habitats and for the research of the microbenthos photosynthesis in the semi-enclosed Baltic Sea, particularly sensitive to human activity. The investigation of the effect of the benthic microalgal photosynthesis on the echo signal from the Baltic sandy sediments is continuing. The study clarifies the impact of the abiotic and biotic factors on the diel variation of the backscattering caused by the benthic microalgal photosynthetic activity. Five multiday laboratory experiments, different in hydrophysical or biological conditions, were conducted. During each measurement series, the "day" (illumination) and "night" (darkness) conditions (L:D cycle) were simulated and the diel variations of the echo energy of the backscattered signal were analyzed. The hydroacoustic data were acquired along with measuring biological and biooptical parameters and oxygen concentration. The study demonstrated the impact of microphytobenthos photosynthesis on the backscattering properties of the marine sediment which is sensitive to the illumination level, benthic microalgal biomass and macrozoobenthos bioturbation.
As part of the National Coastal Assessment, the Environmental Monitoring and Assessment Program of EPA is conducting a three year evaluation of benthic habitat condition of California estuaries. In 1999, probabilistic sampling for a variety of biotic and abiotic condition indica...
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas
2013-01-01
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921
Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico
Scanlon, Kathryn M.; Koenig, C.C.; Coleman, F.C.; Miller, M.
2003-01-01
Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions.
Activities and preliminary results of nearshore benthic habitat mapping in southern California, 1998
Cochrane, Guy R.; Lafferty, Kevin D.
2000-01-01
The nearshore benthic habitat of the Santa Barbara coast and Channel Islands supports a diversity of marine life that are commercially, recreationally, and intrinsically valuable. Some of these resources are known to be endangered including a variety of rockfish and the White Abalone. State and National agencies have been mandated to preserve and enhance these resources and require detailed habitat characterization in order to do so. This project will characterize and map the benthic habitat in areas that have been selected because they have been set aside as National Sanctuaries or State Preserves, or are areas of ongoing or planned fish population studies. Various management strategies are being developed to protect marine resources in the Santa Barbara Channel Islands Region. One approach under investigation is to implement no-take marine reserves (Agardy, T., 1997; Bohnsack, 1998; Roberts, 1997). One small reserve presently exists on Anacapa Island and there is a growing momentum to add additional reserves to form a reserve network (Lafferty et al., 2000). Reserves may provide relatively pristine marine communities in a wild state for study and appreciation. In addition, they may buffer some species from over-fishing. A key feature of marine reserve design is to protect a representation of the existing habitats in a region (Roberts, 1997). Unfortunately, the distribution of habitats is not well known in this area since the underwater equivalent of soils and vegetation maps that are widely available for terrestrial systems do not yet exist. Managers need habitat maps to help determine the most appropriate boundaries for reserves in a network in order to meet various criteria and goals (such as habitat representation, reserve size, habitat heterogeneity, reserve spacing, inclusion of sensitive habitats, etc.). Another use for habitat mapping is to better understand the distribution of those habitats that are particularly important to fished species or sensitive species. Combining habitat mapping with ongoing studies of egg and larval fish counts by the National Marine Fisheries Service (Russell Vetter), rockfish population studies by the California Department of Fish and Game (Dave VenTresca), and white abalone (Kevin Lafferty and others, USGS) will extend the ability to predict the distribution of these species and identify areas with appropriate habitat that might be suitable for restoration. Additional uses for habitat mapping include managing visitor use, kelp distribution, and archeological resources.
As part of the National Coastal Assessment, the Environmental Monitoring and Assessment Program of EPA is conducting a six year evaluation of benthic habitat condition for coastal waters of the western U.S. In 1999, probabilistic sampling for a range of biotic and abiotic conditi...
Hydrologic controls on basin-scale distribution of benthic macroinvertebrates
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.
2013-12-01
The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial ecosystem protection.
NASA Astrophysics Data System (ADS)
Pierdomenico, Martina; Guida, Vincent G.; Macelloni, Leonardo; Chiocci, Francesco L.; Rona, Peter A.; Scranton, Mary I.; Asper, Vernon; Diercks, Arne
2015-11-01
Mapping of physical benthic habitats at the head of Hudson Canyon was performed by means of integrated analysis of acoustic data, video surveys and seafloor sampling. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery for the identification of geomorphological features and the characterization of surficial sediments. Habitat characterization in terms of seafloor texture and identification of benthic and demersal communities was accomplished by visual analysis of still photographs from underwater vehicles. Habitat classes were defined on the basis of the seafloor texture observed on photos and then compared with the geophysical data in order to associate habitats to acoustic classes and/or geomorphological features. This enabled us to infer habitat distribution on the basis of morpho-acoustic classes and extrapolate results over larger areas. Results from bottom trawling were used to determine the overall biodiversity within the identified habitats. Our analysis revealed a variety of topographic and sedimentological structures that provide a wide range of physical habitats. A variety of sandy and muddy substrates, gravel patches and mudstone outcrops host rich and varied faunal assemblages, including cold-water corals and sponge communities. Pockmark fields below 300 m depth suggest that methane-based chemosynthetic carbonate deposition may contributes to creation of specific benthic habitats. Hummocky terrain has been delineated along the canyon rims and associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps). These results show the relationships of physical features to benthic habitat variation, support the notion of the area as a biodiversity hotspot and define essential habitats for planning of sustainable regional fisheries.
NASA Astrophysics Data System (ADS)
Leon-Perez, M.; Hernandez, W. J.; Armstrong, R.
2016-02-01
Reported cases of seagrass loss have increased over the last 40 years, increasing the awareness of the need for assessing seagrass health. In situ monitoring has been the main method to assess spatial and temporal changes in seagrass ecosystem. Although remote sensing techniques with multispectral imagery have been recently used for these purposes, long-term analysis is limited to the sensor's mission life. The objective of this project is to determine long-term changes in seagrass habitat cover at Caja de Muertos Island Nature Reserve, by combining in situ data with a satellite image and historical aerial photography. A current satellite imagery of the WorldView-2 sensor was used to generate a 2014 benthic habitat map for the study area. The multispectral image was pre-processed using: conversion of digital numbers to radiance, and atmospheric and water column corrections. Object-based image analysis was used to segment the image into polygons representing different benthic habitats and to classify those habitats according to the classification scheme developed for this project. The scheme include the following benthic habitat categories: seagrass (sparse, dense and very dense), colonized hard bottom (sparse, dense and very dense), sand and mix algae on unconsolidated sediments. Field work was used to calibrate the satellite-derived benthic maps and to asses accuracy of the final products. In addition, a time series of satellite imagery and historic aerial photography from 1950 to 2014 provided data to assess long-term changes in seagrass habitat cover within the Reserve. Preliminary results show an increase in seagrass habitat cover, contrasting with the worldwide declining trend. The results of this study will provide valuable information for the conservation and management of seagrass habitat in the Caja de Muertos Island Nature Reserve.
NASA Astrophysics Data System (ADS)
Johnson, S. Y.; Cochrane, G. R.; Golden, N. E.; Dartnell, P.; Hartwell, S. R.; Cochran, S. A.; Watt, J. T.
2017-12-01
The California Seafloor Mapping Program (CSMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters, which extend for 1,350 km from the shoreline to 5.6 km offshore. CSMP began in 2007 when the California Ocean Protection Council and NOAA allocated funding for high-resolution bathymetric mapping to support the California Marine Life Protection Act and update nautical charts. Collaboration and support from the USGS and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSMP data collection includes: (1) High-resolution bathymetric and backscatter mapping using swath sonar sensors; (2) "Ground-truth" imaging from a sled mounted with video and still cameras; (3) High-resolution seismic-reflection profiling at 1 km line spacing. Processed data are all publicly available. Additionally, 25 USGS map and datasets covering one third of California's coast have been published. Each publication contains 9 to 12 pdf map sheets (1:24,000 scale), an explanatory pamphlet, and a catalog of digital geospatial data layers (about 15 to 25 per map area) with web services. Map sheets display bathymetry, backscatter, perspective views, habitats, groundtruth imagery, seismic profiles, sediment distribution and thickness, and onshore-offshore geology. The CSMP goal is to serve a large constituency, ranging from senior GIS analysts in large agencies, to local governments with limited resources, to non-governmental organizations, the private sector, and concerned citizens. CSMP data and publications provide essential science and data for ocean and coastal management, stimulate and enable research, and raise public education and awareness of coastal and ocean issues. Specific applications include: Delineation and designation of marine protected areas Characterization and modeling of benthic habitats and ecosystems Updating nautical charts Earthquake hazard assessments Tsunami hazard assessments Planning and developing offshore infrastructure Providing baselines for monitoring change Input to models of sediment transport, coastal erosion, and coastal flooding Regional sediment management Understanding coastal aquifers Emergency (e.g., oil spill) response
ECOLOGICAL ASSESSMENT CALIBRATION OF WATER QUALITY IN ESTERO BAY MX964227
This project will produce a GIS database and habitat maps of benthic substrates and biological assemblages within the Estero Bay Aquatic Preserve. A biological approach for identifying ambient water quality conditions will be developed. This will increase awareness among resource...
Along-Track Reef Imaging System (ATRIS)
Brock, John; Zawada, Dave
2006-01-01
"Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.
Mapping the seafloor geology offshore of Massachusetts
Barnhardt, Walter A.; Andrews, Brian D.
2006-01-01
Geologic and bathymetric maps help us understand the evolutionary history of the Massachusetts coast and the processes that have shaped it. The maps show the distribution of bottom types (for example, bedrock, gravel, sand, mud) and water depths over large areas of the seafloor. In turn, these two fundamental parameters largely determine the species of flora and fauna that inhabit a particular area. Knowledge of bottom types and water depths provides a framework for mapping benthic habitats and managing marine resources. The need for coastal–zone mapping to inform policy and management is widely recognized as critical for mitigating hazards, creating resource inventories, and tracking environmental changes (National Research Council, 2004; U.S. Commission on Ocean Policy, 2004).
Integrating tidal and nontidal ecological assessments
Mark Southerland; Roberto Llanso
2016-01-01
The Maryland Department of Natural Resources (DNR) has a long history of conducting rigorous assessments of ecological conditions in both tidal and nontidal waters. The Long-Term Benthic (LTB) Monitoring Program and the Maryland Biological Stream Survey (MBSS) both use reference-based indicators of benthic invertebrate communities to provide areawide estimates of ...
Geologic interpretation and multibeam bathymetry of the sea floor in southeastern Long Island Sound
Poppe, Lawrence J.; Ackerman, Seth D.; Doran, Elizabeth F.; Moser, Marc S.; Stewart, Helen F.; Forfinski, Nicholas A.; Gardner, Uther L.; Keene, Jennifer A.
2006-01-01
Digital terrain models (DTMs) produced from multibeam echosounder (MBES) bathymetric data provide valuable base maps for marine geological interpretations (e.g. Todd and others, 1999; Mosher and Thomson, 2002; ten Brink and others, 2004; Poppe and others, 2006a,b). These maps help define the geological variability of the sea floor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, monitoring, and management activities. The bathymetric survey interpreted herein (National Oceanic and Atmospheric Administration (NOAA) survey H11255) covers roughly 95 km? of sea floor in southeastern Long Island Sound (fig. 1). This bathymetry has been examined in relation to seismic reflection data collected concurrently, as well as archived seismic profiles acquired as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (USGS). The objective of this work was to use these geophysical data sets to interpret geomorphological attributes of the sea floor in terms of the Quaternary geologic history and modern sedimentary processes within Long Island Sound.
California State Waters Map Series: offshore of Carpinteria, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Point is a well-known world-class surf break, and Rincon Island, constructed for oil and gas production, lies offshore of Punta Gorda. The steep bluffs backing the coastal strip are geologically unstable, and coastal erosion problems are ongoing in the map area; most notably, landslides in 2005 struck the small coastal community of La Conchita, engulfing houses and killing ten people. The Offshore of Carpinteria map area lies in the central part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates have been estimated to be about 400,000 tons/yr at Santa Barbara Harbor (about 15 km west of Carpinteria). At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. Sediment supply to the western and central part of the littoral cell is largely from relatively small transverse coastal watersheds, which have an estimated cumulative annual sediment flux of 640,000 tons/yr. The much larger Ventura and Santa Clara Rivers, the mouths of which are about 25 to 30 km southeast of Carpinteria, yield an estimated 3.4 million tons of sediment annually, the coarser sediment load generally moving southeast, down the coast, and the finer sediment load moving both upcoast and offshore. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips so gently (about 0.4° to 0.5°) that water depths at the 3-nautical-mile limit of California’s State Waters are 40 to 45 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by variable amounts of upper Quaternary shelf, estuarine, and fluvial sediments that thicken to the south. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Carpinteria map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie within the Shelf (continental shelf) megahabitat, dominated by a flat seafloor and substrates formed from deposition of fluvial and marine sediment during sea-level rise. This fairly homogeneous seafloor provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. The only significant interruptions to this homogeneous habitat type are the exposures of hard, irregular, and hummocky sedimentary bedrock and coarse-grained sediment where potential habitats for rockfish and related species exist.
California State Waters Map Series--Offshore of Ventura, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River, and the region is characterized by urban and agricultural development. Ventura Harbor sits just north of the mouth of the Santa Clara River, in an area formerly occupied by lagoons and marshes. The Offshore of Ventura map area lies in the eastern part of the Santa Barbara littoral cell, whose littoral drift is to the east-southeast. Drift rates of about 700,000 to 1,150,000 tons/yr have been reported at Ventura Harbor. At the east end of the littoral cell, eastward-moving sediment is trapped by Hueneme and Mugu Canyons and then transported into the deep-water Santa Monica Basin. The largest sediment source to this littoral cell (and the largest in all of southern California) is the Santa Clara River, which has an estimated annual sediment flux of 3.1 million tons. In addition, the Ventura River yields about 270,000 tons of sediment annually. Despite the large local sediment supply, coastal erosion problems are ongoing in the map area. Riprap, revetments, and seawalls variably protect the coast within and north of Ventura. The offshore part of the map area mainly consists of relatively flat, shallow continental shelf, which dips so gently (about 0.2° to 0.4°) that water depths at the 3-nautical-mile limit of California’s State Waters are just 20 to 40 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and west by Point Conception and the Channel Islands; long-period swells affecting the area are mainly from the south-southwest. Fair-weather wave base is typically shallower than 20-m water depth, but winter storms are capable of resuspending fine-grained sediments in 30 m of water, and so shelf sediments in the map area probably are remobilized on an annual basis. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated up and down in the last several hundred thousand years. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Ventura map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie within the Shelf (continental shelf) megahabitat, dominated by a flat seafloor and substrates formed from deposition of fluvial and marine sediment during sea-level rise. This flat, fairly homogeneous seafloor, composed primarily of unconsolidated sand and mud and local deposits of gravel, cobbles, and pebbles, provides promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. The only significant interruptions to this homogeneous habitat type are exposures of hard, irregular sedimentary bedrock and coarse-grained sediment where potential habitats for rockfish and related species exist.
Moring, J. Bruce; Rosendale, John C.; Ansley, Stephen P.; Brown, Dexter W.
1998-01-01
The U.S. Geological Survey collected fish, benthic macroinvertebrate, and stream habitat data at sampling sites in the Houston-Galveston Area Council service area, a 15-county area with a population of about 4.3 million people. The data were collected for a 1997?98 study in cooperation with the Houston-Galveston Area Council to provide data for the Texas Clean Rivers Program for watersheds near Houston, Texas. Fish community and stream habitat data were collected at all 56 sites selected, and benthic macroinvertebrate data were collected at 39 of the sites.
Integrating multisource imagery and GIS analysis for mapping Bermuda`s benthic habitats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vierros, M.K.
1997-06-01
Bermuda is a group of isolated oceanic situated in the northwest Atlantic Ocean and surrounded by the Sargasso Sea. Bermuda possesses the northernmost coral reefs and mangroves in the Atlantic Ocean, and because of its high population density, both the terrestrial and marine environments are under intense human pressure. Although a long record of scientific research exists, this study is the first attempt to comprehensively map the area`s benthic habitats, despite the need for such a map for resource assessment and management purposes. Multi-source and multi-date imagery were used for producing the habitat map due to lack of a completemore » up-to-date image. Classifications were performed with SPOT data, and the results verified from recent aerial photography and current aerial video, along with extensive ground truthing. Stratification of the image into regions prior to classification reduced the confusing effects of varying water depth. Classification accuracy in shallow areas was increased by derivation of a texture pseudo-channel, while bathymetry was used as a classification tool in deeper areas, where local patterns of zonation were well known. Because of seasonal variation in extent of seagrasses, a classification scheme based on density could not be used. Instead, a set of classes based on the seagrass area`s exposure to the open ocean were developed. The resulting habitat map is currently being assessed for accuracy with promising preliminary results, indicating its usefulness as a basis for future resource assessment studies.« less
Current Approaches to Improving Marine Geophysical Data Discovery and Access
NASA Astrophysics Data System (ADS)
Jencks, J. H.; Cartwright, J.; Varner, J. D.; Anderson, C.; Robertson, E.; McLean, S. J.
2016-02-01
Exploring, understanding, and managing the global oceans is a challenge when hydrographic maps are available for only 5% of the world's oceans, even less of which have been mapped geologically or to identify benthic habitats. Seafloor mapping is expensive and most government and academic budgets continue to tighten. The first step for any mapping program, before setting out to map uncharted waters, should be to identify if data currently exist in the area of interest. There are many reasons why this seemingly simple suggestion is not commonplace. While certain datasets are accessible online (e.g., NOAA's NCEI, EMODnet, IHO-DCDB), many are not. In some cases, data that are publicly available are difficult to discover and access. No single agency can successfully resolve the complex and pressing demands of ocean and coastal mapping and the associated data stewardship. NOAA partners with other federal agencies to provide an integrated approach to carry out a coordinated and comprehensive ocean and coastal mapping program. In order to maximize the return on their mapping investment, legacy and newly acquired data must be easily discoverable and readily accessible by numerous applications and formats now and well into the future. At NOAA's National Centers for Environmental Information (NCEI), resources are focused on ensuring the security and widespread availability of the Nation's scientific marine geophysical data through long-term stewardship. The public value of these data and products is maximized by streamlining data acquisition and processing operations, minimizing redundancies, facilitating discovery, and developing common standards to promote re-use. For its part, NCEI draws on a variety of software technologies and adheres to international standards to meet this challenge. The result is a geospatial framework built on spatially-enabled databases, standards-based web services, and International Standards Organization (ISO) metadata. In order to maximize effectiveness in ocean and coastal mapping, we must be sure that limited funding is not being used to collect data in areas where data already exist. By making data more accessible, NCEI extends the use of, and therefore the value of, these data. Working together, we can ensure that valuable data are made available to the broadest community.
The Oceanographic Environmental Reference Service Retrieval Program Users Guide.
1981-02-01
3 ’ 5’T250J . 30’ 3 5 3 533L ’ M V 0 . -,, ,v’ "" .+ M.. , ," .... I’ . . . . - . .- . . , . . . . . . . . L... .- - - . 43’ ’ 635 5243 511’,:2...AMPHIBIANS BIb BENTHIC BACTERIA AND MICRO-ORGANISMS BI7 PHYTOBENTHOS BI8 ZOOBENTHOS B19 COMMERCIAL DEMERSAL FISH B20 COMMERCIAL BENTHIC MOLLUSCS B21
NASA Astrophysics Data System (ADS)
Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne
2013-04-01
Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats. Previously described hummocky terrain associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps) was clearly delineated along the canyon rims. Bedform fields and potential current deposits observed along the upper portion of canyon walls suggest the presence of intense bottom currents flowing parallel to canyon axis. A benthic habitat map of Hudson Canyon head was produced by integration of the different datasets. The distribution of habitats was primarily inferred from geophysical data characteristics. Furthermore habitat characteristics can be related to sedimentary and oceanographic processes acting on the seafloor. Comparison and refinement of bathymetric and backscatter imagery with ground truth data enabled validation of acoustic classification of the seafloor, allowing the definition of morpho-acoustic classes corresponding to as many habitats, and to extend the predictive results over larger areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, A.T.; Holland, A.F.
1989-12-01
The report summarizes data from the first three years of a long-term monitoring program to establish baseline conditions in benthic communities on the upper Potomac River. Major sources of variation were considered in an effort to characterize the effect of two power plants on distribution and abundance of the benthos. Distinct changes occurred in benthic communities in the vicinity of power plant discharges. These included decreased abundances of dominant species and reduced occurrences of rare species. Impacts associated with power plants were most severe during summer months and during low flow years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, A.T.; Holland, A.F.
1989-12-01
The report summarizes data from the first three years of a long-term monitoring program to establish baseline conditions in benthic communities on the upper Potomac River. Major sources of variation were considered in an effort to characterize the effect of two power plants on distribution and abundance of the benthos. Distinct changes occurred in benthic communities in the vicinity of power plant discharges. These included decreased abundances of dominant species and reduced occurrences of rare species. Impacts associated with power plants were most severe during summer months and during low flow years.
Environmental Assessment of the Bolinas Lagoon: a study utilizing benthic foraminifera
NASA Astrophysics Data System (ADS)
Benton, L.; Espinoza Madrid, N.; Grande, C.
2016-12-01
Benthic foraminifera have long been recognized for their utility in environmental assessments. They are abundant, diverse, and found in all marine environments, but species distributions depend largely on local environmental conditions. This study analyses benthic foraminiferal assemblages from the Bolinas Lagoon, Marin County, California. The Careers in Science Intern Program collected 36 sediment samples from 13 sites within the Bolinas Lagoon. Foraminiferal assemblages for each site are reported, and species richness, relative abundance, and Shannon's diversity calculated. Results indicate that Shannon's diversity is low throughout the Bolinas Lagoon and stress tolerant taxa are abundant, which suggests that current conditions in the Bolinas Lagoon are sub optimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engle, V.D.; Summers, J.K.; Macauley, J.M.
1994-12-31
The Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Gulf of Mexico supplements its base sampling effort each year with localized, intensive spatial sampling in selected large estuarine systems. By selecting random locations within 70 km{sup 2} hexagonal areas, individual estuaries were sampled using EMAP methods but at four times the density as base sampling. In 1992, 19 sites were sampled in Lake Pontchartrain, Louisiana. In 1 993, 18 sites were sampled in Sabine Lake, Texas and 12 sites were sampled in Choctawhatchee Bay, Florida. At all sites, sediment grabs were taken and analyzed for benthic species compositionmore » and abundance, for toxicity to Ampelisca, and for organic and inorganic sediment contaminants. An indicator of biotic integrity, the benthic index, was calculated to represent the status of benthic communities. A series of statistical techniques, such as stepwise regression analysis, were employed to determine whether the variation in the benthic index could be associated with variation in sediment contaminants, sediment toxicity, or levels of dissolved oxygen. Spatial distributions of these parameters were examined to determine the geographical co-occurrence of degraded benthic communities and environmental stressors. In Lake Pontchartrain, for example, 85% of the variation in the benthic index was associated with decreased levels of dissolved oxygen, and increased concentrations of PCBs, alkanes, copper, tin, and zinc in the sediments.« less
Lenz, Bernard N.; Rheaume, S.J.
2000-01-01
This report describes the variability in family-level benthic-invertebrate population data and the reliability of the data as a water-quality indicator for 11 fixed surface-water sites in the Western Lake Michigan Drainages study area of the National Water-Quality Assessment Program. Benthic-invertebrate-community measures were computed for the following: number of individuals, Hilsenhoff’s Family-Level Biotic Index, number and percent EPT (Ephemeroptera, Plecoptera, and Tricoptera), Margalef’s Diversity Index, and mean tolerance value. Relations between these measures and environmental setting, habitat, and of chemical water quality are examined. Benthic-invertebrate communities varied greatly among fixed sites and within individual streams among multiple-reach and multiple-year sampling. The variations between multiple reaches and years were sometimes larger than those found between different fixed sites. Factors affecting benthic invertebrates included both habitat and chemical quality. Generally, fixed-site streams with the highest diversity, greatest number of benthic invertebrates, and those at which community measures indicated the best water quality also had the best habitat and chemical quality. Variations among reaches are most likely related to differences in habitat. Variations among years are most likely related to climatic changes, which create variations in flow and/or chemical quality. The variability in the data analyzed in this study shows how benthic invertebrates are affected by differences in both habitat and water quality, making them useful indicators of stream health; however, a single benthic-invertebrate sample alone cannot be relied upon to accurately describe water quality of the streams in this study. Benthic-invertebrate data contributed valuable information on the biological health of the 11 fixed sites when used as one of several data sources for assessing water quality.
NASA Astrophysics Data System (ADS)
Berov, Dimitar; Todorova, Valentina; Dimitrov, Lubomir; Rinde, Eli; Karamfilov, Ventzislav
2018-01-01
The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.
Hyperspectral Imaging Sensors and the Marine Coastal Zone
NASA Technical Reports Server (NTRS)
Richardson, Laurie L.
2000-01-01
Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.
A new towed platform for the unobtrusive surveying of benthic habitats and organisms
Zawada, David G.; Thompson, P.R.; Butcher, J.
2008-01-01
Maps of coral ecosystems are needed to support many conservation and management objectives, as well as research activities. Examples include ground-truthing aerial and satellite imagery, characterizing essential habitat, assessing changes, and monitoring the progress of restoration efforts. To address some of these needs, the U.S. Geological Survey developed the Along-Track Reef-Imaging System (ATRIS), a boat-based sensor package for mapping shallow-water benthic environments. ATRIS consists of a digital still camera, a video camera, and an acoustic depth sounder affixed to a moveable pole. This design, however, restricts its deployment to clear waters less than 10 m deep. To overcome this limitation, a towed version has been developed, referred to as Deep ATRIS. The system is based on a light-weight, computer-controlled, towed vehicle that is capable of following a programmed diving profile. The vehicle is 1.3 m long with a 63-cm wing span and can carry a wide variety of research instruments, including CTDs, fluorometers, transmissometers, and cameras. Deep ATRIS is currently equipped with a high-speed (20 frames · s-1) digital camera, custom-built light-emitting-diode lights, a compass, a 3-axis orientation sensor, and a nadir-looking altimeter. The vehicle dynamically adjusts its altitude to maintain a fixed height above the seafloor. The camera has a 29° x 22° field-of-view and captures color images that are 1360 x 1024 pixels in size. GPS coordinates are recorded for each image. A gigabit ethernet connection enables the images to be displayed and archived in real time on the surface computer. Deep ATRIS has a maximum tow speed of 2.6 m · s-1and a theoretical operating tow-depth limit of 27 m. With an improved tow cable, the operating depth can be extended to 90 m. Here, we present results from the initial sea trials in the Gulf of Mexico and Biscayne National Park, Florida, USA, and discuss the utility of Deep ATRIS for map-ping coral reef habitats. Several example mosaics illustrate the high-quality imagery that can be obtained with this system. The images also reveal the potential for unobtrusive animal observations; fish and sea turtles are unperturbed by the presence of Deep ATRIS
NASA Astrophysics Data System (ADS)
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-08-01
Shelf-margin carbonate mounds in water depths of 116-135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the "Sticky Grounds", trend along slope, are 5-15 m in relief with base diameters of 5-30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-01-01
Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.
2008-01-01
Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical significance. Cultural resources include fishponds, petroglyphs and a heiau (religious site). The fishponds are also recognized as exceptional birding areas and are important wetlands for migratory birds. The ocean and reef have been designated as a Marine Area Reserve, where green sea turtles commonly come ashore to rest. The park is also a valuable recreational resource, with approximately 4 km of coastline and a protective cove ideal for snorkeling and swimming. KAHO park boundaries extend beyond the mean high tide line and include the adjacent marine environment. An accompanying report for KAHO presents the results of benthic habitat mapping of the offshore waters, from the shoreline to approximately 40 m water depth. Ground-water quality and potential downslope impacts created by development around the park are of concern to Park management.
Baseline seabed habitat and biotope mapping for a proposed marine reserve
Kelly, Michelle; Langlois, Tim J.; Costello, Mark J.
2015-01-01
Seabed mapping can quantify the extent of benthic habitats that comprise marine ecosystems, and assess the impact of fisheries on an ecosystem. In this study, the distribution of seabed habitats in a proposed no-take Marine Reserve along the northeast coast of Great Barrier Island, New Zealand, was mapped using underwater video combined with bathymetry and substratum data. As a result of the boundary extending to the 12 nautical mile Territorial Limit, it would have been the largest coastal Marine Reserve in the country. Recreational and commercial fisheries occur in the region and would be expected to affect species’ abundance. The seabed of the study area and adjacent coastal waters has been trawled up to five times per year. Benthic communities were grouped by multivariate cluster analysis into four biotope classes; namely (1) shallow water macroalgae Ecklonia sp. and Ulva sp. on rocky substrata (Eck.Ulv); and deeper (2) diverse epifauna of sponges and bryozoans on rocky substrata (Por.Bry), (3) brittle star Amphiura sp. and sea anemone Edwardsia sp. on muddy sand (Amph.Edw), and (4) hydroids on mud (Hyd). In biotopes Por.Bry, Amph.Edw and Hyd, there where boulders and rocks were present, and diverse sponge, bryozoan and coral communities. Fifty species were recorded in the deep water survey including significant numbers of the shallow-water hexactinellid glass sponges Symplectella rowi Dendy, 1924 and Rossella ijimai Dendy, 1924, the giant pipe demosponge Isodictya cavicornuta Dendy, 1924, black corals, and locally endemic gorgonians. The habitats identified in the waters to the northeast of Great Barrier Island are likely to be representative of similar depth ranges in northeast New Zealand. This study provides a baseline of the benthic habitats so that should the area become a Marine Reserve, any habitat change might be related to protection from fishing activities and impacts, such as recovery of epifauna following cessation of trawling. The habitat map may also be used to stratify future sampling that would aim to collect and identify epifauna and infauna for identification, and thus better describe the biodiversity of the area. PMID:26713230
Baseline seabed habitat and biotope mapping for a proposed marine reserve.
Lee, Sonny T M; Kelly, Michelle; Langlois, Tim J; Costello, Mark J
2015-01-01
Seabed mapping can quantify the extent of benthic habitats that comprise marine ecosystems, and assess the impact of fisheries on an ecosystem. In this study, the distribution of seabed habitats in a proposed no-take Marine Reserve along the northeast coast of Great Barrier Island, New Zealand, was mapped using underwater video combined with bathymetry and substratum data. As a result of the boundary extending to the 12 nautical mile Territorial Limit, it would have been the largest coastal Marine Reserve in the country. Recreational and commercial fisheries occur in the region and would be expected to affect species' abundance. The seabed of the study area and adjacent coastal waters has been trawled up to five times per year. Benthic communities were grouped by multivariate cluster analysis into four biotope classes; namely (1) shallow water macroalgae Ecklonia sp. and Ulva sp. on rocky substrata (Eck.Ulv); and deeper (2) diverse epifauna of sponges and bryozoans on rocky substrata (Por.Bry), (3) brittle star Amphiura sp. and sea anemone Edwardsia sp. on muddy sand (Amph.Edw), and (4) hydroids on mud (Hyd). In biotopes Por.Bry, Amph.Edw and Hyd, there where boulders and rocks were present, and diverse sponge, bryozoan and coral communities. Fifty species were recorded in the deep water survey including significant numbers of the shallow-water hexactinellid glass sponges Symplectella rowi Dendy, 1924 and Rossella ijimai Dendy, 1924, the giant pipe demosponge Isodictya cavicornuta Dendy, 1924, black corals, and locally endemic gorgonians. The habitats identified in the waters to the northeast of Great Barrier Island are likely to be representative of similar depth ranges in northeast New Zealand. This study provides a baseline of the benthic habitats so that should the area become a Marine Reserve, any habitat change might be related to protection from fishing activities and impacts, such as recovery of epifauna following cessation of trawling. The habitat map may also be used to stratify future sampling that would aim to collect and identify epifauna and infauna for identification, and thus better describe the biodiversity of the area.
Introduction: Special issue on advances in topobathymetric mapping, models, and applications
Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne
2016-01-01
Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.
Lenz, Bernard N.
1997-01-01
An important part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program is the analysis of existing data in each of the NAWQA study areas. The Wisconsin Department of Natural Resources (WDNR) has an extensive aquatic benthic macroinvertebrate communities in streams (benthic invertebrates) database maintained by the University of Wisconsin-Stevens Point. This database has data which date back to 1984 and includes data from streams within the Western Lake Michigan Drainages (WMIC) study area (fig. 1). This report looks at the feasibility of USGS scientists supplementing the data they collect with data from the WDNR database when assessing water quality in the study area.
Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images
NASA Astrophysics Data System (ADS)
Casal, G.; Kutser, T.; Domínguez-Gómez, J. A.; Sánchez-Carnero, N.; Freire, J.
2011-09-01
The ecological importance of benthic macroalgal communities in coastal ecosystems has been recognised worldwide and the application of remote sensing to study these communities presents certain advantages respect to in situ methods. The present study used three CHRIS-PROBA images to analyse macroalgal communities distribution in the Seno de Corcubión (NW Spain). The use of this sensor represent a challenge given that its design, build and deployment programme is intended to follow the principles of the "faster, better, cheaper". To assess the application of this sensor to macroalgal mapping, two types of classifications were carried out: Maximum Likelihood and Spectral Angle Mapper (SAM). Maximum Likelihood classifier showed positive results, reaching overall accuracy percentages higher than 90% and kappa coefficients higher than 0.80 for the bottom classes shallow submerged sand, deep submerged sand, macroalgae less than 5 m and macroalgae between 5 and 10 m depth. The differentiation among macroalgal groups using SAM classifications showed positive results for green seaweeds although the differentiation between brown and red algae was not clear in the study area.
Benthic habitat and geologic mapping of the outer continental shelf of north-central California
Anima, Roberto J.; Chin, John L.; Conrad, James E.; Golden, Nadine E.
2006-01-01
The Fanny Shoal area is located between North Farallon Island and Cordell Bank approximately 40 miles west of San Francisco, California. The area lies within the Gulf of the Farallones National Marine Sanctuary (GFNMS) which is located just a few miles from San Francisco. The waters within the GFNMS are part of a nationally significant marine ecosystem encompassing a diversity of highly productive marine habitats. Protection of the living and cultural resources at the sites are administered by the National Oceanic and Atmospheric Administration (NOAA). The U.S. Geological Survey (USGS) in cooperation with the Golden Gate National Recreation Area (GGNRA) and NOAA, including the GFNMS, and Monterey Bay National Marine Sanctuary (MBNMS), collected side-scanning sonar, and underwater video data over three cruises in July of 2003, and April of 2004. The data are consolidated into a geographic information system (GIS) to produce benthic habitat and geologic maps that provide researchers and those involved in decision making with crucial, georeferenced geologic information that will aid in preserving the area's environment.
Geologic characteristics of benthic habitats in Glacier Bay, southeast Alaska
Harney, Jodi N.; Cochrane, Guy R.; Etherington, Lisa L.; Dartnell, Pete; Golden, Nadine E.; Chezar, Hank
2006-01-01
In April 2004, more than 40 hours of georeferenced submarine digital video was collected in water depths of 15-370 m in Glacier Bay to (1) ground-truth existing geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) investigate the relation between substrate types and benthic communities, and (4) construct predictive maps of seafloor geomorphology and habitat distribution. Common substrates observed include rock, boulders, cobbles, rippled sand, bioturbated mud, and extensive beds of living horse mussels and scallops. Four principal sea-floor geomorphic types are distinguished by using video observations. Their distribution in lower and central Glacier Bay is predicted using a supervised, hierarchical decision-tree statistical classification of geophysical data.
NASA Astrophysics Data System (ADS)
Marcelli, Marco; Carli, Filippo M.; Bonamano, Simone; Frattarelli, Francesco; Mancini, Emanuele; Paladini de Mendoza, Francesco; Peviani, Maximo; Piermattei, Viviana
2015-04-01
The purpose of our work is to create a multi-layer map of marine areas and adjacent territories (SeaUseMap), which takes into account both the different sea uses and the value of marine ecosystems, calculated on the basis of services and benefits produced by the different biocenosis. Marine coastal areas are characterized by the simultaneous presence of ecological conditions favorable to life and, at the same time, they are home to many human activities of particular economic relevance. Ecological processes occurring in coastal areas are particularly important and when we consider their contribution to the value of the "natural capital" (Costanza et Al. 1997, 2008, 2014), we can observe that this is often higher than the contribution from terrestrial ecosystems. Our work is done in northern Lazio (Civitavecchia), a highly populated area where many uses of the sea are superimposed: tourism, fisheries, industry, shipping and ports, historical and cultural heritage. Our goal is to create a tool to support decision-making, where ecosystem values and uses of the sea can be simultaneously represented. The ecosystem values are calculated based on an analysis of benthic biocoenoses: the basic ecological units that, in the Mediterranean Sea, have been identified, defined, analyzed and used since the 60s (Perez & Picard 1964) to date as a working tool (Boudouresque & Fresi 1976). Land surface, instead, was analyzed from available maps, produced within the Corine Land Cover project. Some application examples to support the decision-making are shown, with particular reference to the localization of suitable areas for wave energy production and the esteem of ecological damages generated in case of maritime accidents (e.g., Costa Concordia). According to Costanza 2008, we have developed our own operational method, which is suitable for this specific case of benefit assessment from benthic communities. In this framework, we base our strategy on the ability of the benthic biocenosis to provide excellent information on ecological processes from which ecosystem benefits arise.
Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin
2018-06-01
In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.; Dartnell, Peter
2003-01-01
The mid to outer continental shelf off Mississippi-Alabama and off northwest Florida were the focus of U.S. Geological Survey (USGS) multibeam echosounder (MBES) mapping cruises in 2000 and 2001, respectively. These areas were mapped to investigate the extent of "deep-water reefs" first suggested by Ludwig and Walton (1957). The reefs off Mississippi and Alabama were initially described in water depths of 60 to 120 m (Ludwig and Walton, 1957) but the 2000 mapping found reef and hardgrounds to be much more extensive than previously thought (Gardner et al., 2001). The persistent trend of reef-like features along the outer shelf of Mississippi-Alabama suggested the trend might continue along the northwest Florida mid and outer shelf so a MBES-mapping effort was mounted in 2001 to test this suggestion. It is critical to determine the accurate location, geomorphology, and types of the ridges and reefs that occur in this region to understand the Quaternary history of the area and to assess their importance as benthic habitats for fisheries. The area known as the "Head of De Soto Canyon" is the large unmapped region between the 2000 and 2001 mapped areas. It was unknown whether the reefs of the Mississippi-Alabama shelf continue eastward into the head of De Soto Canyon and connect with the ridges and reefs mapped on the northwest Florida outer shelf. The existence of carbonate-cemented Quaternary to Holocene sandstones along the western wall of the head of De Soto Canyon (Shipp and Hopkins, 1978; Benson et al., 1997; W.W. Schroeder, personal commun., 2002) is of interest because of the potential benthic habitats they may represent. In the summer of 2002, the USGS, in cooperation with Minerals Management Service (MMS), the University of New Hampshire, and the University of New Brunswick, conducted a MBES survey of the Head of De Soto Canyon Region connecting the 2000 and 2001 mapped regions.
California State Waters Map Series: offshore of Tomales Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.
NASA Astrophysics Data System (ADS)
Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth
2017-04-01
The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.
Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.
2012-01-01
Arctic species such as the Pacific walrus (Odobenus rosmarus divergens) are facing a rapidly changing environment. Walruses are benthic foragers and may shift their spatial patterns of foraging in response to changes in prey distribution. We used data from satellite radio-tags attached to walruses in 2009-2010 to map walrus foraging locations with concurrent sampling of benthic infauna to examine relationships between distributions of dominant walrus prey and spatial patterns of walrus foraging. Walrus foraging was concentrated offshore in the NE Chukchi Sea, and coastal areas of northwestern Alaska when sea ice was sparse. Walrus foraging areas in August-September were coincident with the biomass of two dominant bivalve taxa (Tellinidae and Nuculidae) and sipunculid worms. Walrusforaging costs associated with increased travel time to higher biomass food patches from land may be significantly higher than the costs from sea ice haul-outs and result in reduced energy storesin walruses. Identifying what resources are selected by walruses and how those resources are distributed in space and time will improve our ability to forecast how walruses might respond to a changing climate.
Gardner, James V.; Hughes-Clarke, John E.; Meyer, Larry A.
2002-01-01
The mid to outer continental shelf off Mississippi-Alabama and off northwest Florida were the focus of US Geological Survey (USGS) multibeam echosounder (MBES) mapping cruises in 2000 and 2001, respectively. These areas were mapped to investigate the extent of "deep-water reefs" first suggested by Ludwick and Walton (1957). The reefs off Mississippi and Alabama were initially described in water depths of 60 to 120 m (Ludwick and Walton, 1957) but the 2000 mapping found reef and hardgrounds to be much more extensive than previously thought (Gardner et al., 2001). The persistent trend of reef-like features along the outer shelf of Mississippi-Alabama suggested the trend might continue along the northwest Florida mid and outer shelf so a MBES-mapping effort was mounted in 2001 to test this suggestion. It is critical to determine the accurate location, geomorphology, and types of the ridges and reefs that occur in this region to understand the Quaternary history of the area and to assess their importance as benthic habitats for fisheries. The 2001 survey found a series of shelf-depth platforms with ridges (possibly reefs) constructed on their surfaces (Gardner et al., 2002). The area known as the "head of De Soto Canyon" is the large unmapped region between the 2000 and 2001 mapped areas. The head of De Soto Canyon is an outer shelf zone with a relatively steep western wall and a much gentler eastern wall. It was unknown prior to this cruise whether the reefs of the Mississippi-Alabama shelf continue eastward into the head of De Soto Canyon and connect with the ridges and reefs mapped on the northwest Florida outer shelf. The existence of carbonate-cemented latest Quaternary to Holocene sandstones along the western wall of the head of De Soto Canyon (Shipp and Hopkins, 1978; Benson et al., 1997; W.W. Schroeder, personnel comm., 2002) is of interest because of the potential benthic habitats they may represent. Precisely georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of an area suspected to be critical benthic habitats. Morphology is thought to be critical to define the distribution of dominant demersal plankton/planktivores communities. Community structure and trophodynamics of demersal fishes of the outer continental shelf of the northeastern Gulf of Mexico presently are focuses of a major USGS research project. A goal of the project is to answer questions concerning the relative roles played by morphology and surficial geology in controlling biological differentiation. Deep-water ridges, reefs, and outcrops are important because they are fish havens and key spawning sites, and are critical habitats for larval, juvenile, and economically important sport/food fishes.
Chesapeake Bay Program Water Quality Database
The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.
NASA Astrophysics Data System (ADS)
Tisserand, A.; Dokken, T.; Scao, V.; Jorissen, F.; Fontanier, C.
2009-04-01
A cruise with the research vessel G.O. SARS was carried out from 07 to 20 December 2007 within the framework of the European Science Foundation (EuroMARC) project RETRO, which aims to reconstruct changes within the thermocline in the tropics during periods of reduced Meridional Overturning Circulation (MOC). As part of this strategy we need a best possible calibration of methods to reproduce water mass properties, and part of the goal of this cruise was to get a good representation of the thermocline area present at the Brazilian Atlantic margin. The method used to map the thermocline gradient in the western tropical Atlantic is to use the concept of Magnesium/Calcium (Mg/Ca) on bottom water living foraminifera as a representation of temperature at site. The Mg/Ca thermometry on deep-dwelling foraminifera calibrated vs. δ18O measurements provides an estimate of depth of thermocline penetration in modern climate. Knowing the function of modern representation of the thermocline defined by Mg/Ca, we can use this concept to map thermocline deepening/shallowing in the past. The Mg/Ca ratios in benthic foraminiferal calcite are considered as the most commonly used and a reliable paleo-proxy for reconstructing bottom-water temperatures. Mg/Ca ratios of thermocline and deep-dwelling benthic foraminiferal species were determined on cores-top samples from a depth transect from the western tropical Atlantic, spanning a depth range of 600 to 1000 m representing a temperature range of 6 to 4
Gaget, Virginie; Humpage, Andrew R; Huang, Qiong; Monis, Paul; Brookes, Justin D
2017-11-01
Cyanobacteria represent a health hazard worldwide due to their production of a range of highly potent toxins in diverse aquatic environments. While planktonic species have been the subject of many investigations in terms of risk assessment, little is known about benthic forms and their impact on water quality or human and animal health. This study aimed to purify isolates from environmental benthic biofilms sampled from three different drinking water reservoirs and to assess their toxin production by using the following methods: Enzyme-Linked Immunosorbent Assay (ELISA), High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and quantitative PCR (qPCR). Microscopic observation of the isolates allowed the identification of various filamentous cyanobacterial genera: Anabaena (benthic form), Calothrix and Nostoc from the Nostocales and Geitlerinema, Leptolyngbya, Limnothrix, Lyngbya, Oxynema, Phormidium and Pseudanabaena representing non-heterocystous filamentous cyanobacteria. The Phormidium ambiguum strain AWQC-PHO021 was found to produce 739 ng/mg of dry weight (d/w) of cylindrospermopsin and 107 ng/mg (d/w) of deoxy-cylindrospermopsin. The Nostoc linckia strain AWQC-NOS001 produced 400 ng/mg (d/w) of a microcystin analogue. This is the first report of hepatotoxin production by benthic cyanobacteria in temperate Australian drinking water reservoirs. These findings indicate that water quality monitoring programs need to consider benthic cyanobacteria as a potential source of toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poirier, R. K.; Billups, K.
2012-12-01
We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).
Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales.
Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F.; Byrne, Maria; Malcolm, Hamish A.; Williams, Stefan B.; Steinberg, Peter D.
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate ‘no-take’ and ‘general-use’ (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5–10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales. PMID:29547656
Philippe, Anne S; Plumejeaud-Perreau, Christine; Jourde, Jérôme; Pineau, Philippe; Lachaussée, Nicolas; Joyeux, Emmanuel; Corre, Frédéric; Delaporte, Philippe; Bocher, Pierrick
2017-01-01
Long-term benthic monitoring is rewarding in terms of science, but labour-intensive, whether in the field, the laboratory, or behind the computer. Building and managing databases require multiple skills, including consistency over time as well as organisation via a systematic approach. Here, we introduce and share our spatially explicit benthic database, comprising 11 years of benthic data. It is the result of intensive benthic sampling that has been conducted on a regular grid (259 stations) covering the intertidal mudflats of the Pertuis-Charentais (Marennes-Oléron Bay and Aiguillon Bay). Samples were taken by foot or by boats during winter depending on tidal height, from December 2003 to February 2014. The present dataset includes abundances and biomass densities of all mollusc species of the study regions and principal polychaetes as well as their length, accessibility to shorebirds, energy content and shell mass when appropriate and available. This database has supported many studies dealing with the spatial distribution of benthic invertebrates and temporal variations in food resources for shorebird species as well as latitudinal comparisons with other databases. In this paper, we introduce our benthos monitoring, share our data, and present a "guide of good practices" for building, cleaning and using it efficiently, providing examples of results with associated R code. The dataset has been formatted into a geo-referenced relational database, using PostgreSQL open-source DBMS. We provide density information, measurements, energy content and accessibility of thirteen bivalve, nine gastropod and two polychaete taxa (a total of 66,620 individuals) for 11 consecutive winters. Figures and maps are provided to describe how the dataset was built, cleaned, and how it can be used. This dataset can again support studies concerning spatial and temporal variations in species abundance, interspecific interactions as well as evaluations of the availability of food resources for small- and medium size shorebirds and, potentially, conservation and impact assessment studies.
Benthic flux of dissolved nickel into the water column of south San Francisco Bay
Topping, B.R.; Kuwabara, J.S.; Parcheso, Francis; Hager, S.W.; Arnsberg, A.J.; Murphy, Fred
2001-01-01
Field and laboratory studies were conducted between April, 1998 and May, 1999 to provide the first direct measurements of the benthic flux of dissolved (0.2-micron filtered) nickel between the bottom sediment and water column at three sites in the southern component of San Francisco Bay (South Bay), California. Dissolved nickel and predominant ligands (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest, although a variety of ancillary measurements were also performed to provide a framework for interpretation. Results described herein integrate information needs identified by the State Water Resources Control Board and local stakeholders with fundamental research associated with the U.S. Geological Survey Toxic Substances Hydrology Program. Dissolved-Ni concentrations in the bottom water over the three sampling dates ranged from 34 to 43 nanomoles per liter. Dissolved-macronutrient concentrations in the bottom water were consistently higher (frequently by orders of magnitude) than surface-water determinations reported for similar times and locations (Regional Monitoring Program, 2001). This is consistent with measured positive benthic fluxes for the macronutrients. Benthic-flux estimates for dissolved nickel from core-incubations, when areally averaged over the South Bay, were significant (that is, of equivalent or greater order of magnitude) relative to previously reported freshwater point and non-point sources. This observation is consistent with previous determinations for other metals, and with the potential remobilization of sediment-associated metals that have been ubiquitously distributed in the South Bay. Similar to dissolved-nickel results, benthic flux of macronutrients was also consistently significant relative to surface-water inputs. These results add to a growing body of knowledge that strongly suggests a need to consider contaminant transport across the sediment-water interface when establishing future management strategies for the watershed.
NASA Astrophysics Data System (ADS)
Leipe, T.; Naumann, M.; Tauber, F.; Radtke, H.; Friedland, R.; Hiller, A.; Arz, H. W.
2017-12-01
This study presents selected results of a sediment geochemical mapping program of German territorial waters in the south-western Baltic Sea. The field work was conducted mainly during the early 2000s. Due to the strong variability of sediment types in the study area, it was decided to separate and analyse the fine fraction (<63 μm, mud) from more than 600 surficial samples, combined with recalculations for the bulk sediment. For the contents of total organic carbon (TOC) and selected elements (P, Hg), the regional distribution maps show strong differences between the analysed fine fraction and the recalculated total sediment. Seeing that mud contents vary strongly between 0 and 100%, this can be explained by the well-known grain-size effect. To avoid (or at least minimise) this effect, further interpretations were based on the data for the fine fraction alone. Lateral transport from the large Oder River estuary combined with high abundances and activities of benthic fauna on the shallow-water Oder Bank (well sorted fine sand) could be some main causes for hotspots identified in the fine-fraction element distribution. The regional pattern of primary production as the main driver of nutrient element fixation (C, N, P, Si) was found to be only weakly correlated with, for example, the TOC distribution in the fine fraction. This implies that, besides surface sediment dynamics, local conditions (e.g. benthic secondary production) also have strong impacts. To the best of the authors' knowledge, there is no comparable study with geochemical analyses of the fine fraction of marine sediments to this extent (13,600 km2) and coverage (between 600 and 800 data points) in the Baltic Sea. This aspect proved pivotal in confidently pinpointing geochemical "anomalies" in surface sediments of the south-western Baltic Sea.
Carter, James L.; Resh, Vincent H.
2013-01-01
Biomonitoring programs based on benthic macroinvertebrates are well-established worldwide. Their value, however, depends on the appropriateness of the analytical techniques used. All United States State, benthic macroinvertebrate biomonitoring programs were surveyed regarding the purposes of their programs, quality-assurance and quality-control procedures used, habitat and water-chemistry data collected, treatment of macroinvertebrate data prior to analysis, statistical methods used, and data-storage considerations. State regulatory mandates (59 percent of programs), biotic index development (17 percent), and Federal requirements (15 percent) were the most frequently reported purposes of State programs, with the specific tasks of satisfying the requirements for 305b/303d reports (89 percent), establishment and monitoring of total maximum daily loads, and developing biocriteria being the purposes most often mentioned. Most states establish reference sites (81 percent), but classify them using State-specific methods. The most often used technique for determining the appropriateness of a reference site was Best Professional Judgment (86 percent of these states). Macroinvertebrate samples are almost always collected by using a D-frame net, and duplicate samples are collected from approximately 10 percent of sites for quality assurance and quality control purposes. Most programs have macroinvertebrate samples processed by contractors (53 percent) and have identifications confirmed by a second taxonomist (85 percent). All States collect habitat data, with most using the Rapid Bioassessment Protocol visual-assessment approach, which requires ~1 h/site. Dissolved oxygen, pH, and conductivity are measured in more than 90 percent of programs. Wide variation exists in which taxa are excluded from analyses and the level of taxonomic resolution used. Species traits, such as functional feeding groups, are commonly used (96 percent), as are tolerance values for organic pollution (87 percent). Less often used are tolerance values for metals (28 percent). Benthic data are infrequently modified (34 percent) prior to analysis. Fixed-count subsampling is used widely (83 percent), with the number of organisms sorted ranging from 100 to 600 specimens. Most programs include a step during sample processing to acquire rare taxa (79 percent). Programs calculate from 2 to more than100 different metrics (mean 20), and most formulate a multimetric index (87 percent). Eleven of the 112 metrics reported represent 50 percent of all metrics considered to be useful, and most of these are based on richness or percent composition. Biotic indices and tolerance metrics are most oftenused in the eastern U.S., and functional and habitat-type metrics are most often used in the western U.S. Sixty-nine percent of programs analyze their data in-house, typically performing correlations and regressions, and few use any form of data transformation (34 percent). Fifty-one percent of the programs use multivariate analyses, typically non-metric multi-dimensional scaling. All programs have electronic data storage. Most programs use the Integrated Taxonomic Information System (75 percent) for nomenclature and to update historical data (78 percent). State procedures represent a diversity of biomonitoring approaches which likely compromises comparability among programs. A national-state consensus is needed for: (1) developing methods for the identification of reference conditions and reference sites, (2) standardization in determining and reporting species richness, (3) testing and documenting both the theoretical and mechanistic basis of often-used metrics, (4) development of properly replicated point-source study designs, and (5) curation of benthic macroinvertebrate data, including reference and voucher collections, for successful evaluation of future environmental changes.
California State Waters Map Series — Offshore of Point Conception, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.
2018-04-20
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Point Conception map area is in the westernmost part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and this region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south and west flanks of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 340 m in the map area, lies about 5 km north and east of the arcuate shoreline.The onland part of the coastal zone is remote and sparsely populated. The road to Jalama Beach County Park provides the only public coastal access in the entire map area. North of this county park, the coastal zone is part of Vandenberg Air Force Base. South of Jalama Beach County Park, most of the coastal zone is part of the Cojo-Jalama Ranch, purchased by the Nature Conservancy in December 2017. A relatively small part of the coastal zone in the eastern part of the map area lies within the privately owned Hollister Ranch. The nearest significant commercial centers are Lompoc (population, about 42,000), about 10 km north of the map area, and Goleta (population, about 30,000), about 50 km east of the map area. The Union Pacific railroad tracks run west and northwest along the coast through the entire map area, within a few hundred meters of the shoreline. The map area has a long history of petroleum exploration, and the seafloor notably includes large asphalt mounds and pockmarks that result from petroleum seepage. Several offshore gas and oil fields were discovered, and some were developed, in and on the margin of California’s State Waters.Much of the shoreline in the Offshore of Point Conception map area is characterized by narrow beaches that have thin sediment cover above bedrock platforms, backed by low (10- to 20-m-high) cliffs that are capped by a coastal terrace. Beaches are subject to wave erosion during winter storms, followed by gradual sediment recovery or accretion in the late spring, summer, and fall months during the gentler wave climate. The map area lies in the west-central part of the Santa Barbara littoral cell, which is characterized by west-to-east transport of sediment from Point Arguello on the northwest to Hueneme and Mugu Canyons on the southeast. Sediment supply to the map area is mainly from relatively small coastal watersheds, including the Jalama Creek–Espada Creek drainage basin (about 63 km2), as well as Cañada del Jolloru, Black Canyon, Wood Canyon, Cañada del Cojo, and Barranca Honda. Coastal-watershed discharge and sediment load are highly variable, characterized by brief large events during major winter storms and long periods of low (or no) flow and minimal sediment load between storms. In recent (recorded) history, the majority of high-discharge, high-sediment-flux events have been associated with El Niño phases of the El Niño–Southern Oscillation climatic pattern.Following the coastline, the shelf bends to the north and northwest around Point Conception, and the trend of the shelf break changes from about 298° to 241° azimuth. Shelf width ranges from about 5 km south of Point Conception to about 11 km northwest of it; the slope ranges from about 1.0° to 1.2° to about 0.7° south and northwest of Point Conception, respectively. Southwest of Point Conception, the shelf break and upper slope are incised by a 600-m-wide, 20- to 30-m-deep, south-facing trough, one of five heads of the informally named Arguello submarine canyon.The map area is located at a major biogeographic transition zone between the east-west-trending Santa Barbara Channel region of the Southern California Bight and the northwest-trending central California coast. North of Point Conception, the coast is subjected to high wave exposure from the north, west, and south, as well as consistently strong upwelling that brings cold, nutrient-rich waters to the surface. Southeast of Point Conception, the Santa Barbara Channel is largely protected from strong north swells by Point Conception and from south swells by the Channel Islands; surface waters are warmer, and upwelling is weak and seasonal.Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities in the nearshore and rocky-reef communities in deeper water. The potential marine benthic habitat types mapped in the Offshore of Point Conception map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats. The fairly homogeneous seafloor of sediment and low-relief bedrock provides characteristic habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms. Several areas of smooth sediment form nearshore terraces that have relatively steep, smooth fronts, which are attractive to groundfish. Below the steep shelf break, soft, unconsolidated sediment is interrupted by the heads of several submarine canyons, gullies, and rills, also good potential habitat for rockfish. The map area includes the large (58.3 km2) Point Conception State Marine Reserve.
NASA Astrophysics Data System (ADS)
Reshitnyk, Luba Yvanka
The ability to map nearshore habitat (i.e. submerged aquatic vegetation) is an integral component of marine conservation. The main goal of this thesis was to examine the ability of high resolution, multispectral satellite imagery and a single-beam acoustic ground discrimination system to map the location of marine habitats in Bag Harbour, found in the Gwaii Haanas National Marine Conservation Area Reserve. To meet this goal, two objectives were addressed: (1) Using the QTC View V sing-beam acoustic ground discrimination system, identify which frequency (50 kHz or 200 kHz) is best suited for mapping marine habitat; (2) evaluate the ability to map nearshore marine habitat using WorldView-2 high resolution, multispectral satellite imagery and compare the results of marine habitat maps derived from the acoustic and satellite datasets. Ground-truth data for both acoustic and satellite data were collected via towed underwater video camera on June 3rd and 4th, 2012. Acoustic data (50 and 200 kHz) were collected on June 23rd and 24 th, 2012, respectively. The results of this study are organized into two papers. The first paper focuses on objective 1 where the QTC View V single-beam acoustic ground discrimination system was used to map nearshore habitat at a site within the Gwaii Haanas National Marine Conservation Area using two survey frequencies -- 50 kHz and 200 kHz. The results show that the 200 kHz data outperformed the 50 kHz data set in both thematic and spatial accuracy. The 200 kHz dataset was able to identify two species of submerged aquatic vegetation, eelgrass ( Zostera marina) and a red algae (Chondrocanthus exasperatus ) while the 50 kHz dataset was only able to detect the distribution of eelgrass. The best overall accuracy achieved with the 200 kHz dataset was 86% for a habitat map with three classes (dense eelgrass, dense red algae and unvegetated substrate) compared to the 50 kHz habitat classification with two classes (dense eelgrass and unvegetated substrate) that had an overall accuracy of 70%. Neither dataset was capable if discerning the distribution of green algae (Ulva spp.) or brown algae (Fucus spp.), also present at the site. The second paper examines the benthic habitat maps created using WorldView-2 satellite imagery and the QTC View V single-beam acoustic ground discrimination system (AGDS) at 200 kHz (objective 2). Optical and acoustic remote sensing technologies both present unique capabilities of mapping nearshore habitat. Acoustic systems are able to map habitat in subtidal regions outside of the range of optical sensors while optical sensors such as WorldView-2 provide higher spatial and spectral resolution. The results of this study found that the WorldView-2 achieved the highest overall accuracy (75%) for mapping shallow (<3 m) benthic classes (green algae, brown algae, eelgrass and unvegetated substrate). The 200 kHz data were found to perform best in deeper (>3 m) regions and were able to detect the distribution of eelgrass, red algae and unvegetated substrate. A final habitat map was produced composed of these outputs to create a final, comprehensive habitat map of Bag Harbour. These results highlight the benefits and limitations of each remote sensing technology from a conservation management perspective. The main benefits of the WorldView-2 imagery stem from the high resolution (2 x 2 m) pixel resolution, with a single image covering many kilometers of coastline, and ability to discern habitats in the intertidal region that were undetectable by AGDS. However, the main limitation of this technology is the ability to acquire imagery under ideal conditions (low tide and calm seas). In contrast, the QTC View V system requires more hours spent collecting acoustic data in the field, is limited in the number of habitats it is able to detect and creates maps based on interpolated point data (compared to the continuous raster data of the WorldView-2 imagery). If, however, the objectives of the conservation management to create high resolution benthic habitat maps of subtidal habitats (e.g. eelgrass and benthic red algae) at a handful of sites (in contrast to continuous coastal coverage), the QTC View V system is more suitable. Whichever system is used ground-truth data are required to train and validate each dataset.
NASA Astrophysics Data System (ADS)
Harris, M. S.; Sautter, L.
2017-12-01
The College of Charleston's BEnthic Acoustic Mapping and Survey (BEAMS) Program has just completed its 10th year of operation, and has proven to be remarkably effective at activating and maintaining undergraduate student interest in conducting research using sophisticated software, state-of-the-art instrumentation, enormous datasets, and significant experiential time. BEAMS students conduct research as part of a minimum 3-course sequence of marine geology-based content, marine geospatial software, and seafloor research courses. Over 140 students have completed the program, 56% of the graduated students remain active in the marine geospatial workforce or academic arenas. Forty-eight percent (48%) of those students are female. As undergraduates, students not only conduct independent research projects, but present their work at national conferences each year. Additionally, over 90 % of all "BEAMers" have been provided a 2-3 day at-sea experience on a dedicated BEAMS Program multibeam survey research cruise, and many students also volunteer as survey technicians aboard NOAA research vessels. Critical partnerships have developed with private industry to provide numerous collaborative opportunities and an employment/employer pipeline, as well as provision of software and hardware at many fiscal levels. Ongoing collaboration with the Marine Institute of Ireland and the National and Kapodistrian University of Athens has also provided valuable field opportunities and collaborative experiences. This talk will summarize the program while highlighting some of the key areas and topics investigated by students, including detailed geomorphologic studies of continental margins, submarine canyons, tectonic features and seamounts. Students also work with NOAA investigators to aid in the characterization of fish and deep coral habitats, and with BOEM researchers to study offshore windfield suitability and submerged cultural landscapes. Our sister program at the University of Washington will also be discussed, as will developing relationships with our international and private industry partners.
Mackey, Robin; Rees, Cassandra; Wells, Kelly; Pham, Samantha; England, Kent
2013-01-01
The Metal Mining Effluent Regulations (MMER) took effect in 2002 and require most metal mining operations in Canada to complete environmental effects monitoring (EEM) programs. An "effect" under the MMER EEM program is considered any positive or negative statistically significant difference in fish population, fish usability, or benthic invertebrate community EEM-defined endpoints. Two consecutive studies with the same statistically significant differences trigger more intensive monitoring, including the characterization of extent and magnitude and investigation of cause. Standard EEM study designs do not require multiple reference areas or preexposure sampling, thus results and conclusions about mine effects are highly contingent on the selection of a near perfect reference area and are at risk of falsely labeling natural variation as mine related "effects." A case study was completed to characterize the natural variability in EEM-defined endpoints during preexposure or baseline conditions. This involved completing a typical EEM study in future reference and exposure lakes surrounding a proposed uranium (U) mine in northern Saskatchewan, Canada. Moon Lake was sampled as the future exposure area as it is currently proposed to receive effluent from the U mine. Two reference areas were used: Slush Lake for both the fish population and benthic invertebrate community surveys and Lake C as a second reference area for the benthic invertebrate community survey. Moon Lake, Slush Lake, and Lake C are located in the same drainage basin in close proximity to one another. All 3 lakes contained similar water quality, fish communities, aquatic habitat, and a sediment composition largely comprised of fine-textured particles. The fish population survey consisted of a nonlethal northern pike (Esox lucius) and a lethal yellow perch (Perca flavescens) survey. A comparison of the 5 benthic invertebrate community effect endpoints, 4 nonlethal northern pike population effect endpoints, and 10 lethal yellow perch effect endpoints resulted in the observation of several statistically significant differences at the future exposure area relative to the reference area and/or areas. When the data from 2 reference areas assessed for the benthic invertebrate community survey were pooled, no significant differences in effect endpoints were observed. These results demonstrate weaknesses in the definition of an "effect" used by the MMER EEM program and in the use of a single reference area. Determination of the ecological significance of statistical differences identified as part of EEM programs conducted during the operational period should consider preexisting (background) natural variability between reference and exposure areas. Copyright © 2012 SETAC.
Effects of Sediment Microfabric on Benthic Optical Properties
2003-09-30
wavelengths. Pigment A is phycoerythrin, B is phycocyanin , and C is chlorophyll a. The large decrease in irradiance at ~750 nm is likely an...Deconvolution methods were utilized to identify a variety of pigments (chlorophyll b and c, phycoerythrin, phycocyanin , fucoxanthin, peridinin, and...for subsurface mapping of phytobenthic communities. Efforts were also focused on preparation of manuscripts for publication. 4 IMPACT/ APPLICATION
NASA Astrophysics Data System (ADS)
Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert
2004-11-01
Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.
NASA Astrophysics Data System (ADS)
Starek, M. J.; Fernandez-diaz, J.; Pan, Z.; Glennie, C. L.; Shrestha, R. L.; Gibeaut, J. C.; Singhania, A.
2013-12-01
Researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and field-based survey of the Redfish Bay State Scientific Area to investigate the capabilities of shallow water bathymetric lidar for benthic mapping. Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purposes of protecting and studying the native seagrasses. The mapped region is very shallow (< 1 m in most locations) and consists of a variety of benthic cover including sandy bottom, oyster reef, subaqueous vegetation, and submerged structures. For this survey, UH acquired high resolution (2.5 shots per square meter) bathymetry data using their new Optech Aquarius 532 nm green lidar. The field survey conducted by CMGL used an airboat to collect in-situ radiometer measurements, GPS position, depth, and ground-truth data of benthic type at over 80 locations within the bay. The return signal of an Aquarius lidar pulse is analyzed in real time by a hardware-based constant fraction discriminator (CFD) to detect returns from the surface and determine ranges (x,y,z points). This approach is commonly called discrete-return ranging, and Aquarius can record up to 4 returns per an emitted laser pulse. In contrast, full-waveform digitization records the incoming energy of an emitted pulse by sampling it at very high-frequency. Post-processing algorithms can then be applied to detect returns (ranges) from the digitized waveform. For this survey, a waveform digitizer was simultaneously operated to record the return waveforms at a rate of 1GHz with 12 bit dynamic range. High-resolution digital elevation models (DEMs) of the topo-bathymetry were derived from the discrete-return and full-waveform data to evaluate the relative and absolute accuracy using the collected ground-truth data. Results of this evaluation will be presented including an overview of the method used to extract peaks from the waveform data. Potential advantages and disadvantages of the different ranging modes in terms of observed accuracy, increased processing load, and information gain will also be discussed.
Juliana Lake: A Benghazi Wetland In Distress!
NASA Astrophysics Data System (ADS)
Abdulsamad, Esam O.; Elbabour, Mansour M.
2013-04-01
Of all the remaining natural habitats of Benghazi's urban area (NE Libya), perhaps the most threatened are its karst lakes and coastal salt marshes (locally known as Sebkhas). Juliana Lake stands out as one example of a fragile ecosystem that is steadily shrinking and exposed to dredging and, consequently, possible damage to its aquatic organisms, and the inevitable loss of its renowned biodiversity. Several 19th & 20th-century traveler's sketches and maps, soil maps, photographs and satellite images provide the bases for change in the size and magnitude of the lake and its adjacent areas over time. The study also includes an assessment of the sediment composition and texture of material accumulating at the bottom of the lake. These sediments are composed essentiality of mixtures of Sebkha sediments such as salty clay, silt, and clayey sand. The sediments at the surface and around the Juliana Lake, however, are represented by quite soft whitish to yellowish and scattered patchy limestones of unknown affinity. Terra-rossa (reddish soil) and Quaternary caliche are present also but calcarenites (clastic limestone) cover considerable part of the studied area. The bio-micro components of these sediments are described and a number of small-sized benthic foraminifera have been identified. Macrofauna, which are primarily presented by recent benthic seashells belonging to phylum mollusca, have also been investigated and several species have been identified to the species level wherever possible. Other calcareous biotic components are predominantly shell fragments of molluscs, bryozoans, echinoderms and calcareous coralline red algae. It is concluded that the distribution, diversity and abundance of the total benthic organisms recovered in this survey reflect that the local habitat of the Juliana Lake were rich in nutrients and consequently providing an important food source for fishes, birds, and mammals. In fact, without these benthic organisms, these larger animals would not be able to survive. Finally, it is recommended that more specialized and detailed landscape ecological studies need to be undertaken by specialists to fully assess the peculiarities of Juliana Lake. Similar survey work should also be completed for other wetland natural habitats in the region to fully understand their original functions and values, and assess recent alteration trends and consequences.
Louisiana waterthrush and benthic macroinvertebrate response to shale gas development
Wood, Petra; Frantz, Mack W.; Becker, Douglas A.
2016-01-01
Because shale gas development is occurring over large landscapes and consequently is affecting many headwater streams, an understanding of its effects on headwater-stream faunal communities is needed. We examined effects of shale gas development (well pads and associated infrastructure) on Louisiana waterthrush Parkesia motacilla and benthic macroinvertebrate communities in 12 West Virginia headwater streams in 2011. Streams were classed as impacted (n = 6) or unimpacted (n = 6) by shale gas development. We quantified waterthrush demography (nest success, clutch size, number of fledglings, territory density), a waterthrush Habitat Suitability Index, a Rapid Bioassessment Protocol habitat index, and benthic macroinvertebrate metrics including a genus-level stream-quality index for each stream. We compared each benthic metric between impacted and unimpacted streams with a Student's t-test that incorporated adjustments for normalizing data. Impacted streams had lower genus-level stream-quality index scores; lower overall and Ephemeroptera, Plecoptera, and Trichoptera richness; fewer intolerant taxa, more tolerant taxa, and greater density of 0–3-mm individuals (P ≤ 0.10). We then used Pearson correlation to relate waterthrush metrics to benthic metrics across the 12 streams. Territory density (no. of territories/km of stream) was greater on streams with higher genus-level stream-quality index scores; greater density of all taxa and Ephemeroptera, Plecoptera, and Trichoptera taxa; and greater biomass. Clutch size was greater on streams with higher genus-level stream-quality index scores. Nest survival analyses (n = 43 nests) completed with Program MARK suggested minimal influence of benthic metrics compared with nest stage and Habitat Suitability Index score. Although our study spanned only one season, our results suggest that shale gas development affected waterthrush and benthic communities in the headwater streams we studied. Thus, these ecological effects of shale gas development warrant closer examination.
California State Waters Map Series: offshore of Coal Oil Point, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and faulted Miocene bedrock. In the map area, the relatively low-relief, elevated coastal bajada narrows from about 2.5 km wide in the east to less than 500 m wide in the west. Several beaches line the actively utilized coastal zone, including Isla Vista County Park beach, Coal Oil Point Reserve, and Goleta Beach County Park. The beaches are subject to erosion each winter during storm-wave attack, and then they undergo gradual recovery or accretion during the more gentle wave climate of the late spring, summer, and fall months. The Offshore of Coal Oil Point map area lies in the central part of the Santa Barbara littoral cell, which is characterized by littoral drift to the east-southeast. Longshore drift rates have been reported to range from about 160,000 to 800,000 tons/yr, averaging 400,000 tons/yr. Sediment supply to the western and central parts of the littoral cell, including the map area, is largely from relatively small transverse coastal watersheds. Within the map area, these coastal watersheds include (from east to west) Las Llagas Canyon, Gato Canyon, Las Varas Canyon, Dos Pueblos Canyon, Eagle Canyon, Tecolote Canyon, Winchester Canyon, Ellwood Canyon, Glen Annie Canyon, and San Jose Creek. The Santa Ynez and Santa Maria Rivers, the mouths of which are about 100 to 140 km northwest of the map area, are not significant sediment sources because Point Conception and Point Arguello provide obstacles to downcoast sediment transport and also because much of their sediment load is trapped in dams. The Ventura and Santa Clara Rivers, the mouths of which are about 45 to 55 km southeast of the map area, are much larger sediment sources. Still farther east, eastward-moving sediment in the littoral cell is trapped by Hueneme and Mugu Canyons and then transported to the deep-water Santa Monica Basin. The offshore part of the map area consists of a relatively flat and shallow continental shelf, which dips gently seaward (about 0.8° to 1.0°) so that water depths at the shelf break, roughly coincident with the California’s State Waters limit, are about 90 m. This part of the Santa Barbara Channel is relatively well protected from large Pacific swells from the north and northwest by Point Conception and from the south and southwest by offshore islands and banks. The shelf is underlain by variable amounts of upper Quaternary marine and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The large (130 km2) Goleta landslide complex lies along the shelf break in the southern part of the map area. This compound slump complex may have been initiated more than 200,000 years ago, but it also includes three recent failures that may have been generated between 8,000 to 10,000 years ago. A local, 5- to 10-m-high tsunami may have been generated from these failure events. The map area has had a long history of hydrocarbon development, which began in 1928 with discovery of the Ellwood oil field. Subsequent discoveries in the offshore include South Ellwood offshore oil field, Coal Oil Point oil field, and Naples oil and gas field. Development of South Ellwood offshore field began in 1966 from platform “Holly,” the last platform to be installed in California’s State Waters. The area also is known for “the world’s most spectacular marine hydrocarbon seeps,” and large tar seeps are exposed on beaches east of the mouth of Goleta Slough. Offshore seeps adjacent to South Ellwood oil field release about 40 tons per day of methane and about 19 tons per day of ethane, propane, butane, and higher hydrocarbons. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Offshore of Coal Oil Point map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats, which lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats, range from soft, unconsolidated sediment to hard sedimentary bedrock. This heterogeneous seafloor provides promising habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms.
NASA Astrophysics Data System (ADS)
Henkel, S. K.; Politano, K. K.
2017-07-01
Increasing interest in offshore development has motivated intensified efforts to map the seafloor for marine spatial planning. However, surficial geologic maps do not accurately represent habitats for various species groups of concern. This study used a bottom-up approach to integrate macrofaunal densities and benthic conditions on the Pacific Northwest shelf to identify macrofaunal assemblages and associated habitat features. Benthic cores and water-column profiles were collected from 137 stations from 50 to 110 m depth. Analyses grouping stations based on both similar species abundances and benthic conditions resulted in six broad habitats. Within the sampled depth and latitudinal range, sediment characteristics were the primary structuring variable. A major break in assemblages was detected between sediment that had less than 1% silt/clay and those containing more than 1% silt/clay. Assemblages differed primarily in the bivalve species present and secondarily in polychaete species. Within the greater than and less than 1% silt/clay habitats, further discretization of assemblages was based mostly on differing abundances of characteristic bivalves and polychaetes associated with differing median grain sizes, which did not correspond to traditional definitions of fine or medium sand. These data show that a bottom-up methodology is necessary to discern habitats for macrofauna and that site-specific physical sampling is necessary to predict macrofaunal assemblage composition. However, if detailed sediment characteristics are known, macrofaunal assemblages may be predicted without time-intensive biological sampling and processing. These results also indicate that seemingly small sedimentary changes due to offshore installations may have measureable effects on the relative abundances and even the species composition of macrofauna.
Jurassic-Cretaceous paleogeography, paleoclimate and upwelling of the northern margin of Tethys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golonka, J.; Krobicki, M.
The Jurassic and Cretaceous global paleogeographic reconstructions illustrate the changing configuration of mountains, land, shallow seas and deep ocean basins. Active plate boundaries, such as spreading centers and subduction zones, are also shown. The Pliensbachian, Toarcian, Bathonian, Oxfordian-Kimmeridgian, Tithonian-Berriasian, Valanginian, Albian, Turonian and Maastrichtian maps were generated The outlines of paleogeography are used as input for paleoclimatic modeling. The PALEOCLIMATE program models global atmospheric pressure, derive paleo-wind directions and estimate the likelihood of coastal upwelling. The program is based on the paleoclimatic methods first developed by Judith Parrish, adopted by C. R. Scotese and modified by M. I. Ross. Themore » maps depict air pressure, wind directions, humid zones and areas favorable for upwelling conditions plotted on the paleogeographic background. Paleoclimate modeling suggests that prevailing Jurassic-Cretaceous wind directions in the northern Tethys area were from north-northeast. These winds were parallel to the axis of Czorsztyn ridge. The ridge was uplifted between Magura and Pieniny basins as the result of extension during Jurassic supercontinent breakup. The upwelling may have been induced at the southeastern margin of the ridge. The model is consistent with rock records, especially from the upper part of ammonitico rosso type Czorsztyn formation. Mass occurrence of Tithonian and Berriasian brachiopods was probably controlled by upwelling-induced trophic relationships which is resulted in the intense growth of benthic organisms on the ridge. This is additionally supported by the presence of phosphorites at localities which corresponded to the continental shelf/slope transition.« less
Sheehan, Kenneth R.; Strager, Michael P.; Welsh, Stuart A.
2013-01-01
Stream habitat assessments are commonplace in fish management, and often involve nonspatial analysis methods for quantifying or predicting habitat, such as ordinary least squares regression (OLS). Spatial relationships, however, often exist among stream habitat variables. For example, water depth, water velocity, and benthic substrate sizes within streams are often spatially correlated and may exhibit spatial nonstationarity or inconsistency in geographic space. Thus, analysis methods should address spatial relationships within habitat datasets. In this study, OLS and a recently developed method, geographically weighted regression (GWR), were used to model benthic substrate from water depth and water velocity data at two stream sites within the Greater Yellowstone Ecosystem. For data collection, each site was represented by a grid of 0.1 m2 cells, where actual values of water depth, water velocity, and benthic substrate class were measured for each cell. Accuracies of regressed substrate class data by OLS and GWR methods were calculated by comparing maps, parameter estimates, and determination coefficient r 2. For analysis of data from both sites, Akaike’s Information Criterion corrected for sample size indicated the best approximating model for the data resulted from GWR and not from OLS. Adjusted r 2 values also supported GWR as a better approach than OLS for prediction of substrate. This study supports GWR (a spatial analysis approach) over nonspatial OLS methods for prediction of habitat for stream habitat assessments.
Multibeam mapping of the Pinnacles region, Gulf of Mexico
Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.
2002-01-01
Recent USGS mapping shows an extensive deep (~100 m) reef tract occurs on the Mississippi-Alabama outer continental shelf (Figure 1). The tract, known as "The Pinnacles", is apparently part of a sequence of drowned reef complexes along the "40-fathom" shelf edge of the northern Gulf of Mexico (Ludwick and Walton, 1957). It is critical to determine the accurate geomorphology of these deep-reefs because of their importance as benthic habitats for fisheries. The Pinnacles have previously been mapped using a single-beam echo sounder (Ludwick and Walton,1957), sidescan sonar (Laswell et al., 1990), and the TAMU2 towed single-beam sidescan-sonar system (Anonymous, 1999). These existing studies do not provide the quality of geomorphic data necessary for reasonable habitat studies.
California State Waters Map Series—Offshore of Santa Cruz, California
Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.
2016-03-24
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of upper Quaternary shelf, estuarine, and fluvial sediments deposited as sea level fluctuated in the late Pleistocene. The inner shelf is characterized by bedrock outcrops that have local thin sediment cover, the result of regional uplift, high wave energy, and limited sediment supply. The midshelf occupies part of an extensive, shore-parallel mud belt. The thickest sediment deposits, inferred to consist mainly of lowstand nearshore deposits, are found in the southeastern and northwestern parts of the map area.Coastal sediment transport in the map area is characterized by northwest-to-southeast littoral transport of sediment that is derived mainly from ephemeral streams in the Santa Cruz Mountains and also from local coastal-bluff erosion. During the last approximately 300 years, as much as 18 million cubic yards (14 million cubic meters) of sand-sized sediment has been eroded from the area between Año Nuevo Island and Point Año Nuevo and transported south; this mass of eroded sand is now enriching beaches in the map area. Sediment transport is within the Santa Cruz littoral cell, which terminates in the submarine Monterey Canyon.Benthic species observed in the Offshore of Santa Cruz map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 300 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are the northernmost known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko
2016-01-01
We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.
Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing
NASA Astrophysics Data System (ADS)
Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.
2016-06-01
Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.
Poppe, L.J.; DiGiacomo-Cohen, M. L.; Doran, E.F.; Smith, S.M.; Stewart, H.F.; Forfinski, N.A.
2007-01-01
Digital terrain models (DTMs) produced from multibeam bathymetric data provide valuable base maps for marine geological interpretations (Todd and others, 1999; Mosher and Thomson, 2002; ten Brink and others, 2004; Poppe and others, 2006a, b, c, d). These maps help define the geological variability of the sea floor (one of the primary controls of benthic habitat diversity), improve our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures, and provide a detailed framework for future research, monitoring, and management activities. The bathymetric survey interpreted herein (National Oceanic and Atmospheric Administration (NOAA) survey H11250) covers roughly 94 km² of sea floor in an area where a depression along the Orient Point-Fishers Island segment of the Harbor Hill-Roanoke Point-Charlestown Moraine forms the Race, the eastern opening to Long Island Sound. The Race also divides easternmost Long Island Sound from northwestern Block Island Sound (fig. 1). This bathymetry has been examined in relation to seismic reflection data collected concurrently, as well as archived seismic profiles acquired as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (USGS). The objective of this work was to use these acoustic data sets to interpret geomorphological attributes of the sea floor, and to use these interpretations to better understand the Quaternary geologic history and modern sedimentary processes.
Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...
NASA Astrophysics Data System (ADS)
Medeiros, João Paulo; Pinto, Vanessa; Sá, Erica; Silva, Gilda; Azeda, Carla; Pereira, Tadeu; Quintella, Bernardo; Raposo de Almeida, Pedro; Lino Costa, José; José Costa, Maria; Chainho, Paula
2014-05-01
The Marine Strategy Framework Directive (MSFD) was published in 2008 and requires Member States to take the necessary measures to achieve or maintain good environmental status in aquatic ecosystems by the year of 2020. The MSFD indicates 11 qualitative descriptors for environmental status assessment, including seafloor integrity, using the condition of the benthic community as an assessment indicator. Member States will have to define monitoring programs for each of the MSFD descriptors based on those indicators in order to understand which areas are in a Good Environmental Status and what measures need to be implemented to improve the status of areas that fail to achieve that major objective. Coastal and offshore marine waters are not frequently monitored in Portugal and assessment tools have only been developed very recently with the implementation of the Water Framework Directive (WFD). The lack of historical data and knowledge on the constraints of benthic indicators in coastal areas requires the development of specific studies addressing this issue. The major objective of the current study was to develop and test and experimental design to assess impacts of offshore projects. The experimental design consisted on the seasonal and interannual assessment of benthic invertebrate communities in the area of future implementation of the structures (impact) and two potential control areas 2 km from the impact area. Seasonal benthic samples were collected at nine random locations within the impact and control areas in two consecutive years. Metrics included in the Portuguese benthic assessment tool (P-BAT) were calculated since this multimetric tool was proposed for the assessment of the ecological status in Portuguese coastal areas under the WFD. Results indicated a high taxonomic richness in this coastal area and no significant differences were found between impact and control areas, indicating the feasibility of establishing adequate control areas in marine ecosystems. Nevertheless, significant differences were found between different seasons and different years, showing that the coastal benthic communities important temporal variations. Although those variations did not affect the status assessment based on metrics that considered the ratio between sensitive and tolerant taxa, diversity indices showed different classifications between seasons and years. These results indicate the need for a temporal stratification of the monitoring programs. That might be achieved by setting different thresholds for specific seasons or selecting specific monitoring seasons. It might also require a regular assessment of the environmental conditions that support the identification of outlier years, which monitoring results should be carefully considered.
Seals map bathymetry of the Antarctic continental shelf
NASA Astrophysics Data System (ADS)
Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.
2010-11-01
We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.
California State Waters Map Series—Offshore of Gaviota, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.
2018-04-20
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south flank of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 760 m in the map area, lies about 4 km north of the shoreline.Gaviota is an unincorporated community that has a sparse population (less than 100), and the coastal zone is largely open space that is locally used for cattle grazing. The Union Pacific railroad tracks extend westward along the coast through the entire map area, within a few hundred meters of the shoreline. Highway 101 crosses the eastern part of the map area, also along the coast, then turns north (inland) and travels through Cañada de la Gaviota and Gaviota Pass en route to Buellton. Gaviota State Park lies at the mouth of Cañada de la Gaviota. West of Gaviota, the onland coastal zone is occupied by the Hollister Ranch, a privately owned, gated community that has no public access.The map area has a long history of petroleum exploration and development. Several offshore gas fields were discovered and were developed by onshore directional drilling in the 1950s and 1960s. Three offshore petroleum platforms were installed in adjacent federal waters in 1976 (platform “Honda”) and 1989 (platforms “Heritage” and “Harmony”). Local offshore and onshore operations were serviced for more than a century by the Gaviota marine terminal, which is currently being decommissioned and will be abandoned in an intended transition to public open space. The Offshore of Gaviota map area lies within the western Santa Barbara Channel region of the Southern California Bight, and it is somewhat protected from large Pacific swells from the north and northwest by Point Conception and from south and southwest swells by offshore islands and banks. Much of the shoreline in the map area is characterized by narrow beaches that have thin sediment cover, backed by low (10- to 20-m-high) cliffs that are capped by a narrow coastal terrace. Beaches are subject to wave erosion during winter storms, followed by gradual sediment recovery or accretion in the late spring, summer, and fall months during the gentler wave climate.The map area lies in the western-central part of the Santa Barbara littoral cell, which is characterized by west-to-east transport of sediment from Point Arguello on the northwest to Hueneme and Mugu Canyons on the southeast. Sediment supply to the western and central part of the littoral cell is mainly from relatively small coastal watersheds. In the map area, sediment sources include Cañada de la Gaviota (52 km2), as well as Cañada de la Llegua, Arroyo el Bulito, Cañada de Santa Anita, Cañada de Alegria, Cañada del Agua Caliente, Cañada del Barro, Cañada del Leon, Cañada San Onofre, and many others. Coastal-watershed discharge and sediment load are highly variable, characterized by brief large events during major winter storms and long periods of low (or no) flow and minimal sediment load between storms. In recent (recorded) history, the majority of high-discharge, high-sediment-flux events have been associated with El Niño phases of the El Niño–Southern Oscillation climatic pattern.Shelf width in the Offshore of Gaviota map area ranges from about 4.3 to 4.7 km, and shelf slopes average about 1.0° to 1.2° but are highly variable because of the presence of the large Gaviota sediment bar. This bar extends southwestward for about 9 km from the mouth of Cañada de la Gaviota to the shelf break, is as wide as 2 km, and is by far the largest shore-attached sediment bar in the Santa Barbara Channel. The shelf is underlain by bedrock and variable amounts (0 to as much as 36 m in the Gaviota bar) of upper Quaternary sediments deposited as sea level fluctuated in the late Pleistocene. The trend of the shelf break changes from about 276° to 236° azimuth over a distance of about 12 km, and it ranges in depth from about 91 m to as shallow as 62 to 73 m where significant shelf-break and upper-slope failure and landsliding has apparently occurred. The shelf break in the western part of the map area is notably embayed by the heads of three large (150- to 300-m-wide) channels that have been referred to as “the Gaviota Canyons” or as “Drake Canyon,” “Sacate Canyon,” and “Alegria Canyon.”Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft, unconsolidated sediment interspersed with isolated areas of rocky habitat that support kelp-forest communities in the nearshore and rocky-reef communities in deeper water. The potential marine benthic habitat types mapped in the Offshore of Gaviota map area are directly related to its Quaternary geologic history, geomorphology, and active sedimentary processes. These potential habitats lie primarily within the Shelf (continental shelf) but also partly within the Flank (basin flank or continental slope) megahabitats. The fairly homogeneous seafloor of sediment and low-relief bedrock provides characteristic habitat for rockfish, groundfish, crabs, shrimp, and other marine benthic organisms. Several areas of smooth sediment form nearshore terraces that have relatively steep, smooth fronts, which may be attractive to groundfish. Below the steep shelf break, soft, unconsolidated sediment is interrupted by the heads of several submarine canyons and rills, some bedrock exposures, and small carbonate mounds associated with asphalt mounds and pockmarks, also good potential habitat for rockfish. The map area includes the relatively small (5.2 km2) Kashtayit State Marine Conservation Area, which largely occupies the inner part of the Gaviota sediment bar.
Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs
NASA Astrophysics Data System (ADS)
Perkins, Nicholas R.; Foster, Scott D.; Hill, Nicole A.; Barrett, Neville S.
2016-07-01
Benthic imagery is an effective tool for quantitative description of ecologically and economically important benthic habitats and biota. The recent development of autonomous underwater vehicles (AUVs) allows surveying of spatial scales that were previously unfeasible. However, an AUV collects a large number of images, the scoring of which is time and labour intensive. There is a need to optimise the way that subsamples of imagery are chosen and scored to gain meaningful inferences for ecological monitoring studies. We examine the trade-off between the number of images selected within transects and the number of random points scored within images on the percent cover of target biota, the typical output of such monitoring programs. We also investigate the efficacy of various image selection approaches, such as systematic or random, on the bias and precision of cover estimates. We use simulated biotas that have varying size, abundance and distributional patterns. We find that a relatively small sampling effort is required to minimise bias. An increased precision for groups that are likely to be the focus of monitoring programs is best gained through increasing the number of images sampled rather than the number of points scored within images. For rare species, sampling using point count approaches is unlikely to provide sufficient precision, and alternative sampling approaches may need to be employed. The approach by which images are selected (simple random sampling, regularly spaced etc.) had no discernible effect on mean and variance estimates, regardless of the distributional pattern of biota. Field validation of our findings is provided through Monte Carlo resampling analysis of a previously scored benthic survey from temperate waters. We show that point count sampling approaches are capable of providing relatively precise cover estimates for candidate groups that are not overly rare. The amount of sampling required, in terms of both the number of images and number of points, varies with the abundance, size and distributional pattern of target biota. Therefore, we advocate either the incorporation of prior knowledge or the use of baseline surveys to establish key properties of intended target biota in the initial stages of monitoring programs.
Assessment of benthic changes during 20 years of monitoring the Mexican Salina Cruz Bay.
González-Macías, C; Schifter, I; Lluch-Cota, D B; Méndez-Rodríguez, L; Hernández-Vázquez, S
2009-02-01
In this work a non-parametric multivariate analysis was used to assess the impact of metals and organic compounds in the macro infaunal component of the mollusks benthic community using surface sediment data from several monitoring programs collected over 20 years in Salina Cruz Bay, Mexico. The data for benthic mollusks community characteristics (richness, abundance and diversity) were linked to multivariate environmental patterns, using the Alternating Conditional Expectations method to correlate the biological measurements of the mollusk community with the physicochemical properties of water and sediments. Mollusks community variation is related to environmental characteristics as well as lead content. Surface deposit feeders are increasing their relative density, while subsurface deposit feeders are decreasing with respect to time, these last are expected to be more related with sediment and more affected then by its quality. However gastropods with predatory carnivore as well as chemosymbiotic deposit feeder bivalves have maintained their relative densities along time.
Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves
2015-05-27
leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives of this now-terminated project consisted of: • Using Large...particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to identify the...mapping. Finally, the generated resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or
Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout
Montagna, Paul A.; Baguley, Jeffrey G.; Cooksey, Cynthia; Hartwell, Ian; Hyde, Larry J.; Hyland, Jeffrey L.; Kalke, Richard D.; Kracker, Laura M.; Reuscher, Michael; Rhodes, Adelaide C. E.
2013-01-01
The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer. PMID:23950956
First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin
NASA Astrophysics Data System (ADS)
Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin
2017-04-01
Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.
Distributions of Benthic Foraminifera in the Salisbury Embayment before and after the PETM Onset
NASA Astrophysics Data System (ADS)
Range, M. M.; Robinson, M. M.
2017-12-01
Abrupt climatic perturbations associated with the onset of the Paleocene-Eocene Thermal Maximum (PETM) caused major disruptions to the shallow shelf ecology along the U.S. Atlantic Coastal Plain. Several studies examine the changes in benthic foraminiferal assemblages across the PETM in neritic sediments in New Jersey, Maryland, and Virginia and describe a hydrological and sedimentological paradigm shift that marks the Paleocene-Eocene boundary. In the Salisbury Embayment, a flexural low between the South Jersey High and the Norfolk Arch, this shift is seen in the transition between the upper Paleocene Aquia Formation and the lower Eocene Marlboro Clay. Here we map the abundance of seven benthic foraminifera species from five sites within the Salisbury Embayment from both the uppermost Aquia Formation and the lowermost Marlboro Clay. In addition to the benthic foraminiferal turnover at the PETM onset, we show a geographic distribution of species that highlights a past latitudinal biogeographic zonation not unlike what is found on the modern shelf in this region. Sites document a change in the abundance of species between the late Paleocene and early Eocene, showing a decrease in biodiversity of benthic species along the U.S. Atlantic Coast. Spatial extent of the different species also changed across the Paleocene-Eocene boundary. On the modern Atlantic shelf, a biogeographic zonation is due to the path of the Gulf Stream marking a boundary between relatively cold sea-surface temperatures to the north and warmer temperatures to the south, guided by the geomorphic expression of the mid-Atlantic coastline. During the Paleocene-Eocene transition, we suspect a similar boundary likely existed between the New Jersey sites and the Maryland and Virginia sites. We speculate that with the addition of more assemblage data, we will be able to partially reconstruct the geomorphic expression of the PETM coastline and/or the path of major coastal ocean currents.
Comparison of Adjective vs. Benthic Sources of Nutrients to a Former Salt Pond under Restoration
NASA Astrophysics Data System (ADS)
Topping, B.; Kuwabara, J. S.; Garrett, K.; Takekawa, J.; Piotter, S.; Parchaso, F.
2013-12-01
With the implementation of the South Bay Restoration Program in 2008, water quality in the Alviso Salt Ponds, California, has been monitored to document the effects of changing hydrologic connections among the ponds and the adjacent pond, slough and estuary. In 2010 and 2012, pore-water profilers (U.S. Patent 8,051,727 B1) were deployed in Pond A3W, a former salt pond just north of Moffett Federal Airfield that mixes hydrologically through culverts and weirs with Guadalupe Slough and neighboring ponds, to assess the magnitude of diffusive benthic flux, generated primarily by remobilization of surface-reactive solutes in bed sediment accumulated over annual to decadal time scales. The study, focusing on macronutrient sources that may stimulate harmful algal blooms, revealed that orthophosphate, ammonia, and silica benthic flux were consistently positive (out of the sediment) in both 2010 and 2012, while nitrate and nitrite fluxes were negligible. Because tidal height can affect the size and direction of flow, a diurnal study of nutrient advective flux into and out of the pond was measured during neap and spring tides. These advective fluxes (kg/yr) were compared to benthic flux estimates for the pond extrapolated over the 2.27 (km2) pond surface. Benthic flux of inorganic nitrogen species, averaged over all sites and dates, was about 80,000 + 48,000 kilograms per year (kg/yr), well above the adjective flux range of -50 to 1,500 kg/yr. By contrast, the average benthic flux of orthophosphate was about 12,000 + 4,400 kg/yr, well below the advective flux range of 21,500 to 30,000 kg/yr. Benthic flux estimates determined by porewater gradients do not include enhancement processes such as bioturbation, bioirrigation, wind resuspension, and potential groundwater inflows. However, they provide a conservative measure and can be an effective management screening tool. These results indicate that benthic transport may be an important source of biologically reactive solutes for both nutrients and toxicants, an important consideration during restoration since there are trophic transfer implications.
New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia.
Suosaari, E P; Reid, R P; Playford, P E; Foster, J S; Stolz, J F; Casaburi, G; Hagan, P D; Chirayath, V; Macintyre, I G; Planavsky, N J; Eberli, G P
2016-02-03
A recent field-intensive program in Shark Bay, Western Australia provides new multi-scale perspectives on the world's most extensive modern stromatolite system. Mapping revealed a unique geographic distribution of morphologically distinct stromatolite structures, many of them previously undocumented. These distinctive structures combined with characteristic shelf physiography define eight 'Stromatolite Provinces'. Morphological and molecular studies of microbial mat composition resulted in a revised growth model where coccoid cyanobacteria predominate in mat communities forming lithified discrete stromatolite buildups. This contradicts traditional views that stromatolites with the best lamination in Hamelin Pool are formed by filamentous cyanobacterial mats. Finally, analysis of internal fabrics of stromatolites revealed pervasive precipitation of microcrystalline carbonate (i.e. micrite) in microbial mats forming framework and cement that may be analogous to the micritic microstructures typical of Precambrian stromatolites. These discoveries represent fundamental advances in our knowledge of the Shark Bay microbial system, laying a foundation for detailed studies of stromatolite morphogenesis that will advance our understanding of benthic ecosystems on the early Earth.
Origin of marine planktonic cyanobacteria.
Sánchez-Baracaldo, Patricia
2015-12-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).
Origin of marine planktonic cyanobacteria
Sánchez-Baracaldo, Patricia
2015-01-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya). PMID:26621203
The geology of Six Mile Reef, eastern Long Island Sound
Poppe, L.J.; Denny, J.F.; Williams, S.J.; Moser, M.S.; Forfinski, N.A.; Stewart, H.F.; Doran, E.F.
2007-01-01
Digital terrain models, which can be produced from multibeam bathymetric data, are ordered arrays of depths for a number of sea-floor positions sampled at regularly spaced intervals. These models provide valuable base maps for marine geological interpretations that help define the variability of the sea floor (one of the primary controls of benthic habitat diversity), improve our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats, and provide a detailed framework to guide and assist future research, monitoring, and management activities. The bathymetry interpreted herein was processed from data collected by National Oceanic and Atmospheric Administration vessels during hydrographic surveys H11361 and H11252. These surveys mapped roughly 156 km² of sea floor in the vicinity of Six Mile Reef, an area of eastern Long Island Sound where the sea floor is characterized by fields of large sand waves and an east-west decreasing gradient of bottom tidal-current speeds (fig. 1). Interpretations of the bathymetry are supplemented by concurrently collected seismic reflection data, as well as archived historic seismic profiles, sediment samples and bottom photography collected as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (fig. 2). The purpose of this digital report is 1) to provide the acoustic data layers produced during the above mentioned surveys, 2) to use them to describe the sea-floor character and bedform morphologies near Six Mile Reef, and 3) to relate these descriptions to ongoing processes and sedimentary environments.
Williams, S. Jeffress; Arsenault, Matthew A.; Poppe, Lawrence J.; Reid, Jane A.; Reid, Jamey M.; Jenkins, Chris J.
2007-01-01
Broad continental shelf regions such as the New York Bight are the product of a complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression (>100 m sea-level rise) following the end of the last Pleistocene ice advance ~ 20,000 years ago. The area of the U.S. Exclusive Economic Zone (U.S. EEZ) territory, extending 200 nautical miles seaward from the coast, is larger than the continental U.S. and contains submerged landforms that provide a variety of natural functions and societal benefits, such as: critical habitats for fisheries, ship navigation and homeland security, and engineering activities (i.e. oil and gas platforms, pipeline and cable routes, potential wind-energy-generation sites). Some parts of the continental margins, particularly inner-continental shelf regions, also contain unconsolidated hard-mineral deposits such as sand and gravel that are regarded as potential aggregate resources to meet or augment needs not met by onshore deposits (Williams, 1992). The present distribution of surficial sediment off the northeastern United States is shaped from the deposits left by the last glaciation and reflects the cumulative effects of sediment erosion, transport, sorting, and deposition by storm and tidal processes during the Holocene rise in sea level. As a result, the sediments on the sea floor represent both an historical record of former conditions and a guide to possible future sedimentary environments. The U.S. Geological Survey (USGS) through the Coastal and Marine Geology Program, in cooperation with the University of Colorado and other partners, has compiled extant sediment character and textural data as well as other geologic information on the sea floor from all regions around the U.S. into the usSEABED data system (Reid and others, 2005; Buczkowski and others, 2006; Reid and others, 2006). The usSEABED system, which contains information on sediment grain size and lithology for more than 340,500 stations within the U.S. EEZ. has been developed and populated with data as part of the USGS Marine Aggregate Resources and Processes and the National Benthic Habitats projects in order to provide the base-line data needed to update the current maps of offshore surficial geologic character and sediment distribution. The maps are also used to characterize benthic sea floor environments important for marine ecosystems. U.S. Geological Survey, Data Series 118 (Reid and others, 2005), of the usSEABED data release series, represents the combined efforts of the USGS and several other government agencies to provide a unified resource for accessing and preserving records of U.S. east coast sea floor geologic information and sediment texture data. For this present report, we have chosen to focus on the New York-New Jersey region, an area that has been intensely studied by the USGS for many years to address many complex issues. This report illustrates the uses of the usSEABED database for GIS applications, while offering additional insight into the resources and data available from the USGS and its collaborative institutions. This report is based on data contained in U.S. Geological Survey Data Series 118 (Reid and others, 2005) and shows an assortment of example GIS products that are possible using usSEABED. All data are intended to be GIS-ready and should not require any additional cleanup, formatting, or renaming of fields in order to use the data in a Geographic Information System. This project employs the Environmental Systems Research Institute's (ESRI) ArcView™ software. Many of these maps were made as part of the ongoing USGS study to assess marine aggregate resources offshore New York and New Jersey, but these maps can serve many other purposes. The marine science community, educators, students and others are encouraged to use these data to generate GIS products for their own purposes. The objectives of the Marine Aggregate Resources and Processes project are to produce a series of new geologic maps and reports of the sea floor that will provide scientific insights into the character and geologic development of U.S. continental margins and to use these maps and information to assess the potential availability of offshore sand and gravel resources. The mapping and aggregate resource assessments are being conducted on a national scale using the usSEABED data base as described in Williams and others (2003). Potential uses for these data include: (1) defining the geological variability of the sea floor in relation to benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and benthic habitats; (3) locating aggregate resources for beach nourishment and industrial applications; and (4) providing a detailed geospatial framework for future marine science research, monitoring, and management activities. The initial assessments are in progress for the New York Bight and Louisiana offshore areas.
Shapiro, A C; Rohmann, S O
2005-05-01
Continuous summit-to-sea maps showing both land features and shallow-water coral reefs have been completed in Puerto Rico and the U.S. Virgin Islands, using circa 2000 Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery. Continuous land/sea terrain was mapped by merging Digital Elevation Models (DEM) with satellite-derived bathymetry. Benthic habitat characterizations were created by unsupervised classifications of Landsat imagery clustered using field data, and produced maps with an estimated overall accuracy of>75% (Tau coefficient >0.65). These were merged with Geocover-LC (land use/land cover) data to create continuous land/ sea cover maps. Image pairs from different dates were analyzed using Principle Components Analysis (PCA) in order to detect areas of change in the marine environment over two different time intervals: 2000 to 2001, and 1991 to 2003. This activity demonstrates the capabilities of Landsat imagery to produce continuous summit-to-sea maps, as well as detect certain changes in the shallow-water marine environment, providing a valuable tool for efficient coastal zone monitoring and effective management and conservation.
Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon
Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter
2008-01-01
Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.
Stein, Eric D; White, Bryan P; Mazor, Raphael D; Miller, Peter E; Pilgrim, Erik M
2013-01-01
Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.
Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Miller, Peter E.; Pilgrim, Erik M.
2013-01-01
Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93–99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity. PMID:23308097
The emerging role of lidar remote sensing in coastal research and resource management
Brock, J.C.; Purkis, S.J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping. ?? 2009 Coastal Education and Research Foundation.
The emerging role of lidar remote sensing in coastal research and resource management
Brock, John C.; Purkis, Samuel J.
2009-01-01
Knowledge of coastal elevation is an essential requirement for resource management and scientific research. Recognizing the vast potential of lidar remote sensing in coastal studies, this Special Issue includes a collection of articles intended to represent the state-of-the-art for lidar investigations of nearshore submerged and emergent ecosystems, coastal morphodynamics, and hazards due to sea-level rise and severe storms. Some current applications for lidar remote sensing described in this Special Issue include bluegreen wavelength lidar used for submarine coastal benthic environments such as coral reef ecosystems, airborne lidar used for shoreline mapping and coastal change detection, and temporal waveform-resolving lidar used for vegetation mapping.
1987-11-01
Benthic Macroinvertebrate Program. This program monitors water . quality at stations located in the Bush, Gunpowder, Patapsco, Patuxent, Potomac, Magothy ...Western Shore include the Severn, Magothy , Patapsco, Middle, Back, Gunpowder, and Bush Rivers. They col- lectively drain 2.5% of the basin and
NASA Astrophysics Data System (ADS)
Yarbro, L.; Carlson, P. R., Jr.
2016-12-01
The SIMM program was developed to protect and manage seagrass resources in Florida by providing a collaborative vehicle for seagrass mapping, monitoring, data sharing, and reporting. We summarize and interpret mapping data and field assessments of seagrass abundance and diversity and water quality gathered by regional scientists and managers who work in estuaries from the Panhandle to the northeast Florida coast. Since 2013, regional reports summarizing the status and trends of seagrass ecosystems have been available on the web. The format provides current information for a wide stakeholder community. Ongoing collaborative efforts of more than 30 seagrass researchers and managers provide timely information on environmental and ecosystem changes in these important systems. Since the first published seagrass assessments in 2009, we have observed large changes in seagrass abundance and diversity in several regions; most but not all changes were likely due to variations in water quality that determine the light available to benthic vegetation. In the Panhandle and the Big Bend, in 2012-2104, increases in the frequency and severity of storms and resulting runoff reduced water quality which in turn decreased the abundance and distribution of seagrasses. The storm pattern resulted from changes in the subtropical jet stream and persisted for 3 years. In south Florida, heat and drought elevated salinities to extreme levels in Florida Bay in 2015; the resulting stratification along with high temperatures caused die-off of thousands of hectares of seagrass in the north central Bay. Extremely wet conditions in southeast Florida in 2015-2016 strained the water management system, resulting in large releases of polluted freshwater to estuaries on the southwest and southeast coasts, reducing light availability and causing large blooms of noxious algae. While other regions have also experienced algal blooms that reduced available light (Indian River Lagoon), seagrasses have remained stable or improved in regions where climatic conditions have been stable and where concerted efforts continue to maintain excellent water quality (Springs Coast, Tampa Bay, Sarasota Bay). With continuing updates, the SIMM program and reports provide timely information and assessment of seagrasses at a statewide level.
Biological Communities and Geomorphology of Patch Reefs in Biscayne National Park, Florida, U.S.A.
Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Hickey, T. Don; Bonito, Victor; Bracone, Jeremy E.; Wright, C. Wayne
2008-01-01
Coral reef ecosystem management benefits from continual, quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigated the relationships among physical, benthic, and fish variables in effort to help explain the distribution patterns of ecologically and economically important species on twelve patch reefs within Biscayne National Park (BNP), Florida, U.S.A. We visited 196 randomly-located sampling stations across twelve shallow (< 10m) patch reefs, using SCUBA to conduct our surveys. We measured physical variables (e.g., substratum type), estimated the percent cover of benthic community members (e.g., coral, algae), and counted and estimated mean size for each fish species observed. We also used high-density bathymetric data collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar (EAARL)) to calculate rugosity (bumpiness) of the reef habitat. Here we present our findings visually by graphing our quantitative community and physical structure data simultaneously in a GIS map format. You will see that biological organisms arrange themselves on each patch reef in a non-random manner. For example, many species of fish prefer to locate themselves in areas of the reef where the rugosity index is high. Rugose parts of the reef provide them with good hiding places from predators. These maps (and the data used to create them) are permanent records of the status of reef resources found on these twelve patch reefs in BNP as of September, 2003. The survey data found in the shapefile located on this CD product includes benthic percent cover data for algae, coral, encrusting invertebrates, and substratum type, in addition to gorgonian abundance and volume, total fish abundance and species richness, and specific counts for Acanthurids (surgeonfish), Scarids (parrotfish), Lutjanids (snappers), Haemulids (grunts), Serranids (groupers), and Pomacentrids (damselfish).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
..., including minor to moderate effects on water quality, benthic resources, coral and essential fish habitats... required for the park's recycling program and other operations and activities). Originally the NPS planned...
NASA Astrophysics Data System (ADS)
Carpena, Emmanuel; Jiménez, Luis O.; Arzuaga, Emmanuel; Fonseca, Sujeily; Reyes, Ernesto; Figueroa, Juan
2017-05-01
Improved benthic habitat mapping is needed to monitor coral reefs around the world and to assist coastal zones management programs. A fundamental challenge to remotely sensed mapping of coastal shallow waters is due to the significant disparity in the optical properties of the water column caused by the interaction between the coast and the sea. The objects to be classified have weak signals that interact with turbid waters that include sediments. In real scenarios, the absorption and backscattering coefficients are unknown with different sources of variability (river discharges and coastal interactions). Under normal circumstances, another unknown variable is the depth of shallow waters. This paper presents the development of algorithms for retrieving information and its application to the classification and mapping of objects under coastal shallow waters with different unknown concentrations of sediments. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and classification of hyperspectral data. The algorithms developed were applied to one set of real hyperspectral imagery taken in a tank filled with water and TiO2 that emulates turbid coastal shallow waters. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the water tank using a priori information in the form of stored spectral signatures, previously measured, of objects of interest.
NASA Astrophysics Data System (ADS)
Picard, K.; Nanson, R.; Huang, Z.; Nichol, S.; McCulloch, M.
2017-12-01
The acquisition of high resolution marine geophysical data has intensified in recent years (e.g. multibeam echo-sounding, sub-bottom profiling). This progress provides the opportunity to classify and map the seafloor in greater detail, using new methods that preserve the links between processes and morphology. Geoscience Australia has developed a new genetic classification approach, nested within the Harris et al (2014) global seafloor mapping framework. The approach divides parent units into sub-features based on established classification schemes and feature descriptors defined by Bradwell et al. (2016: http://nora.nerc.ac.uk/), the International Hydrographic Organization (https://www.iho.int) and the Coastal Marine and Ecological Classification Standard (https://www.cmecscatalog.org). Owing to the ecological significance of submarine canyon systems in particular, much recent attention has focused on defining their variation in form and process, whereby they can be classified using a range of topographic metrics, fluvial dis/connection and shelf-incising status. The Perth Canyon is incised into the continental slope and shelf of southwest Australia, covering an area of >1500 km2 and extending from 4700 m water depth to the shelf break in 170 m. The canyon sits within a Marine Protected Area, incorporating a Marine National Park and Habitat Protection Zone in recognition of its benthic and pelagic biodiversity values. However, detailed information of the spatial patterns of the seabed habitats that influence this biodiversity is lacking. Here we use 20 m resolution bathymetry and acoustic backscatter data acquired in 2015 by the Schmidt Ocean Institute plus sub-bottom datasets and sediment samples collected Geoscience Australia in 2005 to apply the new geomorphic classification system to the Perth Canyon. This presentation will show the results of the geomorphic feature mapping of the canyon and its application to better defining potential benthic habitats.
Cochran, Susan A.; Gibbs, Ann E.; D'Antonio, Nicole L.; Storlazzi, Curt D.
2016-05-18
The coral reef in Faga‘alu Bay, Tutuila, American Samoa, has suffered numerous natural and anthropogenic stresses. Areas once dominated by live coral are now mostly rubble surfaces covered with turf or macroalgae. In an effort to improve the health and resilience of the coral reef system, the U.S. Coral Reef Task Force selected Faga‘alu Bay as a priority study area. To support these efforts, the U.S. Geological Survey mapped nearly 1 km2 of seafloor to depths of about 60 m. Unconsolidated sediment (predominantly sand) constitutes slightly greater than 50 percent of the seafloor in the mapped area; reef and other hardbottom potentially available for coral recruitment constitute nearly 50 percent of the mapped area. Of this potentially available hardbottom, only slightly greater than 37 percent is covered with at least 10 percent coral, which is fairly evenly distributed between the reef flat, fore reef, and offshore bank/shelf.
COMPARISON OF USEPA FIELD SAMPLING METHODS FOR BENTHIC MACROINVERTEBRATE STUDIES
Two U.S. Environmental Protection Agency (USEPA) macroinvertebrate sampling protocols were compared in the Mid-Atlantic Highlands region. The Environmental Monitoring and Assessment Program (EMAP) wadeable streams protocol results in a single composite sample from nine transects...
HEAVY METALS STRUCTURE BENTHIC COMUNITIES IN COLORADO MOUNTAIN STREAMS
The development of field sampling designs that employ multiple reference and polluted sites has been proposed as an alternative to the traditional upstream vs. downstream approach used in most biomonitoring studies. Spatially extensive monitoring programs can characterize ecologi...
Cochrane, Guy R.; Lafferty, Kevin D.
2002-01-01
Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.
Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar
Buscombe, Daniel D.
2017-01-01
In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.
Surficial geology and benthic habitat of the German Bank seabed, Scotian Shelf, Canada
Todd, Brian J.; Kostylev, Vladimir E.
2011-01-01
To provide the scientific context for management of a newly opened scallop fishing ground, surficial geology and benthic habitats were mapped on German Bank on the southern Scotian Shelf off Atlantic Canada. To provide a seamless regional dataset, multibeam sonar surveys covered 5320 sqaure kilometres of the bank in water depths of 30–250 m and provided 5 m horizontal resolution bathymetry and backscatter strength. Geoscience data included high-resolution geophysical profiles (seismic reflection and sidescan sonar) and seabed sediment samples. Geological interpretation and is overlain in places by glacial and postglacial sediment. Biological data included seafloor video transects and photographs from which 127 taxa of visible megabenthos were identified. Trawl bycatch data were obtained from government annual research surveys. Statistical analysis of revealed that bedrock is exposed at the seafloor on much of German Bankthese two datasets and a suite of oceanographic environmental variables demonstrated that significantly different fauna exist on bedrock, glacial sediment and postglacial sediment.
NASA Astrophysics Data System (ADS)
Baumstark, René; Duffey, Renee; Pu, Ruiliang
2016-11-01
The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps were created from WorldView-2 satellite imagery using an Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study suggests an alternative for mapping deeper, offshore habitats capable of producing higher thematic and spatial resolution maps compared to those created with the traditional photo-interpretation method.
NASA Astrophysics Data System (ADS)
Hamylton, S.; Andréfouët, S.; Spencer, T.
2012-10-01
Increasing the use of geomorphological map products in marine spatial planning has the potential to greatly enhance return on mapping investment as they are commonly two orders of magnitude cheaper to produce than biologically-focussed maps of benthic communities and shallow substrates. The efficacy of geomorphological maps derived from remotely sensed imagery as surrogates for habitat diversity is explored by comparing two map sets of the platform reefs and atolls of the Amirantes Archipelago (Seychelles), Western Indian Ocean. One mapping campaign utilised Compact Airborne Spectrographic Imagery (19 wavebands, 1 m spatial resolution) to classify 11 islands and associated reefs into 25 biological habitat classes while the other campaign used Landsat 7 + ETM imagery (7 bands, 30 m spatial resolution) to generate maps of 14 geomorphic classes. The maps were compared across a range of characteristics, including habitat richness (number of classes mapped), diversity (Shannon-Weiner statistic) and thematic content (Cramer's V statistic). Between maps, a strong relationship was revealed for habitat richness (R2 = 0.76), a moderate relationship for class diversity and evenness (R2 = 0.63) and a variable relationship for thematic content, dependent on site complexity (V range 0.43-0.93). Geomorphic maps emerged as robust predictors of the habitat richness in the Amirantes. Such maps therefore demonstrate high potential value for informing coastal management activities and conservation planning by drawing on information beyond their own thematic content and thus maximizing the return on mapping investment.
Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop
Robbins, Lisa; Wolfe, Steven; Raabe, Ellen
2008-01-01
The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection of data for mapping; * seek innovative solutions to the primary obstacles identified; * identify the steps needed to move mapping of Florida's oceans and coasts forward, in preparation for a better coordinated, more cost-effective mapping program to allow State and Federal agencies to make better decisions on coastal-resource issues. Over 90 invited participants representing more than 30 State and Federal agencies, universities, NGOs, and private industries played a large role in the success of this two-day workshop. State of Florida agency participants created a ranked priority order for mapping 13 different regions around Florida. The data needed for each of the 13 priority regions were outlined. A matrix considering State and Federal priorities was created, utilizing input from all agencies. The matrix showed overlapping interests of the entities and will allow for partnering and leveraging of resources. The five most basic mapping needs were determined to be bathymetry, high-vertical resolution coastline for sea-level rise scenarios, shoreline change, subsurface geology, and benthic habitats at sufficient scale. There was a clear convergence on the need to coordinate mapping activities around the state. Suggestions for coordination included: * creating a glossary of terms: a standard for specifying agency data-mapping needs; * creating a geographic information officer (GIO) position or permanent organizing group to maintain communications established at this workshop and to maintain progress on the issues identified during the workshop. The person or group could develop a website, maintain a project-status matrix, develop a list of contacts, create links to legislative updates and links to funding sources; * developing a web portal and one-stop/clearinghouse of data. There was general consensus on the need to adopt a single habitat classification system and a strategy to accommodate existing systems smoothly. Unresolve
Benthic substrate classification map: Gulf Islands National Seashore
Lavoie, Dawn; Flocks, James; Twichell, Dave; Rose, Kate
2013-01-01
The 2005 hurricane season was devastating for the Mississippi Gulf Coast. Hurricane Katrina caused significant degradation of the barrier islands that compose the Gulf Islands National Seashore (GUIS). Because of the ability of coastal barrier islands to help mitigate hurricane damage to the mainland, restoring these habitats prior to the onset of future storms will help protect the islands themselves and the surrounding habitats. During Hurricane Katrina, coastal barrier islands reduced storm surge by approximately 10 percent and moderated wave heights (Wamsley and others, 2009). Islands protected the mainland by preventing ocean waves from maintaining their size as they approached the mainland. In addition to storm protection, it is advantageous to restore these islands to preserve the cultural heritage present there (for example, Fort Massachusetts) and because of the influence that these islands have on marine ecology. For example, these islands help maintain a salinity regime favorable to oysters in the Mississippi Sound and provide critical habitats for many migratory birds and endangered species such as sea turtles (Chelonia mydas, Caretta caretta, and Dermochelys coriacea), Gulf sturgeon (Acipenser oxyrinchus desotoi), and piping plovers (Charadrius melodus) (U.S. Army Corps of Engineers, 2009a). As land manager for the GUIS, the National Park Service (NPS) has been working with the State of Mississippi and the Mobile District of the U.S. Army Corps of Engineers to provide a set of recommendations to the Mississippi Coastal Improvements Program (MsCIP) that will guide restoration planning. The final set of recommendations includes directly renourishing both West Ship Island (to protect Fort Massachusetts) and East Ship Island (to restore the French Warehouse archaeological site); filling Camille Cut to recreate a continuous Ship Island; and restoring natural regional sediment transport processes by placing sand in the littoral zone just east of Petit Bois Island. Prevailing sediment transport processes will provide natural renourishment of the westward islands in the barrier system (U.S. Army Corps of Engineers, 2009b). One difficulty in developing the final recommendations is that few data are available to incorporate into restoration plans related to bathymetry, sediment type, and biota. For example, the most recent bathymetry available dates to when East and West Ship Islands were a single continuous island (1917). As a result, the MsCIP program has encouraged post-hurricane bathymetric data collection for future reference. Furthermore, managing a complex environment such as this barrier island system for habitat conservation and best resource usage requires significant knowledge about those habitats and resources. To effectively address these issues, a complete and comprehensive understanding of the type, geographic extent, and condition of marine resources included within the GUIS is required. However, the data related to the GUIS marine resources are limited either spatially or temporally. Specifically, there is limited knowledge and information about the distribution of benthic habitats and the characteristics of the offshore region of the GUIS, even though these are the habitats that will be most affected by habitat restoration. The goal of this project is to develop a comprehensive map of the benthic marine habitats within the GUIS to give park managers the ability to develop strategies for coastal and ocean-resource management and to aid decisionmakers in evaluating conservation priorities.
Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.
1992-01-01
In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.
A Literature Review of Processes for Gravel Deposit Identification in the Lower Mississippi River
2010-07-01
deposits. ERDC/GSL SR-10-2 35 References Anstee, J. M., D . L. B. Jupp, and G. T. Byrne. 1997. The shallow benthic cover map and optical water ...Engineers. Biedenharn, D . S., L. C. Hubbard, and P . H. Hoffman. 2000. Historical analysis of dike systems on the lower Mississippi River...Systems Science and Policy. Seaside, CA: California State University, Monterey Bay. Lagasse, P . F., B. R. Winkley, and D . B. Simons. 1980. Impact of
Galparsoro, Ibon; Connor, David W; Borja, Angel; Aish, Annabelle; Amorim, Patricia; Bajjouk, Touria; Chambers, Caroline; Coggan, Roger; Dirberg, Guillaume; Ellwood, Helen; Evans, Douglas; Goodin, Kathleen L; Grehan, Anthony; Haldin, Jannica; Howell, Kerry; Jenkins, Chris; Michez, Noëmie; Mo, Giulia; Buhl-Mortensen, Pål; Pearce, Bryony; Populus, Jacques; Salomidi, Maria; Sánchez, Francisco; Serrano, Alberto; Shumchenia, Emily; Tempera, Fernando; Vasquez, Mickaël
2012-12-01
The EUNIS (European Union Nature Information System) habitat classification system aims to provide a common European reference set of habitat types within a hierarchical classification, and to cover all terrestrial, freshwater and marine habitats of Europe. The classification facilitates reporting of habitat data in a comparable manner, for use in nature conservation (e.g. inventories, monitoring and assessments), habitat mapping and environmental management. For the marine environment the importance of a univocal habitat classification system is confirmed by the fact that many European initiatives, aimed at marine mapping, assessment and reporting, are increasingly using EUNIS habitat categories and respective codes. For this reason substantial efforts have been made to include information on marine benthic habitats from different regions, aiming to provide a comprehensive geographical coverage of European seas. However, there still remain many concerns on its applicability as only a small fraction of Europe's seas are fully mapped and increasing knowledge and application raise further issues to be resolved. This paper presents an overview of the main discussion and conclusions of a workshop, organised by the MeshAtlantic project, focusing upon the experience in using the EUNIS habitats classification across different countries and seas, together with case studies. The aims of the meeting were to: (i) bring together scientists with experience in the use of the EUNIS marine classification and representatives from the European Environment Agency (EEA); (ii) agree on enhancements to EUNIS that ensure an improved representation of the European marine habitats; and (iii) establish practices that make marine habitat maps produced by scientists more consistent with the needs of managers and decision-makers. During the workshop challenges for the future development of EUNIS were identified, which have been classified into five categories: (1) structure and hierarchy; (2) biology; (3) terminology; (4) mapping; and (5) future development. The workshop ended with a declaration from the attendees, with recommendations to the EEA and European Topic Centre on Biological Diversity, to take into account the outputs of the workshop, which identify weaknesses in the current classification and include proposals for its modification, and to devise a process to further develop the marine component of the EUNIS habitat classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
2007-11-01
et al ., 1991; Welsh and Ollivier 1998), behavior (Daly et al ., 1995; Maltby et al ., 2002 ...include changes in species diversity and community structure (Karr 1981; Bramblett and Fausch 1991; Barbour et al ., 1999; Zweig and Rabeni 2001; Martin et ...programs in aquatic habitats; these programs typically employ benthic invertebrates such as molluscs (Maltby et al ., 2002 ; Applied Biomonitoring
Benthic incubation chambers for estimating nitrogen flux at the sediment water interface
USEPA’s Sustainable and Healthy Communities (SHC) research program seeks to better understand how ecosystem functions produce ecosystem goods and services (EGS) in order to develop quantitative tools for informing decisions that lead to more sustainable results. Our incompl...
Autonomous benthic algal cultivator under feedback control of ecosystem metabolism
USDA-ARS?s Scientific Manuscript database
An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...
Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls
Taxonomic identification of benthic macroinvertebrates is critical to protocols used to assess the biological integrity of aquatic ecosystems. The time, expense, and inherent error rate of species-level morphological identifications has necessitated use of genus- or family-level ...
The Census of Marine Life on Seamounts: results from a global science program
NASA Astrophysics Data System (ADS)
Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.
2010-12-01
CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority, Convention on Biological Diversity, and Regional Fisheries Management Organizations; 5) protocols manuals and guides to facilitate standardization of methodology, including a Wiley Blackwell book, Biological Sampling in the Deep-Sea, due to be published 2011; and 6) SeamountsOnline, a central database of global seamount data (5500 taxa from 258 seamounts) to support research and management (seamounts.sdsc.edu). CenSeam has also had Societal impacts. It has fostered collaborative research to expand global seamount sampling to previously understudied regions. It has increased public awareness of seamounts and the wider deep-sea, for example through expedition web logs to share the experiences of researchers at sea. And CenSeam has provided quality science to inform the management of commercial fisheries and mining, such as a practical seamount classification scheme for protected area planning, and maps of predicted coral habitat suitability.
NASA Astrophysics Data System (ADS)
Mamo, B. L.; McHugh, C.; Renema, W.; Gallagher, S. J.; Fulthorpe, C.; Bogus, K.
2017-12-01
In 2015, International Ocean Discovery Program Expedition 356 cored a transect along the margin off Western Australian to investigate the history of the Indonesian Throughflow (ITF) and its integral role in the development of global thermohaline circulation and climate. Throughout the expedition, a suite of foraminiferal analyses were employed wherein an incredibly diverse benthic fauna ( 260 species) was used to reveal palaeo-water depth, palaeobathymetric setting and variable conditions at the sediment-water interface. Benthic foraminiferal biofacies are particularly sensitive to changes in environmental conditions, have a rapid turnover and are ideal proxies for monitoring physical and chemical changes in marine environments. When this information is combined with lithostratigraphic and other microfossil data, a robust understanding of past environments and past geological events can be reconstructed. Shipboard data were used to isolate horizons of interest for more intense sampling at Site U1461, situated on the Northwest Shelf (127 m water depth). The shipboard data revealed a large ( 150 m-thick) turbidite horizon hosting benthic foraminifera from a substantially shallower water depth than the horizon immediately preceding. We present preliminary foraminiferal results combined with shipboard sedimentological descriptions to better constrain the deposit's occurrence in the biostratigraphic record, use benthic foraminifera to elucidate the deposit's sedimentary origins and link this event with others in the region to investigate potential catalysts for its deposition.
Francini-Filho, Ronaldo B; Coni, Ericka O C; Meirelles, Pedro M; Amado-Filho, Gilberto M; Thompson, Fabiano L; Pereira-Filho, Guilherme H; Bastos, Alex C; Abrantes, Douglas P; Ferreira, Camilo M; Gibran, Fernando Z; Güth, Arthur Z; Sumida, Paulo Y G; Oliveira, Nara L; Kaufman, Les; Minte-Vera, Carolina V; Moura, Rodrigo L
2013-01-01
The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003-2005 and 2006-2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted.
Francini-Filho, Ronaldo B.; Coni, Ericka O. C.; Meirelles, Pedro M.; Amado-Filho, Gilberto M.; Thompson, Fabiano L.; Pereira-Filho, Guilherme H.; Bastos, Alex C.; Abrantes, Douglas P.; Ferreira, Camilo M.; Gibran, Fernando Z.; Güth, Arthur Z.; Sumida, Paulo Y. G.; Oliveira, Nara L.; Kaufman, Les; Minte-Vera, Carolina V.; Moura, Rodrigo L.
2013-01-01
The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3–10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003–2005 and 2006–2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted. PMID:23365655
Modeling Benthic Sediment Processes to Predict Water ...
The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal benthic fluxes of nutrients and chemicals in Narragansett Bay. A benthic sediment model is presented in this report to identify benthic flux into the water column in Narragansett Bay. Benthic flux is essential to properly model water quality and ecology in estuarine and coastal systems.
NASA Astrophysics Data System (ADS)
Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.
2016-02-01
Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.
Framework for characterization. (Revised final report March 1992). Technical pub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, M.; Boynton, W.; Clark, P.
1992-03-01
The Tampa Bay National Estuary Program (TBNEP) was established in 1990 to develop a comprehensive conservation and management plan, a program to restore and protect Tampa Bay and its resources. The process of identifying the problems of the bay and linking problems to causes is prerequisite to developing the CCMP and is known as characterization. Characterization workshops were held in June and July 1991 to (1) guide the characterization process toward areas of greatest information needs; (2) contribute to the development of a preliminary bay characterization report; and (3) develop a depiction of bay ecosystem components and interrelationships. The workshopsmore » focused on two categories of priority problems: living resources and water quality deterioration. Priority information needs include estuarine seagrasses, low-salinity habitats, and benthic habitats. Refinement of a nitrogen input budget and establishment of cause-effect relationships among nutrient loading dissolved oxygen concentrations and the distribution of seagrass and benthic communities were also identified as priority information needs.« less
Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G
2003-01-01
We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.
Preface and brief synthesis for the FOODBANCS volume
NASA Astrophysics Data System (ADS)
Smith, Craig R.; DeMaster, David J.
2008-11-01
In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.
Mapping and classifying the seabed of the West Greenland continental shelf
NASA Astrophysics Data System (ADS)
Gougeon, S.; Kemp, K. M.; Blicher, M. E.; Yesson, C.
2017-03-01
Marine benthic habitats support a diversity of marine organisms that are both economically and intrinsically valuable. Our knowledge of the distribution of these habitats is largely incomplete, particularly in deeper water and at higher latitudes. The western continental shelf of Greenland is one example of a deep (more than 500 m) Arctic region with limited information available. This study uses an adaptation of the EUNIS seabed classification scheme to document benthic habitats in the region of the West Greenland shrimp trawl fishery from 60°N to 72°N in depths of 61-725 m. More than 2000 images collected at 224 stations between 2011 and 2015 were grouped into 7 habitat classes. A classification model was developed using environmental proxies to make habitat predictions for the entire western shelf (200-700 m below 72°N). The spatial distribution of habitats correlates with temperature and latitude. Muddy sediments appear in northern and colder areas whereas sandy and rocky areas dominate in the south. Southern regions are also warmer and have stronger currents. The Mud habitat is the most widespread, covering around a third of the study area. There is a general pattern that deep channels and basins are dominated by muddy sediments, many of which are fed by glacial sedimentation and outlets from fjords, while shallow banks and shelf have a mix of more complex habitats. This first habitat classification map of the West Greenland shelf will be a useful tool for researchers, management and conservationists.
NASA Astrophysics Data System (ADS)
Baasch, Benjamin; Müller, Hendrik; von Dobeneck, Tilo; Oberle, Ferdinand K. J.
2017-05-01
The electric conductivity and magnetic susceptibility of sediments are fundamental parameters in environmental geophysics. Both can be derived from marine electromagnetic profiling, a novel, fast and non-invasive seafloor mapping technique. Here we present statistical evidence that electric conductivity and magnetic susceptibility can help to determine physical grain-size characteristics (size, sorting and mud content) of marine surficial sediments. Electromagnetic data acquired with the bottom-towed electromagnetic profiler MARUM NERIDIS III were analysed and compared with grain size data from 33 samples across the NW Iberian continental shelf. A negative correlation between mean grain size and conductivity (R=-0.79) as well as mean grain size and susceptibility (R=-0.78) was found. Simple and multiple linear regression analyses were carried out to predict mean grain size, mud content and the standard deviation of the grain-size distribution from conductivity and susceptibility. The comparison of both methods showed that multiple linear regression models predict the grain-size distribution characteristics better than the simple models. This exemplary study demonstrates that electromagnetic benthic profiling is capable to estimate mean grain size, sorting and mud content of marine surficial sediments at a very high significance level. Transfer functions can be calibrated using grains-size data from a few reference samples and extrapolated along shelf-wide survey lines. This study suggests that electromagnetic benthic profiling should play a larger role for coastal zone management, seafloor contamination and sediment provenance studies in worldwide continental shelf systems.
Synthesis of benthic flux components in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil
NASA Astrophysics Data System (ADS)
King, J. N.
2012-12-01
The primary objective of this work is to synthesize components of benthic flux in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Specifically, the component of benthic discharge flux forced by the terrestrial hydraulic gradient is 0.8 m3 d-1; components of benthic discharge and recharge flux associated with the groundwater tidal prism are both 2.1 m3 d-1; components of benthic discharge and recharge flux forced by surface-gravity wave setup are both 6.3 m3 d-1; the component of benthic discharge flux that transports radium-228 is 350 m3 d-1; and components of benthic discharge and recharge flux forced by surface-gravity waves propagating over a porous medium are both 1400 m3 d-1. (All models are normalized per meter shoreline.) Benthic flux is a function of components forced by individual mechanisms and nonlinear interactions that exist between components. Constructive and destructive interference may enhance or diminish the contribution of benthic flux components. It may not be possible to model benthic flux by summing component magnitudes. Geochemical tracer techniques may not accurately model benthic discharge flux or submarine groundwater discharge (SGD). A conceptual model provides a framework on which to quantitatively characterize benthic discharge flux and SGD with a multifaceted approach.
Synthesis of benthic flux components in the Patos Lagooncoastal zone, Rio Grande do Sul, Brazil
King, Jeffrey N.
2012-01-01
The primary objective of this work is to synthesize components of benthic flux in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Specifically, the component of benthic discharge flux forced by the terrestrial hydraulic gradient is 0.8 m3 d-1; components of benthic discharge and recharge flux associated with the groundwater tidal prism are both 2.1 m3 d-1; components of benthic discharge and recharge flux forced by surface-gravity wave setup are both 6.3 m3 d-1; the component of benthic discharge flux that transports radium-228 is 350 m3 d-1; and components of benthic discharge and recharge flux forced by surface-gravity waves propagating over a porous medium are both 1400 m3 d-1. (All models are normalized per meter shoreline.) Benthic flux is a function of components forced by individual mechanisms and nonlinear interactions that exist between components. Constructive and destructive interference may enhance or diminish the contribution of benthic flux components. It may not be possible to model benthic flux by summing component magnitudes. Geochemical tracer techniques may not accurately model benthic discharge flux or submarine groundwater discharge (SGD). A conceptual model provides a framework on which to quantitatively characterize benthic discharge flux and SGD with a multifaceted approach.
NASA Astrophysics Data System (ADS)
Baumstark, R. D.; Duffey, R.; Pu, R.
2016-12-01
The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.
Whole sediment Toxicity Identification Evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine org...
Decadal Changes In Benthic Community Measures In New York Harbor
Monitoring in New York Harbor, NY, as part of the Regional Environmental Monitoring and Assessment Program has spanned a decade, and includes habitat and water quality measures and sediment contaminant levels from four sub-basins (Upper NY Harbor, Lower NY Harbor, Newark Bay, and...
Non-wadeable rivers have been largely overlooked by bioassessment programs because of sampling difficulties and a lack of appropriate methods and biological indicators. We are in the process of developing a Large River Bioassessment Protocol (LR-BP) for sampling macroinvertebrat...
RIVERINE ASSESSMENT USING MACROINVERTEBRATES: ALL METHODS ARE NOT CREATED EQUAL
In 1999, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those developed for three major programs (EMAP-SW, NAWQA, and Ohio EPA), at each of sixty sites across four tributaries to the Ohio River. Water chemistry samples and physi...
Kabiri, Keivan; Rezai, Hamid; Moradi, Masoud
2018-04-01
High spatial resolution WorldView-2 (WV2) satellite imagery coupled with field observations have been utilized for mapping the coral reefs around Hendorabi Island in the northern Persian Gulf. In doing so, three standard multispectral bands (red, green, and blue) were selected to produce a classified map for benthic habitats. The in-situ observations were included photo-transects taken by snorkeling in water surface and manta tow technique. The satellite image has been classified using support vector machine (SVM) classifier by considering the information obtained from field measurements as both training and control points data. The results obtained from manta tow demonstrated that the mean total live hard coral coverage was 29.04% ± 2.44% around the island. Massive corals poritiids (20.70%) and branching corals acroporiids (20.33%) showed higher live coral coverage compared to other corals. Moreover, the map produced from satellite image illustrated the distribution of habitats with 78.1% of overall accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.
2014-01-01
Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.
Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health
NASA Astrophysics Data System (ADS)
Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.
2002-12-01
Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.
Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System
Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.
2007-01-01
The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and hydrologic data identified a range of habitat characteristics and differences in tidal-creek morphology. This endeavor related nearshore benthic habitat and hydrologic conditions with habitat suitability and fish assemblages and provides a template for similar applications in shallow and nearshore estuarine environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardlaw, B.R.; Henry, T.W.; Martin, W.E.
1991-01-01
Two sets of benthic (bottom-surface) samples were taken from the lagoon on Enewetak Atoll, Republic of the Marshall Islands, during the PEACE Program (1984-1985). These samples were collected to (1) familiarize project geologists with the distribution of sediment types and facies within Enewetak lagoon, (2) increase understanding of the distribution of modern microfaunas in the lagoon, and (3) supplement studies of the sea-floor features both within and near OAK and KOA craters. The benthic sample studies aided both evaluation of the stratigraphic sequence penetrated during the Drilling Phase and interpretation of the litho- and biostratigraphic framework used in analysis ofmore » OAK and KOA.« less
NASA Astrophysics Data System (ADS)
Kingon, Kelly
This dissertation starts by evaluating the applicability of using a commercially available, cost-effective, sidescan sonar system to detect benthic habitats, in particular hardbottom habitats, in the nearshore northeastern Gulf of Mexico. To illustrate the capability of low-cost devices in mapping benthic habitats, I tested the Humminbird 997c SI unit marketed to fishermen at a cost of approximately 2,000. Methodological approaches to effectively capture and process the Humminbird sidescan imagery were developed. Humminbird sidescan data from three sites were compared to overlapping sidescan imagery acquired by the National Marine Fisheries Service using a standard, much more expensive (˜20,000) Marine Sonic system. This analysis verified that the classification results of sand and hardbottom habitats based on data collected using the Humminbird sidescan system were similar to those produced using the traditional and more expensive Marine Sonic sidescan equipment. Thirty-three sites in total were then mapped with the Humminbird system and sampled using dive surveys. Seascape pattern metrics were calculated from the classified Humminbird sidescan maps. The dive survey data included measurements of the geomorphology, physical attributes of the water column (e.g. temperature, depth, and visibility), and coverage and heights of the benthic biota. The coverage and heights of the biota were compared to the geomorphology, seascape, and water column variables to identify patterns in the distribution and community composition of the sessile organisms. Within the study area, visibility was found to vary with longitude. Sites in the east showed higher visibility than sites in the west and this may be driving the community patterns that were identified. Relationships were identified between the four most abundant taxa (sponges, hard corals, brown algae, and red algae) and the geomorphology, physical, and seascape variables. However, the relationships were often complicated and the biota did not strictly follow gradients or boundaries in substrate or geoform (physical feature or landform), even though these features are often used to classify habitats and biotopes. The percent cover of rock was a significant geomorphology variable for red algae and hard coral coverage while geoforms were related to the heights of sponges and brown algae. Seascape metrics also had significant effects on the sessile biota particularly related to patch edges, heterogeneity, core areas, nearest neighbor distances, and the percent cover of hardbottom. Despite the fact that sessile organisms do not move much, if at all following their planktonic larval stage, the surrounding seascape contributes to the patterns we see in their distribution, coverage, and heights. The third chapter focuses on applying a new classification standard to the benthic habitats in the nearshore northeastern Gulf of Mexico. The United States Geological Survey (USGS) has a standardized system for classifying terrestrial and aquatic habitats found across the U.S. which has been in place for almost 40 years. This classification standard does not include marine and most coastal habitats. Therefore, marine researchers developed a number of classification systems for coastal and marine habitats relevant to their local or regional studies in U.S. waters. A national standardized method for classifying marine and coastal habitats was not adopted until recently. The Coastal and Marine Ecological Classification Standard (CMECS) developed by the Federal Geographic Data Committee was approved last year and is intended to fill the gap in U.S. marine habitat classification standards. Since the classification standard is in its infancy, it has not been applied in many geographic areas. My third chapter is the first study to apply the CMECS to the benthic habitats in the nearshore northeastern Gulf of Mexico off the coast of northwest Florida. Hardbottom and sand habitats are characteristic of this area. In the previous chapter, the underwater surveys revealed that the dominant taxa at the sites within the study area were hard corals, sponges, and macroalgae. I used CMECS to broadly classify the sites where the surveys were completed. I found that habitat heterogeneity and a wide variety of environmental characteristics influenced the distribution of taxa at the local scale. This made applying CMECS at scales finer than the composite study area unfeasible without major modifications. CMECS worked well for classifying the broad scale in this region but was not appropriate for classifying complex fine-scale biotopes. (Abstract shortened by UMI.)
Coral reef habitats as surrogates of species, ecological functions, and ecosystem services.
Mumby, Peter J; Broad, Kenneth; Brumbaugh, Daniel R; Dahlgren, Craig P; Harborne, Alastair R; Hastings, Alan; Holmes, Katherine E; Kappel, Carrie V; Micheli, Fiorenza; Sanchirico, James N
2008-08-01
Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.
Burton, Carmen A.
2008-01-01
Biotic communities and environmental conditions can be highly variable between natural ecosystems. The variability of natural assemblages should be considered in the interpretation of any ecological study when samples are either spatially or temporally distributed. Little is known about biotic variability in the Santa Ana River Basin. In this report, the lotic community and habitat assessment data from ecological studies done as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program are used for a preliminary assessment of variability in the Santa Ana Basin. Habitat was assessed, and benthic algae, benthic macroinvertebrate, and fish samples were collected at four sites during 1999-2001. Three of these sites were sampled all three years. One of these sites is located in the San Bernardino Mountains, and the other two sites are located in the alluvial basin. Analysis of variance determined that the three sites with multiyear data were significantly different for 41 benthic algae metrics and 65 macroinvertebrate metrics and fish communities. Coefficients of variation (CVs) were calculated for the habitat measurements, metrics of benthic algae, and macroinvertebrate data as measures of variability. Annual variability of habitat data was generally greater at the mountain site than at the basin sites. The mountain site had higher CVs for water temperature, depth, velocity, canopy angle, streambed substrate, and most water-quality variables. In general, CVs of most benthic algae metrics calculated from the richest-targeted habitat (RTH) samples were greater at the mountain site. In contrast, CVs of most benthic algae metrics calculated from depositional-targeted habitat (DTH) samples were lower at the mountain site. In general, CVs of macroinvertebrate metrics calculated from qualitative multihabitat (QMH) samples were lower at the mountain site. In contrast, CVs of many metrics calculated from RTH samples were greater at the mountain site than at one of the basin sites. Fish communities were more variable at the basin sites because more species were present at these sites. Annual variability of benthic algae metrics was related to annual variability in habitat variables. The CVs of benthic algae metrics related to the most CVs of habitat variables included QMH taxon richness, the RTH percentage richness, RTH abundance of tolerant taxa, RTH percentage richness of halophilic diatoms, RTH percentage abundance of sestonic diatoms, DTH percentage richness of nitrogen heterotrophic diatoms, and DTH pollution tolerance index. The CVs of macroinvertebrate metrics related to the most CVs of habitat variables included the RTH trichoptera, RTH EPT, RTH scraper richness, RTH nonchironomid dipteran abundance (in percent), and RTH EPA (U.S. Environmental Protection Agency) tolerance, which is based on abundance. Many of the CVs of habitat variables related to CVs of macroinvertebrate metrics were the same habitat variables that were related to the CVs of benthic algae metrics. On the basis of these results, annual variability may have a role in the relationship of benthic algae and macroinvertebrates assemblages with habitat and water quality in the Santa Ana Basin. This report provides valuable baseline data on the variability of biological communities in the Santa Ana Basin.
California State Waters Map Series: offshore of San Gregorio, California
Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of San Gregorio map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports diverse populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin's Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of "bull kelp," which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Ten-day acute mortality of the benthic amphipod, Ampelisca abdita, is used in a number of regulatory, research, and monitoring programs to evaluate chemical contamination of marine sediments. Although this endpoint has proven to be valuable for characterizing the relative toxicit...
Macroinvertebrates as Indicators of Stream Health.
ERIC Educational Resources Information Center
McDonald, Brook S.; And Others
1991-01-01
Describes Ohio's Scenic Rivers Monitoring Program that uses benthic macroinvertebrates, such as the stonefly, mayfly, and water penny beetle larva, as key indicators of water quality and stream health. Presents a three-category scheme for invertebrates based upon their tolerance to pollution. Students can collect samples of these organisms,…
The US Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program (EMAP) sampled - 500 wadeable streams in the Mid-Atlantic Highlands region of the US during the late spring of 1993 to 1995 for a variety of physical, chemical, and biological indicat...
1992-08-01
Faas, " Analysis of the relationship between acoustic reflectivity and sediment porosity," Geophysics 3 4, 546-553 (1969). M. A. Foda , J. Y.-H. Chang...properties, together with in situ measured mechanical, acoustic and electrical properties, should be subjected to factor analysis . Natural clusters could...properties. The mechanical 1 properties and remotely sensed properties are a matrix of information that can be subjected to factor analysis . One can
Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.
2001-01-01
Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.
Remote sensing of Qatar nearshore habitats with perspectives for coastal management.
Warren, Christopher; Dupont, Jennifer; Abdel-Moati, Mohamed; Hobeichi, Sanaa; Palandro, David; Purkis, Sam
2016-04-30
A framework is proposed for utilizing remote sensing and ground-truthing field data to map benthic habitats in the State of Qatar, with potential application across the Arabian Gulf. Ideally the methodology can be applied to optimize the efficiency and effectiveness of mapping the nearshore environment to identify sensitive habitats, monitor for change, and assist in management decisions. The framework is applied to a case study for northeastern Qatar with a key focus on identifying high sensitivity coral habitat. The study helps confirm the presence of known coral and provides detail on a region in the area of interest where corals have not been previously mapped. Challenges for the remote sensing methodology associated with natural heterogeneity of the physical and biological environment are addressed. Recommendations on the application of this approach to coastal environmental risk assessment and management planning are discussed as well as future opportunities for improvement of the framework. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Tuyen Van; Cho, Woon-Seok; Kim, Hungsoo; Jung, Il Hyo; Kim, YongKuk; Chon, Tae-Soo
2014-03-01
Definition of ecological integrity based on community analysis has long been a critical issue in risk assessment for sustainable ecosystem management. In this work, two indices (i.e., Shannon index and exergy) were selected for the analysis of community properties of benthic macroinvertebrate community in streams in Korea. For this purpose, the means and variances of both indices were analyzed. The results found an extra scope of structural and functional properties in communities in response to environmental variabilities and anthropogenic disturbances. The combination of these two parameters (four indices) was feasible in identification of disturbance agents (e.g., industrial pollution or organic pollution) and specifying states of communities. The four-aforementioned parameters (means and variances of Shannon index and exergy) were further used as input data in a self-organizing map for the characterization of water quality. Our results suggested that Shannon index and exergy in combination could be utilized as a suitable reference system and would be an efficient tool for assessment of the health of aquatic ecosystems exposed to environmental disturbances.
Liang, Xinqiang; Zhu, Sirui; Ye, Rongzhong; Guo, Ru; Zhu, Chunyan; Fu, Chaodong; Tian, Guangming; Chen, Yingxu
2014-09-01
River health and associated risks are fundamentally dependent on the levels of the primary productivities, i.e., sestonic and benthic chlorophyll-a. We selected a typical urban river system of the Yangtz delta to investigate nutrient and non-nutrient responses of chlorophyll-a contents and to determine biological thresholds of N and P. Results showed the mean contents of sestonic and benthic chlorophyll-a across all sampling points reached 10.2 μg L(-1) and 149.3 mg m(-2). The self-organized mapping analysis suggested both chlorophyll-a contents clearly responded to measurements of N, P, and water temperature. Based on the chlorophyll-a criteria for fresh water and measured variables, we recommend the biological thresholds of N and P for our river system be set at 2.4 mg N L(-1) and 0.2 mg P L(-1), and these be used as initial nutrient reference values for local river managers to implement appropriate strategies to alleviate nutrient loads and trophic status. Copyright © 2014 Elsevier Ltd. All rights reserved.
Storlazzi, Curt; Dartnell, Peter; Hatcher, Gerry; Gibbs, Ann E.
2016-01-01
The rugosity or complexity of the seafloor has been shown to be an important ecological parameter for fish, algae, and corals. Historically, rugosity has been measured either using simple and subjective manual methods such as ‘chain-and-tape’ or complicated and expensive geophysical methods. Here, we demonstrate the application of structure-from-motion (SfM) photogrammetry to generate high-resolution, three-dimensional bathymetric models of a fringing reef from existing underwater video collected to characterize the seafloor. SfM techniques are capable of achieving spatial resolution that can be orders of magnitude greater than large-scale lidar and sonar mapping of coral reef ecosystems. The resulting data provide finer-scale measurements of bathymetry and rugosity that are more applicable to ecological studies of coral reefs than provided by the more expensive and time-consuming geophysical methods. Utilizing SfM techniques for characterizing the benthic habitat proved to be more effective and quantitatively powerful than conventional methods and thus might portend the end of the ‘chain-and-tape’ method for measuring benthic complexity.
Divers-Operated Underwater Photogrammetry: Applications in the Study of Antarctic Benthos
NASA Astrophysics Data System (ADS)
Piazza, P.; Cummings, V.; Lohrer, D.; Marini, S.; Marriott, P.; Menna, F.; Nocerino, E.; Peirano, A.; Schiaparelli, S.
2018-05-01
Ecological studies about marine benthic communities received a major leap from the application of a variety of non-destructive sampling and mapping techniques based on underwater image and video recording. The well-established scientific diving practice consists in the acquisition of single path or `round-trip' over elongated transects, with the imaging device oriented in a nadir looking direction. As it may be expected, the application of automatic image processing procedures to data not specifically acquired for 3D modelling can be risky, especially if proper tools for assessing the quality of the produced results are not employed. This paper, born from an international cooperation, focuses on this topic, which is of great interest for ecological and monitoring benthic studies in Antarctica. Several video footages recorded from different scientific teams in different years are processed with an automatic photogrammetric procedure and salient statistical features are reported to critically analyse the derived results. As expected, the inclusion of oblique images from additional lateral strips may improve the expected accuracy in the object space, without altering too much the current video recording practices.
Benthic Community Composition and Seabed Characteristics of a Chukchi Sea Pockmark
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Bluhm, B.; Iken, K.; Gagaev, S.; Robinson, S.
2005-12-01
Several dozen seafloor features were mapped by Larry Mayer and his colleagues using swath bathymetry during a 2003 cruise with the USCGC HEALY near the eastern edge of the Chukchi Plateau (Chukchi Sea 76.6N, 163.9W). These were sub-circular depressions ranging from approximately 250 to over 1000m in width, with depths of up to 50m below the surrounding seabed, and situated in water depths from 500 to 950m. The origin of these features was undetermined, but one possibility was that they were pockmarks formed as a result of gas or fluid expulsion processes. We report here on benthic sampling undertaken at one of these pockmarks on 18 July 2005, also from USCGC HEALY. This elongated feature had maximum water depth of approximately 940m, was 1200m in maximum width, and was depressed approximately 40m below the surrounding seabed. The ocean in the vicinity of the pockmark was heavily ice-covered, which tightly restricted the ship's mobility during sampling operations. We used an ROV to collect and photograph the benthic epifauna during a 6h transit that crossed from the outside of the pockmark to near the center over a distance of 900m. We used a down-looking digital camera to collect over 800 pictures of the benthos at altitudes of 2 to 3m above the seabed. We also collected three cores with a 25x25cm box corer. Our investigations did not provide any direct evidence for gas or fluid flux through the seabed of this feature. Neither did we see any secondary indications of methane flux such as authigenic carbonates or bacterial mats. The abundance and diversity of benthic epifauna at this station was the highest among 8 stations sampled using similar methods during a 30 day cruise. The ROV observed brittle stars, various types of anemones, shrimps, eel pouts, stalked crinoids, benthic ctenophore (likely new species), burrows and mounts, gooseneck barnacles, mysids. Holothurians (c.f. Peneagone sp.) were the single most abundant group and were often photographed in densities of over 50 individuals per square meter. Preliminary analysis of the box core samples: Polychaetes (e.g. Chaetozone setose, Aricidea sp., Ophelina sp., Progoniada sp., Proclea graffi, Protula globifera), Foraminifera, Nemertini, Coronata (Cnidaria tubes), Sipunculida (Golfingia), Bivalvia, Anthozoa.
Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas
NASA Astrophysics Data System (ADS)
Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry
2017-04-01
Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable through other sources but highly relevant to marine management, planning and policy.
NASA Astrophysics Data System (ADS)
Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.
2016-12-01
Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.
The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).
Nelson, William G; Bergen, Barbara J
2012-12-01
New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.
Benthic macrofauna data for San Francisco Bay, California, September 1986
Schemel, Laurence E.; Thompson, J.K.; Harmon, J.G.; Yost, B.T.
1995-01-01
Benthic macrofauna were collected during September 1986 to evaluate locations for long-term monitoring stations as part of the U.S. Geological Survey Regional Effects Monitoring Program in San Francisco Bay, California. Three to ten replicate samples were collected with a modified Van Veen sampler (0.05 m2 area) at ten locations. One box core sample (0.06 m2 area) was collected at seven to the ten locations. Six of the box core samples were split into an upper 10 cm sample and a deeper sample before analysis. Macrofauna specimens were identified to the lowest possible taxon, usually genus and species, then counted. An average of 88 percent of the benthic macrofauna specimens were identified to the species level. The fraction identified varied among stations from 54 to 98 percent. Nematodes and oligochaetes accounted for most of the unidentified specimens. Relative to the total number of species identified in five replicates at each location, an average of 90 percent of the species were collected with three replicates. In general, species with high to moderate abundances were present in all replicates, and species collected only after three or more replicates averaged less than one specimen per replicate. Results from the box cores showed that the dominant species were most abundant in the upper 10 cm, the depth of sediment that can be adequately sampled with a modified Van Veen sampler. On the basis of the number of species and their abundances at each location, seven of the ten locations were selected for sampling in the regular program, which began in March 1987.
Assessing the ecological status of the Cisadane River’s headwaters using benthic macroinvertebrates
NASA Astrophysics Data System (ADS)
Krisanti, M.; Wardiatno, Y.; Anzani, Y. M.
2017-01-01
Benthic macroinvertebrates are commonly used in river health biomonitoring. In monitoring program biotic indices are now widely established in water quality monitoring around the world, including in the tropical countries. The aim of this study was to reveal the ecological status of Cisadane River’s headwaters in inside and outside of Mount Halimun-Salak National Park by using benthic macroinvertebrates. The research was conducted in the headwaters of Cisadane River located in Mount Halimun-Salak National Park. Macroinvertebrates were collected from four sites, i.e. inside the park (station 1, 2, 3, and 4) and from two sites outside the park (station 5 and 6). Collections were made twice a month, starting from April to June 2015 by means of Surber sampler (frame area 30x30 cm). A total of 65 genera from 38 families and 11 orders were found in the river. The results showed that based on diversity index, Lincoln Quality Index (LQI), Family Biotic Index (FBI), and Stream Invertebrate Grade Number Average Level 2 (SIGNAL 2), stations located within national park were ecologically better than those outside national park. Rivers with well-preserved riverside vegetation, as in the national park area have greater ecological status.
We compare changes in the distributions of seagrass, benthic, macroalgal, saltmarsh, and shellfish habitat in Narragansett Bay (U.S.A.) since the 1700s to changes in stressors and management decisions over the same time period, and describe a method that management programs can u...
DCERP Defense Coastal/Estuarine Research Program Workshop Proceedings
2005-02-01
indicators, both in terms of ecological health and human impacts. • Phytoplankton and benthic microalgae species, especially bloom-forming ones that...composition) Chlorophyll a and other diagnostic photopigments Phytoplankton /zooplankton community composition Primary production (Photosynthesis...Satellite imagery for phytoplankton and higher plant communities Aerial sensors for submerged aquatic vegetation, salt marshes, ocean color 22 IR
Staff Directory: About Us: Smithsonian Marine Station (SMS) at Fort Pierce
Advanced Search SMS Home About Us Ecosystems Exhibit Education & Fellowships Research Online Resources lastnamefirstinitial@si.edu. Resident Research Staff Benthic Ecology Program * Dr. Jessica Lunt Biologist, 772-462-0973 * Katrina Bayliss Research Assistant * Michelle Stephens Research Assistant, 772-462-0992 Caribbean Coral
Ten-day acute mortality of the benthic amphipod Ampelisca abdita is used in a number of regulatory, research, and monitoring programs to evaluate chemical contamination of marine sediments. Although this endpoint has proven to be valuable for characterizing the relative toxicitie...
The US Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program (EMAP) sampled approximately 500 wadeable streams in the Mid-Atlantic Highlands region of the US during the late spring of 1993 to 1995 for a variety of physical, chemical and biologi...
Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh D; Liu, Zhengwen
2015-03-01
Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.
NASA Astrophysics Data System (ADS)
Beddow, Helen M.; Liebrand, Diederik; Sluijs, Appy; Wade, Bridget S.; Lourens, Lucas J.
2016-01-01
The Oligocene-Miocene transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (δ18O and δ13C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time interval have been published, showing a ~1‰ increase in benthic foraminiferal δ18O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264, and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate interbasinal and intrabasinal variabilities in deep water masses and, in particular, note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the δ18O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum δ18O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicate a maximum glacioeustatic sea level change of ~50 m across the OMT.
Rizzari, Justin R.; Bergseth, Brock J.; Alcala, Angel C.
2017-01-01
No-take marine reserves (NTMRs) are increasingly implemented for fisheries management and biodiversity conservation. Yet, assessing NTMR effectiveness depends on partitioning the effects of NTMR protection and benthic habitat on protected species. Such partitioning is often difficult, since most studies lack well-designed sampling programs (i.e. Before-After-Control-Impact-Pair designs) spanning long-term time scales. Spanning 31 years, this study quantifies the effects of NTMR protection and changes to benthic habitat on the density of tropical wrasses (F. Labridae) at Sumilon and Apo Islands, Philippines. Five species of wrasse were studied: two species of large-bodied (40–50 cm TL) Hemigymnus that were vulnerable to fishing, and three species of small-bodied (10–25 cm TL) Thalassoma and Cirrhilabrus that were not targeted by fishing. NTMR protection had no measurable effect on wrasse density, irrespective of species or body size, over 20 (Sumilon) and 31 (Apo) years of protection. However, the density of wrasses was often affected strongly by benthic cover. Hemigymnus spp. had a positive association with hard coral cover, while Thalassoma spp. and Cirrhilabrus spp. had strong positive associations with cover of rubble and dead substratum. These associations were most apparent after environmental disturbances (typhoons, coral bleaching, crown of thorns starfish (COTS) outbreaks, use of explosives and drive nets) reduced live hard coral cover and increased cover of rubble, dead substratum and sand. Disturbances that reduced hard coral cover often reduced the density of Hemigymnus spp. and increased the density of Thalassoma spp. and Cirrhilabrus spp. rapidly (1–2 years). As hard coral recovered, density of Hemigymnus spp. often increased while density of Thalassoma spp. and Cirrhilabrus spp. often decreased, often on scales of 5–10 years. This study demonstrates that wrasse population density was influenced more by changes to benthic cover than by protection from fishing. PMID:29216194
Diachronous benthic δ18O responses during late Pleistocene terminations
NASA Astrophysics Data System (ADS)
Lisiecki, Lorraine E.; Raymo, Maureen E.
2009-09-01
Benthic δ18O is often used as a stratigraphic tool to place marine records on a common age model and as a proxy for the timing of ice volume/sea level change. However, Skinner and Shackleton (2005) found that the timing of benthic δ18O change at the last termination differed by 3900 years between one Atlantic site and one Pacific site. These results suggest that benthic δ18O change may not always accurately record the timing of deglaciation. We compare benthic δ18O records from 20 Atlantic sites and 14 Pacific sites to evaluate systematic differences in the timing of terminations in benthic δ18O. Analysis of sedimentation rates derived from the alignment of benthic δ18O suggests a statistically significant Atlantic lead over Pacific benthic δ18O change during the last six terminations. We estimate an average Pacific benthic δ18O lag of 1600 years for Terminations 1-5, slightly larger than the delay expected from ocean mixing rates given that most glacial meltwater probably enters the North Atlantic. We additionally find evidence of ˜4000-year Pacific δ18O lags at approximately 128 ka and 330 ka, suggesting that stratigraphic correlation of δ18O has the potential to generate age model errors of several thousand years during terminations. A simple model demonstrates that these lags can be generated by diachronous temperature changes and do not require slower circulation rates. Most importantly, diachronous benthic δ18O responses must be taken into account when comparing Atlantic and Pacific benthic δ18O records or when using benthic δ18O records as a proxy for the timing of ice volume change.
Springs are unique features in the landscape that provide important habitat for benthic invertebrates, yet there are few studies characterizing the distribution of benthic macro invertebrates in springs. Benthic macroinvertebrate and water quality data were collected at 35 spring...
Carter, James L.; Resh, Vincent H.
2001-01-01
A survey of methods used by US state agencies for collecting and processing benthic macroinvertebrate samples from streams was conducted by questionnaire; 90 responses were received and used to describe trends in methods. The responses represented an estimated 13,000-15,000 samples collected and processed per year. Kicknet devices were used in 64.5% of the methods; other sampling devices included fixed-area samplers (Surber and Hess), artificial substrates (Hester-Dendy and rock baskets), grabs, and dipnets. Regional differences existed, e.g., the 1-m kicknet was used more often in the eastern US than in the western US. Mesh sizes varied among programs but 80.2% of the methods used a mesh size between 500 and 600 (mu or u)m. Mesh size variations within US Environmental Protection Agency regions were large, with size differences ranging from 100 to 700 (mu or u)m. Most samples collected were composites; the mean area sampled was 1.7 m2. Samples rarely were collected using a random method (4.7%); most samples (70.6%) were collected using "expert opinion", which may make data obtained operator-specific. Only 26.3% of the methods sorted all the organisms from a sample; the remainder subsampled in the laboratory. The most common method of subsampling was to remove 100 organisms (range = 100-550). The magnification used for sorting ranged from 1 (sorting by eye) to 30x, which results in inconsistent separation of macroinvertebrates from detritus. In addition to subsampling, 53% of the methods sorted large/rare organisms from a sample. The taxonomic level used for identifying organisms varied among taxa; Ephemeroptera, Plecoptera, and Trichoptera were generally identified to a finer taxonomic resolution (genus and species) than other taxa. Because there currently exists a large range of field and laboratory methods used by state programs, calibration among all programs to increase data comparability would be exceptionally challenging. However, because many techniques are shared among methods, limited testing could be designed to evaluate whether procedural differences affect the ability to determine levels of environmental impairment using benthic macroinvertebrate communities.
NASA Astrophysics Data System (ADS)
Wiggert, J. D.; Pan, C.; Dinniman, M. S.; Lau, Y.; Fitzpatrick, P. J.; O'Brien, S. J.; Bouchard, C.; Quas, L. M.; Miles, T. N.; Cambazoglu, M. K.; Dykstra, S. L.; Dzwonkowski, B.; Jacobs, G. A.; Church, I.; Hofmann, E. E.
2017-12-01
A circulation model based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System, with coupled biogeochemical and sediment transport modules, has been implemented for Mississippi Sound and the adjacent continental shelf region. The model has 400-m horizontal resolution, 24 vertical layers, and includes wetting/drying capability to resolve shallow inshore regions. The circulation model was spun-up using oceanographic initial and lateral boundary conditions provided by a 1-km resolution regional implementation of the Navy Coastal Ocean Model (NCOM) in the Gulf of Mexico. The biogeochemical module includes multiple size classes of phytoplankton, zooplankton and detritus, a fish larvae compartment, and explicitly tracks dissolved oxygen with benthic cycling interaction. The sediment transport model is implemented based on benthic mapping data that provides bottom sediment type distributions and spatio-temporal validation. A regionally specific atmospheric forcing product that provides improved spatial and temporal resolution, including diurnal sea breeze impacts, has been developed and applied. Model experiments focus on periods when comprehensive ship-based sampling was deployed by the CONCORDE (Consortium for Coastal River-Dominated Ecosystems) research program, which was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. Biophysical interactions and biogeochemical variability associated with estuarine - shelf exchanges between nearshore lagoonal estuarine waters and the continental shelf revealed by the model provide new insight into how seasonal variation of hydrological forcing conditions influence ecological and biogeochemical processes in the highly productive Northern Gulf region. Application of the COAWST-based model system with and without inclusion of the sediment transport module demonstrates how suspended sediment in the nearshore waters influences inner shelf ecosystem function through impacts exerted on the in situ light environment and particle aggregation-mediated organic matter fluxes.
A high-latitude coral community with an uncertain future: Stetson Bank, northwestern Gulf of Mexico
NASA Astrophysics Data System (ADS)
DeBose, J. L.; Nuttall, M. F.; Hickerson, E. L.; Schmahl, G. P.
2013-03-01
Limited data exist that detail trends in benthic community composition of high-latitude coral communities. As anthropogenic stressors are projected to increase in number and intensity, long-term monitoring datasets are essential to understanding community stability and ecosystem resilience. In 1993, a long-term monitoring program was initiated at Stetson Bank, in the Gulf of Mexico. Over the course of this monitoring, a major shift in community structure occurred, in which the coral-sponge community was replaced by an algal-dominated community. During the initial years of this study, the coral community at Stetson Bank was relatively stable. Beginning in the late 1990s, sponge cover began a steady decline from over 30 % to less than 25 %. Then, in 2005, the benthic community underwent a further significant change when living coral cover declined from 30 % to less than 8 % and sponges declined to less than 20 % benthic cover. This abrupt shift corresponded with a Caribbean-wide bleaching event in 2005 that caused major mortality of Stetson Bank corals. Previous bleaching events at Stetson Bank did not result in wide-scale coral mortality. Several environmental parameters may have contributed to the rapid decline in this benthic community. We suggest that the combined effects of coastal runoff and elevated temperatures contributed to the observed shift. We present an analysis of 15 years of monitoring data spanning from 1993 to 2008; this dataset provides both a biological baseline and a multiyear trend analysis of the community structure for a high-latitude coral-sponge community in the face of changing climatic conditions.
Assessing the effects of non-point source pollution on American Samoa's coral reef communities.
Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert
2005-08-01
Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.
Maret, T.R.; Cain, D.J.; MacCoy, D.E.; Short, T.M.
2003-01-01
Benthic macroinvertebrate assemblages, environmental variables, and associated mine density were evaluated during the summer of 2000 at 18 reference and test sites in the Coeur d'Alene and St. Regis River basins, northwestern USA as part of the US Geological Survey's National Water-Quality Assessment Program. Concentrations of Cd, Pb, and Zn in water and (or) streambed sediment at test sites in basins where production mine density was ???0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than concentrations at reference sites. Zn and Pb were identified as the primary contaminants in water and streambed sediment, respectively. These metal concentrations often exceeded acute Ambient Water Quality Criteria for aquatic life and the National Oceanic and Atmospheric Administration Probable Effect Level for streambed sediment. Regression analysis identified significant correlations between production mine density in each basin and Zn concentrations in water and Pb in streambed sediment (r2 = 0.69 and 0.65, p < 0.01). Metal concentrations in caddisfly tissue, used to verify site-specific exposures of benthos, also were highest at sites downstream from intensive mining. Benthic invertebrate taxa richness and densities were lower at sites downstream than upstream of areas of intensive hard-rock mining and associated metal enrichment. Benthic invertebrate metrics that were most effective in discriminating changes in assemblage structure between reference and mining sites were total number of taxa, number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, and densities of total individuals, EPT individuals, and metal-sensitive Ephemeroptera individuals.
NASA Astrophysics Data System (ADS)
Mamo, B. L.; Renema, W.; Auer, G.; Groeneveld, J.; Gallagher, S. J.; Fulthorpe, C.; Bogus, K.; Expedition 356 Scientists, I.
2016-12-01
In 2015, Integrated Ocean Discovery Program Expedition 356 drilled along the passive margin off the West Australian coast to investigate the history of the Indonesian Throughflow (ITF) and its integral role in the development of global thermohaline circulation and climate. Throughout the expedition, a suite of foraminiferal analyses were employed to assess stratigraphy and benthic environments. Planktic foraminifera were primarily used for biostratigraphy and an incredibly diverse benthic fauna ( 260 species) yielded information regarding palaeobathymetric settings and variable conditions at the sediment-water interface. Benthic foraminiferal biofacies are particularly sensitive to changes in environmental conditions and have rapid turnover making them ideal proxies for monitoring physical and chemical changes in marine environments. When these data are combined with a multi-proxy approach incorporating lithostratigraphic and other microfossil data, a robust understanding of past environments can be realised. Stretching from the Northern Carnarvon Basin north to the Roebuck Basin, several distinct biofacies were isolated at sites U1461-U1464 that reveal an array of marine settings and events that span from the Miocene through to the Pleistocene. These features include water depths ranging from Miocene shallows (including larger benthic foraminifera) to Pliocene bathyal depths ( 1000 m), the occurrence of key indicator species for both the Leeuwin Current and the West Pacific Warm Pool (Asterorotalia and Pseudorotalia), and episodes of downslope sediment transport. Here we present the main isolated biofacies, their associated lithofacies and their implications for reconstructing fluctuating sea-level, thermohaline circulation and sediment transport in a changing marine landscape.
NASA Astrophysics Data System (ADS)
Ferraro, Steven P.; Cole, Faith A.
2012-05-01
This study validates the ecological relevance of estuarine habitat types to the benthic macrofaunal community and, together with previous similar studies, suggests they can serve as elements in ecological periodic tables of benthic macrofaunal usage in the bioregion. We compared benthic macrofaunal Bray-Curtis similarity and the means of eight benthic macrofaunal community measures across seven habitat types in Tillamook Bay, Oregon, USA: intertidal eelgrass (Zostera marina), dwarf eelgrass (Zostera japonica), oyster (Crassostrea gigas) ground culture, burrowing mud shrimp (Upogebia pugettensis), burrowing ghost shrimp (Neotrypaea californiensis), sand and subtidal. Benthic macrofaunal Bray-Curtis similarity differed among all the habitats except ghost shrimp and sand. The habitat rank order on mean benthic macrofaunal species richness, abundance and biomass was dwarf eelgrass ≈ oyster ≥ mud shrimp ≈ eelgrass > sand ≈ ghost shrimp ≈ subtidal. The benthic macrofaunal habitat usage pattern in Tillamook Bay was, with a few exceptions, similar to that in two other US Pacific Northwest estuaries. The exceptions indicate variants of eelgrass and ghost shrimp habitat that differ in benthic macrofaunal usage perhaps due to differences in the coarseness of the sand fraction of the sediments in which they live. The similarities indicate periodic benthic macrofaunal usage patterns across the other habitat types extend over a wider geographic scale and range of environmental conditions than previously known.
Gibbs, Ann E.; Cochran, Susan A.; Tierney, Peter W.
2013-01-01
Underwater video footage was collected in nearshore waters (<60-meter depth) off the Hawaiian Islands from 2002 to 2011 as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project, to improve seafloor characterization and for the development and ground-truthing of benthic-habitat maps. This report includes nearly 53 hours of digital underwater video footage collected during four USGS cruises and more than 10,200 still images extracted from the videos, including still frames from every 10 seconds along transect lines, and still frames showing both an overview and a near-bottom view from fixed stations. Environmental Systems Research Institute (ESRI) shapefiles of individual video and still-image locations, and Google Earth kml files with explanatory text and links to the video and still images, are included. This report documents the various camera systems and methods used to collect the videos, and the techniques and software used to convert the analog video tapes into digital data in order to process the images for optimum viewing and to extract the still images, along with a brief summary of each survey cruise.
COMPARISON OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY
The Chesapeake Benthic Index of Biotic Integrity (B-IBI) and the EMAP-VP Benthic Index were applied to samples from 239 sites in Chesapeake Bay. The B-IBI weights several community measures equally and uses a simple scoring system while the EMAP-VP Benthic Index uses discriminant...
The biogeography of marine benthic macroinvertebrates of the U.S. Atlantic coast from Delaware Bay north to Passamaquoddy Bay, Maine, was studied to define physical-chemical factors affecting broad taxa distributions and provide information needed to calibrate benthic indices of ...
NASA Astrophysics Data System (ADS)
Ojeda, G. Y.; Gayes, P. T.; van Dolah, R. F.; Schwab, W. C.
2002-12-01
Assessment of the extent and variability of benthic habitats is an important mission of biologists and marine scientists, and has supreme relevance in monitoring and maintaining the offshore resources of coastal nations. Mapping `hard bottoms', in particular, is of critical importance because these are the areas that support sessile benthic habitats and associated fisheries. To quantify the extent and distribution of habitats offshore northern South Carolina, we used a spatially quantitative approach that involved textural analysis of side scan sonar images and training of an artificial neural network classifier. This approach was applied to a 2 m-pixel image mosaic of sonar data collected by the USGS in 1999 and 2000. The entire mosaic covered some 686 km2 and extended between the ~6 m and ~10+ m isobaths off the Grand Strand region of South Carolina. Bottom video transects across selected sites provided 2,119 point observations which were used for image-to-ground control as well as training of the neural network classifier. A sensitivity study of 52 space-domain textural features indicated that 12 of them provided reasonable discriminating power between two end-member bottom types: hard bottom and sand. The selected features were calculated over 5 by 5 pixel windows of the image where video point observations existed. These feature vectors were then fed to a 3-layer neural network classifier, trained with a Levenberg-Marquardt backpropagation algorithm. Registration and display of the output habitat map were performed in GIS. Results of our classification indicate that outcropping Tertiary and Cretaceous strata are exposed over a significant portion of northern South Carolina's inner shelf, consistent with a sediment-starved margin type. The combined surface extent classified as hard bottom was 405 km2 -or 59 % of the imaged area-, while only 281 km2 -or 41 % of the area were classified as sand. In addition, our results provided constraints on the spatial continuity of nearshore benthic habitats. The median surface area of the regions classified as hard bottom (n= 190,521) and sand (n= 234,946) were both equal to the output cell size (100 m2), confirming the `patchy' nature of these habitats and suggesting that these medians probably represent upper bounds rather than estimates of the typical extent of individual patches. Furthermore, comparison of the interpretive habitat map with available swath bathymetry data suggests positive correlation between bathymetry `highs' and the major sandy-bottom areas interpreted with our routine. In contrast, the location of hard bottom areas does not appear to be significantly correlated with major bathymetric features. Our findings are in agreement with published qualitative estimates of hard bottom areas on neighboring North Carolina's inner shelf.
Brown, Larry R.; Short, Terry M.
1999-01-01
The general conclusion from these studies is that water quality in the upper Merced River was very good from 1993-1996, despite high levels of human activities in some areas. Fish communities did not appear to be a useful indicator of habitat and water quality because of low species richness and the apparent importance of physical barriers in determining species distributions. Measurements of fish densities and size-distributions might be useful, but would be logistically difficult. Benthic algae and benthic invertebrates do appear to be useful in monitoring environmental conditions. Benthic algae may be more sensitive than benthic invertebrates to small environmental differences within years. Benthic algae were also more responsive than benthic invertebrates to differences in discharge between years. Thus, benthic invertebrates may be more useful in comparing environmental conditions between years, independent of discharge conditions.
Coastal Benthic Boundary Layer Special Research Program: A Review of the First Year. Volume 1.
1994-04-06
also Indebted to Dr. LeBlanc for his supervision of the relaxation time numerical analyses, and Lachlan Munro, a3 graduate ONR AASERT student, for coding...R. Smith and E. Besancon Code 7174 Naval Research Laboratory Stennis Space Center, MS 39529-5004 I INTRODUCTION: This brief report outlines the
Operational Range Assessment Program (ORAP) Phase II Overview for Active Installations
2011-05-01
Dissolved Metals by EPA 1638M • Isotopic Uranium by EML A-01-R Mod Sediment Analysis • None Benthic Macroinvertebrates • Diversity Indices...Metals by EPA 200.8 • Dissolved Metals by EPA 200.8 (if turbid) • Isotopic Uranium by EML A-01- R Mod (if total U is > action limit) Groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.
1996-04-01
The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.
Microbial ecology of deep-water mid-Atlantic canyons
Kellogg, Christina A.
2011-01-01
The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.
Benthic protists: the under-charted majority.
Forster, Dominik; Dunthorn, Micah; Mahé, Fréderic; Dolan, John R; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Edvardsen, Bente; Egge, Elianne; Eikrem, Wenche; Gobet, Angélique; Kooistra, Wiebe H C F; Logares, Ramiro; Massana, Ramon; Montresor, Marina; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Richards, Thomas A; Santini, Sébastien; Sarno, Diana; Siano, Raffaele; Vaulot, Daniel; Wincker, Patrick; Zingone, Adriana; de Vargas, Colomban; Stoeck, Thorsten
2016-08-01
Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions. Despite a similar number of OTUs in both realms, richness estimations indicated that we recovered at least 70% of the diversity in planktonic protist communities, but only 33% in benthic communities. There was also little overlap of OTUs between planktonic and benthic communities, as well as between separate benthic communities. We argue that these patterns reflect the heterogeneity and diversity of benthic habitats. A comparison of all OTUs against the Protist Ribosomal Reference database showed that a higher proportion of benthic than planktonic protist diversity is missing from public databases; similar results were obtained by comparing all OTUs against environmental references from NCBI's Short Read Archive. We suggest that the benthic realm may therefore be the world's largest reservoir of marine protist diversity, with most taxa at present undescribed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Compound-Specific Amino Acid Isotopic Analysis of Benthic Food Webs in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Zhang, M.; Cooper, L. W.; Biasatti, D. M.; Grebmeier, J. M.
2014-12-01
The Chukchi Sea is known for locally high standing stocks of benthic macrofauna and strong coupling between pelagic-benthic components of the ecosystem. However, benthic food structure is not fully understood, due to varied sources of particulate organic matter (POM) and the high diversity of benthic invertebrates. We provide the first demonstration of the application of compound-specific amino acid isotope analysis to study the dietary sources and trophic structure for this Arctic marginal sea. About 20 stations in Chukchi Sea were sampled during cruises in August of 2012 and 2013. At each station, phytoplankton, POM and benthic fauna were collected, processed and analyzed using GC-C-IRMS (gas chromatography-combustion-isotope ratio mass spectrometry). Among benthic fauna, dominant species included the following taxonomic groups: Ophiuroidea, Amphipoda, Polychaeta, Gastropoda, Bivalvia, and Cnidaria. The benthic fauna showed similar patterns of individual amino acid δ13C, with glycine the most enriched in 13C and leucine the most depleted in 13C. Specific amino acids including phenylalanine showed spatial variability in δ13C and δ15N values within the sampled area, indicating contributions of different dietary sources including phytoplankton, sea ice algae, benthic algae and terrestrial organic materials. δ15N values of individual amino acids such as the difference between glutamic acid and phenylalanine, i.e. Δ15Nglu-phe (δ15Nglu - δ15Nphe), were also used to identify trophic levels of benthic invertebrates relative to estimates available from bulk δ15N values. These data will ultimately be used to evaluate the spatial variability of organic carbon sources and trophic level interactions of dominant benthic species in the Chukchi Sea.
Schwing, Patrick T; Romero, Isabel C; Brooks, Gregg R; Hastings, David W; Larson, Rebekka A; Hollander, David J
2015-01-01
Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹⁰Pb, ²³⁴Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.
Schwing, Patrick T.; Romero, Isabel C.; Brooks, Gregg R.; Hastings, David W.; Larson, Rebekka A.; Hollander, David J.
2015-01-01
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale. PMID:25785988
Influence of coral and algal exudates on microbially mediated reef metabolism.
Haas, Andreas F; Nelson, Craig E; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D; Carlson, Craig A; Leichter, James J; Hatay, Mark; Smith, Jennifer E
2013-01-01
Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs.
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
Error, Power, and Blind Sentinels: The Statistics of Seagrass Monitoring
Schultz, Stewart T.; Kruschel, Claudia; Bakran-Petricioli, Tatjana; Petricioli, Donat
2015-01-01
We derive statistical properties of standard methods for monitoring of habitat cover worldwide, and criticize them in the context of mandated seagrass monitoring programs, as exemplified by Posidonia oceanica in the Mediterranean Sea. We report the novel result that cartographic methods with non-trivial classification errors are generally incapable of reliably detecting habitat cover losses less than about 30 to 50%, and the field labor required to increase their precision can be orders of magnitude higher than that required to estimate habitat loss directly in a field campaign. We derive a universal utility threshold of classification error in habitat maps that represents the minimum habitat map accuracy above which direct methods are superior. Widespread government reliance on blind-sentinel methods for monitoring seafloor can obscure the gradual and currently ongoing losses of benthic resources until the time has long passed for meaningful management intervention. We find two classes of methods with very high statistical power for detecting small habitat cover losses: 1) fixed-plot direct methods, which are over 100 times as efficient as direct random-plot methods in a variable habitat mosaic; and 2) remote methods with very low classification error such as geospatial underwater videography, which is an emerging, low-cost, non-destructive method for documenting small changes at millimeter visual resolution. General adoption of these methods and their further development will require a fundamental cultural change in conservation and management bodies towards the recognition and promotion of requirements of minimal statistical power and precision in the development of international goals for monitoring these valuable resources and the ecological services they provide. PMID:26367863
Michael K. Stone; J. Bruce Wallace
1998-01-01
Summary1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher,...
Toward a national fuels mapping strategy: Lessons from selected mapping programs
Loveland, Thomas R.
2001-01-01
The establishment of a robust national fuels mapping program must be based on pertinent lessons from relevant national mapping programs. Many large-area mapping programs are under way in numerous Federal agencies. Each of these programs follows unique strategies to achieve mapping goals and objectives. Implementation approaches range from highly centralized programs that use tightly integrated standards and dedicated staff, to dispersed programs that permit considerable flexibility. One model facilitates national consistency, while the other allows accommodation of locally relevant conditions and issues. An examination of the programmatic strategies of four national vegetation and land cover mapping initiatives can identify the unique approaches, accomplishments, and lessons of each that should be considered in the design of a national fuel mapping program. The first three programs are the U.S. Geological Survey Gap Analysis Program, the U.S. Geological Survey National Land Cover Characterization Program, and the U.S. Fish and Wildlife Survey National Wetlands Inventory. A fourth program, the interagency Multiresolution Land Characterization Program, offers insights in the use of partnerships to accomplish mapping goals. Collectively, the programs provide lessons, guiding principles, and other basic concepts that can be used to design a successful national fuels mapping initiative.
Indicators: Benthic Macroinvertebrates
Benthic (meaning “bottom-dwelling”) macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. Benthic macroinvertebrates are commonly used as indicators of the biological condition of waterbodies.
Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach
Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.
2006-01-01
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.
Classification of threespine stickleback along the benthic-limnetic axis.
Willacker, James J; von Hippel, Frank A; Wilton, Peter R; Walton, Kelly M
2010-11-01
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.
Classification of threespine stickleback along the benthic-limnetic axis
Willacker, James J.; von Hippel, Frank A.; Wilton, Peter R.; Walton, Kelly M.
2010-01-01
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher’s linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology. PMID:21221422
NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations
Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.
2004-01-01
Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.
Curtis, Janelle M. R.; Clarke, M. Elizabeth
2016-01-01
Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism. PMID:27792782
Bathymetric Lidar Mapping of Seagrass Distribution within Redfish Bay State Scientific Area, Texas
NASA Astrophysics Data System (ADS)
Starek, M. J.; Fernandez-Diaz, J. C.; Singhania, A.; Shrestha, R. L.; Gibeaut, J. C.; Su, L.; Reisinger, A. S.; Lord, A.
2013-05-01
Monitoring seagrass habitat, species growth, and population decline is an important environmental initiative for coastal ecosystem sustainability. However, measuring details about seagrass distribution and canopy structure over large areas via remote sensing has proved challenging. Developments in airborne bathymetric light detection and ranging (lidar) provide great potential in this regard. Traditional bathymetric lidar systems have been limited in their ability to map within the shallow water zone (< 1 m) where seagrass is typically present due to limitations in receiver response and laser pulse length. Emergent short-pulse width bathymetric lidar sensors and waveform processing algorithms enable depth measurements in shallow water environments not previously accessible. This 3D information of the benthic layer can be applied to extract metrics about the seagrass canopy. On September 10, 2012, researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and ground-based survey of the Redfish Bay State Scientific Area as part of a collaborative study to investigate the capabilities of bathymetric lidar and hyperspectral imaging for seagrass mapping (standalone and in-fusion). Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purposes of protecting and studying the native seagrasses. For this survey, UH acquired high resolution (2.5 shots/m^2) very-shallow water bathymetry data using their new lidar system , the Optech Aquarius Green (532 nm) system. In a separate flight, UH collected 2 sets of hyperspectral imaging data (1.2-m pixel resolution and 72 bands, and 0.6m pixel resolution and 36 bands) with their CASI 1500 hy sensor. For this survey the sensors were mounted on a PA-31 Chieftain aircraft. The ground survey was conducted by CMGL. The team used an airboat to collect in-situ radiometer measurements of sky irradiance and surface water reflectance at different locations in the bay. The team also collected water samples, GPS position, and depth. A follow-up survey was conducted to acquire ground-truth data of benthic type at over 80 locations within the bay. In this work, we will present initial results on the seagrass mapping project. Focus will be on the bathymetric lidar data collection component. Details on the resultant data characteristics, accuracy, and its applicability for extracting metrics on seagrass canopy distribution and structure within the shallow bay will be presented.
Bissoli, Lorena B; Bernardino, Angelo F
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.
Bissoli, Lorena B.
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil. PMID:29507833
NASA Astrophysics Data System (ADS)
Drury, Anna Joy; Westerhold, Thomas; Hodell, David; Röhl, Ursula
2018-03-01
Ocean Drilling Program (ODP) Site 982 represents a key location for understanding the evolution of climate in the North Atlantic over the past 12 Ma. However, concerns exist about the validity and robustness of the underlying stratigraphy and astrochronology, which currently limits the adequacy of this site for high-resolution climate studies. To resolve this uncertainty, we verify and extend the early Pliocene to late Miocene shipboard composite splice at Site 982 using high-resolution XRF core scanning data and establish a robust high-resolution benthic foraminiferal stable isotope stratigraphy and astrochronology between 8.0 and 4.5 Ma. Splice revisions and verifications resulted in ˜ 11 m of gaps in the original Site 982 isotope stratigraphy, which were filled with 263 new isotope analyses. This new stratigraphy reveals previously unseen benthic δ18O excursions, particularly prior to 6.65 Ma. The benthic δ18O record displays distinct, asymmetric cycles between 7.7 and 6.65 Ma, confirming that high-latitude climate is a prevalent forcing during this interval. An intensification of the 41 kyr beat in both the benthic δ13C and δ18O is also observed ˜ 6.4 Ma, marking a strengthening in the cryosphere-carbon cycle coupling. A large ˜ 0.7 ‰ double excursion is revealed ˜ 6.4-6.3 Ma, which also marks the onset of an interval of average higher δ18O and large precession and obliquity-dominated δ18O excursions between 6.4 and 5.4 Ma, coincident with the culmination of the late Miocene cooling. The two largest benthic δ18O excursions ˜ 6.4-6.3 Ma and TG20/22 coincide with the coolest alkenone-derived sea surface temperature (SST) estimates from Site 982, suggesting a strong connection between the late Miocene global cooling, and deep-sea cooling and dynamic ice sheet expansion. The splice revisions and revised astrochronology resolve key stratigraphic issues that have hampered correlation between Site 982, the equatorial Atlantic and the Mediterranean. Comparisons of the revised Site 982 stratigraphy to high-resolution astronomically tuned benthic δ18O stratigraphies from ODP Site 926 (equatorial Atlantic) and Ain el Beida (north-western Morocco) show that prior inconsistencies in short-term excursions are now resolved. The identification of key new cycles at Site 982 further highlights the requirement for the current scheme for late Miocene marine isotope stages to be redefined. Our new integrated deep-sea benthic stable isotope stratigraphy and astrochronology from Site 982 will facilitate future high-resolution late Miocene to early Pliocene climate research.
NASA Astrophysics Data System (ADS)
Schonberg, Susan V.; Clarke, Janet T.; Dunton, Kenneth H.
2014-04-01
In summer 2009 and 2010, as part of Chukchi Sea Offshore Monitoring in Drilling Area - Chemical and Benthos (COMIDA CAB) program, we performed a quantitative assessment of the biomass, abundance, and community structure of benthic infaunal populations of the Northeastern Chukchi Sea. This analysis documented a benthic species inventory of 361 taxa collected from 142 individual van Veen grab samples (0.1 m-2) at 52 stations. Infaunal abundance was dominated by Polychaeta, Mollusca, and Crustacea. Large concentrations of bivalves (up to 1235 m-2; 920.2 gww m-2) were collected south of Hanna Shoal where flow from two water masses converge and deposit labile carbon to the seafloor, as indicated by low surface sediment C:N ratios. Amphipods (up to 1640 m-2; 26.0 gww m-2), and polychaetes (up to 4665 m-2; 114.7 gww m-2) were documented from multiple stations west of and within Barrow Canyon. This high productivity was most likely due to the "canyon effect", where marine and coastal detrital carbon supplies are channeled by the canyon structure, enhancing carbon deposition and flux, which supports rich benthic communities within the canyon and surrounding areas. To examine the relationships between infaunal distributions of all collected taxa with the physical environment, we used a Biota and Environment matching (BIO-ENV) routine. A combination of water depth, bottom-water temperature and salinity, surface sediment total organic nitrogen (TON) and sediment C:N molar ratios correlated closest with infaunal abundance distribution (ρ=0.54), indicating that multiple factors influence the success of benthic communities. BIO-ENV routines produced similar correlation results when performed on targeted walrus prey items (bivalves (ρ=0.50), polychaetes (ρ=0.53), but gray whale prey items (amphipods) were not strongly correlated to any combination of physical environmental factors (ρ=0.24). Distributions of primary prey items for gray whales (amphipods) and walruses (bivalves, gastropods and polychaetes) were compared with gray whale and walrus distribution as described by sightings from the 2009 and 2010 aerial survey component of COMIDA. In general, concentrations of walruses and their prey occurred in a swath located south of Hanna Shoal and on the shoal itself although the large differences in sea-ice distribution between the two study years showed that walrus distributions were closely linked to sea-ice location. Other areas within Barrow Canyon and the shelf west of the canyon showed high concentrations of benthic amphipods that were coincident with gray whale sightings as quantified by COMIDA aerial surveys. Overall, data collected on this project indicate that the Northeast Chukchi Sea supports a highly productive and diverse benthic ecosystem that is of significant importance to higher trophic level megafauna.
Lee, Li-Hua; Lin, Hsing-Juh
2013-08-15
This study determined effects of an oil spill on subtropical benthic community production and respiration by monitoring CO2 fluxes in benthic chambers on intertidal sandflats during emersion before and after an accidental spill. The oil spill decreased sediment chlorophyll a concentrations, altered benthic macrofaunal community, and affected ecological functioning by suppressing or even stopping microalgal production, increasing bacterial respiration, and causing a shift from an autotrophic system to a heterotrophic system. Effects of the oil spill on the macrofauna were more severe than on benthic microalgae, and affected sedentary infauna more than motile epifauna. Despite the oil spill's impact on the benthic community and carbon metabolism, the affected area appeared to return to normal in about 23 days. Our results suggest that the prompt response of benthic metabolism to exposure to petroleum hydrocarbons can serve as a useful indicator of the impact of an oil spill. Copyright © 2013 Elsevier Ltd. All rights reserved.
Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2014-01-01
We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.
NASA Astrophysics Data System (ADS)
Robertson, C.; Bourque, J. R.; Davies, A. J.; Duineveld, G.; Mienis, F.; Brooke, S.; Ross, S. W.; Demopoulos, A. W.
2016-02-01
Submarine canyons are complex systems, acting as major conduits of organic matter along continental shelves and promoting gradients in food resources, turbidity flows, habitat heterogeneity, and areas of sediment resuspension and deposition. In the western North Atlantic, a large multidisciplinary program was conducted in two major Mid-Atlantic Bight (MAB) canyons (Baltimore and Norfolk canyons). This Atlantic Deepwater Canyons project was funded by BOEM, NOAA, and USGS. Here we investigate the `canyon effect' on benthic ecosystem ecology and functioning of two canyon systems by defining canyon specific processes influencing MAB shelf benthic community trends. Sediment cores were collected in 2012 and 2013 with a NIOZ box corer along the main axes ( 180-1200m) of Baltimore and Norfolk Canyon and at comparable depths on the adjacent continental slope. Whole community macrofaunal (>300 μm) abundance and biomass data provided insight into community trends across depth and biogeochemical gradients by coupling diversity metrics and biological trait analyses with sediment biogeochemistry and hydrodynamic data. The canyons exhibited clear differences in sediment profiles, hydrodynamic regimes and enrichment depocenters as well as significantly distinct infauna communities. Interestingly, both canyons showed bimodal distributions in abundances and diversity of infauna and a shallowing of species maxima which was not present on adjacent slopes. We hypothesize that physical canyon processes are important regulators in the depth of observed species maxima and community functioning on the MAB shelf, on local and regional scales. Unique sediment dynamics, organic enrichment, and hydrographic conditions were significant factors in structuring benthic community differences in MAB canyons The study provides a complete benthic infaunal appraisal of two canyon systems in the western Atlantic, incorporating biogeochemistry and oceanography to increase our understanding of canyon ecosystem ecology and provide baseline information on canyon functioning.
Spilmont, Nicolas; Denis, Lionel; Artigas, Luis Felipe; Caloin, Frédéric; Courcot, Lucie; Créach, Anne; Desroy, Nicolas; Gevaert, François; Hacquebart, Pascal; Hubas, Cédric; Janquin, Marie-Andrée; Lemoine, Yves; Luczak, Christophe; Migné, Aline; Rauch, Mathieu; Davoult, Dominique
2009-01-01
From 1999 to 2005, studies carried out in the frame of regional and national French programs aimed to determine whether the Phaeocystis globosa bloom affected the intertidal benthic communities of the French coast of the eastern English Channel in terms of composition and/or functioning. Study sites were chosen to cover most of the typical shore types encountered on this coast (a rocky shore, an exposed sandy beach and a small estuary). Both the presence of active Phaeocystis cells and their degradation product (foam) did have a significant impact on the studied shores. The primary production and growth rates of the kelp Saccharina latissima decreased during the bloom because of a shortage of light and nutrient for the macroalgae. On sandy sediments, the benthic metabolism (community respiration and community primary production), as well as the nitrification rate, were enhanced during foam deposits, in relation with the presence of bacteria and active pelagic cells within the decaying colonies. In estuarine sediments, the most impressive impact was the formation of a crust at the sediment surface due to drying foam. This led to anoxic conditions in the surface sediment and resulted in a high mortality among the benthic community. Some organisms also tended to migrate upward and were then directly accessible to the higher trophic level represented by birds. Phaeocystis then created a shortcut in the estuarine trophic network. Most of these modifications lasted shortly and all the systems considered came back to their regular properties and activities a few weeks after the end of the bloom, except for the most impacted estuarine area.
Overview of the Ridge 2000 Integrated Studies Sites
NASA Astrophysics Data System (ADS)
Fisher, C.
2005-12-01
The Ridge 2000 program is in its fourth year and fieldwork at each of the Integrated Studies Sites (ISS) is in full swing. Multidisciplinary monitoring continues at the EPR ISS with seismic, temperature, and current data being continuously recorded. Long-term fluid sampling programs aimed at furthering our understanding of temporal variations in the chemistry of high-temperature hydrothermal vents are continuing. In situ fluid chemistry monitors have been deployed for weeks, and longer deployments are planned as the technology matures. Nested within these monitoring studies are experiments addressing larval dispersal and changes in microbial and macrobiological communities. In early 2006, geodetic monitoring will begin, with an array of pressure gauges as well as a detailed compliance study. By early 2007, a 3-D multichannel seismic survey will have provided unprecedented details of the crustal structure at 9°50'N. Together these studies provide a strong framework for an interdisciplinary understanding of the links between the forces that produce a mid-ocean ridge spreading center and their manifestation on the seafloor. Fieldwork on the Endeavour segment of the Juan de Fuca ridge in 2005 also included a balance of monitoring, experimental, and sampling programs across a wide range of disciplines. Four interdisciplinary field programs were conducted to maintain and expand ongoing Ridge 2000 and proto-NEPTUNE experiments. These research programs continued development and testing in situ chemical and microbial sensors, conducted co-registered sampling of fluids, fauna, and chimney material, and recovered moorings that measured heat and chemical fluxes at the segment scale. High-resolution mapping was also completed at this site, which has been chosen for one of the two initial NEPTUNE Canada nodes to prepare the way for the collaborative, cabled observatory projects. The mapping cruise included 5 secondary school teachers as part of the REVEL outreach and education program. Live transmission of high-definition video from the seafloor to land stations provided an exciting preview of the potential of high-bandwidth communication with the seafloor. The first round of fieldwork at the East Lau Spreading Center ISS was completed in 2005. Building upon the two R2K-funded cruises in 2004, three cruises in 2005 sampled 7 hydrothermal vent sites. Four of these sites were discovered by the collaborative efforts of R2K scientists, working together across cruises, and one site by Japanese colleagues collaborating with R2K scientists in 2004. Another of the sites was discovered during the first R2K cruise of 2005. The SM2000 mounted on Jason II in 2005 was used to create fine-scale bathymetric maps of six of the sites and high-resolution imagery was collected for photomosaics of selected areas of hydrothermal activity within the sites. These maps and imagery guided even finer scale surveys, equipment deployments and sampling of basalt, hydrothermal deposits, vent fluids, microbial mats, and benthic organisms. Some of the fauna collected are still alive and under study in pressure vessels in R2K-supported laboratories. Results from these cruises have improved our understanding of this back-arc spreading center, "from mantle to microbe," and are invaluable for selection of the focus area, or bull's eye, for the next generation of integrated, interdisciplinary studies in this region.
NASA Astrophysics Data System (ADS)
Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.
2006-12-01
Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data and information (both analytical and descriptive) about the sea floor, including sediment textural, statistical, geochemical, geophysical, and compositional information, is available to the marine community through USGS Data Series publications. Three DS reports for the Atlantic (DS-118), Gulf of Mexico (DS-146) and Pacific(DS-182) were published in 2006 and reports for HI and AK are forthcoming. The use of usSEABED and derivative map products are part of ongoing USGS efforts to conduct regional assessments of potential marine sand and gravel resources, map benthic habitats, and support research in understanding seafloor character and mobility, transport processes and natural resources.
Development of a benthic multimetric index for the Serra da Bocaina bioregion in Southeast Brazil.
Baptista, D F; Henriques-Oliveira, A L; Oliveira, R B S; Mugnai, R; Nessimian, J L; Buss, D F
2013-08-01
Brazil faces a challenge to develop biomonitoring tools to be used in water quality assessment programs, but few multimetric indices were developed so far. This study is part of an effort to test and implement programs using benthic macroinvertebrates as bioindicators in Rio de Janeiro State. Our aim was first to test the Multimetric Index for Serra dos Órgãos (SOMI) for a different area--Serra da Bocaina (SB)--in the same ecoregion. We sampled 27 streams of different sizes and altitudes in the SB region. Despite the environmental similarities, results indicated biological differences between reference sites of the two regions. Considering these differences, we decided to develop an index specific for the SB region, the Serra da Bocaina Multimetric Index (MISB). We tested twenty-two metrics for sensitivity to impairment and redundancy, and six metrics were considered valid to integrate the MISB: Family Richness, Trichoptera Richness, % Coleoptera, % Diptera, IBE-IOC index, EPT / Chironomidae ratio. A test of the MISB in eleven sites indicated it was more related to land-use and water physico-chemical parameters than with altitude or stream width, being a useful tool for the monitoring and assessment of streams in the bioregion.
Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.
2008-01-01
Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'uhonua O Honaunau National Historical Park ('Place of Refuge of Honaunau') is the southernmost of the three National Parks located on the leeward Kona coast of the Island of Hawai'i. It is a relatively small park originally 73 ha (182 acres), and was expanded in 2006 with the acquisition of an additional 96 ha (238 acres). The park is probably best known for the pu'uhonua (place of refuge) native Hawaiian cultural site. In addition to the pu'uhonua, the park contains palace grounds, royal fishponds, burial sites, prehistoric trails, a royal canoe landing area, stone house platforms and associated temple structures. A massive basalt rock wall (300 m long, 3 m high, and 5 m wide) separates the pu'uhonua from the areas used by Hawaiian royalty and other grounds. Honaunau Bay is a popular marine resource area adjacent to the park. The seaward-sloping lands of PUHO lie at the base of Mauna Loa volcano, which forms a bench of low-lying pahoehoe lava flows at Pu'uhonua Point. The park coastline is approximately 1.6 km long and is mostly rocky with the exception of a small artificially nourished beach at Keone'ele Cove at the northern boundary next to Honaunau Bay. The park is bounded to the south by Ki'ilae Bay and includes the coastal portions of three Hawaiian land divisions (ahupua'a): Honaunau, Keokea, and Ki'ilae. The western boundary is the high tide mark. The waters of Keone'ele Cove, the ancient royal canoe landing at PUHO, while not formally under NPS jurisdiction, are managed by the park under an agreement with the State of Hawai'i. This small embayment is a known haven for sea turtles, which are often found sunning themselves on the nearshore volcanic platform. Impacts to this area include frequent visits by scuba divers and snorkelers to Honaunau Bay and a small boat ramp located just to the north of Keone'ele Cove. There is an accompanying report that presents the results of benthic habitat mapping of the offshore waters for PUHO (Cochran and others, 2006b; linked below). They mapped from the shoreline to depths of approximately 40 m, where the shelf drops off to a sand-covered bottom. PUHO park boundaries extend only to the mean high-tide level; however, landscape impacts created by development around the park are of concern to
Methods for collecting algal samples as part of the National Water-Quality Assessment Program
Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.
1993-01-01
Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.
NASA Astrophysics Data System (ADS)
Dunton, K. H.; Schonberg, S. V.; Mctigue, N.; Bucolo, P. A.; Connelly, T. L.; McClelland, J. W.
2014-12-01
Changes in sea-ice cover, coastal erosion, and freshwater run-off have the potential to greatly influence carbon assimilation pathways and affect trophic structure in benthic communities across the western Arctic. In the Chukchi Sea, variations in the duration and timing of ice cover affect the delivery of ice algae to a relatively shallow (40-50 m) shelf benthos. Although ice algae are known as an important spring carbon subsidy for marine benthic fauna, ice algal contributions may also help initiate productivity of an active microphytobenthos. Recent studies provide clear evidence that the microphytobenthos are photosynthetically active, and have sufficient light and nutrients for in situ growth. The assimilation of benthic diatoms from both sources may explain the 13C enrichment observed in benthic primary consumers throughout the northern Chukchi. On the eastern Beaufort Sea coast, shallow (2-4 m) estuarine lagoon systems receive massive subsidies of terrestrial carbon that is assimilated by a benthic fauna of significant importance to upper trophic level species, but again, distinct 13C enrichment in benthic primary consumers suggests the existence of an uncharacterized food source. Since ice algae are absent, we believe the 13C enrichment in benthic fauna is caused by the assimilation of benthic microalgae, as reflected in seasonally high benthic chlorophyll in spring under replete light and nutrient conditions. Our observations suggest that changes in ice cover, on both temporal and spatial scales, are likely to have significant effects on the magnitude and timing of organic matter delivery to both shelf and nearshore systems, and that locally produced organic matter may become an increasingly important carbon subsidy that affects trophic assimilation and secondary ecosystem productivity.
Hall, Lenwood W; Killen, William D
2006-01-01
This study was designed to assess trends in physical habitat and benthic communities (macroinvertebrates) annually in two agricultural streams (Del Puerto Creek and Salt Slough) in California's San Joaquin Valley from 2001 to 2005, determine the relationship between benthic communities and both water quality and physical habitat from both streams over the 5-year period, and compare benthic communities and physical habitat in both streams from 2001 to 2005. Physical habitat, measured with 10 metrics and a total score, was reported to be fairly stable over 5 years in Del Puerto Creek but somewhat variable in Salt Slough. Benthic communities, measured with 18 metrics, were reported to be marginally variable over time in Del Puerto Creek but fairly stable in Salt Slough. Rank correlation analysis for both water bodies combined showed that channel alteration, embeddedness, riparian buffer, and velocity/depth/diversity were the most important physical habitat metrics influencing the various benthic metrics. Correlations of water quality parameters and benthic community metrics for both water bodies combined showed that turbidity, dissolved oxygen, and conductivity were the most important water quality parameters influencing the different benthic metrics. A comparison of physical habitat metrics (including total score) for both water bodies over the 5-year period showed that habitat metrics were more positive in Del Puerto Creek when compared to Salt Slough. A comparison of benthic metrics in both water bodies showed that approximately one-third of the metrics were significantly different between the two water bodies. Generally, the more positive benthic metric scores were reported in Del Puerto Creek, which suggests that the communities in this creek are more robust than Salt Slough.
Analytical characterization of selective benthic flux components in estuarine and coastal waters
King, Jeffrey N.
2011-01-01
Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.
Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen
2018-01-01
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745
Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.
2013-01-01
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.
Photosynthesis as a Possible Source of Gas Bubbles in Shallow Sandy Coastal Sediments
2012-09-30
clearly demonstrates that gas bubbles can be formed when photosynthesis by benthic microalgae causes pore water to become supersaturated with oxygen...We also collected sediment samples from the upper few mm of sand to identify the dominant taxa of benthic microalgae present. Although benthic...Jan Rines (Graduate School of Oceanography / University of Rhode Island = GSO/URI) to identify the benthic microalgae in the samples. Following the
Lenz, Bernard N.; Robertson, Dale M.; Fallon, James D.; Ferrin, Randy
2001-01-01
Benthic invertebrates were sampled and indices of water quality were calculated at 16 tributaries in fall 1999. Benthic invertebrate indices indicated excellent to good water quality at all tributaries except Valley Creek, Willow River, and Kettle River. No relations were found between benthic invertebrate indices and the calculated and estimated 1999 annual tributary loads and yields.
NASA Astrophysics Data System (ADS)
Cowie, Gregory L.; Levin, Lisa A.
2009-03-01
Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on the upper slope, roughly coincident with the OMZ; but the otherwise poor correlation with bottom-water oxygen concentrations indicated that other factors are important in determining sediment OM distributions. Downcore profiles generally showed little clear evidence of in-situ OM alteration, and there was little sign of OM enrichment resulting from the southwest monsoon in sediments collected in the late-to-postmonsoon sampling. This is interpreted to be due to rapid cycling of labile OM. Organic geochemical studies confirmed that sediment OM is overwhelmingly of marine origin across the margin, but also that it is heavily altered, with only small changes in degradation state across the OMZ. More negative stable C isotopic compositions in surficial sediments at hypoxic sites within the OMZ core are attributed to a chemosynthetic bacterial imprint. Dramatic changes in benthic community structure occurred across the lower OMZ transition, apparently related to OM availability and quality as well as to DO concentrations. High-resolution sampling, biomarkers and isotope tracer studies revealed that oxygen availability appears to exert threshold-type controls on benthic community structure and early faunal C processing. Biomarker studies also provided evidence of faunal influence on sediment OM composition. Together, the results offer strong evidence that benthic fauna at sites across the margin play important roles in the early cycling of sediment OM through differential feeding and bioturbation activities.
The truth is out there: measured, calculated and modelled benthic fluxes.
NASA Astrophysics Data System (ADS)
Pakhomova, Svetlana; Protsenko, Elizaveta
2016-04-01
In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5
Hernández Fariñas, Tania; Ribeiro, Lourenço; Soudant, Dominique; Belin, Catherine; Bacher, Cédric; Lampert, Luis; Barillé, Laurent
2017-10-01
Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms. © 2017 Phycological Society of America.
The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure.
Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J
2016-09-01
Herbicide pollution events in aquatic ecosystems often coincide with increased turbidity and reduced light intensity. It is therefore important to determine whether reduced light intensity can influence herbicide toxicity, especially to primary producers such as benthic diatoms. Benthic diatoms collected from 4 rivers were exposed to herbicides in 48 h rapid toxicity tests under high light (100 µmol m(-2) s(-1) ) and low light (20 µmol m(-2) s(-1) ) intensities. The effects of 2 herbicides (atrazine and glyphosate) were assessed on 26 freshwater benthic diatom taxa. There was no significant interaction of light and herbicide effects at the community level or on the majority (22 of 26) of benthic diatom taxa. This indicates that low light levels will likely have only a minor influence on the response of benthic diatoms to herbicides. Environ Toxicol Chem 2016;35:2252-2260. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Monteys, X.; Guinan, J.; Green, S.; Gafeira, J.; Dove, D.; Baeten, N. J.; Thorsnes, T.
2017-12-01
Marine geomorphological mapping is an effective means of characterising and understanding the seabed and its features with direct relevance to; offshore infrastructure placement, benthic habitat mapping, conservation & policy, marine spatial planning, fisheries management and pure research. Advancements in acoustic survey techniques and data processing methods resulting in the availability of high-resolution marine datasets e.g. multibeam echosounder bathymetry and shallow seismic mean that geological interpretations can be greatly improved by combining with geomorphological maps. Since December 2015, representatives from the national seabed mapping programmes of Norway (MAREANO), Ireland (INFOMAR) and the United Kingdom (MAREMAP) have collaborated and established the MIM geomorphology working group) with the common aim of advancing best practice for geological mapping in their adjoining sea areas in north-west Europe. A recently developed two-part classification system for Seabed Geomorphology (`Morphology' and Geomorphology') has been established as a result of an initiative led by the British Geological Survey (BGS) with contributions from the MIM group (Dove et al. 2016). To support the scheme, existing BGS GIS tools (SIGMA) have been adapted to apply this two-part classification system and here we present on the tools effectiveness in mapping geomorphological features, along with progress in harmonising the classification and feature nomenclature. Recognising that manual mapping of seabed features can be time-consuming and subjective, semi-automated approaches for mapping seabed features and improving mapping efficiency is being developed using Arc-GIS based tools. These methods recognise, spatially delineate and morphologically describe seabed features such as pockmarks (Gafeira et al., 2012) and cold-water coral mounds. Such tools utilise multibeam echosounder data or any other bathymetric dataset (e.g. 3D seismic, Geldof et al., 2014) that can produce a depth digital model. The tools have the capability to capture an extensive list of morphological attributes. The MIM geomorphology working group's strategy to develop methods for more efficient marine geomorphological mapping is presented with data examples and case studies showing the latest results.
NASA Astrophysics Data System (ADS)
Bordiga, M.; Henderiks, J.; Tori, F.; Monechi, S.; Fenero, R.; Thomas, E.
2015-05-01
The biotic response of calcareous nannoplankton to environmental and climatic changes during the Eocene-Oligocene transition (~34.8-32.7 Ma) was investigated at high resolution at Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, South East Atlantic Ocean), and compared with a lower resolution benthic foraminiferal record. During this time interval, the global climate which had been warm during the Eocene, under high levels of atmospheric CO2 (pCO2), transitioned into the cooler climate of the Oligocene, with overall lower pCO2. At Site 1263, the absolute nannofossil abundance (coccoliths per gram of sediment; N g-1) and the mean coccolith size decreased distinctly across the E-O boundary (EOB; 33.89 Ma), mainly due to a sharp decline in abundance of large-sized Reticulofenestra and Dictyococcites, within ~53 kyr. Since carbonate dissolution did not vary much across the EOB, the decrease in abundance and size of nannofossils may highlight an overall decrease in their export production, which could have led to an increased ratio of organic to inorganic carbon (calcite) burial, as well as variations in the food availability for benthic foraminifers. The benthic foraminiferal assemblage data show the global decline in abundance of rectilinear species with complex apertures in the latest Eocene (~34.5 Ma), potentially reflecting changes in the food source, thus phytoplankton, followed by transient increased abundance of species indicative of seasonal delivery of food to the sea floor (Epistominella spp.; ~34.04-33.54 Ma), with a short peak in overall food delivery at the EOB (buliminid taxa; ~33.9 Ma). After Oi-1 (starting at ~33.4 Ma), a high abundance of Nuttallides umbonifera indicates the presence of more corrosive bottom waters, possibly combined with less food arriving at the sea floor. The most important signals in the planktonic and benthic communities, i.e. the marked decrease of large reticulofenestrids, extinctions of planktonic foraminifer species and more pronounced seasonal influx of organic matter, preceded the major expansion of the Antarctic ice sheet (Oi-1) by ~440 kyr. During Oi-1, our data show no major change in nannofossil abundance or assemblage composition occurred at Site 1263, although benthic foraminifera indicate more corrosive bottom waters following this event. Marine plankton thus showed high sensitivity to fast-changing conditions, possibly enhanced but pulsed nutrient supply, during the early onset of latest Eocene-earliest Oligocene climate change, or to a threshold in these changes (e.g. pCO2 decline, high-latitude cooling and ocean circulation).
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
Benthic Macroinvertebrate Assemblages in the Near Coastal Zone of Lake Erie
Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...
Hall, Lenwood W; Killen, William D; Alden, Raymond
2009-05-01
This study was designed to characterize long-term annual temporal and spatial trends (2001 to 2007) in physical habitat and benthic communities and to determine relationships of habitat and benthic communities during this 7-year period in an agricultural stream in the San Joaquin River watershed in California (Del Puerto Creek). The canonical discriminant analysis indicated that there were no overall significant temporal patterns for the habitat metrics although spatial patterns were prominent for nearly all the habitat metrics. Channel alteration, riparian vegetative zone, bank stability, vegetative protection and frequency of riffles/bends were the primary habitat metrics associated with these site effects. Approximately 3,700 to 4,500 individual macroinvertebrates were picked and identified from five Del Puerto Creek sites sampled annually from 2001 to 2007. The total number of taxa by year ranged from 81 in 2003 to 106 in 2007. These benthic assemblages were generally comprised of tolerant to moderately tolerant taxa such as blackflies, oligochaetes, snails and chironomids. The metrics % predators, % EPT index, % collectors/filterers and % shredders were the benthic metrics that were most associated with the temporal effects. Ephemeroptera taxa, trichoptera taxa, and % sensitive EPT index were the benthic metrics that were most associated with the site effects. The most upstream site in Del Puerto Creek had the most robust and healthy benthic communites. Strong statistical relationships were reported between certain benthic metrics and habitat metrics. Overall, samples taken from site-year combinations with sediments that were qualitatively less muddy (less fines) and that had higher habitat metric scores for embeddedness, riparian vegetative zone, and channel alteration tended to have benthic communities characterized by higher values of the benthic metrics such as EPT taxa, Ephemeroptera taxa, EPT index, abundance, and taxonomic richness, among others. Conversely, tolerance value and % tolerant taxa, the indicators of stressed benthic communities, were found to be inversely related to Bank Stability and Riparian vegetative zone (respectively), both indicators of habitat quality. Relationships between the quality of the physical habitat and the health of the benthic communities in aquatic systems, such as agricultural streams, needs to be considered before the impact of anthropogenic agents (e.g., pesticides, metals, and other potential toxicants) or other man-made perturbations may be understood. Otherwise, the interpretation of patterns of environmental conditions or causalities may be confounded.
The evolving Alaska mapping program.
Brooks, P.D.; O'Brien, T. J.
1986-01-01
This paper describes the development of mapping in Alaska, the current status of the National Mapping Program, and future plans for expanding and improving the mapping coverage. Research projects with Landsat Multispectral Scanner and Return Vidicon imagery and real- and synthetic-aperture radar; image mapping programs; digital mapping; remote sensing projects; the Alaska National Interest Lands Conservation Act; and the Alaska High-Altitude Aerial Photography Program are also discussed.-from Authors
Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes
We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...
McDougall, Kristin; Hillhouse, John; Powell, Charles; Mahan, Shannon; Wan, Elmira; Sarna-Wojcicki, Andrei M.
2012-01-01
The U.S. Geological Survey's Focus on Quaternary Stratigraphy in Los Angeles (FOQUS-LA) project was a cooperative coring program between Federal, State, and local agencies. It was designed to provide a better understanding of earthquake potentials and to develop a stratigraphic model of the western Los Angeles Basin in California. The biostratigraphic, geochronologic, and paleoecologic analyses of eight wells drilled during the FOQUS-LA project are presented. These analyses are based on microfossils (benthic and planktic foraminifers), macrofossils, paleomagnetic stratigraphy, optically stimulated luminescence, thermoluminescence, radiocarbon dating, and tephrochronology. A geochronologic framework (incorporating paleomagnetism, luminescence, and tephrochronology) was used to calibrate the sequence stratigraphic units in the FOQUS-LA wells and also was used to calibrate the ages of the microfossil stage and zonal boundaries. The results of this study show that (1) the offshore California margin zones can be used in a nearshore setting, and (2) the California margin zonal scheme refines the chronostratigraphic resolution of the benthic foraminiferal biostratigraphic framework for the Pacific Coast. Benthic foraminiferal stages are modified by the recognition of an early Hallian substage, which is a faunal change recognized throughout the Los Angeles Basin. Although no detailed macrofossil zonations exist for the Quaternary of southern California, several species, whose distribution is regulated by the climatic conditions, are useful as secondary marker species in the shallower water deposits of the Los Angeles Basin.
Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study
Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.
2009-01-01
A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions. ?? 2008 Elsevier B.V.
The Northern Bering Sea: An Arctic Ecosystem in Change
NASA Astrophysics Data System (ADS)
Grebmeier, J. M.; Cooper, L. W.
2004-12-01
Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in a 20-yr environmental time-series in the Bering Strait region.
Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim
2016-01-01
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
Linares, Marden Seabra; Callisto, Marcos; Marques, João Carlos
2018-02-01
Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it regulates light availability and autochthonous primary production in these ecosystems.Secondary production, diversity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams. Four hypotheses were tested: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assemblages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroinvertebrate assemblages will be more efficient in using the available resources to build structure, which will be reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consistently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that these streams may support more complex and productive benthic macroinvertebrate assemblages. Nevertheless, diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams. Since all the studied streams were selected for being considered as non-impacted, this suggests that the potential represented by more available food resources was not used to build a more complex dissipative structure. These results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams, while autochthonous production appears to play a crucial role as food source for benthic macroinvertebrates. This study also highlights the possible application of thermodynamic based indicators as tools to guide environmental managers in developing and implementing policies in the neotropical savannah. Copyright © 2017 Elsevier B.V. All rights reserved.
Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.
Chiba, W A C; Passerini, M D; Tundisi, J G
2011-05-01
Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.
Lake Malawi cichlid evolution along a benthic/limnetic axis.
Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T
2013-07-01
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.
NASA Astrophysics Data System (ADS)
Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.
2007-12-01
It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.
Spatial and temporal distributions of benthic green macroalgae in Yaquina bay, Oregon
Coastal estuaries of Oregon, USA, typically support relatively large accumulations of benthic green macroalgae (BGM) during the summer/early fall growing season. This raises questions regarding possible (positive and negative) effects on eelgrass and benthic epifauna and infauna...
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
Trace metals, PCBs, and PAHs in benthic (epipelic) diatoms from intertidal sediments; a pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stronkhorst, J.; Misdorp, R.; Vos, P.C.
1994-06-01
Intertidal sediments in many estuaries around the world have a history of contamination resulting from long term discharges of industrial, agricultural and domestic waste effluents. These contaminated sediments are now regarded as a major source of toxicants for bottom-related organisms which, in turn, may pass on certain contaminants (e.g. methylmercury, polychlorinated biphenyls (PCBs)) to organisms higher in the foodchain. Many studies have been conducted on the contamination of benthic macrofauna, estuarine fish and birds, but to our knowledge no research has yet been carried out on benthic diatoms which form the lowest trophic level of an intertidal ecosystem. Research onmore » the effects of micro-contaminants on primary producers in marine ecosystems is mainly performed with phytoplankton. In the estuaries of temperate regions, benthic diatoms make a significant contribution to primary production in the ecosystem and are predated especially by deposit feeding Polychaete and Mollusca. Knowledge of the level of contamination in benthic diatoms is of major importance to recognize possible effects on growth rate and species composition of the benthic diatom populations and to understand the accumulation of toxicants into the foodchain. For chemical analysis it is difficult to obtain [open quote]pure[close quote] samples of benthic diatoms because they form part of the sediment. A similar problem occurs with the sampling of phytoplankton in turbid estuarine waters. The aim of this pilot study was (a) to improve a trap technique to collect pure samples of benthic diatoms of at least 2 gram dry weight for analysis of trace metals, PCBs and polyaromatic hydrocarbons (PAHs) and (b) to compare the concentrations in benthic diatoms with levels in sediment and some bottom-related organisms. 16 refs., 2 figs., 2 tabs.« less
Trawl disturbance on benthic communities: chronic effects and experimental predictions.
Hinz, Hilmar; Prieto, Virginia; Kaiser, Michel J
2009-04-01
Bottom trawling has widespread impacts on benthic communities and habitats. While the direct impacts of trawl disturbances on benthic communities have been extensively studied, the consequences from long-term chronic disturbances are less well understood. The response of benthic macrofauna to chronic otter-trawl disturbance from a Nephrops norvegicus (Norway lobster) fishery was investigated along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Chronic otter trawling had a significant, negative effect on benthic infauna abundance, biomass, and species richness. Benthic epifauna abundance and species richness also showed a significant, negative response, while no such effect was evident for epibenthic biomass. Furthermore, chronic trawl disturbance led to clear changes in community composition of benthic infauna and epifauna. The results presented indicate that otter-trawl impacts are cumulative and can lead to profound changes in benthic communities, which may have far-reaching implications for the integrity of marine food webs. Studies investigating the short-term effects of fishing manipulations previously concluded that otter trawling on muddy substrates had only modest effects on the benthic biota. Hence, the results presented by this study highlight that data from experimental studies can not be readily extrapolated to an ecosystem level and that subtle cumulative effects may only become apparent when fishing disturbances are examined over larger spatial and temporal scales. Furthermore, this study shows that data on chronic effects of bottom trawling on the benthos will be vital in informing the recently advocated move toward an ecosystem approach in fisheries management. As bottom-trawl fisheries are expanding into ever deeper muddy habitats, the results presented here are an important step toward understanding the global ecosystem effects of bottom trawling.
James, Daniel A.; Bothwell, Max L.; Chipps, Steven R.; Carreiro, John
2015-01-01
Blooms of the benthic alga, Didymosphenia geminata [Lyngbye (Schmidt)], were first documented in Rapid Creek, South Dakota, in 2002 and have since been associated with changes to aquatic resources. Low concentration of P has been associated with D. geminata stalk development (i.e., blooms), so we considered elevating P as a possible method to reduce D. geminata blooms. We conducted 2 whole-stream P-enrichment experiments in Rapid Creek during 2007 and 2008. Enrichment with a slow-release fertilizer (Osmocote®: 14-14-14) in 2007 significantly reduced D. geminata blooms (indexed by D. geminata biomass) compared to upstream control sites. The reduction in biomass was less pronounced as distance from the enrichment source increased, a result indicating that P augmentation effectively decreased D. geminata biomass. In 2008, we implemented a before-after–control-impact (BACI) study to assess effects of a quick-release fertilizer (MAP: 11-52-0) on D. geminata biomass. The addition of 6 μg/L P to Rapid Creek resulted in a significant decrease in D. geminata biomass within 0.6 km downstream of the nutrient-addition point. Effects on D. geminata biomass were not evident further downstream. This study provides evidence to support the hypothesis that low P concentration regulates D. geminata blooms.
Optical Delineation of Benthic Habitat Using an Autonomous Underwater Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moline, Mark A.; Woodruff, Dana L.; Evans, Nathan R.
To improve understanding and characterization of coastal regions, there has been an increasing emphasis on autonomous systems that can sample the ocean on relevant scales. Autonomous underwater vehicles (AUVs) with active propulsion are especially well suited for studies of the coastal ocean because they are able to provide systematic and near-synoptic spatial observations. With this capability, science users are beginning to integrate sensor suits for a broad range of specific and often novel applications. Here, the relatively mature Remote Environmental Monitoring Units (REMUS) AUV system is configured with multi-spectral radiometers to delineate benthic habitat in Sequim Bay, WA. The vehiclemore » was deployed in a grid pattern along 5 km of coastline in depths from 30 to less than 2 meters. Similar to satellite and/or aerial remote sensing, the bandwidth ratios from the downward looking radiance sensor and upward looking irradiance sensor were used to identify beds of eelgrass on sub-meter scales. Strong correlations were found between the optical reflectance signals and the geo-referenced in situ data collected with underwater video within the grid. Results demonstrate the ability of AUVs to map littoral habitats at high resolution and highlight the overall utility of the REMUS vehicle for nearshore oceanography.« less
NASA Astrophysics Data System (ADS)
Wildsmith, Michelle D.; Valesini, Fiona J.; Robinson, Samuel F.
2017-10-01
This study tested the extent to which spatial differences in the benthic macroinvertebrate assemblages of a temperate microtidal estuary were 'explained' by the enduring (biophysical) vs non-enduring (water and sediment quality) environmental attributes of a diverse range of habitats, and thus the potential of those environmental surrogates to support faunal prediction. Species composition differed significantly among habitats in each season, with the greatest differences occurring in winter and spring and the least in summer. The pattern of habitat differences, as defined by their enduring environmental characteristics, was significantly and well matched with that in the fauna in each season. In contrast, significant matches between the non-enduring environmental and faunal data were only detected in winter and/or spring, and to a lesser extent. Field validation of the faunal prediction capacity of the biophysical surrogate framework at various 'test' sites throughout the estuary showed good agreement between the actual vs predicted key species. These findings demonstrate that enduring environmental criteria, which can be readily measured from mapped data, provide a better and more cost-effective surrogate for explaining spatial differences in the invertebrate fauna of this system than non-enduring criteria, and are thus a promising basis for faunal prediction. The approaches developed in this study are also readily adapted to any estuary worldwide.
Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...
The spatial patterns of subtidal benthic invertebrates and physical-chemical variables in the nearshore Gulf of Maine (Acadian Biogeographic Province) were studied to provide information needed to calibrate benthic indices of environmental condition, determine physical-chemical f...
Computer-Assisted Analysis of Near-Bottom Photos for Benthic Habitat Studies
2006-09-01
navigated survey platform greatly increases the efficiency of image analysis and provides new insight about the relationships between benthic organisms...increase in the efficiency of image analysis for benthic habitat studies, and provides the opportunity to assess small scale spatial distribution of
Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...
The Power of Computer-aided Tomography to Investigate Marine Benthic Communities
Utilization of Computer-aided-Tomography (CT) technology is a powerful tool to investigate benthic communities in aquatic systems. In this presentation, we will attempt to summarize our 15 years of experience in developing specific CT methods and applications to marine benthic co...
Enhancing programming logic thinking using analogy mapping
NASA Astrophysics Data System (ADS)
Sukamto, R. A.; Megasari, R.
2018-05-01
Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.
Goto, Daisuke; Wallace, William G
2009-12-01
Organic mercury such as methylmercury is not only one of the most toxic substances found in coastal ecosystems but also has high trophic transfer efficiency. In this study, we examined implications of chronically altered benthic macroinfaunal assemblages for organic mercury trophic availability (based on organic mercury intracellular partitioning) to their predators in the Arthur Kill-AK (New York, USA). Despite low species diversity, both density and biomass of benthic macroinvertebrates in AK were significantly higher than those at the reference site. Disproportionately high biomass of benthic macroinvertebrates (mostly polychaetes) in the northern AK resulted in a more than twofold increase ('ecological enrichment') in the trophically available organic mercury pool. These results suggest that altered benthic macroinfaunal community structure in AK may play an important role in organic mercury trophic availability at the base of benthic food webs and potentially in mercury biogeochemical cycling in this severely urbanized coastal ecosystem.
Carbon fate in a large temperate human-impacted river system: Focus on benthic dynamics
NASA Astrophysics Data System (ADS)
Vilmin, Lauriane; Flipo, Nicolas; Escoffier, Nicolas; Rocher, Vincent; Groleau, Alexis
2016-07-01
Fluvial networks play an important role in regional and global carbon (C) budgets. The Seine River, from the Paris urban area to the entrance of its estuary (220 km), is studied here as an example of a large human-impacted river system subject to temperate climatic conditions. We assess organic C (OC) budgets upstream and downstream from one of the world's largest wastewater treatment plants and for different hydrological conditions using a hydrobiogeochemical model. The fine representation of sediment accumulation on the river bed allows for the quantification of pelagic and benthic effects on OC export toward the estuary and on river metabolism (i.e., net CO2 production). OC export is significantly affected by benthic dynamics during the driest periods, when 25% of the inputs to the system is transformed or stored in the sediment layer. Benthic processes also substantially affect river metabolism under any hydrological condition. On average, benthic respiration accounts for one third of the total river respiration along the studied stretch (0.27 out of 0.86 g C m-2 d-1). Even though the importance of benthic processes was already acknowledged by the scientific community for headwater streams, these results stress the major influence of benthic dynamics, and thus of physical processes such as sedimentation and resuspension, on C cycling in downstream river systems. It opens the door to new developments in the quantification of C emissions by global models, whereby biogeochemical processing and benthic dynamics should be taken into account.
Role of macrofauna on benthic oxygen consumption in sandy sediments of a high-energy tidal beach
NASA Astrophysics Data System (ADS)
Charbonnier, Céline; Lavesque, Nicolas; Anschutz, Pierre; Bachelet, Guy; Lecroart, Pascal
2016-06-01
Sandy beaches exposed to tide and waves are characterized by low abundance and diversity of benthic macrofauna, because of high-energy conditions. This is the reason why there are few studies on benthic communities living in such highly dynamic environments. It has been shown recently that tidal sandy beaches may act as biogeochemical reactors. Marine organic matter that is supplied in the sand during each flood tide is efficiently mineralized through aerobic respiration. In order to quantify the role of macrofauna in the whole beach benthic respiration, we studied the macrofauna and the pore water oxygen content of an exposed sandy beach (Truc Vert, SW of France) during four seasons in 2011. The results showed that macrofauna was characterised by a low number of species of specialized organisms such as the crustaceans Eurydice naylori and Gastrosaccus spp. and the polychaetes Ophelia bicornis and Scolelepis squamata. The distribution and abundance of macrofauna were clearly affected by exposure degree and emersion time. The combined monitoring of benthic macrofauna and pore waters chemistry allowed us to estimate (1) the macrofauna oxygen uptake, calculated with a standard allometric relationship using biomass data, and (2) the total benthic oxygen uptake, calculated from the oxygen deficit measured in pore waters. This revealed that benthic macrofauna respiration represented a variable but low (<10%) contribution to the total benthic oxygen consumption. This suggests that oxygen was mainly consumed by microbial respiration.
Umek, John; Chandra, Sudeep; Rosen, Michael; Wittmann, Marion; Sullivan, Joe; Orsak, Erik
2010-01-01
Limnologists recently have developed an interest in quantifying benthic resource contributions to higher-level consumers. Much of this research focuses on natural lakes with very little research in reservoirs. In this study, we provide a contemporary snapshot of the food web structure of Lake Mead to evaluate the contribution of benthic resources to fish consumers. In addition, we document the available food to fishes on soft sediments and changes to the invertebrate community over 2 time periods. Benthic invertebrate food availability for fishes is greater in Las Vegas Bay than Overton Arm. Las Vegas Bay is dominated by oligochaetes, whose biomass increased with depth, while Overton Arm is dominated by chironomids, whose biomass did not change with depth. Diet and isotopic measurements indicate the fish community largely relies on benthic resources regardless of basin (Las Vegas Bay >80%; Overton Arm >92%); however, the threadfin shad likely contribute more to largemouth and striped bass production in Overton Arm versus Las Vegas Bay. A 2-time period analysis, pre and post quagga mussel establishment and during lake level declines, suggests there is no change in the density of benthic invertebrates in Boulder Basin, but there were greater abundances of select taxa in this basin by season and depth than in other basins. Given the potential of alterations as a result of the expansion of quagga mussel and the reliance of the fishery on benthic resources, future investigation of basin specific, benthic processes is recommended.
Marine biogeographic realms and species endemicity.
Costello, Mark J; Tsai, Peter; Wong, Pui Shan; Cheung, Alan Kwok Lun; Basher, Zeenatul; Chaudhary, Chhaya
2017-10-20
Marine biogeographic realms have been inferred from small groups of species in particular environments (e.g., coastal, pelagic), without a global map of realms based on statistical analysis of species across all higher taxa. Here we analyze the distribution of 65,000 species of marine animals and plants, and distinguish 30 distinct marine realms, a similar proportion per area as found for land. On average, 42% of species are unique to the realms. We reveal 18 continental-shelf and 12 offshore deep-sea realms, reflecting the wider ranges of species in the pelagic and deep-sea compared to coastal areas. The most widespread species are pelagic microscopic plankton and megafauna. Analysis of pelagic species recognizes five realms within which other realms are nested. These maps integrate the biogeography of coastal and deep-sea, pelagic and benthic environments, and show how land-barriers, salinity, depth, and environmental heterogeneity relate to the evolution of biota. The realms have applications for marine reserves, biodiversity assessments, and as an evolution relevant context for climate change studies.
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Tuell, Grady
2010-04-01
The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.
Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...
Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...
LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES
The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...
Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.
2014-01-01
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).
NASA Astrophysics Data System (ADS)
Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.
2007-04-01
In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.
NASA Astrophysics Data System (ADS)
Dauvin, Jean-Claude
2015-06-01
Benthic studies in the English Channel (EC), a shallow megatidal and epicontinental sea, began in the 1960s and 1970s with the work of teams led by Norman Holme (UK) and Louis Cabioch (F). During this period, benthic sampling was mainly qualitative, i.e. using a device such as the 'Rallier du Baty' dredge in the case of the French team and a modified anchor dredge in the case of the British team. Studies were focused on acquiring knowledge of the main distributions of benthic communities and species. Surveys on the scale of the whole EC led to the recognition of general features and two main patterns were identified: 1) the role of hydrodynamics on the spatial distribution of sediment, benthic species and communities; 2) the presence of a west-east climatic gradient of faunal impoverishment. Benthic studies in the 1980s-1990s were focused on the beginning of the implementation of long-term survey at a limited number of sites to identify seasonal and multi-annual changes. In the first decade of the 2000s, the implementation of the European Water Framework Directive and the Marine Strategy Framework Directive to define the Ecological Quality Status of marine environments increased the need to acquire better information of the structure and functioning of benthic communities, since benthic species and habitats were recognised as good indicators of human pressure on marine ecosystems. Faced with the increase of human maritime activities, the appearance of invasive species and the need to preserve sensitive marine habitats, benthic studies have been focused on developing a 'toolkit' to help in the decision-making and planning for both sound governance and sustainable management of marine resources and human activities in the English Channel. Multidisciplinary approaches were used to differentiate habitats in a more precise detail. Both indirect (side-scan sonar, ROV) and direct (grab sampling with benthos identification and grain-size analyses) approaches were used and combined to allow the description of benthic habitats using numerous descriptors. These approaches were mainly applied on a local scale, leading to the identification of habitat mosaics mainly in coarse sands, gravels and pebbly areas which cover 80% of the EC seabed. They also allowed the enrichment of the EUNIS habitat classification for infralittoral and circalittoral zones taking into account the scale of observations of benthic habitats. Moreover, several recommendations for future benthic studies are proposed within a HABITAT approach.
Coastal Benthic Boundary Layer (CBBL) Research Program: A review of the fourth year
1998-09-01
followed by manganese oxide, nitrate , iron oxides, and sulfate. Some of these reactions produce protons, which promote the dissolution of carbonate...investigated. Specific activities during FY97 include: (1) continued multiscale analysis of Eckernförde sediments with inclusions of Key West...certain bacteria can then mediate organic matter oxidation (and obtain energy in the process) using nitrate as the terminal electron acceptor rather than
Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods
2008-04-01
Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Research Program ERDC/EL TR-08-16 April 2008 Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity Methods Jeffery...potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of dredged material
Dredged Material Analysis Tools; Performance of Acute and Chronic Sediment Toxicity Methods
2008-07-01
Chronic Sediment Toxicity Methods Jeffery Steevens, Alan Kennedy, Daniel Farrar, Cory McNemar, Mark R. Reiss, Roy K. Kropp, Jon Doi, and Todd Bridges...Environmental Research Program ERDC/EL TR-08-16 July 2008 Revised Dredged Material Analysis Tools Performance of Acute and Chronic Sediment Toxicity ...insight into the potential advan- tages and disadvantages of using chronic sediment toxicity tests with relevant benthic macroinvertebrates as part of
1988-08-01
availability and bioaccumulation of heavy metals, petroleum hydrocarbons , synthetic organic compounds, and radionuclides in sediments. Specific...toxins, petroleum pollution, noise, removal of colonized hard substrate, and ~~addition of new hard substrate. Using this information, in addition to...the disturbance. 16. Sedimentation and/or removal of substrate in areas adjacent to structures may affect benthic resources such as mollusc beds
Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel
2013-01-01
Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.
Recknagel, Hans; Elmer, Kathryn R.; Meyer, Axel
2013-01-01
Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F2 hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F2 offspring, we calculated a genome-wide mutation rate of 6.6 × 10−8 mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes. PMID:23316439
NASA Astrophysics Data System (ADS)
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Martellucci, Riccardo; Pierattini, Alberto; Albani, Marta; Borsellino, Chiara; Zappalà, Giuseppe
2015-04-01
The study of the physical and biological processes of the coastal environment, characterized by high spatial and time variability, requires the adoption of multidisciplinary strategies of investigation that takes into account, not only the biotic and abiotic components of coastal marine ecosystems, but also the terrestrial, atmospheric and hydrological features linked to them. The understanding of coastal environment is fundamental to face efficiently and effectively the pollution phenomena, as expected by Marine Strategy (2008/56 EC) Directive, which is focused on the achievement of GES by 2020 in all Member States. Following these lines, the Laboratory of Experimental Oceanology and Marine Ecology (University of Tuscia) has developed a multi-platform observing network (the Civitavecchia Coastal Environment Monitoring System, C-CEMS) that operates since 2005 in the coastal marine area of Civitavecchia (northern Tyrrhenian Sea, Italy), where multiple uses (industrial, commercial and tourist activities) and high ecological values (Posidonia oceanica meadows, hard-bottom benthic communities, priority species, etc.) closely coexist. Furthermore, in the last years the Civitavecchia harbour, which is one of the main ports of Europe, has been subjected to a series of expansion works that could impact significantly on the coastal environment. The C-CEMS, implemented in the current configuration, is composed by five main modules (fixed stations, in-situ measurements and samplings, satellite observations, numerical models, GIS) which provide integrated informations to be used in different fields of the environmental research. The fixed stations system controls one weather, two water quality and two wave-buoy stations along the coast. In addition to the long term observations acquired by the fixed stations (L-TER), in situ surveys are periodically carried out for the monitoring of the physical, chemical and biological characteristics of the water column and marine sediments as well as of the benthic biota. The in situ data, integrated with satellite observations (temperature, chlorophyll a and TSM), are used to feed and validate the numerical models, which allow to analyse and forecast the dynamics of conservative and non-conservative particles under different conditions. Finally, the C-CEMS informations combined with diverse kind of datasets (fishery, land use, hydrology, orography, archeologic, naturalistic, etc) can be represented in thematic maps called Sea Uses Maps, supporting the management decisions of the stakeholders. As examples of C-CEMS applications two case studies are reported in this work: the analysis of faecal bacteria dispersion for bathing water quality assessment, and the evaluation of the effects of the dredged activities on Posidonia meadows and soft-bottom benthic communities.
California State Waters Map Series: offshore of Half Moon Bay, California
Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.
2014-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by compression related to right-lateral strike-slip movement along the San Gregorio Fault Zone. The lowest elevation coincides with the deepest part of Half Moon Bay; the terrace surface rises both to the north and to the south. Uplift in this map area has resulted in relatively shallow water depths within California’s State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed in the shelter of Half Moon Bay and on the outer half of the California’s State Waters shelf. Sediment in the area is mobile, often forming dunes and sand waves. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the Seal Cove Fault, which comes ashore in Pillar Point Harbor, has resulted in the folding and uplifting of sedimentary rocks of the Purisima Formation in the offshore. Differential erosion of these folded and faulted layers of the Purisima Formation has exposed the parallel curved-rock ridges that are visible on the seafloor from the headland at Pillar Point. During the winter, strong North Pacific storms generate large, long-period waves that shoal and break over this bedrock reef at the world-famous surfing location known as Mavericks. The Offshore of Half Moon Bay map area lies within the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 365 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of Half Moon Bay map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.
2017-01-01
Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).
NASA Astrophysics Data System (ADS)
De Muro, Sandro; Pusceddu, Nicola; Frongia, Paolo; Buosi, Carla; Passarella, Marinella; Ibba, Angelo
2016-04-01
This work describes the human conditioned evolution (medium term) and the short term dynamics (mainly sediment transport) in southern Sardinia beach (between Giorgino and Cala d'Orri, about 11km), composed of fine to coarse quartz sand, backed by dune ridges and lagoons. The study was founded by NEPTUNE Project, Tender6 (L n. 7/2007). Geomorphological and bio-environmental indicators as: urbanization and coastal defence expansion, dune and beach changes, biotic indices (benthic foraminifera and Posidonia meadow) have been used. Medium-term evolution, over a period of 60 years, was carried out by ortho-images (1954-2015) for reconstructing coastline changes at this temporal scale. The main modifications were the building of the canal harbor, the consequent loss of 2.5km of beach, and the construction of several coastal defense structures, which caused asymmetric accumulations (lee zones) and erosion areas. Short-term variations have been periodically monitored (2014-2015) during 5 different field surveys (DGPS and Echo-sounder data) obtaining topo-bathymetric digital models. Sedimentary and hydrodynamic characteristics have been studied. Wave propagation, coastal currents and sediment transport, have been simulated through numerical models within Delft3D software. The results obtained allowed to visualize the response of the beach to wave stress, forced from SW, S, SE (Cagliari buoy and weather data). The comparison between data collected, thematic maps and models allowed to identify the main controlling factors and distribution mechanisms of the sedimentary paths on the shoreface. Those human modifications (e.g. building of the canal harbour and jetties, lagoon mouths stabilization, the consequent modified hydrodynamics and bottom trawling) have direct influence on the Posidonia oceanica and on its upper limit. In 2002, the Italian Environment Office reported a wide area (between -4m and -20m) of degraded Posidonia and dead matte in front of the study beach. Reflecting the poor state of the Posidonia upper limit, during data collection it has been documented the presence of banquette, mainly composed of Caulerpa prolifera, with which the Posidonia competes for the substrate. The roles of Posidonia oceanica in coastal defence (sediment retainment, hydrodynamics attenuation), fish nursery and water oxygenation have been largely recognized. The health of the Posidonia meadow is also linked to the biotic communities. In order to evaluate the ecosystem quality of the investigated area, living benthic foraminiferal assemblages (Rose Bengal stained) were analysed. Benthic foraminifera are useful as bioindicator proxies for characterization of specific environments in coastal systems, because foraminifera have short life cycles reacting quite quickly to both short and long-term changes in marine and transitional-marine environments on both global and local scale. Results demonstrate, in medium-term scale, the human modification, and in short-term scale, the consequent human conditioning in sediment transport. The benthic foraminiferal biocoenosis and biotic indices decrease in the samples characterized by high environmental stress and are linked to the poor state of the Posidonia upper limit. The low abundance values and the dominance of indicative opportunistic species, such as Ammonia tepida, Haynesina germanica and bolivinids, are the result of these stressed conditions.
Modeling Benthic Sediment Processes to Predict Water Quality and Ecology in Narragansett Bay
The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal ...
The US EPA has evaluated the application of a national-scale indicator of estuarine benthic condition for the National Coastal Condition Assessment (NCCA). Historically, in the National Coastal Condition Reports (NCCR I-IV), estuarine benthic condition was assessed by applying m...
BENTHIC NUTRIENT FLUX IN A SMALL ESTUARY IN NORTHWESTERNFLORIDA (USA)
Benthic Nutrient Flux in a Small Estuary in Northwestern Florida(USA).Gulf and Caribbean Research 18, 15-25, 2006.
Benthic nutrient fluxes of ammonium (NH4+), nitrite/nitrate (NO2-+NO3-), phosphate (PO4-), and dissolved silica (DSi) were measured in Escambia Bay, an estuar...
Population changes of three major benthic taxa are discussed in relation to Dreissena spp. Lake Ontario was sampled pre-invasion (1972) and post-invasion (1994, 1997) for abundance of benthic organisms. In offshore sediments of Lake Ontario, neither species composition nor abunda...
Marine Benthic Communities of Block Island and Rhode Island Sounds and What they're Good For
The benthic invertebrates of Block Island and Rhode Island Sounds include those adapted to near-shore habitats with variable temperature and salinity, mid-shelf species with narrower requirements, and boreal species that avoid elevated temperatures. Studies of benthic fauna in th...
2001-09-30
significance of fluorescence and reflectance characteristics of benthic marine organisms in general, and coral reef cnidarians in particular. We wish to... cnidarians in particular. We wish to determine 1) how biological processes act to produce the optical properties and 2) how optical measurements can be
Explosive diversification following a benthic to pelagic shift in freshwater fishes.
Hollingsworth, Phillip R; Simons, Andrew M; Fordyce, James A; Hulsey, C Darrin
2013-12-17
Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America's most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift. Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift. A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems.
Microbial and sponge loops modify fish production in phase-shifting coral reefs.
Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L
2015-10-01
Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Lake Ontario benthic prey fish assessment, 2014
Weidel, Brian C.; Walsh, Maureen
2015-01-01
Benthic prey fishes are an important component of the Lake Ontario fish community and serve as vectors that move energy from benthic invertebrates into native and introduced sport fishes. Since the 1970’s, the USGS Lake Ontario Biological Station has assessed benthic fish populations and community dynamics with bottom trawls at depths ranging from 8 m out to depths of 150-225 m along the south and eastern shores of Lake Ontario. From the late 1970’s through the early 2000’s the benthic fish community was dominated by Slimy Sculpin Cottus cognatus, but in 2004 non-native Round Goby Neogobius melanostomus abundance increased and, since then Round Goby have generally been the dominant benthic species. Over the past 10 years the native Deepwater Sculpin Myoxocephalus thompsonii, once considered absent from the lake, have increased. Presently their lake-wide biomass density is equal to, or larger than, Slimy Sculpin. Species-specific assessments found Slimy and Deepwater Sculpin abundance increased slightly in 2014 relative to 2013, while changes in Round Goby abundance differed between spring and fall survey. Recent survey modifications have increased our understanding of benthic prey fish abundance and behavior in Lake Ontario. For instance, increasing the maximum tow depth to 225 m in 2014 improved our understanding of Deepwater Sculpin distribution in this rarely sampled lake habitat.
NASA Astrophysics Data System (ADS)
Diz, Paula; Francés, Guillermo; Rosón, Gabriel
2006-04-01
Live benthic foraminifera in the superficial sediments from the muddy central axis of the Ría de Vigo were examined under two contrasting hydrographic conditions: downwelling and upwelling. During downwelling conditions the abundance of benthic foraminifera does not show large differences between sites with different organic carbon contents. The arrival of labile organic carbon to the seafloor delivered during upwelling events causes an increase in the abundance of the most significant species and the appearance of new species in the life assemblage. This suggests that benthic foraminiferal faunas strongly depend on high quality organic carbon supply and the sedimentary organic carbon is not a good indicator of food availability to benthic foraminifera. The response of benthic foraminifera to phytoplankton blooms differs between outer and inner sites. In outer and middle areas benthic foraminiferal assemblages show quick population growth in reaction to phytoplankton blooms (r-strategists), whereas in inner sites the most abundant species displays both growth and reproduction (k-strategists). It is suggested that r-strategy results of adaptation to perturbations on short time-scales (downwelling/upwelling cycles) under favourable microenvironmental conditions, while the k-strategy represents the adaptation to long term perturbations, such as relatively low oxygen concentrations and/or reducing microenvironmental conditions in the sediment.
Concentrations of selected heavy metals in benthic diatoms and sediment in the Westerschelde Estuary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Absil, M.C.P.; Scheppingen, Y. van
1996-12-31
In recent years considerable data have been compiled on heavy metal levels in biota in marine and estuarine environments. With respect to the fauna, much information is available on accumulation and effects of heavy metals in birds, fish and benthic macrofauna. Accumulation of heavy metals in aquatic flora has been studied mostly in benthic macroalgae, in particular in relation to the use as a biological monitor. The response of planktonic algal species to heavy metals has been studied extensively in cultured populations. Also. heavy metal concentrations in natural plankton have been studied. As far as we know, very few datamore » are available on the concentrations of heavy metals in the lowest benthic trophic level, the benthic microflora. It is a major food supply for numerous intertidal species, so it is obvious that microflora might play an important role in the accumulation of contaminants through coastal food chains. The aim of this research was to adjust a recently developed collection technique for benthic diatoms so that it is suitable for large-scale field studies. The method was then used to assess the concentration of the heavy metals Cd, Cu, Pb and Zn in benthic diatoms and sediments along an estuarine gradient. 18 refs., 2 figs., 1 tab.« less
Food and disturbance effects on Arctic benthic biomass and production size spectra
NASA Astrophysics Data System (ADS)
Górska, Barbara; Włodarska-Kowalczuk, Maria
2017-03-01
Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna (39% of biomass and 83% of production), which took over the benthic metazoan key-player role in terms of processing organic matter in sediments. Macrofaunal nematodes composed a considerable portion of the benthic community in terms of biomass (up to 9%) and production (up to 12%), but only in undisturbed sediments with high organic matter content. Our study indicates that food availability and disturbance controls the total bulk and partitioning of biomass and production among the size classes in Arctic benthic communities.
NASA Astrophysics Data System (ADS)
Leduc, Daniel; Pilditch, Conrad A.; Nodder, Scott D.
2016-02-01
Understanding and predicting change in deep-sea benthic ecosystem function remains a major challenge. Here, we conducted analyses combining data on the abundance and biomass of benthic fauna and sediment community oxygen consumption (SCOC) on New Zealand's continental margin to estimate and compare the contributions of meio-, macro-, and megafauna to total benthic metabolism and identify potential links with environmental factors and trawling intensity. We focussed on two regions in close proximity-the high surface primary productivity Chatham Rise and low surface productivity Challenger Plateau. Mean megafauna biomass was twenty times greater on Chatham Rise than Challenger Plateau, likely reflecting differences in food supply between the two regions; this contrast in megafaunal biomass was mainly due to differences in mean body weight rather than abundance. Meio- and macrofauna made similar contributions to SCOC and together accounted for 12% of benthic metabolism on average. In contrast, the estimated contribution of megafauna never exceeded 1.5%. Significant positive correlations between faunal respiration and food availability indicate a link between food supply and benthic community function. Our analyses also show that fauna made a greater contribution to SCOC in conditions of high food availability, and that microorganisms (i.e., the proportion of SCOC not accounted for by the fauna) tended to be more dominant at sites with low food availability. These findings provide support for the concept that large organisms are more strongly affected by a reduction in food resources than small organisms, which in turn underlies one of the most widely described patterns in the deep-sea benthos, i.e., the reduction in organism body size with depth. Because metabolism in deep-sea sediments is typically dominated by microorganisms and small fauna, the absence of a relationship between bottom trawling intensity and the respiration of benthic fauna in the present study may be explained by benthic communities shifting towards smaller body size following physical disturbance. Future studies of deep-sea benthic ecosystem function will need to quantify the indirect influence of fauna on microbial metabolism through activities such as feeding and bioturbation in order to better understand the total contribution of benthic fauna to benthic processes.
NASA Astrophysics Data System (ADS)
Flood, R. D.; Kinney, J.; Weaver, M.
2006-12-01
The Peconic Bays, an estuary of the National Estuary Program, is about 50 km long and 10 km wide, ranges in depth to 20-30 m and is located between the North Fork and South Fork at the east end of Long Island. There is much interest in the nature and distribution of benthic habitats within this estuary, and we have been conducting high-resolution side-scan sonar and multibeam bathymetry and backscatter studies to understand sediment distribution patterns and physical processes and to guide benthic sampling. Our initial results indicate that the seabed morphology in this area has been shaped by a range of biological and physical processes that have been occurring since glacial times. Morphological elements of the seafloor include apparent glacial-aged topography, eroded glacial deposits, early post-glacial canyons and channels, widespread relict oyster reefs, modern migrating sand banks, restricted areas of modern mud accumulation, and active sand waves. The wide range of morphological elements representing a relatively long time span is apparently due to the fact that the area has been protected from large, erosive ocean waves during the post- glacial sea-level rise and thus there was apparently little wave-induced erosion at the shoreline. Also, there is not a very large modern sediment supply. The largest river on Long Island (the Peconic River) drains into the area. The Peconic River is about 25 km long with a drainage area of 200 km2 and drains a low-relief terrain. That river drains into Great Peconic Bay which may have trapped most of the sediment load. Additional modern sediment is derived from the erosion of glacial cliffs, but a low sediment supply plus strong currents results in insufficient sediment deposition to cover the relict topography in many areas. In addition to underscoring the importance of older environments in controlling more recent sedimentation patterns, observations suggest that important post-glacial and early interglacial climate records may be preserved in Peconic Bay sediments.
Using a Multibeam Echosounder to Monitor AN Artificial Reef
NASA Astrophysics Data System (ADS)
Tassetti, A. N.; Malaspina, S.; Fabi, G.
2015-04-01
Artificial reefs (ARs) have become popular technological interventions in shallow water environments characterized by soft seabed for a wide number of purposes, from fisheries/environmental protection and enhancement to research and tourism. AR deployment has the potential for causing significant hydrographical and biological changes in the receiving environments and, in turn, ARs are strongly affected by the surrounding area in terms of spatial arrangement and structural integrity as well as colonization by benthic communities and finfish. In this context, ARs require a systematic monitoring program that a multibeam echosounder (MBES) can provide better than other sampling methods such as visual dives and ROV inspections that are not quantitative and often influenced by water visibility and diver experience/skills. In this paper, some subsequent MBES surveys of the Senigallia scientifically-planned AR (Northern Adriatic Sea) are presented and state-of-the art data processing and visualization techniques are used to draw post-reef deployment comparisons and quantify the evolution of the reef in terms of spatial arrangement and bulk volume. These multibeam surveys play a leading part in a general multi-year program, started simultaneously with the AR design and deployment and aimed to map how the reef structure quantitatively changes over time, as well as it affects the sea-bottom morphology and the fishery resource. All the data, surveyed over years making use of different sampling methods such as visual and instrumental echosounding observations and catch rate surveys, gain a mechanistic and predictive understanding of how the Senigallia AR functions ecologically and physically across spatial and temporal scales during its design life
Coastal and tidal landform detection from high resolution topobathymetric LiDAR data
NASA Astrophysics Data System (ADS)
Skovgaard Andersen, Mikkel; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Brandbyge Ernstsen, Verner
2016-04-01
Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalisation and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high-resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the LiDAR point cloud with a mean point density in the order of 20 points/m2. The DEM was analysed morphometrically using a modification of the tool Benthic Terrain Modeler (BTM) developed by Wright et al. (2005). Initially, stage (the elevation in relation to tidal range) was used to divide the area of investigation into the different tidal zones, i.e. subtidal, intertidal and supratidal. Subsequently, morphometric units were identified and characterised by a combination of statistical neighbourhood analysis with varying window sizes (using the Bathymetric Positioning Index (BPI) from the BTM, moving average and standard deviation), slope parameters and area/perimeter ratios. Finally, these morphometric units were classified into six different types of landforms based on their stage and morphometric characteristics, i.e. either subtidal channel, intertidal flat, intertidal creek, linear bar, swash bar or beach dune. We hereby demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land-water transition zones in challenging coastal environments with high water column turbidity and continuously varying water levels due to tides. Furthermore, we demonstrate the potential of morphometric analysis on high-resolution topobathymetric LiDAR data for automatic identification, characterisation and classification of different landforms present in coastal land-water transition zones. Acknowledgements This work was funded by the Danish Council for Independent Research | Natural Sciences through the project "Process-based understanding and prediction of morphodynamics in a natural coastal system in response to climate change" (Steno Grant no. 10-081102) and by the Geocenter Denmark through the project "Closing the gap! - Coherent land-water environmental mapping (LAWA)" (Grant no. 4-2015). References Wright DJ, Lundblad ER, Larkin EM, Rinehart RW, Murphy J, Cary-Kothera L, Draganov K, 2005. ArcGIS Benthic Terrain Modeler. Corvallis, Oregon, Oregon State University, Davey Jones Locker Seafloor Mapping/Marine GIS Laboratory and NOAA Coastal Services Center.
Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary
NASA Astrophysics Data System (ADS)
Russoniello, C. J.; Michael, H. A.; Heiss, J.
2017-12-01
Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.
Middle Atmosphere Program. Handbook for MAP, volume 6
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
A directory of scientists associated with the Middle Atmosphere Program (MAP) is presented. The MAP steering committee, the standing committees, MAP study groups, and MAP projects are mentioned along with the MAP secretariat and regional consultative group.
Lake Ontario benthic prey fish assessment, 2016
Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.
2017-01-01
Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Beginning in 1978, Lake Ontario benthic prey fishes were assessed using bottom trawls collected from the lake’s south shore (depth range: 8 – 150 m). Historically, the survey targeted the then dominant species, Slimy Sculpin, however in 2015, the Benthic Prey Fish Survey was cooperatively expanded to a whole-lake survey, to address resource management information needs related to Round Goby, Deepwater Sculpin, and nearshore native fishes. In 2016, 142 trawls were collected at 18 transects, and spanned depths from 6 – 225 m. Trawl catches indicated the benthic and demersal prey fish community was dominated by Round Goby, however the proportional importance of native Deepwater Sculpin is increasing. Species-specific assessments found lake-wide Round Goby density (~600 fish per hectare) was slightly lower in 2016 relative to 2015. Deepwater Sculpin density has generally increased since 2004. In 2016 their estimated density was greater than 100 fish per hectare. Slimy Sculpin density (15 fish/ha) was similar to the past 3 years. Catches of juvenile Slimy Sculpin continue to be low relative to historic catches and the timing of their decline coincides with the proliferation of Round Goby. Additionally, we found a strong negative relationship between trawl catches of Round Goby and near-shore native benthic and demersal fishes such as Trout-perch, Johnny Darter and Spottail Shiner. The introduction of Round Goby and the reappearance of native Deepwater Sculpin have shaped the Lake Ontario benthic prey fish community.
Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Alegret, Laia; Molina, Eustoquio; Thomas, Ellen
2001-10-01
Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.
Van Hoey, Gert; Borja, Angel; Birchenough, Silvana; Buhl-Mortensen, Lene; Degraer, Steven; Fleischer, Dirk; Kerckhof, Francis; Magni, Paolo; Muxika, Iñigo; Reiss, Henning; Schröder, Alexander; Zettler, Michael L
2010-12-01
The Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) are the European umbrella regulations for water systems. It is a challenge for the scientific community to translate the principles of these directives into realistic and accurate approaches. The aim of this paper, conducted by the Benthos Ecology Working Group of ICES, is to describe how the principles have been translated, which were the challenges and best way forward. We have tackled the following principles: the ecosystem-based approach, the development of benthic indicators, the definition of 'pristine' or sustainable conditions, the detection of pressures and the development of monitoring programs. We concluded that testing and integrating the different approaches was facilitated during the WFD process, which led to further insights and improvements, which the MSFD can rely upon. Expert involvement in the entire implementation process proved to be of vital importance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Benefits and shortcomings of non-destructive benthic imagery for monitoring hard-bottom habitats.
Beisiegel, Kolja; Darr, Alexander; Gogina, Mayya; Zettler, Michael L
2017-08-15
Hard-bottom habitats with complex topography and fragile epibenthic communities are still not adequately considered in benthic monitoring programs, despite their potential ecological importance. While indicators of ecosystem health are defined by major EU directives, methods commonly used to measure them are deficient in quantification of biota on hard surfaces. We address the suitability of seafloor imaging for monitoring activities. We compared the ability of high-resolution imagery and physical sampling methods (grab, dredge, SCUBA-diving) to detect taxonomic and functional components of epibenthos. Results reveal that (1) with minimal habitat disturbance on large spatial scales, imagery provides valuable, cost-effective assessment of rocky reef habitat features and community structure, (2) despite poor taxonomic resolution, image-derived data for habitat-forming taxa might be sufficient to infer richness of small sessile and mobile fauna, (3) physical collections are necessary to develop a robust record of species richness, including species-level taxonomic identifications, and to establish a baseline. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gardner, W. D.; Mishonov, A. V.; Richardson, M. J.
2018-01-01
Basin-wide sections of beam cp (proxy for particle concentration) in ocean basins collected during numerous oceanographic programs over the last four decades record variable concentrations in euphotic surface waters, very low concentrations through most of the water column, and very low to very high concentrations near the seafloor. Sections resampled at decadal intervals show that intense benthic nepheloid layers (BNLs) recur in the same general locations in these repeat sections, most often where eddy kinetic energy (EKE: cm2 s-2) is high in overlying waters. Areas beneath regions of low surface EKE consistently have weak to no BNLs. The decadal persistence of the close connection between surface and benthic EKE and presence or absence of BNLs is clear. Understanding the location and causes of intense versus weak BNLs helps in assessing scavenging of adsorption-prone elements in the deep sea and quantifying the impact of deep ocean sediment dynamics on sediment redistribution.
NASA Astrophysics Data System (ADS)
Campbell, I. C.; Resh, V. H.; Chessman, B.
2005-05-01
Bioassessment tools are being developed to assess the Ecological health of the Lower Mekong River. A multinational team of local specialists has been established working with two international mentors. This approach allows geographical homogeneity of methods, assurance of quality and capacity building. A range of potential indicators were tested in the first year of the program, with benthic and littoral invertebrates, zooplankton and benthic diatoms finally being selected for further development. The first two year's assessments indicate that the health of the Mekong is generally good, with the exception of the Mekong delta, where population density is high and agriculture is most intensive. There is little industry in the Mekong Basin, and as yet no large dams have been constructed. Surveys will be conducted on a three to five year cycle, with different regions in the basin being targeted each year. Development of appropriate metrics to quantify river health is now a priority.
Cochran, Susan A.; Gibbs, Ann E.; Logan, Joshua B.
2006-01-01
In cooperation with the U.S. National Park Service (NPS), the U.S. Geological Survey (USGS) has mapped the underwater environment in and adjacent to three parks along the Kona coast on the island of Hawai‘i. This report is the second of two produced for the NPS on the geologic resource evaluation of Pu‘ukoholā Heiau National Historic Site (PUHE) and presents benthic habitat mapping of the waters of Kawaihae Bay offshore of PUHE. See Part I (Richmond and others, 2006) for an overview of the regional geology, local volcanics, and a detailed description of coastal landforms in the park. PUHE boundaries do not officially extend into the marine environment; however, impacts downslope of any activity in the park are of concern to management. The area of Kawaihae Bay mapped for this report extends from the north edge of the U.S. Coast Guard Reservation north of Kawaihae Harbor approximately 3.5 km south to the north edge of the Mauna Kea Golf Course and Beach Resort at Waikoloa and from the shoreline to depths of approximately 40 m (130 ft), where the fore reef drops off to the sandy shelf. The waters of smaller Pelekane Bay directly offshore of the park, while not formally under NPS jurisdiction, are managed by the park under an agreement with the State. This embayment is described in greater detail because of its special resource status. PUHE lies within the Kawaihae watershed, which contributes ~75 percent of the drainage in the northern portion of the study area; the Waikoloa/Waiulaula watershed contributes ~25 percent in the southern portion of the study area. Drainages from these watersheds into the study area include Makahuna, Makeāhua, Pohaukole, Kukui, and Waikoloa/Waiulaula Gulches. The Waikoloa/Waiulaula Gulch is the only perennial stream with a year-round water flow. Only during periods of extreme rainfall will water flow in the Makeāhua and Pohaukole gulches, merge together in the park, and empty directly into Pelekane Bay. In the late 1950s the reef off of PUHE was dredged to construct Kawaihae Harbor. Coral rubble was used in the construction of causeways and a revetment wall surrounding the commercial harbor. In the late 1960s the reef near Pelekane was blasted to create a small-boat harbor adjacent to the larger commercial harbor. Damage from these activities, in addition to a change in circulation patterns, has led to problems of high turbidity in Pelekane Bay.
Analysis of Benthic Foraminiferal Size Change During the Eocene-Oligocene Transition
NASA Astrophysics Data System (ADS)
Zachary, W.; Keating-Bitonti, C.
2017-12-01
The Eocene-Oligocene transition is a significant global cooling event with the first growth of continental ice on Antarctica. In the geologic record, the size of fossils can be used to indirectly observe how organisms respond to climate change. For example, organisms tend to be larger in cooler environments as a physiological response to temperature. This major global cooling event should influence organism physiology, resulting in significant size trends observed in the fossil record. Benthic foraminifera are protists and those that grow a carbonate shell are both well-preserved and abundant in marine sediments. Here, we used the foraminiferal fossil record to study the relationship between their size and global cooling. We hypothesize that cooler temperatures across the Eocene-Oligocene boundary promoted shell size increase. To test this hypothesis, we studied benthic foraminifera from 10 deep-sea cores drilled at Ocean Drilling Program Site 744, located in the southern Indian Ocean. We washed sediment samples over a 63-micron sieve and picked foraminifera from a 125-micron sieve. We studied the benthic foraminiferal genus Cibicidoides and its size change across this cooling event. Picked specimens were imaged and we measured the diameter of their shells using "imageJ". Overall, we find that Cibicidoides shows a general trend of increasing size during this transition. In particular, both the median and maximum sizes of Cibicidoides increase from the Eocene into the Oligocene. We also analyzed C. pachyderma and C. mundulus for size trends. Although both species increase in median size across the boundary, only C. pachyderma shows a consistent trend of increasing maximum, median, and minimum shell diameter. After the Eocene-Oligocene boundary, we observe that shell diameter decreases following peak cooling and that foraminiferal sizes remain stable into the early Oligocene. Therefore, the Eocene-Oligocene cooling event appears to have strong influence on shell size.
Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: are benthic systems at risk?
This study investigated phototoxicity of TiO2 nanoparticles (nano-TiO2) to a freshwater benthic amphipod (Hyalella azteca) using 48-h and 96-h bioassays. Thorough monitoring of particle interactions with exposure media (Lake Superior water, LSW) and the surface of organisms was p...
Three sites were selected across the intertidal zone of the lower Yaquina Bay to investigate the role of benthic microalgae in benthic nutrient fluxes. Study sites were selected where microalage were present but without seagrass or mud shrimp. Sediment columns were collected th...
During the 2007 National Lakes Assessment (NLA) benthic macroinvertebrate samples were collected from the lake littoral zone. The purpose of the sampling was to assess the feasibility of a multi-metric index (MMI) to assess the condition of the littoral benthic macroinvertebrate...
We developed models to estimate the soft tissue content of benthic marine invertebrates that are prey for aquatic wildlife. Allometric regression models of tissue wet weight with shell length for 10 species of benthic invertebrates had r2 values ranging from 0.29 for hermit crabs...
This study validates the ecological relevance of estuarine habitat types to the benthic macrofaunal community and, together with previous similar studies, suggests they can serve as elements in ecological periodic tables of benthic macrofaunal usage in the bioregion. We compared...
NASA Astrophysics Data System (ADS)
Olshanetskiy, D. M.
2015-12-01
A zonal scheme for the Lower Paleogene of the northern Pacific Ocean is proposed on the basis of the stratigraphic distribution of benthic foraminifers in the lower bathyal-abyssal beds studied in boreholes in the North and South Pacific regions. This scheme includes eight subdivisions (six zones and two subzones). The boundaries of the benthic zonal subdivisions are defined by bioevents (appearance or disappearance of stratigraphically important taxa) and are linked to the zonal scales based on planktonic foraminifers and calcareous nannoplankton. It is established that most of these bioevents are recognized subglobally. Apart from the evolutionary events, changes in the deep-water benthic foraminiferal assemblages were caused by changes in the paleooceanological environment. This allowed detailed characterization of a global mass extinction of assemblages of deep-water benthic foraminifers in the region studied. It is also established that changes in the assemblages of deep-water benthic foraminifers, observed in either change in their taxonomic composition or changes in abundance and diversity, resulted from the presence of different deep-water masses in the region.
Kouadio, K N; Diomandé, D; Ouattara, A; Koné, Y J M; Gourène, G
2008-09-15
The benthic macroinvertebrates of Aby lagoon (West Africa: Ivory coast) was studied during four seasons (high dry season, high rainy season, low dry season and low rainy season, respectively) from June 2006 to March 2007. The distribution of the benthic macroinvertebrates species was recorded at 13 stations on the whole of the lagoon. A total of 62 taxa of benthic macroinvertebrates belonging to 28 families and 10 orders were listed. The molluscs and crustaceans dominate qualitatively by adding up 51 and 24%, respectively of the total number of organisms. Five taxa (Corbula trigona (20%), Pachymelania aurita (12%), Clibernhardius cooki (7%), Oligochaeta (7%) and Crassostrea gasar (6%) accounted for 52% of total abundance. Classification analysis used to perform the characterisation of the lagoon on the basis of benthic macroinvertebrates showed the existence of four main clusters in which the seasonal pattern in benthic macroinvertebrates were very similar in the four seasons. In contrast the species richness and diversity indices were significantly different. Furthermore these indices where higher in the stations closer to the sea and surrounded by mangrove trees (southern area) compared to the inland ones.
NASA Astrophysics Data System (ADS)
Werner, Petra; Köhler, Jan
2005-02-01
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7-4.5) μg/cm2 for epipsammon, 9.4 (7.4-11.9) μg/cm2 for epipelon and 6.7 (5.7-7.8) μg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 μg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 μg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton-rich lowland rivers with sandy or muddy sediments.
NASA Astrophysics Data System (ADS)
Bordiga, M.; Henderiks, J.; Tori, F.; Monechi, S.; Fenero, R.; Legarda-Lisarri, A.; Thomas, E.
2015-09-01
The biotic response of calcareous nannoplankton to environmental and climatic changes during the Eocene-Oligocene transition was investigated at a high resolution at Ocean Drilling Program (ODP) Site 1263 (Walvis Ridge, southeast Atlantic Ocean) and compared with a lower-resolution benthic foraminiferal record. During this time interval, global climate, which had been warm under high levels of atmospheric CO2 (pCO2) during the Eocene, transitioned into the cooler climate of the Oligocene, at overall lower pCO2. At Site 1263, the absolute nannofossil abundance (coccoliths per gram of sediment; N g-1) and the mean coccolith size decreased distinctly after the E-O boundary (EOB; 33.89 Ma), mainly due to a sharp decline in abundance of large-sized Reticulofenestra and Dictyococcites, occurring within a time span of ~ 47 kyr. Carbonate dissolution did not vary much across the EOB; thus, the decrease in abundance and size of nannofossils may reflect an overall decrease in their export production, which could have led to variations in the food availability for benthic foraminifers. The benthic foraminiferal assemblage data are consistent with a global decline in abundance of rectilinear species with complex apertures in the latest Eocene (~ 34.5 Ma), potentially reflecting changes in the food source, i.e., phytoplankton. This was followed by a transient increased abundance of species indicative of seasonal delivery of food to the sea floor (Epistominella spp.; ~ 33.9-33.4 Ma), with a short peak in overall food delivery at the EOB (buliminid taxa; ~ 33.8 Ma). Increased abundance of Nuttallides umbonifera (at ~ 33.3 Ma) indicates the presence of more corrosive bottom waters and possibly the combined arrival of less food at the sea floor after the second step of cooling (Step 2). The most important changes in the calcareous nannofossil and benthic communities occurred ~ 120 kyr after the EOB. There was no major change in nannofossil abundance or assemblage composition at Site 1263 after Step 2 although benthic foraminifera indicate more corrosive bottom waters during this time. During the onset of latest-Eocene-earliest-Oligocene climate change, marine phytoplankton thus showed high sensitivity to fast-changing conditions as well as to a possibly enhanced, pulsed nutrient supply and to the crossing of a climatic threshold (e.g., pCO2 decline, high-latitude cooling and changes in ocean circulation).
Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.
2016-01-01
Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be augmented further by bioturbation, bioirrigation and episodic sediment resuspension events.
NASA Astrophysics Data System (ADS)
Grebmeier, Jacqueline M.; Bluhm, Bodil A.; Cooper, Lee W.; Danielson, Seth L.; Arrigo, Kevin R.; Blanchard, Arny L.; Clarke, Janet T.; Day, Robert H.; Frey, Karen E.; Gradinger, Rolf R.; Kędra, Monika; Konar, Brenda; Kuletz, Kathy J.; Lee, Sang H.; Lovvorn, James R.; Norcross, Brenda L.; Okkonen, Stephen R.
2015-08-01
The northern Bering and Chukchi Seas are areas in the Pacific Arctic characterized by high northward advection of Pacific Ocean water, with seasonal variability in sea ice cover, water mass characteristics, and benthic processes. In this review, we evaluate the biological and environmental factors that support communities of benthic prey on the continental shelves, with a focus on four macrofaunal biomass "hotspots." For the purpose of this study, we define hotspots as macrofaunal benthic communities with high biomass that support a corresponding ecological guild of benthivorous seabird and marine mammal populations. These four benthic hotspots are regions within the influence of the St. Lawrence Island Polynya (SLIP), the Chirikov Basin between St. Lawrence Island and Bering Strait (Chirikov), north of Bering Strait in the southeast Chukchi Sea (SECS), and in the northeast Chukchi Sea (NECS). Detailed benthic macrofaunal sampling indicates that these hotspot regions have been persistent over four decades of sampling due to annual reoccurrence of seasonally consistent, moderate-to-high water column production with significant export of carbon to the underlying sediments. We also evaluate the usage of the four benthic hotspot regions by benthic prey consumers to illuminate predator-prey connectivity. In the SLIP hotspot, spectacled eiders and walruses are important winter consumers of infaunal bivalves and polychaetes, along with epibenthic gastropods and crabs. In the Chirikov hotspot, gray whales have historically been the largest summer consumers of benthic macrofauna, primarily feeding on ampeliscid amphipods in the summer, but they are also foraging further northward in the SECS and NECS hotspots. Areas of concentrated walrus foraging occur in the SLIP hotspot in winter and early spring, the NECS hotspot in summer, and the SECS hotspot in fall. Bottom up forcing by hydrography and food supply to the benthos influences persistence and composition of benthic prey that then influences the distributions of benthivorous upper trophic level populations.
Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning
Villnäs, Anna; Norkko, Joanna; Lukkari, Kaarina; Hewitt, Judi; Norkko, Alf
2012-01-01
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments. PMID:23091592
Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity
Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.
2011-01-01
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities. PMID:22125645
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.
Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O’Carroll, Jack; Savidge, Graham
2016-01-01
Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences. PMID:27560657
Interpreting benthic oxygen levels in mudrocks: A new approach
NASA Astrophysics Data System (ADS)
Wignall, Paul B.; Myers, Keith J.
1988-05-01
Quantified paleoecology and gamma-ray spectrometry have been applied in the analysis of the Kimmeridge Clay, a highly organic-rich British Jurassic mudrock. Decreasing benthic oxygen trends are reflected in decreasing species richness and dominance-diversity values. Similarly, the degree of fragmentation of the benthos reflects the benthic energy levels and covaries with benthic oxygen. The calculation of authigenic uranium values from data gathered by gamma-ray spectrometry shows enrichment in more oxygen-deficient environments. The good correlation between the independently derived paleoecological and authigenic U data indicates the importance of these techniques in environmental analysis of marine petroleum source rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannote, R.L.; Sweeney, B.W.
1985-02-28
The report summarizes the results of the first year of a long-term study of the benthic macroinvertebrate fauna of the freshwater portion of the Potomac River extending from Dam No.5 near Williamsport, Maryland downstream to Seneca Pool near Seneca, Maryland. The primary objective of the study was to evaluate long-term trends in the distribution, abundance, and biomass of benthic macroinvertebrates and identify factors controlling the benthic populations, with particular emphasis on factors associated with existing power plant effluents within the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannote, R.L.; Sweeney, B.W.
1985-02-28
The report summarizes the results of the first year of a long-term study of the benthic macroinvertebrate fauna of the freshwater portion of the Potomac River extending from Dam No. 5 near Williamsport, Maryland downstream to Seneca Pool near Seneca, Maryland. The primary objective of the study was to evaluate long-term trends in the distribution, abundance, and biomass of benthic macroinvertebrates and identify factors controlling the benthic populations, with particular emphasis on factors associated with existing power plant effluents within the study area.
Gulf Coast Deep Water Port Facilities Study. Appendix C. Eastern Gulf Hydrobiological Zones.
1973-04-01
MARINE 5IOTA C-22 1. Benthic Plants C-22 2. Plankton C;23 3. Benthic Invertebrates C-27 4. Fish C-33 5. Marine Mammals C-35 6. Marine Birds C-37 7. Rare...56 B. RESIDENT AND TRANSIENT MARINE BIOTA C-56 1. Plankton C-56 2. Benthic Invertebrates C-62 3. Fish C-62 4. Marine Mammals C-684 Artur D Little Inc...TRANSIENT MARINE BIOTA C-78 l.-Plankton C-78 .-2. Benthic Invertebrates C8 3. F ish C-81 4. Marine Mammals C-85 V. ZONAL ANALYSIS C-87 A. ZONE V
Preliminary results from a shallow water benthic grazing study
Jones, N.L.; Monismith, Stephen G.; Thompson, Janet K.
2005-01-01
Despite great improvements in our knowledge on the effects of benthic grazers on seston concentrations in water columns, the effects of different hydrodynamic conditions on grazing rates has not been formulated. This makes it difficult to assess the system-wide effect of the benthic ecosystem on phytoplankton concentrations. Furthermore, it affects our ability to predict the potential success of a benthic species, such as the invasive clams Corbicula fluminea and Potamocorbula amurensis. This paper presents the preliminary results of a control volume approach to elucidate the effect of different hydrodynamic conditions on the grazing rates of Corbicula fluminea.
Maps for the nation: The current federal mapping establishment
North, G.W.
1983-01-01
The U.S. Government annually produces an estimated 53,000 new maps and charts and distributes about 160 million copies. A large number of these maps are produced under the national mapping program, a decentralized Federal/State cooperative approach to mapping the country at standard scales. Circular A-16, issued by the Office of Management and Budget in 1953 and revised in 1967, delegates the mapping responsibilities to various federal agencies. The U.S. Department of the Interior's Geological Survey is the principal federal agency responsible for implementing the national mapping program. Other major federal map producing agencies include the Departments of Agriculture, Commerce, Defense, Housing and Urban Development, and Transportation, and the Tennessee Valley Authority. To make maps and mapping information more readily available, the National Cartographic Information Center was established in 1974 and an expanded National Map Library Depository Program in 1981. The most recent of many technological advances made under the mapping program are in the areas of digital cartography and video disc and optical disc information storage systems. Future trends and changes in the federal mapping program will involve expanded information and customer service operations, further developments in the production and use of digital cartographic data, and consideration of a Federal Mapping Agency. ?? 1983.
Explosive diversification following a benthic to pelagic shift in freshwater fishes
2013-01-01
Background Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America’s most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift. Results Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift. Conclusions A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems. PMID:24341464
Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing
2017-02-15
Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Use of a Novel Sediment Exposure to Determine the Effects of ...
Triclosan (5-chloro-2-(2,4-dichlorophenoxy) phenol) is a relatively new, commonly used antimicrobial compound found in many personal care products. Triclosan is toxic to marine organisms at the ug/l level, can photo-degrade to a dioxin, accumulate in humans, and has been found to be stable in marine sediments for over 30 years. To determine the effects of triclosan on marine benthic communities, we brought intact sediment cores into the laboratory and held them under flowing seawater conditions. A two cm layer of triclosan-spiked sediment was applied to the surface, and after a two-week exposure the meio- and macrofaunal communities were assessed for differences in composition relative to non-spiked core. The High Triclosan treatment (180 mg/kg dry weight) affected both the meio- and macro benthic communities. There were no discernable differences in the Low Triclosan treatment (14 mg/kg dry weight dry). This exposure method is effective for testing benthic community response to sediment contaminants, but improvements should be made as to the amount and method of applying the overlying sediment to prevent smothering of fragile benthic organisms. This paper describes the effects of triclosan on meio- and macro-benthic marine communities. It describes a novel system of whole benthic community exposure that is a promising method to evaluate effects on intact marine benthic communities. Triclosan concentrations greater than 180 mg/kg dry weight had a signif
1988-10-01
180 and 30* C, while water salinities vary between 33 and 37 ppt, depending primarily on seasonal rainfall patterns and discharge through local inlets...strategists are characteristically small-bodied, short-lived, and have high fecundity, efficient dispersal mechanisms , and rapid growth rates. Species... mechanisms , and slow growth rates. Recolonization of a disturbed area is thus generally initiated by r-strategists. Theoretically, r-selected species
Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Paul; Miller, Marc; Hill, Jim
1998-06-01
Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.
Coastal Benthic Boundary Layer (CBBL) Research Program
1998-09-01
of gas volume and bubble size distribution on the basis of field seismo-acoustic signature remains . Indirect seismic evidence (large scale) of gas...regime was dominated by reversing tidal currents with typical speeds of 10-cm s -1 or less. Maximum bed shear stresses remained too low to resuspend or...Waals attractive force are assumed to remain unchanged for separations less than the cut-off distance, and (2) the mechanical interparticle normal force
2003-08-29
analyzed for total volatile solids, total organic carbon, oil and grease/total petroleum hydrocarbons , grain size distribution, metals, polycyclic...TBT Tri-Butyltin TOC Total Organic Carbon TPCB Total Polychlorinated Biphenyls TPH Total Petroleum Hydrocarbons USACE U.S. Army Corps of Engineers U.S...Health PQL Practical Quantitation Limit RCRA Resource Conservation and Recovery Act SIM Selected Ion Monitoring TPH Total Petroleum Hydrocarbons tr Trace
1985-09-01
the presence of high concentrations of polychlorinated biphenyls, polynuclear aromatic hydrocarbons , and heavy metals including Cu, 69 - >- j :ij...34Measurement of the Responses of Individuals to Environmental Stress and Pollution: Studies With Bivalve Molluscs ," Philosophical Transactions Royal...Gilfillan, E.S. 1980. "The Use of Scope-for-growth Measurements in Monitoring Petroleum
Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica
NASA Astrophysics Data System (ADS)
Castendyk, Devin N.; Obryk, Maciej K.; Leidman, Sasha Z.; Gooseff, Michael; Hawes, Ian
2016-09-01
Lake Vanda is a perennially ice-covered, meromictic, endorheic lake located in the McMurdo Dry Valleys of Antarctica, and an exceptional sentinel of climate change within the region. Lake levels rose 15 m over the past 68 years in response to climate-driven variability in ice-cover sublimation, meltwater production, and annual discharge of the Onyx River, the main source of water to the lake. Evidence from a new bathymetric map and water balance model combined with annual growth laminations in benthic mats suggest that the most recent filling trend began abruptly 80 years ago, in the early 1930s. This change increased lake volume by > 50%, triggered the formation of a new, upper, thermohaline convection cell, and cooled the lower convection cell by at least 2 °C and the bottom-most waters by at > 4 °C. Additionally, the depth of the deep chlorophyll a maximum rose by > 2 m, and deep-growing benthic algal mats declined while shallow benthic mats colonized freshly inundated areas. We attribute changes in hydrology to regional variations in air flow related to the strength and position of the Amundsen Sea Low (ASL) pressure system which have increased the frequency of down-valley, föhn winds associated with surface air temperature warming in the McMurdo Dry Valleys. The ASL has also been implicated in the recent warming of the Antarctic Peninsula, and provides a common link for climate-related change on opposite sides of the continent. If this trend persists, Lake Vanda should continue to rise and cool over the next 200 years until a new equilibrium lake level is achieved. Most likely, future lake rise will lead to isothermal conditions not conducive to thermohaline convection, resulting in a drastically different physical, biogeochemical, and biological structure than observed today.
In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed
NASA Astrophysics Data System (ADS)
McGillis, Wade
2013-04-01
and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.
NASA Astrophysics Data System (ADS)
Arreguín-Rodríguez, Gabriela J.; Alegret, Laia; Thomas, Ellen
2016-03-01
We investigated the response of late Paleocene-middle Eocene (~60-37.5 Ma) benthic foraminiferal assemblages to long-term climate change and hyperthermal events including the Paleocene-Eocene Thermal Maximum (PETM) at Ocean Drilling Program (ODP) Site 865 on Allison Guyot, a seamount in the Mid-Pacific Mountains. Seamounts are isolated deep-sea environments where enhanced current systems interrupt bentho-pelagic coupling, and fossil assemblages from such settings have been little evaluated. Assemblages at Site 865 are diverse and dominated by cylindrical calcareous taxa with complex apertures, an extinct group which probably lived infaunally. Dominance of an infaunal morphogroup is unexpected in a highly oligotrophic setting, but these forms may have been shallow infaunal suspension feeders, which were ecologically successful on the current-swept seamount. The magnitude of the PETM extinction at Site 865 was similar to other sites globally, but lower diversity postextinction faunas at this location were affected by ocean acidification as well as changes in current regime, which might have led to increased nutrient supply through trophic focusing. A minor hyperthermal saw less severe effects of changes in current regime, with no evidence for carbonate dissolution. Although the relative abundance of infaunal benthic foraminifera has been used as a proxy for surface productivity through bentho-pelagic coupling, we argue that this proxy can be used only in the absence of changes in carbonate saturation and current-driven biophysical linking.
Influence of large woody debris on stream insect communities and benthic detritus
A. Dennis Lemly; Robert H. Hilderbrand
2000-01-01
We examined the extent to which benthic detritus loadings and the functional feeding group structure of stream insect communities respond to channel modifications produced by experimental addition of large woody debris (LWD, entire logs) to Stony Creek, VA. Benthic detritus loadings per sample did not change after LWD additions, but large increases in pool habitats...
Execution models for mapping programs onto distributed memory parallel computers
NASA Technical Reports Server (NTRS)
Sussman, Alan
1992-01-01
The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.
Mapping Applications Center, National Mapping Division, U.S. Geological Survey
,
1996-01-01
The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.
Lunar Geologic Mapping Program: 2008 Update
NASA Technical Reports Server (NTRS)
Gaddis, L.; Tanaka, K.; Skinner, J.; Hawke, B. R.
2008-01-01
The NASA Lunar Geologic Mapping Program is underway and a mappers handbook is in preparation. This program for systematic, global lunar geologic mapping at 1:2.5M scale incorporates digital, multi-scale data from a wide variety of sources. Many of these datasets have been tied to the new Unified Lunar Control Network 2005 [1] and are available online. This presentation summarizes the current status of this mapping program, the datasets now available, and how they might be used for mapping on the Moon.
Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data
Sheibley, Richard W.; Paulson, Anthony J.
2014-01-01
Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.
NASA Astrophysics Data System (ADS)
Sharuga, S. M.; Benfield, M. C.
2016-02-01
The Deepwater Horizon oil spill in 2010 created a need for more thorough studies of deep-sea benthic biota, especially in soft-sediment areas of the Northern Gulf of Mexico (GoM). These benthic environments are increasingly vulnerable as demand and exploitation of resources in these areas grow. A 15°, 250 m long radial transect survey design was developed for use with industrial remotely operated vehicles (ROVs) to quantify benthic megafaunal communities in the vicinity of the MC252 well. Further, a customized database system was developed to explore natural and anthropogenic factors potentially responsible for influencing benthic megafaunal characteristics in this area. Biotic and abiotic characteristics were extracted from ROV videos collected one year after the Deepwater Horizon spill at seven study sites ranging from 2-39 km away from MC252, and located at depths from 850-1500 m. Seafloor environments differed amongst the sites, with differences found to be related to location and depth. Benthic megafauna in ten taxonomic categories were evaluated in order to compare benthic community characteristics, including density and diversity. Overall, community composition was found to be primarily related to depth and, to a lesser degree, site location. Results from this study suggest that depth, location, and the abiotic environment (ex. seafloor features, including anthropogenic disturbance) play important roles in the abundances and diversity of deep-sea benthic megafauna in the Northern GoM and should be considered when conducting environmental studies. This study demonstrates the utility of industrial-based deep-sea imaging platforms as a readily accessible option for collecting valuable information on deep-sea environments. These platforms exhibit excellent potential for use in determining baseline data and evaluating ecosystem changes and/or recovery.
Sanz-Lázaro, Carlos; Belando, María Dolores; Marín-Guirao, Lázaro; Navarrete-Mier, Francisco; Marín, Arnaldo
2011-02-01
The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions. © 2010 Elsevier Ltd. All rights reserved.
Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob
2008-09-01
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.
Culp, Joseph M; Cash, Kevin J; Glozier, Nancy E; Brua, Robert B
2003-12-01
We used mesocosms to examine the impact of different concentrations of pulp mill effluent (PME) on structural and functional endpoints of a benthic assemblage in the Saint John River (NB, Canada) during 1999 and 2000. Previous studies on this effluent's effects produced conflicting results, with field surveys suggesting a pattern of mild nutrient enrichment, while laboratory toxicity tests linked effluent exposure to moderate contaminant effects. Experimental treatments included three concentrations of sulfite pulp mill effluent (0, 5, 10% v/v PME). Endpoints for the assessment included algal biomass and taxonomic composition, benthic invertebrate abundance and composition, and insect emergence. Low concentrations of PME increased periphyton biomass and caused changes in community structure within the diatom-dominated community. Pulp mill effluent addition had little effect on several structural endpoints measured for benthic invertebrates, including abundance and taxonomic richness, but significantly changed community composition. For both periphyton and benthic invertebrates, community composition endpoints were more sensitive indicators of PME exposure. Insect emergence was a highly relevant functional endpoint. When benthic and emerged insects were combined, total abundance increased with PME addition. Results from two trophic levels, which provided multiple lines of evidence, indicated that the main impact of these PME concentrations is nutrient enrichment rather than effluent toxicity. Our findings also suggest that benthic invertebrate and periphyton assemblages, algal biomass production, and insect emergence are sensitive response measures. Future studies may confirm this observation. The consideration of both functional and structural endpoints at different trophic levels can greatly improve our understanding the effects of discharges to rivers. Such an understanding could not have been obtained using standard assessment techniques and illustrates the value of mesocosms and the benthic community assemblage approach in environmental assessment.
NASA Astrophysics Data System (ADS)
Doo, Steve S.; Hamylton, Sarah; Finfer, Joshua; Byrne, Maria
2017-03-01
Large benthic foraminifera (LBFs) are a vital component of coral reef carbonate production, often overlooked due to their small size. These super-abundant calcifiers are crucial to reef calcification by generation of lagoon and beach sands. Reef-scale carbonate production by LBFs is not well understood, and seasonal fluctuations in this important process are largely unquantified. The biomass of five LBF species in their algal flat habitat was quantified in the austral winter (July 2013), spring (October 2013), and summer (February 2014) at One Tree Reef. WorldView-2 satellite images were used to characterize and create LBF habitat maps based on ground-referenced photographs of algal cover. Habitat maps and LBF biomass measurements were combined to estimate carbonate storage across the entire reef flat. Total carbonate storage of LBFs on the reef flat ranged from 270 tonnes (winter) to 380 tonnes (summer). Satellite images indicate that the habitat area used by LBFs ranged from 0.6 (winter) to 0.71 km2 (spring) of a total possible area of 0.96 km2. LBF biomass was highest in the winter when algal habitat area was lowest, but total carbonate storage was the highest in the summer, when algal habitat area was intermediate. Our data suggest that biomass measurements alone do not capture total abundance of LBF populations (carbonate storage), as the area of available habitat is variable. These results suggest LBF carbonate production studies that measure biomass in discrete locations and single time points fail to capture accurate reef-scale production by not incorporating estimates of the associated algal habitat. Reef-scale measurements in this study can be incorporated into carbonate production models to determine the role of LBFs in sedimentary landforms (lagoons, beaches, etc.). Based on previous models of entire reef metabolism, our estimates indicate that LBFs contribute approximately 3.9-5.4% of reef carbonate budgets, a previously underappreciated carbon sink.
California State Waters Map Series—Offshore of Monterey, California
Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.
2016-08-18
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Monterey map area in central California is located on the Pacific Coast, about 120 km south of San Francisco. Incorporated cities in the map area include Seaside, Monterey, Marina, Pacific Grove, Carmel-by-the-Sea, and Sand City. The local economy receives significant resources from tourism, as well as from the Federal Government. Tourist attractions include the Monterey Bay Aquarium, Cannery Row, Fisherman’s Wharf, and the many golf courses near Pebble Beach, and the area serves as a gateway to the spectacular scenery and outdoor activities along the Big Sur coast to the south. Federal facilities include the Army’s Defense Language Institute, the Naval Postgraduate School, and the Fleet Numerical Meteorology and Oceanography Center (operated by the Navy). In 1994, Fort Ord army base, located between Seaside and Marina, was closed; much of former army base land now makes up the Fort Ord National Monument, managed by the U.S. Bureau of Land Management as part of the National Landscape Conservation System. In addition, part of the old Fort Ord is now occupied by California State University, Monterey Bay.The offshore part of the map area lies entirely within the Monterey Bay National Marine Sanctuary, one of the nation’s largest marine sanctuaries. State beaches and parks within the map area include Fort Ord Dunes State Park and the Marina, Monterey, and Asilomar State Beaches, as well as Carmel River State Beach, which includes the Carmel River Lagoon and Wetland Natural Preserve. The map area also includes all or part of several State Marine Protected Areas, including the Carmel Pinnacles, Asilomar, and Lovers Point–Julia Platt State Marine Reserves, as well as the Carmel Bay, Pacific Grove Marine Gardens, Edward F. Ricketts, and Portuguese Ledge State Marine Conservation Areas.The coastal zone in the map area is characterized by two distinct physiographies. From Marina to Monterey, sandy beaches are backed by a belt of sand dunes, as much as 30 to 40 m high and as wide as 8 km. The Salinas River supplies the sand for the beaches and dunes. Nearshore sediment transport is primarily to the south, in the southern Monterey littoral cell.Along the Monterey peninsula, which lies at the north end of the rugged Santa Lucia Range, coastal relief is very different. The peninsula is characterized largely by low marine terraces that formed mostly on hard and relatively stable granitic bedrock. Carmel Beach in Carmel-by-the-Sea is the longest continuous beach in this area; bedrock points and small pocket beaches characterize most of the rest of the peninsula. The Carmel River littoral cell extends along the coast from Point Pinos to Point Lobos (just south of the map area), including Carmel Beach; sediment transport is primarily to the south.The granitic rocks that crop out so prominently along the Monterey peninsula make up part of the Salinian block, a crustal terrane that in this area lies west of the San Andreas Fault and east of the San Gregorio Fault. The strike-slip San Andreas Fault Zone, which lies just 26 km east of the map area, is the most important structure within the Pacific–North American transform plate boundary. The San Gregorio Fault, a secondary fault within the distributed plate boundary, cuts through (and is roughly aligned with) Carmel Canyon, a submarine canyon in the southwest corner of the map area that is part of the Monterey Canyon system. The San Gregorio Fault Zone is part of a fault system that is present predominantly in the offshore for about 400 km, from Point Conception in the south (where it is known as the Hosgri Fault) to Bolinas and Point Reyes in the north.The offshore part of the map area primarily consists of relatively flat continental shelf, bounded on the west by the steep flanks of Carmel Canyon. Shelf width varies from 2 to 3 km in the southern part of the map area, near the mouth of Carmel Canyon, to 14 km in Monterey Bay. Bedrock beneath the shelf is overlain in many areas by variable amounts (0 to 16 m) of upper Quaternary shelf and nearshore sediments deposited as sea level fluctuated in the late Pleistocene. “Soft-induration,” unconsolidated sediment is the dominant (about 63 percent) habitat type on the continental shelf, followed by “hard-induration” rock and boulders (about 34 percent) and “mixed-induration” substrate (about 3 percent). At water depths of about 100 to 130 m, the shelf break approximates the shoreline during the sea-level lowstand of the Last Glacial Maximum, about 21,000 years ago.Carmel Canyon and other parts of the Monterey Canyon system in the map area extend from the shelf break to water depths that reach 1,600 m. Most of the extensive incision of the shelf break and canyon flanks probably occurred during repeated Quaternary sea-level lowstands. The relatively straight floor of Carmel Canyon notably is aligned with the San Gregorio Fault Zone. Mixed hard-soft substrate is the most common (about 51 percent) habitat type in Carmel Canyon; hard bedrock and soft, unconsolidated sediment cover about 40 percent and 9 percent of canyon habitat, respectively.This part of the central California coast is exposed to large North Pacific swells from the northwest throughout the year. Wave heights range from 2 to 10 m, the larger swells occurring from October to May. During El Niño–Southern Oscillation (ENSO) events, winter storms track farther south than they do in normal (non-ENSO) years, thereby impacting the map area more frequently and with waves of larger heights.Benthic species observed in the map area are natives of the cold-temperate biogeographic zone that is called either the “Oregonian province” or the “northern California ecoregion.” This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, the eastern limb of the North Pacific subtropical gyre that flows from southern British Columbia to Baja California.Biological productivity resulting from coastal upwelling supports populations of Sooty Shearwater, Western Gull, Common Murre, Cassin’s Auklet, and many other less populous bird species. An observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of “bull kelp,” which is well adapted for high-wave-energy environments. The kelp beds are well-known habitat for the population of southern sea otters. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.
Oregon OCS seafloor mapping: Selected lease blocks relevant to renewable energy
Cochrane, Guy R.; Hemery, Lenaïg G.; Henkel, Sarah K.
2017-05-23
In 2014 the U.S. Geological Survey (USGS) and the Bureau of Ocean Energy Management (BOEM) entered into Intra-agency agreement M13PG00037 to map an area of the Oregon Outer Continental Shelf (OCS) off of Coos Bay, Oregon, under consideration for development of a floating wind energy farm. The BOEM requires seafloor mapping and site characterization studies in order to evaluate the impact of seafloor and sub-seafloor conditions on the installation, operation, and structural integrity of proposed renewable energy projects, as well as to assess the potential effects of construction and operations on archaeological resources. The mission of the USGS is to provide geologic, topographic, and hydrologic information that contributes to the wise management of the Nation's natural resources and that promotes the health, safety, and well being of the people. This information consists of maps, databases, and descriptions and analyses of the water, energy, and mineral resources, land surface, underlying geologic structure, and dynamic processes of the earth.For the Oregon OCS study, the USGS acquired multibeam echo sounder and seafloor video data surrounding the proposed development site, which is 95 km2 in area and 15 miles offshore from Coos Bay. The development site had been surveyed by Solmar Hydro Inc. in 2013 under a contract with WindFloat Pacific. The USGS subsequently produced a bathymetry digital elevation model and a backscatter intensity grid that were merged with existing data collected by the contractor. The merged grids were published along with visual observations of benthic geo-habitat from the video data in an associated USGS data release (Cochrane and others, 2015).This report includes the results of analysis of the video data conducted by Oregon State University and the geo-habitat interpretation of the multibeam echo sounder (MBES) data conducted by the USGS. MBES data was published in Cochrane and others (2015). Interpretive data associated with this publication is published in Cochrane (2017). All the data is provided as geographic information system (GIS) files that contain both Esri ArcGIS geotiffs or shapefiles. For those who do not own the full suite of Esri GIS and mapping software, the data can be read using Esri ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed August 29, 2016). Web services, which consist of standard implementations of ArcGIS representational state transfer (REST) Service and Open Geospatial Consortium (OGC) GIS web map service (WMS), also are available for all published GIS data. Web services were created using an ArcGIS service definition file, resulting in data layers that are symbolized as shown on the associated report figures. Both the ArcGIS REST Service and OGC WMS Service include all the individual GIS layers. Data layers are bundled together in a map-area web service; however, each layer can be symbolized and accessed individually after the web service is ingested into a desktop application or web map. Web services enable users to download and view data, as well as to easily add data to their own workflows, using any browser-enabled, standalone or mobile device.Though the surficial substrate is dominated by combinations of mud and sand substrate, a diverse assortment of geomorphologic features are related to geologic processes—one anticlinal ridge where bedrock is exposed, a slump and associated scarps, and pockmarks. Pockmarks are seen in the form of fields of small pockmarks, a lineation of large pockmarks with methanogenic carbonates, and areas of large pockmarks that have merged into larger variously shaped depressions. The slump appears to have originated at the pockmark lineation. Video-supervised numerical analysis of the MBES backscatter intensity data and vector ruggedness derived from the MBES bathymetry data was used to produce a substrate model called a seafloor character raster for the study area. The seafloor character raster consists of three substrate classes: soft-flat areas, hard-flat areas, and hard-rugged areas. A Coastal and Marine Ecological Classification Standard (CMECS) geoform and substrate map was also produced using depth, slope, and benthic position index classes to delineate geoform boundaries. Seven geoforms were identified in this process, including ridges, slump scars, slump deposits, basins, and pockmarks.Statistical analysis of the video data for correlations between substrate, depth, and invertebrate assemblages resulted in the identification of seven biomes: three hard-bottom biomes and four softbottom biomes. A similar analysis of vertebrate observations produces a similar set of biomes. The biome between-group dissimilarity was very high or high. Invertebrates alone represent most of the structure of the whole benthic community into different assemblages. A biotope map was generated using the seafloor character raster and the substrate and depth values of the biomes. Hard substrate biotopes were small in size and were located primarily on the ridge and in pockmarks along the pockmark lineation. The soft-bottom bitopes consisted of large contiguous areas delimited by isobaths.
Increasing the availability of national mapping products.
Roney, J.I.; Ogilvie, B.C.
1981-01-01
A discussion of the means employed by the US Geological Survey to facilitate map usage, covering aspects of project Map Accessibility Program including special rolled and folded map packaging, new market testing, parks and campgrounds program, expanded map dealer program, new booklet-type State sales index and catalog and new USGS map reference code. The USGS is seen as the producer of a tremendous nation-wide inventory of topographic and related map products available in unprecedented types, formats and scales, and as endeavouring to increase access to its products. The new USGS map reference code is appended. -J.C.Stone
Larry R. Brown; Jason T. May; Carolyn T. Hunsaker
2008-01-01
Despite their trophic importance and potential importance as bioindicators of stream condition, benthic algae have not been well studied in California. In particular there are few studies from small streams in the Sierra Nevada. The objective of this study was to determine the standing crop of chlorophyll-a and benthic algal species assemblages...
Fisheries Resource Utilization of an Estuarine Borrow Pit in Mobile Bay, Alabama
2014-07-01
sampling indicated that both holes supported impoverished benthic assemblages comprised largely of opportunistic, disturbance- adapted infauna. Species...impoverished benthic assemblages comprised largely of opportunistic, disturbance- adapted infauna. The structure of the benthic communities differed...Total % AN Total % BN Gastropod - - - - - - 1 0.3 1 0.07 Total Animals 600 - 20 - 467 - 380 - 1467 - Average. # Animals 120 - 4 - 156 - 126
Benthic meiofauna responses to five forest harvest methods
Freese Smith; Arthur V. Brown; Misty Pope; Jerry L. Michael
2001-01-01
Benthic meiofauna were collected from the pools of minute (0 order) streams in the Ouachita National Forest, Arkansas during March 21-23, 1996 to see if benthic communities responded to forest harvest methods in a similar manner as plankton communities collected two years prior. The study streams and their watersheds (2-6 ha) were located in 14-16 ha forest stands that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vannote, R.L.; Sweeney, B.W.
1985-02-28
The report summarizes the results of the first year of a long-term study of the benthic macroinvertebrate fauna of the freshwater portion of the Potomac River extending from Dam No. 5 near Williamsport, Maryland downstream to Seneca Pool near Seneca, Maryland. The primary objective of the study was to evaluate long-term trends in the distribution, abundance, and biomass of benthic macroinvertebrates and identify factors controlling the benthic populations, with particular emphasis on factors associated with existing power plant effluents within the study area.
In Situ and Ex Situ Estimates of Benthic Silica Fluxes in NGOM Shelf Sediments
NASA Astrophysics Data System (ADS)
Ebner, B. C.; Ghaisas, N. A.; Maiti, K.
2017-12-01
Biogenic silica (bSi), plays an important role in regulating primary productivity of diatoms in coastal and shelf ecosystems fed by major rivers. In the Northern Gulf of Mexico (NGOM), loading of nitrogen (N) and phosphorous (P) have increased compared to a decline in silicic acid in the Mississippi River (MR). Continued decreasing in silicic acid concentration could lead to limited diatom growth and production, therefore, it is important understand the role of benthic fluxes in providing silica to the overlying water column. The benthic flux of Si from shelf sediments can thus represent an important source of Si to be utilized by diatoms. Sediment core incubations and benthic chamber deployments were conducted at 5 sites in the Mississippi river plume with varying salinities during periods of high river discharge (May 2017), low river discharge (August 2016) and peak in hypoxia (July 2017). Preliminary data indicates large spatial and temporal variability in benthic silica fluxes ranging between 1.1 to 5.9 mmol/m2/d. This large variability in benthic silica flux is probably related to the seasonal changes in river discharge, primary production, community composition and sediment biogeochemistry in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, K.E.; Reynoldson, T.B.; Rosenberg, D.M.
1995-12-31
Many ecological risk assessments (ERAS) of lakes, rivers and streams compare measurements of benthic community structure in specific areas of contamination to similar measurements in reference or ``clean`` areas as a basis for determining impact. However, despite numerous studies documenting alterations of benthic communities as a result of stress, the success of correctly assessing the ``health`` or degradation of these communities depends on how well responses to contamination can be discriminated from responses to other environmental factors. It is important in the ERA process to adequately describe benthic communities and to determine how natural environmental factors (e.g., substrate particle sizemore » and texture, organic content, water quality, pH, seston, etc.) may be driving benthic community structure. This knowledge is particularly important when reference areas are distant from stressed areas. This presentation will provide an overview of the environmental factors that are important in structuring natural benthic communities in rivers and lakes and discuss approaches that may be useful in differentiating between natural variability and anthropogenic stress in ERA. Several case studies from the Laurentian Great Lakes and the Fraser River watershed in British Columbia will be discussed.« less
NASA Astrophysics Data System (ADS)
Stern, J.; Lisiecki, L. E.
2013-12-01
The assumption of globally synchronous benthic foraminiferal δ18O changes is central to the development of global stacks (averages) and many other types of paleoclimate studies. However, a few well-dated individual benthic δ18O records have suggested the possibility of regional differences in the timing of Termination I (e.g., Skinner and Shackleton, 2005; Waelbroeck et al., 2011). These previous studies often used single core locations to describe vast areas of the ocean, so it has remained unclear whether the observed diachroneities are truly regional in scale or merely local. Here, we bridge the gap between global benthic δ18O stacks and individual records by presenting eight regional benthic δ18O stacks from 252 cores with age models based on a total of 776 planktonic foraminiferal radiocarbon dates from 61 of those cores. The earliest termination onset (beginning of deglacial benthic δ18O decrease) occurs in the intermediate South Atlantic stack at 18.5 kyr BP, shortly after the initial deglacial melting of Northern Hemisphere ice sheets. The latest termination onset occurs in the deep Indian stack at 14.5 kyr BP, coeval with the Bølling-Allerød warming. We find synchronous termination onsets at 17.5 kyr BP in the intermediate North Atlantic, deep North Atlantic, and deep South Atlantic, contrary to Waelbroeck et al. (2011). The deglacial benthic δ18O decrease in the deep Pacific lagged that of the deep Atlantic by an average of 1000 yr, with a maximum lag of ~1700 yr during the middle of the termination. The intermediate Pacific termination onset at 16.5 kyr BP happens 1000 yr after the deep Pacific termination onset at 17.5 kyr BP. The stacks extend beyond Termination I to ~40 kyr BP, allowing us to clarify and update certain aspects of millennial-scale benthic δ18O chronostratigraphy surrounding Heinrich events 2-3 and the transition into the Last Glacial Maximum. Our radiocarbon-dated regional benthic δ18O stacks demonstrate some of the limitations of benthic δ18O correlations while providing valuable regional-scale age models and constraints on water mass property and ocean circulation changes over the last ~40 kyr.
King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.
2000-12-31
The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined toolsmore » of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.« less
New maps, new information: Coral reefs of the Florida keys
Lidz, B.H.; Reich, C.D.; Peterson, R.L.; Shinn, E.A.
2006-01-01
A highly detailed digitized map depicts 22 benthic habitats in 3140.5 km2 of the Florida Keys National Marine Sanctuary. Dominant are a seagrass/lime-mud zone (map area 27.5%) throughout Hawk Channel and seagrass/carbonate-sand (18.7%) and bare carbonate-sand (17.3%) zones on the outer shelf and in The Quicksands. A lime-mud/seagrass-covered muddy carbonate-sand zone (9.6%) abuts the keys. Hardbottom communities (13.2%) consist of bare Pleistocene coralline and oolitic limestone, coral rubble, and senile coral reefs. Smaller terrestrial (4.0%) and marine habitats, including those of live coral (patch reefs, 0.7%), account for the rest (13.7%) of the area. Derived from aerial photomosaics, the seabed dataset fits precisely when transposed onto a newly developed National Geophysical Data Center hydrographic-bathymetry map. Combined, the maps point to new information on unstudied seabed morphologies, among them an erosional nearshore rock ledge bordering the seaward side of the Florida Keys and thousands of patch-reef clusters aligned in mid-Hawk Channel. Preliminary indications are that the ledge may represent the seaward extent of the 125-ka Key Largo and Miami Limestone that form the keys, and the patch reefs colonized landward edges of two noncoralline, non-dune-ridge topographic troughs. The troughs, their substrate, and inner-shelf location along the seaward side of the Hawk Channel bedrock depression are the first of that type of nuclei to be recognized in the Florida reef record. Together, the map datasets establish the efficacy and accuracy of using aerial photographs to define in extraordinary detail the seabed features and habitats in a shallow-reef setting.
2011-01-01
Benthic species of algae and cyanobacteria (i.e., those that grow on surfaces), may provide potential advantages over planktonic species for some commercial-scale biotechnological applications. A multitude of different designs of photobioreactor (PBR) are available for growing planktonic species but to date there has been little research on PBR for benthic algae or cyanobacteria. One notable advantage of some benthic cyanobacterial species is that during their growth cycle they become positively buoyant, detach from the growth surface and form floating mats. This 'self-harvesting' capability could be advantageous in commercial PBRs as it would greatly reduce dewatering costs. In this study we compared the growth rates and efficiency of 'self-harvesting' among three species of benthic cyanobacteria; Phormidium autumnale; Phormidium murrayi and Planktothrix sp.. Phormidium autumnale produced the greatest biomass and formed cohesive mats once detached. Using this strain and an optimised MLA media, a variety of geometries of benthic PBRs (bPBRs) were trialed. The geometry and composition of growth surface had a marked effect on cyanobacterial growth. The highest biomass was achieved in a bPBR comprising of a vertical polyethylene bag with loops of silicone tubing to provide additional growth surfaces. The productivity achieved in this bPBR was a similar order of magnitude as planktonic species, with the additional advantage that towards the end of the exponential phase the bulk of the biomass detached forming a dense mat at the surface of the medium. PMID:21906375
Middle Atmosphere Program. Handbook for MAP, Volume 17
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1985-01-01
The Middle Atmosphere Program (MAP) handbook is divided into three parts. Part 1 consists of minutes of MAP steering committee meeting and MAP assembly. Part 2 consists of project and study group reports, such as: (1) Atmospheric Tides Middle Atmosphere Program (ATMAP), report of the Nov./Dec. 1981, and May 1982 observational campaigns; MAP/WINE experimenters meeting at Berlin, 1985; (3) MAP/WINE experimenters meeting at Loen, Norway, 1985; and (4) the penetration of ultraviolet solar radiation into the middle atmosphere. Part 3 consists of national reports.
Offshore Windfarm Impact on Pelagic Primary Production in the Southern North Sea
NASA Astrophysics Data System (ADS)
Slavik, Kaela; Zhang, Wenyan; Lemmen, Carsten; Wirtz, Kai
2016-04-01
As society struggles to find solutions to mitigate global warming, the demand for renewable energy technology has increased. Especially investment in offshore wind energy has proliferated in the European Union, with projections over the next 15 years estimating an over 40 fold increase in total offshore wind electricity. Though built with the goal of reducing the environmental impacts associated with traditional energy production, the long-term ecological impacts of offshore windfarm structures is not yet well understood. The consequences are of particular importance in the southern North Sea, where the expansion of offshore windfarms is focused. Our study investigates how the gradual accumulation of epifaunal biomass on submerged substrate at offshore windfarms impacts ecosystem services in the southern North Sea. Biofouling is governed predominately by the filter feeder Mytilus edulis, which, as an ecological engineer, will further alter the surrounding benthic and pelagic environment. We reconstruct the distribution of benthic filter feeders in the SNS and generate scenarios of increased potential distribution based on available information of Mytilus edulis settlement at turbines and of turbine locations. These maps are coupled through the MOSSCO (Modular Coupling System for Shelves and Coasts) to state-of-the-art and high resolution hydrodynamic and ecosystem models. We find a substantial change in pelagic primary production as a result of additional Mytilus edulis growth at offshore windfarms.
NORTH AMERICAN DATUM 1983 IMPLEMENTATION IMPACTS ON THE USGS NATIONAL MAPPING PROGRAM.
Jones, William J.; Needham, Paul E.
1985-01-01
The U. S. Geological Survey has previously experienced the impacts on the National Mapping Program that are associated with implementing a readjustment of the horizontal datum. The impacts of these past readjustments were minimal compared to those of the current readjustment. The Geological Survey currently has produced and published over 60,000 different map products. The 7. 5-minute mapping program is nearing completion with over 85 percent of the conterminous States mapped. The intermediate-scale mapping program of the conterminous United States is scheduled for completion of planimetric editions by the end of 1986. It is apparent that until digital cartographic data are available, implementation of the North American Datum 1983 will primarily consist of cartographic adjustment of existing map products.
Predicted seafloor facies of Central Santa Monica Bay, California
Dartnell, Peter; Gardner, James V.
2004-01-01
Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.
MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability
NASA Astrophysics Data System (ADS)
Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.
2005-05-01
The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.
Lecours, Vincent; Brown, Craig J; Devillers, Rodolphe; Lucieer, Vanessa L; Edinger, Evan N
2016-01-01
Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making.
The distribution and diversity of benthic macroinvertebrate fauna in Pondicherry mangroves, India
2013-01-01
Background Species distribution, abundance and diversity of mangrove benthic macroinvertebrate fauna and the relationships to environmental conditions are important parts of understanding the structure and function of mangrove ecosystems. In this study seasonal variation in the distribution of macrobenthos and related environmental parameters were explored at four mangrove stations along the Pondicherry coast of India, from September 2008 to July 2010. Multivariate statistical analyses, including cluster analysis, principal component analysis and non-multidimensional scales plot were employed to help define trophic status, water quality and benthic characteristic at the four monitoring stations. Results Among the 528 samples collected over 168 ha of mangrove forest 76 species of benthic macroinvertebrate fauna were identified. Macrofauna were mainly composed of deposit feeders, dominated numerically by molluscs and crustaceans. Statistical analyses yielded the following descriptors of benthic macroinvertebrate fauna species distribution: densities between 140–1113 ind. m-2, dominance 0.17-0.50, diversity 1.80-2.83 bits ind-1, richness 0.47-0.74 and evenness 0.45-0.72, equitability 0.38-0.77, berger parker 0.31-0.77 and fisher alpha 2.46-5.70. Increases of species diversity and abundance were recorded during the post monsoon season at station 1 and the lowest diversity was recorded at station 2 during the monsoon season. The pollution indicator organisms Cassidula nucleus, Melampus ceylonicus, Sphaerassiminea minuta were found only at the two most polluted regions, i.e. stations 3 and 4. Benthic macroinvertebrate fauna abundances were inversely related to salinity at the four stations, Based on Bray-Curtis similarity through hierarchical clustering implemented in PAST, it was possible to define three distinct benthic assemblages at the stations. Conclusions From a different multivariate statistical analysis of the different environmental parameters regarding species diversity and abundance of benthic macroinvertebrate fauna, it was found that benthic communities are highly affected by all the environmental parameters governing the distribution and diversity variation of the macrofaunal community in Pondicherry mangroves. Salinity, dissolved oxygen levels, organic matter content, sulphide concentration were the most significant parameters. PMID:23937801
NASA Astrophysics Data System (ADS)
Kopp, Dorothée; Lefebvre, Sébastien; Cachera, Marie; Villanueva, Maria Ching; Ernande, Bruno
2015-01-01
Recent theoretical considerations have highlighted the importance of the pelagic-benthic coupling in marine food webs. In continental shelf seas, it was hypothesized that the trophic network structure may change along an inshore-offshore gradient due to weakening of the pelagic-benthic coupling from coastal to offshore areas. We tested this assumption empirically using the eastern English Channel (EEC) as a case study. We sampled organisms from particulate organic matter to predatory fishes and used baseline-corrected carbon and nitrogen stable isotope ratios (δ13C and δ15N) to determine their trophic position. First, hierarchical clustering on δ13C and δ15N coupled to bootstrapping and estimates of the relative contribution of pelagic and benthic carbon sources to consumers' diet showed that, at mesoscale, the EEC food web forms a continuum of four trophic levels with trophic groups spread across a pelagic and a benthic trophic pathway. Second, based on the same methods, a discrete approach examined changes in the local food web structure across three depth strata in order to investigate the inshore-offshore gradient. It showed stronger pelagic-benthic coupling in shallow coastal areas mostly due to a reorganization of the upper consumers relative to the two trophic pathways, benthic carbon sources being available to pelagic consumers and, reciprocally, pelagic sources becoming accessible to benthic species. Third a continuous approach examined changes in the mean and variance of upper consumers' δ13C and δ15N with depth. It detected a significant decrease in δ13C variance and a significant increase in δ15N variance as depth increases. A theoretical two-source mixing model showed that an inshore-offshore decrease in the pelagic-benthic coupling was a sufficient condition to produce the δ13C variance pattern, thus supporting the conclusions of the discrete approach. These results suggest that environmental gradients such as the inshore-offshore one should be accounted for to better understand marine food webs dynamics.
Benefits Mapping and Analysis Program (BenMAP)
This area summarizes the key features of the BenMAP-CE program and links to pages that provide more details regarding the program, the basic principles of air pollution benefits analysis and a link to download the software.
Computer-composite mapping for geologists
van Driel, J.N.
1980-01-01
A computer program for overlaying maps has been tested and evaluated as a means for producing geologic derivative maps. Four maps of the Sugar House Quadrangle, Utah, were combined, using the Multi-Scale Data Analysis and Mapping Program, in a single composite map that shows the relative stability of the land surface during earthquakes. Computer-composite mapping can provide geologists with a powerful analytical tool and a flexible graphic display technique. Digitized map units can be shown singly, grouped with different units from the same map, or combined with units from other source maps to produce composite maps. The mapping program permits the user to assign various values to the map units and to specify symbology for the final map. Because of its flexible storage, easy manipulation, and capabilities of graphic output, the composite-mapping technique can readily be applied to mapping projects in sedimentary and crystalline terranes, as well as to maps showing mineral resource potential. ?? 1980 Springer-Verlag New York Inc.
Using Maps in Web Analytics to Evaluate the Impact of Web-Based Extension Programs
ERIC Educational Resources Information Center
Veregin, Howard
2015-01-01
Maps can be a valuable addition to the Web analytics toolbox for Extension programs that use the Web to disseminate information. Extension professionals use Web analytics tools to evaluate program impacts. Maps add a unique perspective through visualization and analysis of geographic patterns and their relationships to other variables. Maps can…
California State Waters Map Series—Monterey Canyon and vicinity, California
Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.
2016-06-10
IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The map area also includes Portuguese Ledge and Soquel Canyon State Marine Conservation Areas. Designated conservation and (or) recreation areas in the onshore part of the map area include Salinas River National Wildlife Refuge, Elkhorn Slough State Marine Conservation Area, Elkhorn Slough State Marine Reserve, Moss Landing Wildlife Area, Zmudowski and Salinas River State Beaches, and Marina Dunes Preserve.Monterey Bay, a geologically complex area within a tectonically active continental margin, lies between two major, converging strike-slip faults. The northwest-striking San Andreas Fault lies about 34 km east of Monterey Bay; this section of the fault ruptured in both the 1989 M6.9 Loma Prieta earthquake and the 1906 M7.8 great California earthquake. The northwest-striking San Gregorio Fault crosses Monterey Canyon west of Monterey Bay. Between these two regional faults, strain is accommodated by the northwest-striking Monterey Bay Fault Zone. Deformation associated with these major regional faults and related structures has resulted in uplift of the Santa Cruz Mountains, as well as the granitic highlands of the Monterey peninsula.Monterey Canyon begins in the nearshore area directly offshore of Moss Landing and Elkhorn Slough, and it can be traced for more than 400 km seaward, out to water depths of more than 4,000 m. Within the map area, the canyon can be traced for about 42 km to a water depth of about 1,520 m. The head of the canyon consists of three branches that begin about 150 m offshore of Moss Landing Harbor. At 500 m offshore, the canyon is already 70 m deep and 750 m wide. Large sand waves, which have heights from 1 to 3 m and wavelengths of about 50 m, are present along the channel axis in the upper 4 km of the canyon.Soquel Canyon is the most prominent tributary of Monterey Canyon within the map area. The head of Soquel Canyon is isolated from coastal watersheds and, thus, is considered inactive as a conduit for coarse sediment transport.North and south of Monterey and Soquel Canyons, the relatively flat continental shelf contains only a few rocky outcrop exposures. Bedrock is covered largely by sediment derived from the Salinas and Pajaro Rivers. North of Monterey Canyon, the broad and flat continental shelf dips gently seaward, to water depths of about 95 m. To the south, the shelf also dips slightly, to water depths of as much as 150 m along the canyon edge.In the map area, Monterey Canyon splits the Santa Cruz littoral cell (north of the canyon) and the southern Monterey littoral cell (south of the canyon). It is estimated that about 400,000 m3/yr of sand on average enters Monterey Canyon from both of these littoral cells.In the Santa Cruz littoral cell, sand generally travels east and south. Sand is supplied through sea cliff erosion, as well as from the San Lorenzo River, the Pajaro River, and several other smaller coastal watersheds. About 152,911 m3/yr of sand is dredged from the entrance channel of the Santa Cruz Small Craft Harbor north of the map area and then placed on beaches to the east (downdrift) of it. This sand feeds the beaches in the southeastern reach of the Santa Cruz littoral cell and (or) is eventually trapped and lost by Monterey Canyon.The southern Monterey Bay littoral cell in the map area consists of two subcells. From the head of Monterey Canyon to the Salinas River, littoral drift is dominantly to the north; sand entering the ocean from the Salinas River either is deposited offshore or travels north in the littoral zone, nourishing the beaches until it is transported down Monterey Canyon. From south of the Salinas River to the southern extent of the map area, coastal sediment is moved mainly to the south; dune erosion is the only significant source of sand in this subcell.
Marcus, J E; Samoilys, M A; Meeuwig, J J; Villongco, Z A D; Vincent, A C J
2007-09-01
Benthic status of 28 near-shore, artisanal, coral reef fishing grounds in the central Philippines was assessed (2000-2002) together with surveys of the seahorse, Hippocampus comes. Our measures of benthic quality and seahorse densities reveal some of the most degraded coral reefs in the world. Abiotic structure dominated the fishing grounds: 69% of the benthos comprised rubble (32%), sand/silt (28%) and dead coral (9%). Predominant biotic structure included live coral (12%) and Sargassum (11%). Rubble cover increased with increasing distance from municipal enforcement centers and coincided with substantial blast fishing in this region of the Philippines. Over 2 years, we measured a significant decrease in benthic 'heterogeneity' and a 16% increase in rubble cover. Poor benthic quality was concomitant with extremely low seahorse densities (524 fish per km(2)). Spatial management, such as marine reserves, may help to minimize habitat damage and to rebuild depleted populations of seahorses and other reef fauna.
Seasonal variation of benthic macro invertebrates from Tons River of Garhwal Himalaya Uttarakhand.
Negi, R K; Mamgain, Sheetal
2013-11-15
Present investigation was carried out to assess the seasonal variation of benthic macro-invertebrates from the Tons river, a tributary of Yamuna River in Garhwal Himalaya, Uttrakhand during December, 2007 to November, 2009. The seasonal benthic diversity was correlated with various physic-chemical parameters which documented that the macrobenthic diversity is mostly regulated by the dissolved oxygen in the water while temperature and free CO2 were found to be inversely correlated with the benthic fauna. Maximum diversity of benthos was reported at the upstream site ('H' 0.204) during the winter season while it was recorded minimum during the rainy season at all the sites. Maximum diversity is reported during the winter season at all the sites. The benthic fauna is represented by three phylum, 4 classes and 10 orders with Insecta emerging as the most dominant class. Maximum genera were reported from midstream site as it acts as ecotone between upstream and downstream.
Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems
Danovaro, Roberto; Molari, Massimiliano; Corinaldesi, Cinzia; Dell’Anno, Antonio
2016-01-01
Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes. PMID:27386507
Martz, Todd R.; Brainard, Russell E.
2012-01-01
Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of ‘warming’ and ‘acidification’ expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH. PMID:22952785
Photosynthesis as a Possible Source of Gas Bubbles in Shallow Sandy Coastal Sediments
2011-09-30
bubbles can be formed when photosynthesis by benthic microalgae causes pore water to become supersaturated with oxygen. OBJECTIVES The next...reflectivity. We also collected sediment samples from the upper few mm of sand to identify the dominant taxa of benthic microalgae present. After...Graduate School of Oceanography / University of Rhode Island (GSO/URI) to identify the benthic microalgae in the samples. Following the untimely death of
Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes
Carl, Leon M.; McGuiness, Fiona
2006-01-01
This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.
Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids.
Vamosi, Steven M; Schluter, Dolph
2002-01-01
Predation may be a significant factor in the divergence of sympatric species although its role has been largely overlooked. This study examines the consequences of predation on the fitness of a pair of lacustrine stickleback species (Gasterosteus aculeatus complex) and their F(1) hybrids. Benthic sticklebacks are found in the littoral zone of lakes associated with vegetation and bare sediments, whereas limnetic sticklebacks spend most of their lives in the pelagic zone. The cutthroat trout (Oncorhynchus clarki) is a major predator of sticklebacks and the only other fish species native to lakes containing both benthic and limnetic species. In pond experiments we found that the addition of these predators primarily impacted the survival of limnetics. By contrast, benthic survival was unaffected by trout addition. The result was that relative survival of benthics and limnetics was reversed in the presence of trout. The presence of trout had no effect on the rank order of parent species growth rates, with benthics always growing faster than limnetics. F(1) hybrids survived poorly relative to benthics and limnetics and their growth rates were intermediate regardless of treatment. The results implicate predation by trout in the divergence of the species but not through increased vulnerability of F(1) hybrids. PMID:12028775
Willacker, James J.; Von Hippel, Frank A.; Ackerly, Kerri L.; O’Hara, Todd M.
2013-01-01
Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (26 mg/kg dry wt, 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (45 mg/kg dry wt, 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels. PMID:23456641
Ecological health monitoring of the Mekong River by using benthic algae in 2003-2004
NASA Astrophysics Data System (ADS)
Kunpradid, T.
2005-05-01
The monitoring of ecological health of the Mekong River by using benthic algae was carried out from 2003 - 2004. Thirty sampling sites along the Mekong River and its tributaries were selected in Laos, Thailand, Cambodia and Veitnam. In this investigation, the distribution of some species of benthic algae in different environments revealed that there was a significant relationship in the presence of them to the water quality, and these species could be used as a potential biomonitor of water quality in the Mekong River. One hundred and eighty six species of benthic diatoms and 46 species of macroalgae were found. Some dominant species of benthic algae could be used as biomonitors to assess water quality. Hydrodictyon recticulatum and Microspora floccosa and indicated clean-moderate water quality; Audouinella cylindrica, Cladophora glomerata, Achnanthes inflate and Cymbella turgidula indicated moderate water quality; Stigeoclonium flagelliforum, Aulacoseira granulata and Cymbella tumida indicated moderate-polluted water quality and Caloglossa leprieurii, Gomphonema parvulum and Nitzschia clausii indicated polluted water quality. The ecological health assessment of the Mekong River by using the species of benthic algae as biomonitors reveled that in the upstream and tributaries revealed moderate water quality. In contrast, some sites in the lower Mekong showed moderate-polluted to polluted water quality.
DNA extraction from benthic Cyanobacteria: comparative assessment and optimization.
Gaget, V; Keulen, A; Lau, M; Monis, P; Brookes, J D
2017-01-01
Benthic Cyanobacteria produce toxic and odorous compounds similar to their planktonic counterparts, challenging the quality of drinking water supplies. The biofilm that benthic algae and other micro-organisms produce is a complex and protective matrix. Monitoring to determine the abundance and identification of Cyanobacteria, therefore, relies on molecular techniques, with the choice of DNA isolation technique critical. This study investigated which DNA extraction method is optimal for DNA recovery in order to guarantee the best DNA yield for PCR-based analysis of benthic Cyanobacteria. The conventional phenol-chloroform extraction method was compared with five commercial kits, with the addition of chemical and physical cell-lysis steps also trialled. The efficacy of the various methods was evaluated by measuring the quantity and quality of DNA by UV spectrophotometry and by quantitative PCR (qPCR) using Cyanobacteria-specific primers. The yield and quality of DNA retrieved with the commercial kits was significantly higher than that of DNA obtained with the phenol-chloroform protocol. Kits including a physical cell-lysis step, such as the MO BIO Power Soil and Biofilm kits, were the most efficient for DNA isolation from benthic Cyanobacteria. These commercial kits allow greater recovery and the elimination of dangerous chemicals for DNA extraction, making them the method of choice for the isolation of DNA from benthic mats. They also facilitate the extraction of DNA from benthic Cyanobacteria, which can help to improve the characterization of Cyanobacteria in environmental studies using qPCRs or population composition analysis using next-generation sequencing. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Manasa, M.; Saraswat, Rajeev; Nigam, Rajiv
2016-04-01
Temporal changes in benthic foraminiferal morpho-groups were suggested as an effective proxy to reconstruct past monsoon intensity from the Arabian Sea. Here, in order to test the applicability of temporal variation in morpho-groups to reconstruct past monsoon intensity from the Bay of Bengal, we have documented recent benthic foraminiferal distribution from the continental shelf region of the northwestern Bay of Bengal. Based on the external morphology, benthic foraminifera were categorized into rounded symmetrical (RSBF) and angular asymmetrical benthic foraminifera (AABF). Additionally, a few other dominant groups were also identified based on test composition (agglutinated, calcareous) and abundance (Asterorotalids and Nonions). The relative abundance of each group was compared with the ambient physico-chemical conditions, including dissolved oxygen, organic matter, salinity and temperature. We report that the RSBF are abundant in comparatively warm and well oxygenated waters of low salinity, suggesting a preference for high energy environment, whereas AABF dominate relatively cold, hypersaline deeper waters with low dissolved oxygen, indicating a low energy environment. The agglutinated foraminifera, Asterorotalids and Nonions dominate shallow water, low salinity regions, whereas the calcareous benthic foraminiferal abundance increases away from the riverine influx regions. Food availability, as estimated from organic carbon abundance in sediments, has comparatively less influence on faunal distribution in the northwestern Bay of Bengal, as compared to dissolved oxygen, temperature and salinity. We conclude that the factors associated with freshwater influx affect the distribution of benthic foraminiferal morpho-groups in the northwestern Bay of Bengal and thus it can be used to reconstruct past monsoon intensity from the Bay of Bengal.
Benthic Light Availability Improves Predictions of Riverine Primary Production
NASA Astrophysics Data System (ADS)
Kirk, L.; Cohen, M. J.
2017-12-01
Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.
NASA Astrophysics Data System (ADS)
Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon
2015-09-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.
NASA Astrophysics Data System (ADS)
Lee, J. S.; An, S. U.; Park, Y. G.; Kim, E.; Kim, D.; Kwon, J. N.; Kang, D. J.; Noh, J. H.
2016-02-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) BelcII and BelpII. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge- slope-basin system in the East Sea.
An evaluation of benthic community measures using laboratory-derived sediment effect concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, F.J.; Canfield, T.J.; Ingersoll, C.G.
1995-12-31
Sediment effect concentrations (SECs) are contaminant sediment concentrations which are frequently associated with sediment toxicity. Recently, a number of different SECs have been calculated from laboratory toxicity tests with field collected sediments using Chironomus tentans, Chironomus riparius, and Hyalella azteca. Toxicity endpoints included (depending upon species) lethality, growth and sexual maturation. The authors selected the Effect Range Median (ERM) calculated for 28-d Hyalella azteca as an SEC for evaluating six different benthic community measures as indicators of contaminated sediment. The benthic measures included: taxa richness, chironomid genera richness, percent chironomid deformity, chironomid biotic index, ratio of chironomids/oligochaetes, and oligochaete bioticmore » index. Benthic measures were obtained for 31 stations from the Great Lakes and 13 stations from Milltown Reservoir and Clark Fork River, MT. Each benthic measure was ranked from 1 to 100 and individual ranks and various combinations of ranks were plotted against the ratio of chemical concentration at the site/ERM calculated for that chemical (similar to a toxic unit approach) and the sum of the ERM ratios (sum of toxic units). Preliminary analysis indicates that, in general, benthic measures varied widely in relatively uncontaminated stations, confounding any underlying relationship that may have existed. The absence of chironomids, in areas with suitable habitat, seems to be indicative of grossly contaminated stations, but not an endpoint useful for discriminating stations with contaminant concentrations closer to the SEC. The usefulness of benthic measures as diagnostic tools for contaminated sediments and potential ways to improve these measures will be discussed.« less
NASA Astrophysics Data System (ADS)
Bonifácio, Paulo; Grémare, Antoine; Gauthier, Olivier; Romero-Ramirez, Alicia; Bichon, Sabrina; Amouroux, Jean-Michel; Labrune, Céline
2018-01-01
We achieved a long term (i.e., 1998 vs. 2010) large scale (i.e., whole Gulf of Lions) study of benthic macrofauna composition in the Gulf of Lions based on the resampling of 91 stations located along 21 inshore-offshore transects. Results show that the 3 main benthic communities identified in 1998 were still present in 2010 although their composition changed. Using only year and station of sampling we found a significant space-time interaction explaining changes in macrofaunal community composition, and, in this study, stations differ primarily in terms of depth and distance to the Rhône river mouth. Temporal changes in benthic macrofauna composition were clearly most important at shallow stations (i.e., in the Littoral Fine Sand community) than at deep ones (i.e., Terrigenous Coastal Mud community). These results are in good agreement with the current paradigm according to which climatic oscillations such as NAO (North Atlantic Oscillation) and WeMO (Western Mediterranean Oscillation) are indirectly (i.e., through changes in the frequency of occurrence and the intensity of storms) controlling benthic macrofauna composition in the Gulf of Lions. This hypothesis is further supported by a meta-analysis of changes in the average and maximal yearly abundances of the polychaete Ditrupa arietina. At last, the spatial modelling of 1998 and 2010 benthic macrofauna compositions both suggested a significant effect of Rhône River inputs on the spatial distribution of benthic macrofauna in the Gulf of Lions.
Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide
NASA Astrophysics Data System (ADS)
Lebrato, M.; Andersson, A. J.; Ries, J. B.; Aronson, R. B.; Lamare, M. D.; Koeve, W.; Oschlies, A.; Iglesias-Rodriguez, M. D.; Thatje, S.; Amsler, M.; Vos, S. C.; Jones, D. O. B.; Ruhl, H. A.; Gates, A. R.; McClintock, J. B.
2016-07-01
Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x < 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.
Allen, Y.C.; Wilson, C.A.; Roberts, H.H.; Supan, J.
2005-01-01
Sidescan sonar holds great promise as a tool to quantitatively depict the distribution and extent of benthic habitats in Louisiana's turbid estuaries. In this study, we describe an effective protocol for acoustic sampling in this environment. We also compared three methods of classification in detail: mean-based thresholding, supervised, and unsupervised techniques to classify sidescan imagery into categories of mud and shell. Classification results were compared to ground truth results using quadrat and dredge sampling. Supervised classification gave the best overall result (kappa = 75%) when compared to quadrat results. Classification accuracy was less robust when compared to all dredge samples (kappa = 21-56%), but increased greatly (90-100%) when only dredge samples taken from acoustically homogeneous areas were considered. Sidescan sonar when combined with ground truth sampling at an appropriate scale can be effectively used to establish an accurate substrate base map for both research applications and shellfish management. The sidescan imagery presented here also provides, for the first time, a detailed presentation of oyster habitat patchiness and scale in a productive oyster growing area.
Chen, Chao; Yang, Zhen; Kong, Fanxiang; Zhang, Min; Yu, Yang; Shi, Xiaoli
2016-12-01
The recruitment of overwintering benthic cyanobacteria from the sediment surface is important for the development of cyanobacterial blooms during warm spring seasons. Thus, controlling the growth of cyanobacteria at the benthic stage to inhibit their recruitment is vital to control or delay the formation of summer blooms. In this study, overwintering benthic cyanobacteria were exposed to ascending hydrogen peroxide (H 2 O 2 ) concentrations (0, 1, 5, and 20 mg/L) in a simulated overwintering environment. Photosynthetic pigments, physiochemical features, and antioxidant responses were evaluated to determine the inhibitory effects of H 2 O 2 on the growth of benthic cyanobacteria and to identify the potential mechanisms thereof. These H 2 O 2 -treated cyanobacteria were then collected through filtration and transferred to an optimum environment to evaluate their recovery capacity. The results showed that chlorophyll a and phycocyanin contents, photosynthetic yield, and esterase activity decreased significantly in H 2 O 2 treated groups compared to the control. The activities of superoxide dismutase (SOD) and catalase (CAT) in benthic cyanobacteria were inhibited after 72 h exposure to H 2 O 2 , while the malondialdehyde (MDA) contents were stimulated at the same time. These results indicate that H 2 O 2 can inhibit the growth of benthic cyanobacteria, and H 2 O 2 -induced oxidative damage might be one of the mechanisms involved. The recovery experiment showed that the impairment of benthic cyanobacteria was temporary at a low dose of 1 mg/L H 2 O 2 , but permanent damage was induced when H 2 O 2 concentrations were increased to 5 and 20 mg/L. Overall, our results highlight that H 2 O 2 is a potential cyanobacteria inhibitor and can be used to decreasing the biomass of overwintering cyanobacteria, and could further control the intensity of cyanobacteria during the growth seasons. Copyright © 2016. Published by Elsevier Ltd.
Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change
Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian
2014-01-01
Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086
A new Arctic seepage site? Preliminary evidence from benthic community
NASA Astrophysics Data System (ADS)
Caridi, Francesca; Sabbatini, Anna; Morigi, Caterina; Giulia Lucchi, Renata
2017-04-01
The Kveithola Trough is an abrupt and narrow sedimentary system located in the NW Barents Sea. The hydrographic, bio-geochemical conditions and the possible existence of gas seepage activity of the area have been investigated during the Eurofleets 2- BURSTER cruise, conducted on board the German icebreaker RV Polarstern. The aim of our work is to characterize the benthic biota and more specifically the macrofaunal community structure coupled to the study of benthic foraminiferal meiofauna. Preliminary qualitative results revealed that in the inner Kveithola Trough, the macrofaunal community is composed by abundant black worm tubes (Chaetopteridae worms and Siboglinidae-like taxa) with presence of Thyasiridae bivalve species. The occurrence of these macrofaunal taxa is usually associated to oxygen-reduced environments, hydrothermal vents and cold seeps. The living benthic foraminiferal assemblage in the same stations is characterized by the presence of typically oxygen-depleted environmental taxa including the calcareous species Nonionellina labradorica and Globobulimina spp.. Conversely, in the outer Kveithola trough, both benthic macrofauna and foraminiferal meiofauna assemblages are characterized by less opportunistic taxa with a higher biodiversity suggesting very distinct oceanographic sea bottom conditions. The organic matter richness plays a large role in the Kveithola Trough environmental setting and may bring anoxic conditions that could affect the biota of the area. In fact, the benthic community structure of this area inhabits suboxic, anoxic and organic-enriched sediments and disturbed environments, forming assemblages with low diversity and high abundances of a few tolerant and/or specialized species. This preliminary finding could be consistent with other studies examining benthic community structure around Svalbard and in particular cold seep and vents habitats where faunal characteristics are patchy, suggesting small-scale heterogeneity in the environment surrounding cold seeps. For said reasons we envisage the presence of a new Arctic seepage site having a strong local impact on the benthic system.
NASA Astrophysics Data System (ADS)
Kalanat, Behnaz; Vahidinia, Mohammad; Vaziri-Moghaddam, Hossein; Mahmudy-Gharaie, Mohamad Hosein; Kumon, Fujio
2017-10-01
In order to evaluate Oceanic Anoxic Event 2 (OAE2) at the Cenomanian-Turonian boundary and its effects on benthic foraminifera, the Taherabad stratigraphic section in the east of Kopet-Dagh basin was studied for pattern of changes in benthic foraminiferal communities. Total Organic Carbon (TOC) concentration at the Taherabad section shows that black shale was not deposited in this succession but TOC increases up to 0.68 wt% in the three intervals of Rotalipora cushmani, Whiteinella archaeocretacea and Helvetoglobotruncana helvetica Zones. Also, Total Nitrogen (TN) values were measured in our study succession. High TOC/TN ratios (up to 18) occur in the intervals of TOC enrichment. Foraminiferal assemblages, TOC, TOC/TN and Detrital Index (DI, an index for detrital input) changes in the study section allowed us to divided study section into 4 intervals. Interval A and C are associated with low abundance and diversity of benthic assemblages coeval with lack of planktic foraminifera. Benthic assemblages are strongly dominated by shallow and deep infaunal agglutinated foraminifera including Lagenammina, Saccammina, Reophax and Tritaxia. The foraminiferal composition associated with higher TOC, TOC/TN and DI suggest an influx of fresh water to the basin in the warm-wet periods, which diminished hospitable conditions for planktic foraminifera and probably enhanced land-derived organic matter and/or primary productivity. The hyposaline cap led to development of salinity-stratified water and induce bottom water oxygen depletion. By contrast, the assemblages found in the interval B and D are more diverse and contain high abundance of planktic and calcareous benthic foraminifera. Common benthic taxa in these parts are praebuliminids, lenticulinids, gavelinellids and Valvulineria. These assemblages associated with lower TOC, TOC/TN and DI indicate decreased detrital input and more normal marine condition resulted in improved ventilation of sea-floor, which is favorable for planktic and benthic taxa.
Buys, David J; Stojak, Amber R; Stiteler, William; Baker, Tyler F
2015-01-01
Benthic invertebrate communities were assessed after the December 2008 release of approximately 4.1 million m(3) coal fly ash from a disposal dredge cell at the Tennessee Valley Authority (TVA) Kingston Fossil Plant on Watts Bar Reservoir in Roane County, Tennessee, USA. Released ash filled the adjacent embayments and the main channel of the Emory River, migrating into reaches of the Emory, Clinch, and Tennessee Rivers. Dredging was completed in summer 2010, and the benthic community sampling was conducted in December 2010. This study is part of a series that supported an Ecological Risk Assessment for the Kingston site. Benthic invertebrate communities were sampled at transects spread across approximately 20 miles of river that includes both riverine and reservoirlike conditions. Community composition was assessed on a grab sample and transect basis across multiple cross-channel transects to gain an understanding of the response of the benthic community to a fly ash release of this magnitude. This assessment used invertebrate community metrics, similarity analysis, geospatial statistics, and correlations with sediment chemistry and habitat. The community composition was reflective of a reservoir system, with dominant taxa being insect larva, bivalves, and aquatic worms. Most community metric results were similar for ash-impacted areas and upstream reference areas. Variation in the benthic community was correlated more with habitat than with sediment chemistry or residual ash. Other studies have reported that a benthic community can take several years to a decade to recover from ash or ash-related constituents. Although released ash undoubtedly had some initial impacts on the benthic community in this study, the severity of these effects appears to be limited to the initial smothering of the organisms followed by a rapid response and the initial start of recovery postdredging. © 2014 SETAC.
Schneider, Susanne C; Petrin, Zlatko
2017-02-01
Natural fluctuations in flow are important for maintaining the ecological integrity of riverine ecosystems. However, the flow regime of many rivers has been modified. We assessed the impact of water chemistry, habitat and streamflow characteristics on macroinvertebrates and benthic algae, comparing 20 regulated with 20 unregulated sites. Flow regime, calculated from daily averaged discharge over the five years preceding sampling, was generally more stable at regulated sites, with higher relative discharges in winter, lower relative discharges in spring and smaller differences between upper and lower percentiles. However, no consistent differences in benthic algal or macroinvertebrate structural and functional traits occurred between regulated and unregulated sites. When regulated and unregulated sites were pooled, overall flow regime, calculated as principal components of discharge characteristics over the five years preceding sampling, affected macroinvertebrate species assemblages, but not indices used for ecosystem status assessment or functional feeding groups. This indicates that, while species identity shifted with changing flow regime, the exchanged taxa had similar feeding habits. In contrast to macroinvertebrates, overall flow regime did not affect benthic algae. Our results indicate that overall flow regime affected the species pool of macroinvertebrates from which recolonization after extreme events may occur, but not of benthic algae. When individual components of flow regime were analyzed separately, high June (i.e. three months before sampling) flow maxima were associated with low benthic algal taxon richness, presumably due to scouring. Macroinvertebrate taxon richness decreased with lower relative minimum discharges, presumably due to temporary drying of parts of the riverbed. However, recolonization after such extreme events presumably is fast. Generally, macroinvertebrate and benthic algal assemblages were more closely related to water physico-chemical than to hydrological variables. Our results suggest that macroinvertebrate and benthic algal indices commonly used for ecological status assessment are applicable also in regulated rivers. Copyright © 2016 Elsevier B.V. All rights reserved.
Microfacies analysis of foraminifera rich sedimentary rocks from the Desert Plateau, central Egypt.
NASA Astrophysics Data System (ADS)
Karnitschar, C.; Briguglio, A.; Hohenegger, J.
2012-04-01
Microfacies analysis on some samples from the Thebes Group have been carried on by means of thin sections. The study area is included in the Libyan Desert Plateau (central Egypt) at following coordinates N27° 36'30.58" E29° 44'58.34", near the biggest dune of Egypt, the Ghard Abu Muharik. Because of the round shape of the rocks and the desert patina on the surface they could easily be classified as the so called "Melonstones", which are located more southwards and mainly composed by stromatolites. On the contrary, the investigated samples show a completely different fauna and therefore have been separated from the "Melonstones". Even if shape and size are very similar and the desert patina covers all surfaces the same way the differences are impressive. To investigate the samples, two thin-sections have been prepared and analyzed at the microscope. The observed fauna is composed by: agglutinated benthic foraminifera (e.g., Dictyoconus egypticus), complex larger miliolids (e.g., Pseudolacazina cf. danatae, Fabularia sp.), alveolinids (Alveolina vredenburgi), green algae (Dasycladaceae), echinoids and corals. Because of the presence of symbionts bearing larger benthic foraminifera, which need light to feed photosymbionts, the rock was formed in a shallow water environment. With the abundant rock-building benthic foraminifera and calcareous algae the limestone shows a tendency to the packstone/wackestone facies. Based on the presence of Alveolina vredenburgi, the age of the samples can be estimate as lowermost Eocene belonging to the shallow benthic zone 5 (sensu Serra-Kiel et al., 1998). According the obtained data on stratigraphy and palaeoecology, a partial palaeoenvironmental reconstruction is possible for the Libyan Desert Plateau where outcrops are largely missing. Because of the round shape of the samples and the patina which covers them all around it can be assumed that they have been transported from longer distance. According to the geological map of the area and to the fauna observed in the sections, the source of the samples can be related to the Farafra Formation, which is characterized by white to grey alveolinid shallow water limestone. The closest outcrop belonging to this formation can be found around 50 kilometers westwards from the location where the samples were taken. Serra-Kiel J., Hottinger L., Caus E., Drobne K., Ferrà Ndez C., Jauhria.K., Less G., Pavlovec R., Pignatti J., Samsó J.M., Schaub H., Sirel E., Strougo A., Tambareau Y., Tosquella J., ZAKREVSKAYA E., 1998 - Larger Foraminiferal Biostratigraphy Of The Tethyan Paleocene And Eocene. Bull. Soc. géol. France, 169 (2): 281-299.
Cloudgene: A graphical execution platform for MapReduce programs on private and public clouds
2012-01-01
Background The MapReduce framework enables a scalable processing and analyzing of large datasets by distributing the computational load on connected computer nodes, referred to as a cluster. In Bioinformatics, MapReduce has already been adopted to various case scenarios such as mapping next generation sequencing data to a reference genome, finding SNPs from short read data or matching strings in genotype files. Nevertheless, tasks like installing and maintaining MapReduce on a cluster system, importing data into its distributed file system or executing MapReduce programs require advanced knowledge in computer science and could thus prevent scientists from usage of currently available and useful software solutions. Results Here we present Cloudgene, a freely available platform to improve the usability of MapReduce programs in Bioinformatics by providing a graphical user interface for the execution, the import and export of data and the reproducibility of workflows on in-house (private clouds) and rented clusters (public clouds). The aim of Cloudgene is to build a standardized graphical execution environment for currently available and future MapReduce programs, which can all be integrated by using its plug-in interface. Since Cloudgene can be executed on private clusters, sensitive datasets can be kept in house at all time and data transfer times are therefore minimized. Conclusions Our results show that MapReduce programs can be integrated into Cloudgene with little effort and without adding any computational overhead to existing programs. This platform gives developers the opportunity to focus on the actual implementation task and provides scientists a platform with the aim to hide the complexity of MapReduce. In addition to MapReduce programs, Cloudgene can also be used to launch predefined systems (e.g. Cloud BioLinux, RStudio) in public clouds. Currently, five different bioinformatic programs using MapReduce and two systems are integrated and have been successfully deployed. Cloudgene is freely available at http://cloudgene.uibk.ac.at. PMID:22888776
Nasa's Planetary Geologic Mapping Program: Overview
NASA Astrophysics Data System (ADS)
Williams, D. A.
2016-06-01
NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.
NASA Astrophysics Data System (ADS)
De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew
2014-06-01
The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for polychaetes, suggest that canyons play important roles in maintaining high levels of regional biodiversity in the extremely oligotrophic system of the North Pacific Subtropical Gyre. This information is of key importance to the process of MPA design, suggesting that canyon habitats be explicitly included in marine spatial planning. The low-islands of Nihoa and Maro Reef in the NWHI showed a lack of sustained input of terrestrial and macrolagae detritus, likely having an influence on the observed low macrofaunal abundances (see further discussion of ‘canyon effects’ in Section 4.3), and showing the fundamental role of coastal landscape characteristics in determining the amount and nature of allochthonous organic matter entering the system. Total and highly-mobile invertebrate megafauna abundances were two to three times higher in the submarine canyons and slopes of the MHI contrasted with the NWHI (Vetter et al., 2010), also demonstrating the role of this larger contribution of terrestrial and coastal organic enrichment in the MHI contrasted with the NWHI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, G.R.; Loar, J.M.; Ryon, M.G.
Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bearmore » Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.« less
Physical and Biological Effects on Tide Flat Sediment Stability and Strength - Phase 2
2011-09-30
forcings, such as insolation, rainfall, benthic microalgae and seagrass (Zostera japonica) abundance, these variations did not always result in...m2 in the winter to a high of >3000 shoots/m2 in late summer. (B) Is chlorophyll a content in mg/g dry sediment (a proxy for benthic microalgae ...Another area of insight regarding physical/biological interactions involves the impact of microphytobenthos (MPB) or benthic microalgae on the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, G.W.; August, R.A.; King, S.E.
1996-01-14
This progress report covers field work and laboratory analysis efforts for quantifying the environmental threat of radioactive waste released in the Arctic seas adjacent to the former Soviet Union and for studying the various transport mechanisms by which this radioactivity could effect populations of the U.S. and other countries bordering the Arctic. We obtained water, sediment, biological samples and oceanographic data from several cruises to the Kara Sea and adjacent waters and conducted detailed laboratory analyses of the samples for radionuclides and physical biological properties. In addition, we obtained water and sediment samples and conducted on site low level radionuclidemore » analysis on the Angara, Yenisey River system which drains a major part of the Siberian industrial heartland and empties into the Kara Sea. We report on radionuclide concentrations, on radionuclide transport and scrubbing by sediments, on adsorption by suspended particles, on transport by surface and benthic boundary layer currents, on the effects of benthic and demersal organisms, on studies of long term monitoring in the Arctic, and on an interlaboratory calibration for radionuclide analysis.« less
Sofonia, Jeremy J; Unsworth, Richard K F
2010-01-01
Given the potential for adverse effects of ocean dredging on marine organisms, particularly benthic primary producer communities, the management and monitoring of those activities which cause elevated turbidity and sediment loading is critical. In practice, however, this has proven challenging as the development of water quality threshold values, upon which management responses are based, are subject to a large number of physical and biological parameters that are spatially and temporally specific. As a consequence, monitoring programs to date have taken a wide range of different approaches, most focusing on measures of turbidity reported as nephelometric turbidity units (NTU). This paper presents a potential approach in the determination of water quality thresholds which utilises data gathered through the long-term deployment of in situ water instruments, but suggests a focus on photosynthetic active radiation (PAR) rather than NTU as it is more relevant biologically and inclusive of other site conditions. A simple mathematical approach to data interpretation is also presented which facilitates threshold value development, not individual values of concentrations over specific intervals, but as an equation which may be utilized in numerical modelling.
Salcedo, Diana L; Soto, Luis A; Estradas-Romero, Alejandro; Botello, Alfonso V
2017-01-30
A 3-year research program was undertaken to assess potential environmental disturbance caused by the Deepwater Horizon oil spill to the soft-bottom macrobenthic communities within Mexican waters of the northwestern Gulf of Mexico. Community properties and temporal/spatial variability were analyzed besides toxicant parameters such as hydrocarbons and trace-metals. Overall infaunal density increased, taxa proportion changed, and small-size opportunistic organisms prevailed throughout the study. Annual abundance-biomass comparison (ABC) curves revealed progressive stress scenarios from moderate to severe. Concentrations of vanadium, nickel, cobalt, PAHs and AHs increased gradually over time. However, low correlations between benthic density and biogeochemical variables were determined. Initially, sedimentary properties were the main drivers of benthic community structure; subsequently, nickel, vanadium and PAHs, indicative of anthropogenic effect, were highlighted. Interannual variability in the macroinfauna was attributed to the synergy of several environmental factors. Undoubtedly, compounds derived from fossil fuels had a significant disturbance role, but their source remains uncertain. Copyright © 2016 Elsevier Ltd. All rights reserved.
National Water Quality Laboratory - A Profile
Raese, Jon W.
2001-01-01
The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.
NASA Technical Reports Server (NTRS)
Wobber, F. J.; Martin, K. R. (Principal Investigator); Amato, R. V.; Leshendok, T.
1974-01-01
The author has identified the following significant results. The procedure for conducting a regional geological mapping program utilizing snow-enhanced ERTS-1 imagery has been summarized. While it is recognized that mapping procedures in geological programs will vary from area to area and from geologist to geologist, it is believed that the procedure tested in this project is applicable over a wide range of mapping programs. The procedure is designed to maximize the utility and value of ERTS-1 imagery and aerial photography within the initial phase of geological mapping programs. Sample products which represent interim steps in the mapping formula (e.g. the ERTS Fracture-Lineament Map) have been prepared. A full account of these procedures and products will be included within the Snow Enhancement Users Manual.
Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.
1996-04-01
The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.
Abrupt Changes in Bottom Water Benthic Foraminiferal Assemblages during Heinrich Events 1-4
NASA Astrophysics Data System (ADS)
Lazar, K.; Rashid, H.; Vermooten, M.; Mingqiu, D.
2017-12-01
The extent to which Heinrich iceberg-rafting events modify bottom water ecology resulting in changes in benthic foraminifera is poorly known. Here, we report centennial to millennial scale changes in the benthic foraminiferal assemblages from sediment core Pa96018-06 (47.75oN; 46.21oW). It was collected on the northern slope of the Flemish Pass of southern Labrador Sea and is bathed by Labrador Sea Water, one of the major components of the meridional overturning circulation of the Atlantic. Benthic foraminiferal assemblages were determined and numerous species identified. X-ray fluorescence (XRF) on the bulk sediments and iceberg-rafted detritus (IRD) in addition to oxygen isotopes on polar planktonic foraminiferal Neogloboquadrina pachyderma (sinistral) were used to identify the detrital carbonate-rich Heinrich iceberg-rafting events 1 to 4. Changes in the total numbers of Elphidium excavatum subsp. clavatum typically mirror changes in the total benthic population, yet the percentage of E. e. clavatum as part of the total sample increases through time. E. e. clavatum comprises approximately 60% of the benthic assemblage in H4, and steadily increases to 80% of the assemblage in H1 and H2. Total benthic foraminiferal numbers increase at the onset of each Heinrich event, with the two largest peaks in the entire record characterizing H2 and H3. In addition, the fine-scale feature in H1 suggests an initial decrease in the % E. e. clavatum (and total benthics) which then increased to 85% of the assemblage during the latter part of H1. Our data suggest that harsh living conditions prevailed during the initial phases of Heinrich events when the availability of meltwater and the deposition of fine-grained carbonate sediments were dominant. However, it appears that the ecology was favorable for E. e. clavatum during the latter phase of Heinrich events when the deposition of fine-grained sediments dissipated and the supply of meltwater was limited. These latter stages, especially of H2 and H3, suggest a unique and extreme environment in which E. e. clavatum flourished while many other foraminifers were unable to recover. Typical of extreme cold-water, low-salinity environments, E. e. clavatum is likely a useful benthic foraminifer for tracking extreme iceberg-rafting events as preserved in the sedimentary record.
Neogene paleoceanographic events recorded in an active-margin setting: Humboldt basin, California
McCrory, P.A.
1990-01-01
Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin. The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position. Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits. ?? 1990.