Science.gov

Sample records for bentonite pellet mixtures

  1. Hydro-mechanical behaviour of bentonite pellet mixtures

    NASA Astrophysics Data System (ADS)

    Hoffmann, C.; Alonso, E. E.; Romero, E.

    Granular mixtures made of high-density pellets of bentonite are being evaluated as an alternative buffer material for waste isolation. Ease of handling is an often-mentioned advantage. The paper described the experimental program performed to characterize the hydro-mechanical behaviour of compacted pellet’s mixtures used in the engineered barrier (EB) experiment. The material tested in the laboratory was based in the pellet’s mixtures actually used for the emplacement of the EB in situ experiment. Grain size distribution was adjusted to a maximum pellet size compatible with the specimen’s dimensions. Dry densities of statically compacted specimens varied in most of the cases in the range: 1.3-1.5 Mg/m 3. Pellets had a very high dry density, close to 2 Mg/m 3. The outstanding characteristic of these mixtures is its discontinuous porosity. Pore sizes of the compacted pellets vary around 10 nm. However the inter-pellet size of the pores is four to five orders of magnitude higher. This double porosity and the highly expansive nature of the pellets controlled all the hydraulic and mechanical properties of the mixture. Tests performed include infiltration tests using different water injection rates and mechanisms of water transfer (in liquid and vapour phases), suction controlled oedometer tests and swelling pressure tests. The interpretation of some of the tests performed required backanalysis procedures using a hydro-mechanical (HM) computer code. Material response was studied within the framework of the elastoplastic constitutive model proposed by Alonso et al. [Alonso, E.E., Gens, A., Josa, A., 1990. A constitutive model for partially saturated soils. Géotechnique 40 (3), 405-430] (Barcelona Basic Model, BBM). Parameters for the model were identified and also a set of hydraulic laws necessary to perform coupled HM analysis.

  2. Effects of calcium hydroxide and calcium chloride addition to bentonite in iron ore pelletization.

    PubMed

    Tugrul, Nurcan; Derun, Emek Moroydor; Pişkin, Mehmet

    2006-10-01

    Pyrite ash is created as waste from the roasting of pyrite ores during the production of sulphuric acid. These processes generate great amounts of pyrite ash waste that is generally land filled. This creates serious environmental pollution due to the release of acids and toxic substances. Pyrite ash waste can be utilized in the iron production industry as a blast furnace feed to process this waste and prevent environmental pollution. The essential parameters affecting the pelletization process of pyrite ash were studied using bentonite as a binder. Experiments were then carried out using bentonite and a mixture of bentonite with calcium hydroxide and calcium chloride in order to make the bentonite more effective. The metallurgical properties of pyrite ash, bentonite, calcium hydroxide, calcium chloride, a mixture of these and sintered pellets were studied using X-ray analysis. The crushing strength tests were carried out to investigate the strength of pyrite ash waste pellets. The results of these analyses showed that pyrite ash can be agglomerated to pellets and used in the iron production industry as a blast furnace feed. The crushing strength of the pellets containing calcium hydroxide and calcium chloride in addition to bentonite was better than the strength of pellets prepared using only bentonite binder. PMID:17121116

  3. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact. PMID:24397939

  4. An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture

    NASA Astrophysics Data System (ADS)

    Cho, Won-Jin; Lee, Jae-Owan; Kwon, Sangki

    2011-11-01

    The thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured to investigate the effects of dry density, water content and sand fraction on the thermal conductivity. A single expression has been proposed to describe the thermal conductivity of the compacted bentonite and the bentonite-sand mixture once their primary parameters such as dry density, water content and sand fraction are known.

  5. Modeling of cesium transport through sand-bentonite mixtures

    NASA Astrophysics Data System (ADS)

    Kraus, L.; Klika, Z.; Vopálka, D.

    2006-12-01

    The sorption and transport of Cs through mixture of Ca/Mg-bentonite and sand have been studied using five column experiments with different bentonite/sand ratio, initial Cs concentration and column height. For comparison the batch experiments with small m/V ratio and high Cs concentration were performed. The results showed that Cs removal from aqueous solution by bentonite is controlled by ion-exchange reaction between Cs and Ca/Mg initially sorbed on bentonite and that there is a consistency between the results obtained from batch equilibrium data and the results obtained from column experiments verified in the environment of PHREEQC.

  6. Evaluation of geothermal drilling fluids using a commercial bentonite and a bentonite/saponite mixture

    SciTech Connect

    Guven, N.; Carney, L.L.; Ridpath, B.E.

    1987-02-01

    High temperature properties of two clay fluids, based on commercially available bentonite and a bentonite-saponite mixture, are evaluated at the temperature range 300-600/sup 0/F under appropriate confining pressures up to 16,000 psi. Bentonite fluids exhibit an anomolous viscosity increase in the temperature range 250-400/sup 0/F. This anomolous viscosity is further enhanced by the salts and hydroxide of sodium leading to the gelation of the fluid. Salts and hydroxide of calcium at 1% concentrations are very detrimental to the viscosity, gel strength, and wall-building (filtration) properties of the fluids at all temperatures. Salts of potassium provide a good control over the high temperature gelation of the bentonite fluids but they result in high fluid losses. High and low molecular weight polymers (sodium polyacrylates), and lignite and lignosulfonates at neutral pH range are proved to be valuable mud additives for the high temperature behavior of the bentonite fluids. They maintain the pH of the fluid close to the neutral and thus inhibit the mineral reactions of the smectites in bentonites at high temperatures. These mineral reactions predominate in the alkaline conditions of the fluids in the presence of hydroxides of Na, Ca, and K. Consequently, a large portion of smectites dissolves and new silicate phases precipitate at and above 400/sup 0/F in these fluids. The fluids based on a (1:1) mixture of bentonite and saponite display a high initial viscosity (up to 250/sup 0/F) instead of the viscosity maxima between 150-400/sup 0/F of the bentonite fluids. Therefore, the addition of saponite to the bentonite fluid can provide a balanced viscosity at all the temperatures.

  7. Experimental study of bentonite-soil mixtures as anti-seepage materials of constructed wetlands.

    PubMed

    Chen, Jing; Li, Zifu; Zhao, Xin; Li, Haihan

    2011-01-01

    In this study, mixtures of different kinds of bentonite and soil were used and tested in order to find a cheap alternative to current anti-seepage materials for constructed wetlands. The anti-seepage layer of constructed wetlands was simulated in the experimental study and the permeability coefficient of the mixed materials was determined in order to evaluate the anti-seepage effect of mixtures. The main results are as follows: (i) The minimum mass ratio of bentonite to soil is 10%; (ii) Within a certain range, the more compact and higher the wet density is, then the better anti-seepage effect is (under the condition of certain moisture content). The permeability coefficient of the mixed materials exponentially increased with the increase of wet density; (iii) At the wet density of 1.83 g/cm(3), corresponding with the optimum compactness, the mixture of natural sodium bentonite produced in Wyoming, USA and soil from Cangzhou, Hebei province showed the best anti-seepage performance; (iv) The impermeability of the mixture with smaller particle sizes of bentonite was far better than that with the bigger particle sizes; (v) The hydration effect of bentonite changed the structure of the mixture materials into a special structure that is similar to that of pure bentonite. The particles of the mixture became expanded under SEM investigation and the mixture became more compact, which could have the same or similar effect as pure bentonite for anti-seepage.

  8. Review of Suction Water Content Relationship of Bentonite-Sand Mixtures Considering Temperature Effects

    NASA Astrophysics Data System (ADS)

    Rawat, Abhishek; Zhi Lang, Lin; Baille, Wiebke

    2015-04-01

    Bentonite-sand mixture is one of the candidate sealing/ buffer material for landfills, hazardous and high level radioactive waste repository. The long term satisfactory performance of bentonite sand mixture in terms of load bearing function, sealing function and buffer function is governed by hydro-mechanical response of material under elevated temperature conditions. The suction-water content relationship is one of the key parameter, which govern the thermo-hydro-mechanical behavior of compacted bentonite-sand mixture. This paper presents brief review of suction water content relationships of bentonite-sand mixture considering temperature effects. Numerous parametric models or equations have been developed for representing the soil water characteristics curve i.e. SWCC for isothermal conditions. The most frequently used equations for representing the SWCC are the van Genuchten (1980) and Fredlund and Xing (1994) SWCC equations. Various researchers (Romero et al. 2000; Villar and Lloret, 2004; Tang and Cui, 2005; Agus, 2005; Arifin, 2008) have reported the temperature effect on the water retention behavior of compacted bentonite-sand mixtures. The testing program, results and major conclusions made by above mentioned researchers were discussed in this paper. The changes in hydro-mechanical behavior due to elevated temperature are also discussed based on the suction components of soil which are influenced by temperature. As a general conclusion, total suction of the bentonite-sand mixtures is a function of mixture water content and mixture bentonite content or collectively a function of bentonite water content both at room temperature and at elevated temperature. At a constant temperature, different techniques for measuring suction results in different values of suction depending on accuracy of the sensor and calibration technique used as founded earlier by Agus (2005). The change in total suction due to change in temperature lower than 100 degree C is reversible

  9. The Effect of Sand on Strength of Mixtures of Bentonite-Sand

    NASA Astrophysics Data System (ADS)

    Pakbaz, Mohammad C.; Khayat, Navid

    The main purpose of this research is to evaluate the effect of sand on strength of compacted samples of bentonite sand mixtures. Samples of bentonite with 10,30,50,70, and 80 percent by weight of sand at standard proctor optimum water content were compacted and tested to measure confined and unconfined strength. Unconfined strength of mixtures increased with percentage of sand until 50 percent and then it decreased thereafter. On the other hand, the confined strength of mixtures tested in triaxial UU increased with percentage of sand.

  10. Time dependent strength and stiffness of PCC bottom ash-bentonite mixtures

    SciTech Connect

    Kumar, S.; Vaddu, P.

    2004-07-01

    Utilization of bottom ash from burning of pulverized coal in construction-related applications has received some attention within the last decade. Its use in geotechnical engineering applications is still very limited. However within the last few years several studies have been completed to evaluate strength, stiffiness, and durability properties of pulverized coal combustion (PCC) bottom ash mixed with various admixtures. Studies have shown that the physical properties of bottom ash obtained from burning of pulverized coal are similar to that of natural sand with particle sizes ranging from fine gravel to fine sand and low percentages of silt and clay sized particles. However unlike sand, chemical composition of bottom ash results in change of strength and stiffiness characteristics of the bottom ash-admixture mixtures with time. In this study, change in strength and stiffness characteristics of Illinois PCC bottom ash and bentonite mixtures with time are evaluated. A series of unconfined compression tests on bottom ash-bentonite mixtures at various curing ages was performed in the laboratory. Results presented show that strength and stiffness of bottom ash-bentonite mixtures changed significantly with time.

  11. An upscaling method and a numerical analysis of swelling/shrinking processes in a compacted bentonite/sand mixture

    NASA Astrophysics Data System (ADS)

    Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.

    2004-12-01

    This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright

  12. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures

    NASA Astrophysics Data System (ADS)

    Mishra, Anil Kumar; Ohtsubo, Masami; Li, Loretta Y.; Higashi, Takahiro; Park, Junboum

    2009-05-01

    Effect of the various concentrations of NaCl and CaCl2 on the four different soil-bentonite mixtures has been evaluated. The results show that the liquid limit of the mixtures decreases with an increase in the salt concentration. Liquid limit decreased significantly with an increase in CaCl2 concentration from 0 to 0.1 N. However, a further increase in the concentration did not produce any significant decrease in liquid limit. A quite opposite trend was observed for the NaCl solution. An increase in NaCl concentration from 0 to 0.1 N did not produce any major decrease in the liquid limit, but a further increase in concentration from 0.1 to 1 N decreased the liquid limit significantly. Consolidation tests were carried out on the mixtures to evaluate the effect of mineralogical composition of the bentonite on the hydraulic conductivity ( k) of the mixture in the presence of various salts concentrations. The k for any mixtures was found to be decreasing with decrease in the salt concentration. At relatively low concentration, Ca2+ had more effect on the k in comparison to the same concentration of Na+. However, at 1 N of NaCl and CaCl2 almost an equal value of k was observed. A comparison of the performance of four bentonites showed that the mixture with bentonite having highest exchangeable sodium percentage (ESP) exhibited the lowest k when permeated with de-ionized (DI) water, however, k increased with an increase in the salt concentration. Similarly, mixture with a bentonite of lower ESP exhibited a higher k with DI water but with the increase in the salt concentration alteration in the k, compared to all other mixtures, was relatively less.

  13. Physical and hydric behavior of sand-bentonite mixtures subjected to salinity and sodicity constraints

    NASA Astrophysics Data System (ADS)

    Mohammed, Benkhelifa; Moulay, Belkhodja; Youcef, Daoud; Philippe, Cambier

    2015-04-01

    Data show that 64% of arid and 97% of those hyper-arid, in world, are located in Africa and Asia. Soils in these regions, predominantly sandy, differ from those of wetlands by properties related to moisture deficiency. Organic matter is less than 1% and cation exchange capacity does not exceed the meq.100 g-1 soil. Therefore, they are vulnerable to physical, chemical and biological degradation phenomena. Algeria is among the countries most affected since 95% of the area is arid and semi-arid. The addition of clay is an ancient technic used locally in Algeria in arid and semi-arid areas to improve water reserve and resistance to wind erosion of sandy soils. The literature reports that sandy soils amended with 10% of their dry weight in bentonite, registers a yield increases ranging from 10 to 40% depending on the crop. If works of the role of clay on the physical, chemical and hydric characteristics of sandy soils are relatively abundant, the effects of this mineral on the edaphic behavior of the substrate and the crops in abiotic conditions of salinity and sodicity remain insufficiently studied. These are related to an accumulation of soluble salts in the rhizosphere. In Algeria, 10 to 15% of irrigated land are affected by salinization. In this work, we studied the physical and hydric evolution of sand-clay mixtures subjected to abiotic stress of salinity and sodicity. Indeed, it is important to understand the scientific basis of clays properties, when they are added to the sand in order to optimize the characteristics of the blends and enhance this traditional amendment technic in the context where it is practiced in Algeria. The first result shows that bentonite modifies completely the physical and hydric properties of clay-sand mixtures. In addition to its beneficial effect on the hydration properties, it allows to attenuate the stress effects of salinity and sodicity observed on the properties of the mixture and the morphological properties of a bioindicator

  14. FACTORS AFFECTING THE HYDRAULIC BARRIER PERFORMANCE OF SOIL-BENTONITE MIXTURE CUT-OFF WALL

    NASA Astrophysics Data System (ADS)

    Takai, Atsushi; Inui, Toru; Katsumi, Takeshi; Kamon, Masashi; Araki, Susumu

    Containment technique using cut-off walls is a valid method against contaminants in subsurface soil and/or groundwater. This paper states laboratory testing results on hydraulic barrier performance of Soil-Bentonite (SB), which is made by mixing bentonite with in-situ soil. Since the bentonite swelling is sensitive to chemicals, chemical compatibility is important for the hydraulic barrier performance of SB. Hydraulic conductivity tests using flexible-wall permeameter were conducted on SB specimens with various types and concentrations of chemicals in the pore water and/or in the permeant and with various bentonite powder contents. As a result, hydraulic barrier performance of SB was influenced by the chemical concentration in the pore water of original soil and bentonite powder content. In the case that SB specimens have damage parallel to the permeating direction, no significant leakage in the SB occurs by the self-sealing property of SB. In addition, the hydraulic conductivity values of SB have excellent correlation with their plastic indexes and swelling pr essures, thus these properties of SB have some possibility to be indicators for estimation of the hydraulic barrier performance of SB.

  15. Removal of lead by using Raschig rings manufactured with mixture of cement kiln dust, zeolite and bentonite.

    PubMed

    Salem, A; Afshin, H; Behsaz, H

    2012-07-15

    The present investigation is a follow-up of study on manufacturing Raschig ring for removal of lead from aqueous solution. The mixtures were formulated using cement kiln dust, zeolite, and bentonite, normally used as natural adsorbents in the industrial scale, according to mixture design algorithm and response surface method. The pastes were prepared by addition of 28.0wt.% de-ionized water, containing 0.1wt.% carboxymethyl cellulose, with mixed powders. The adsorbents were fabricated by extrusion of the pastes in Raschig ring form and calcination at 500°C after drying in oven. The effects of starting materials on the mechanical behavior of rings were studied from view point of mixture design algorithm to optimize the adsorbent composition. This method demonstrated to yield valuable information on the effects of used materials on mechanical characteristics. The study concluded that the strength, reliability and sorption capacity of ring can be simultaneously optimized by the addition of 47.5wt.% cement kiln dust, 32.5wt.% zeolite, and 20.0wt.% bentonite. In the next part of work, the sorption kinetics was investigated. The kinetic study indicated that the modified model can successfully correlate the sorption data. The equilibrium result showed the possibility of lead immobilization by fabricated rings.

  16. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  17. Physical response of backfill materials to mineralogical changes in a basalt environment. [Sand-clay mixture containing 25% bentonite

    SciTech Connect

    Couture, R.A.; Seitz, M.G.

    1983-01-01

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm/sup 3/, was determined to be 0.9 x 10/sup -18/ m/sup 2/ in liquid water at 25 and 200/sup 0/C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables.

  18. Hydro-mechanical constitutive model for unsaturated compacted bentonite-sand mixture (BSM): Laboratory tests, parameter calibrations, modifications, and applications

    NASA Astrophysics Data System (ADS)

    Priyanto, D. G.; Man, A. G.; Blatz, J. A.; Dixon, D. A.

    A bentonite-sand mixture (BSM) is one of the clay-based sealing components proposed for use in a Canadian deep geological repository (DGR) for used nuclear fuel. Numerical modelling to assess the overall design of the proposed DGR requires characterisation of the hydraulic-mechanical (H-M) of each of the components of the sealing system, including the BSM. The BSM currently under consideration is a 50/50 mixture (by dry mass) of bentonite and well-graded silica sand, compacted to a dry density of at least 1.67 Mg/m 3. This paper presents the H-M constitutive model parameters, calibrated for BSM specimens under saturated and unsaturated conditions, based on various laboratory tests. A set of parameters for an elastoplastic model for unsaturated soil, Basic Barcelona Model (BBM), have been determined to simulate the mechanical behaviour of the BSM specimen. A set of parameters for van Genuchten’s Soil-Water Characteristic Curve (SWCC) and Kozeny’s hydraulic permeability model have been determined to simulate the hydraulic behaviour of the BSM specimen. Using a finite element computer code, CODE_BRIGHT, these sets of parameters have been used to simulate H-M processes in BSM specimens during water infiltration under constant volume (CV) and constant mean stress (CMS) boundary conditions. The key features of the selected constitutive models that are different from the laboratory tests of the BSM specimen have been summarised. The functions to improve the capability of the selected constitutive models to match the laboratory test results of the BSM specimen have been proposed.

  19. Reduction kinetics of iron oxide pellets with H2 and CO mixtures

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Wang, Cong; Dong, Jie-ji; Jiao, Ke-xin; Xu, Run-sheng

    2015-07-01

    Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.

  20. Calcium and sodium bentonite for hydraulic containment applications

    SciTech Connect

    Gleason, M.H.; Daniel, D.E.; Eykholt, G.R.

    1997-05-01

    The hydraulic conductivity of calcium and sodium bentonites was investigated for sand-bentonite mixtures, a thin bentonite layer simulating a geosynthetic clay liner (GCL), and bentonite-cement mixtures simulating backfill for a vertical cutoff wall. The permeant liquids were tap water and distilled water containing 0.25 M calcium chloride. In general, the hydraulic performance of calcium bentonite was not significantly better than the performance of sodium bentonite for either the clay-amended sand or the GCL application, and was substantially worse than the performance of sodium bentonite in the bentonite-cement mixture. A drained angle of internal friction of 21{degree} was measured for calcium bentonite, compared to 10{degree} for sodium bentonite. Except for a larger drained shear strength, no advantage of calcium bentonite over sodium bentonite could be identified from the results of this study.

  1. Laboratory determination of migration of Eu(III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal.

    PubMed

    Zhou, Lang; Zhang, Huyuan; Yan, Ming; Chen, Hang; Zhang, Ming

    2013-12-01

    For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite-sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite-sand mixtures were K=2.07×10(-10)-5.23×10(-10)cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.0×10(-5)mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite-sand mixtures were in the range of 1.62×10(-12)-4.87×10(-12)m(2)/s, 1.44×10(-14)-9.41×10(-14)m(2)/s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China.

  2. Pelletizing lignite

    DOEpatents

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  3. Insight into the Consolidation Mechanism of Oxidized Pellets Made from the Mixture of Magnetite and Chromite Concentrates

    NASA Astrophysics Data System (ADS)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Zhang, Qiang; Shi, Benjing; Zhang, Feng

    2016-04-01

    To produce more competitive stainless steel products, the utilization of low-cost chromite concentrate is of great importance. In a previous study, a high-quality product pellet (CMP) for blast furnace smelting process made from a mixture of 40 wt pct chromite and 60 wt pct magnetite concentrates was manufactured by a high-pressure grinding rollers pretreatment. In this work, an insight into the consolidation mechanism of CMP is taken in comparison with the oxidized pellets (MP) made from 100 pct magnetite concentrate by adopting the scanning electron microscopy, energy-dispersive spectrometer, and X-ray diffractometer. The mineralogy of the pellets and the morphology of the preheated and roasted mineral particles are demonstrated. To gain better understanding of the consolidation mechanism of CMP, the thermodynamics of chromite-magnetite spinel system and hematite-sesquioxide corundum system in air are considered by using FactSage software. It can be found that the solid-state bonding is the dominant form in the consolidation of CMP, which mainly depends on the recrystallization of hematite, the solid solution bonding in adjacent areas of both magnetite-chromite particles and chromite-chromite particles. The latter two bonds rely on the formation of the miscible sesquioxide and spinel solid solution at the contact areas of particles, which is largely affected by the oxidizability of magnetite and chromite spinels. When more chromite concentrate is blended, the weak bonding among the chromite particles gradually becomes the dominant factor, which will lead to the decrease of the mechanical strength of fired pellets. The presence of a small quantity of siliceous liquid phase in CMP is believed to be beneficial to the hardening by accelerating the ion diffusion rate and forming slag bonds.

  4. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  5. Pelletizing of sulfide molybdenite concentrates

    NASA Astrophysics Data System (ADS)

    Palant, A. A.

    2007-04-01

    The results of a pelletizing investigation using various binding components (water, syrup, sulfite-alcohol distillery grains, and bentonite) of the flotation sulfide molybdenite concentrate (˜84% MoS2) from the Mongolian deposit are discussed. The use of syrup provides rather high-strength pellets (>3 N/pellet or >300 g/pellet) of the required size (2 3 mm) for the consumption of 1 kg binder per 100 kg concentrate. The main advantage of the use of syrup instead of bentonite is that the molybdenum cinder produced by oxidizing roasting of raw ore materials is not impoverished due to complete burning out of the syrup. This fact exerts a positive effect on the subsequent hydrometallurgical process, decreasing molybdenum losses related to dump cakes.

  6. Study of Organic and Inorganic Binders on Strength of Iron Oxide Pellets

    NASA Astrophysics Data System (ADS)

    Srivastava, Urvashi; Kawatra, S. Komar; Eisele, Timothy C.

    2013-08-01

    Bentonite is a predominant binder used in iron ore pelletization. However, the presence of a high content of silica and alumina in bentonite is considered undesirable for ironmaking operations. The objective of this study was to identify the alternatives of bentonite for iron ore pelletization. To achieve this goal, different types of organic and inorganic binders were utilized to produce iron oxide pellets. The quality of these iron oxide pellets was compared with pellets made using bentonite. All pellets were tested for physical strength at different stages of pelletization to determine their ability to survive during shipping and handling. The results show that organic binders such as lactose monohydrate, hemicellulose, and sodium lignosulfonate can provide sufficient strength to indurated pellets.

  7. Thermal - Hydraulic Behavior of Unsaturated Bentonite and Sand-Bentonite Material as Seal for Nuclear Waste Repository: Numerical Simulation of Column Experiments

    NASA Astrophysics Data System (ADS)

    Ballarini, E.; Graupner, B.; Bauer, S.

    2015-12-01

    For deep geological repositories of high-level radioactive waste (HLRW), bentonite and sand bentonite mixtures are investigated as buffer materials to form a a sealing layer. This sealing layer surrounds the canisters and experiences an initial drying due to the heat produced by HLRW and a successive re-saturation with fluid from the host rock. These complex thermal, hydraulic and mechanical processes interact and were investigated in laboratory column experiments using MX-80 clay pellets as well as a mixture of 35% sand and 65% bentonite. The aim of this study is to both understand the individual processes taking place in the buffer materials and to identify the key physical parameters that determine the material behavior under heating and hydrating conditions. For this end, detailed and process-oriented numerical modelling was applied to the experiments, simulating heat transport, multiphase flow and mechanical effects from swelling. For both columns, the same set of parameters was assigned to the experimental set-up (i.e. insulation, heater and hydration system), while the parameters of the buffer material were adapted during model calibration. A good fit between model results and data was achieved for temperature, relative humidity, water intake and swelling pressure, thus explaining the material behavior. The key variables identified by the model are the permeability and relative permeability, the water retention curve and the thermal conductivity of the buffer material. The different hydraulic and thermal behavior of the two buffer materials observed in the laboratory observations was well reproduced by the numerical model.

  8. Enhanced shear strength of sodium bentonite using frictional additives

    SciTech Connect

    Schmitt, K.E.; Bowders, J.J.; Gilbert, R.B.; Daniel, D.E.

    1997-12-31

    One of the most important obstacles to using geosynthetic clay liners (GCLs) in landfill cover systems is the low shear strength provided by the bentonitic portion of the GCL. In this study, the authors propose that granular, frictional materials might be added to the bentonite to form an admixture that would have greater shear strength than the bentonite alone while still raining low hydraulic conductivity. Bentonite was mixed with two separate granular additives, expanded shale and recycled to form mixtures consisting of 20-70% bentonite by weight. In direct shear tests at normal stresses of 34.5-103.5 kPa, effective friction angles were measured as 45{degrees} for the expanded 36{degrees} for the recycled glass, and 7{degrees} for the hydrated granular bentonite. The strength of the expanded shale mixtures increased nearly linearly as the percentage shale in the mixture increased, to 44{degrees} for a bentonite mixture with 80% shale. The addition of recycled glass showed little effect on the shear strength of the mixtures of glass and bentonite. Hydraulic conductivity measurements for both types of mixtures indicated a linear increase with log(k) as the amount of granular additive increased. For applications involving geosynthetic clay liners for cover systems, a mixture of 40% expanded shale and 60% bentonite is recommended, although further testing must be done. The 40/60 mixture satisfies the hydraulic equivalency requirement, with k = 5.1X10{sup -9} cm/sec, while increasing the shear strength parameters of the bentonitic mixture to {phi}{prime} = 17{degrees} and c{prime} = 0.

  9. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    NASA Astrophysics Data System (ADS)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  10. The Effects of Bentonite on the Physic Chemical Characteristics of Sandy Soils in Algeria

    NASA Astrophysics Data System (ADS)

    Reguieg Yssaad, Houcine; Belkhodja, Moulay

    In the objective to rehabilitate the degradation soils and improve the agricultural product, especially cereals and leguminous plants, in the sandy soils countries, we take an interest in the use of bentonite to ameliorate the physical and chemicals properties of these soils. To value the ecological advantage of this clay in these countries, it is proposed a study of increasing amount effect of bentonite on the physical and chemical characteristics on sandy soils. Results show that the texture of mixture tends from sandy soil under 2.5% of bentonite added to sandy silt soil under 7, 10 and 15% of bentonite. The EC increases with the amount bentonite mixture. pH does not fluctuate from one mixture to the another and tends to the alkalinity of soil; Total CaCO3 raises when the bentonite is added in the mixture but active CaCO3 decreases. The high bentonite amounts (10 and 15%) showed no effect on the total phosphorus. The mixture bentonite at 15% reduces the organic carbon and organic matter, whereas total nitrogen falls down when this mixture is enriched with bentonite. Na+ and Ca++ become higher when bentonite increases its amount; K+ reduces in all treatments then this reduction affects Mg++ only under high mixture bentonite (15%).

  11. Bentonite borehole plug flow testing with five water types

    SciTech Connect

    Gaudette, M.V.; Daemen, J.J.K.

    1988-04-01

    The hydraulic conductivity has been determined of plugs constructed with commercial precompressed bentonite pellets. Bentonite has been hydrated and tested with waters of five different chemical compositions, including one groundwater (Ogallala aquifer, Texas). The groundwater contained a significant amount of solids: waters prepared in the laboratory did not. Prepared waters used for testing included distilled water, a high (1000 ppM) and a low (45 ppM) calcium solution, and a 39 ppM sodium water. Uncompacted plugs were constructed by dropping bentonite tablets into waterfilled cylinders, or by mixing powdered bentonite with preselected water volumes in order to obtain controlled initial water contents. The hydraulic conductivity of all plugs tested with all waters would result in a classification of practically impervious, by conventional soil mechanics standards. Variations of several orders of magnitude of the hydraulic conductivity are observed.

  12. Sealing performance of bentonite and bentonite/crushed rock borehole plugs

    SciTech Connect

    Ouyang, S.; Daemen, J.J.K.

    1992-07-01

    This study includes a systematic investigation of the sealing performance of bentonite and bentonite/crushed rock plugs. American Colloid C/S granular bentonite and crushed Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that a composition to yield a permeability lower than 5 {times} 10{sup {minus}8} cm/s would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no significant effect on the sealing performance within the test range from room temperature to 600{degree}C. Piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for samples with a bentonite content of 25 and 35%, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for plug design. A permeability model is developed for the prediction of permeability in clays, especially in view of the difficulties in obtaining this property experimentally. A piping model is derived based on plastic flow theory. This piping model permits the estimation of critical hydraulic gradients at which flow of bentonite takes place. The model can also be used to define the maximum allowable pore diameter of a protective filter layer.

  13. Owl Pellets.

    ERIC Educational Resources Information Center

    Thompson, Craig D.

    1987-01-01

    Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…

  14. Pellet Puzzlers.

    ERIC Educational Resources Information Center

    Hoots, R. A.

    1992-01-01

    Presents information on owl's taxonomy, characteristics, and influences on man. Describes owl pellets, which are digestive discards, and explains how they can be used to determine the owl's diet as a science activity. (PR)

  15. Bentonite, Bandaids, and Borborygmi

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.; Ferrell, Ray E.

    2010-01-01

    The practice of eating clay for gastrointestinal ailments and applying clay topically as bandaids for skin infections is as old as mankind. Bentonites in particular have been used in traditional medicines, where their function has been established empirically. With modern techniques for nanoscale investigations, we are now exploring the interactions of clay minerals and human pathogens to learn the lessons that Mother Nature has used for healing. The vast surface area and chemical variability of hydrothermally altered bentonites may provide a natural pharmacy of antibacterial agents. PMID:20607126

  16. Bentonite, Bandaids, and Borborygmi.

    PubMed

    Williams, Lynda B; Haydel, Shelley E; Ferrell, Ray E

    2009-04-01

    The practice of eating clay for gastrointestinal ailments and applying clay topically as bandaids for skin infections is as old as mankind. Bentonites in particular have been used in traditional medicines, where their function has been established empirically. With modern techniques for nanoscale investigations, we are now exploring the interactions of clay minerals and human pathogens to learn the lessons that Mother Nature has used for healing. The vast surface area and chemical variability of hydrothermally altered bentonites may provide a natural pharmacy of antibacterial agents.

  17. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor.

  18. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CH4 and CH4/CO2 Mixtures: Implications for CO2-Enhanced Gas Production

    NASA Astrophysics Data System (ADS)

    Loring, J.; Thompson, C.; Ilton, E. S.; McGrail, B. P.; Schaef, T.

    2014-12-01

    Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2 -enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of a Na-saturated montmorillonite (Na-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane and mixtures of methane and carbon dioxide were investigated usingCH4 IR spectroscopic titrations andCH4 XRD. The goals were to (1) determine if the hydration/expansion behavior of the clay in supercritical methane is different than in supercritical CO2, (2) determine if methane intercalates the clay, and (3) probe the effects of increasing CO2 concentrations. IR spectra were collected as Na-SWy-2 was titrated with water under several fluid exposures: pure methane, 25, 50, and 75 mole% CO2 in methane, and pure CO2. ComplementaryCH4 XRD experiments were conducted in the same fluids at discrete dissolved water concentrations to measure the d001 values of the clay and thus its volume change on hydration and CH4 and/or CO2 intercalation. In pure methane, no direct evidence of CH4 intercalation was detected in CH bending or stretching regions of the IR spectra. Similarly, in situ XRD indicated the montmorillonite structure was stable in the presence of CH4 and no measurable changes to the basal spacing were observed. However, under low water conditions where the montmorillonite structure was partially expanded (~sub 1W), the IR data indicated a rapid intercalation of CO2 into the interlayer, even with fluid mixtures containing the

  19. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CH4 and CH4/CO2 Mixtures: Implications for CO2-Enhanced Gas Production

    NASA Astrophysics Data System (ADS)

    Loring, J.

    2015-12-01

    Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2-enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of Na-, Cs-, and NH4+-saturated montmorillonite (Na-, Cs-, and NH4-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane, carbon dioxide, and CO2/CH4 mixtures (3 and 25 mole% CO2) were investigated using in situ IR spectroscopic titrations, in situ XRD, in situ MAS-NMR, and ab initio electronic structure calculations. The overarching goal was to better understand the hydration/expansion behavior of Na-SWy-2 in CO2/CH4 fluid mixtures by comparison to Cs-, and NH4+-saturated clays. Specific aims were to (1) determine if CH4 intercalates the clays, (2) probe the effects of increasing dissolved CO2 and H2O concentrations, and (3) understand the role of cation solvation by H2O and/or CO2. In pure CH4, no evidence of CH4 intercalation was detected by IR for any of the clays. Similarly, no measurable changes to the basal spacing were observed by XRD in the presence of pure CH4. However, when dry Cs- and NH4-SWy-2 were exposed to dry fluids containing CO2, IR showed maximum CO2 penetrated the interlayer, XRD indicated the clays expanded, and NMR showed evidence for cation solvation by CO2, in line with theoretical predictions. IR titration of these clays with water showed sorbed H2O concentrations decreased with increasing dissolved CO2, suggesting competition for interlayer residency by CO2 and H2O. For Na-SWy-2, on the other

  20. Force interactions between magnetite, silica, and bentonite studied with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dobryden, I.; Potapova, E.; Holmgren, A.; Weber, H.; Hedlund, J.; Almqvist, N.

    2015-04-01

    Iron ore pellets consist of variety of mineral particles and are an important refined product used in steel manufacturing. Production of high-quality pellets requires good understanding of interactions between different constituents, such as magnetite, gangue residues, bentonite, and additives. Much research has been reported on magnetite, silica, and bentonite surface properties and their effect on pellet strength but more scant with a focus on a fundamental particle-particle interaction. To probe such particle interaction, atomic force microscopy (AFM) using colloidal probe technique has proven to be a suitable tool. In this work, the measurements were performed between magnetite-magnetite, bentonite-magnetite, silica-bentonite, and silica-magnetite particles in 1 mM CaCl2 solution at various pH values. The interaction character, i.e., repulsion or attraction, was determined by measuring and analyzing AFM force curves. The observed quantitative changes in interaction forces were in good agreement with the measured zeta-potentials for the particles at the same experimental conditions. Particle aggregation was studied by measuring the adhesion force. Absolute values of adhesion forces for different systems could not be compared due to the difference in particle size and contact geometry. Therefore, the relative change of adhesion force between pH 6 and 10 was used for comparison. The adhesion force decreased for the magnetite-magnetite and bentonite-silica systems and slightly increased for the magnetite-bentonite system at pH 10 as compared to pH 6, whereas a pronounced decrease in adhesion force was observed in the magnetite-silica system. Thus, the presence of silica particles on the magnetite surface could have a negative impact on the interaction between magnetite and bentonite in balling due to the reduction of the adhesion force.

  1. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    SciTech Connect

    Butcher, B.M.; Novak, C.F. ); Jercinovic, M. )

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

  2. Oxidizing Roasting Performances of Coke Fines Bearing Brazilian Specularite Pellets

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Zhu, Deqing

    2016-06-01

    Oxidized pellets, consisting of Brazilian specularite fines and coke fines, were prepared by disc pelletizer using bentonite as binder. The roasting process of pellets includes preheating stage and firing stage. The compressive strength of preheated pellets and fired pellets reached the peak value at 1.5% coke fines dosage. During the initial stage of preheating, some original Fe2O3 was reduced to Fe3O4 because of partial reduction atmosphere in pellet. During the later stage of preheating and firing stage, coke fines were burnt out, and the secondary Fe2O3 (new generation Fe2O3) was generated due to the re-oxidization of Fe3O4, which improved the recrystallization of Fe2O3. Compared with the fired pellets without adding coke fines, fired pellets with 1.5% coke fines exhibited the comparable RSI (reduction swelling index) and RDI+3.15 mm (reduction degradation index), and slightly lower RI (reducibility index).

  3. Pelletization process of postproduction plant waste

    NASA Astrophysics Data System (ADS)

    Obidziński, S.

    2012-07-01

    The results of investigations on the influence of material, process, and construction parameters on the densification process and density of pellets received from different mixtures of tobacco and fine-grained waste of lemon balm are presented. The conducted research makes it possible to conclude that postproduction waste eg tobacco and lemon balm wastes can be successfully pelletized and used as an ecological, solid fuels.

  4. 21 CFR 184.1155 - Bentonite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bentonite. 184.1155 Section 184.1155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... deposits of bentonite range in color from white to gray, yellow, green, or blue. Bentonite's fine...

  5. In vitro and in vivo evaluation of floating riboflavin pellets developed using the melt pelletization process.

    PubMed

    Hamdani, J; Goole, J; Moës, A J; Amighi, K

    2006-10-12

    Floating pellets were prepared using the melt pelletization process in a Mi-Pro high shear mixer (Pro-C-epT, Belgium). Formulations were based on a mixture of Compritol and Precirol as meltable binders and on the use of sodium bicarbonate and tartaric acid as gas-generating agents. Good floating abilities were obtained by using the gas-generating agents in both the inner matrix and the outer coating layer of the pellets. In vitro evaluation of floating capability was performed both by using the resultant weight apparatus and by counting floating pellets at the surface of beakers containing 0.1N HCl solution, in vivo evaluation of floating pellets capabilities was also performed. Riboflavin-containing floating pellets (FRF) were administered orally to nine healthy volunteers versus non-floating pellets (NFRF). Volunteers were divided in two groups, fasted group (n=4) 729 kcal and fed group (n=5) 1634 kcal as the total calorie intake on the testing day. An increase of urinary excretion of riboflavin was observed when the volunteers were dosed with the floating pellets, especially after feeding. As riboflavin has a narrow window of absorption in the upper part of small intestine, this phenomenon could be attributable to the gastric retention of floating pellets. PMID:16815656

  6. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  7. Development of a pelleted waste form for high-level alumina wastes

    SciTech Connect

    Kirkbride, R.A.

    1980-09-01

    A formulation to pelletize simulated high-level ICPP alumina waste calcine was developed. The pellets are formed on a 41-cm-diameter disc pelletizer using 5% bentonite, 2% metakaolin, and 5 wt % calcium hydroxide as a solid binder and a solution of 7M phosphoric acid and 4M nitric acid as a liquid binder. After drying and heat treatment at 800/sup 0/C for 2 hours, the average crush strength of the pellets is 3.9 MPa and the pellets have a leach resistance of 10/sup -3/ g/cm/sup 2//day, based on Soxhlet leaching for 48 h at 95/sup 0/C with distilled water.

  8. Tabletting behaviour of pellets of a series of porosities--a comparisonbetween pellets of two different compositions.

    PubMed

    Nicklasson, F; Johansson, B; Alderborn, G

    1999-04-01

    The tabletting behaviour of pellets prepared from a 4:1 mixture of dicalcium phosphate dihydrate (DCP) and microcrystalline cellulose (MCC) was studied and compared with the tabletting behaviour of pellets made solely from microcrystalline cellulose (results from an earlier study by Johansson et al.). A series of pellets with porosities in the range 26-55% were prepared and tabletted at applied pressures of 25-200 MPa. Tablets were also formed from lubricated pellets. The degree of compression during compaction was calculated, and the porosity and tensile strength of the tablets and their permeability to air flow were determined. The porosity of the pellets was found to significantly affect the tabletting behaviour of the DCP/MCC pellets. However, the relationship between pellet porosity and tablet data for the DCP/MCC pellets was different from that for the MCC pellets. The DCP/MCC pellets were generally less prone to a reduction in volume during tabletting, and the pore structure of the DCP/MCC tablets was more closed. It was concluded that the DCP/MCC pellets were more rigid and underwent a different mode of deformation during tabletting than the MCC pellets. This mode of deformation was characterised by a more limited bulk deformation and a more extensive surface deformation at the pellet surfaces. The DCP/MCC pellets tended to give tablets of a lower mechanical strength. They were also less sensitive to lubrication in terms of their compactability, which may be explained either by less surface coverage by the lubricant before compression or rupture of the lubricant film during compression caused by the more extensive surface deformation of DCP/MCC pellets.

  9. Ceramic fuel pellets for isotopic heat sources

    SciTech Connect

    Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

    1980-01-01

    The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

  10. Fabrication of high exposure nuclear fuel pellets

    DOEpatents

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  11. Deuterium pellet injector gun design

    SciTech Connect

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging.

  12. Experimental studies of the interactions between anaerobically corroding iron and bentonite

    NASA Astrophysics Data System (ADS)

    Carlson, Liisa; Karnland, Ola; Oversby, Virginia M.; Rance, Andy P.; Smart, Nick R.; Snellman, Margit; Vähänen, Marjut; Werme, Lars O.

    rates were slightly higher in the presence of bentonite. The Raman spectroscopy analysis showed that corrosion products on the surface of carbon steel and cast iron consisted of an inhomogeneous mixture of magnetite, hematite and goethite. The predominant species was magnetite. In the bentonite, the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt% in some experiments. The total iron content of the bentonite in contact with corroding carbon steel wires increased by several percentage points during the experiments and the cation exchange capacity of the bentonite was reduced. After contact with corroding steel wires the hydraulic conductivity of MX-80 increased substantially. The results of the analyses were consistent with ion exchange of Fe 2+ ions with Na + ions in the montmorillonite interlayer positions but the exact chemical location of all the additional Fe 2+ ions is currently uncertain. There was no evidence for the transformation of montmorillonite to an iron-rich clay mineral phase.

  13. Pellet inspection apparatus

    DOEpatents

    Wilks, Robert S.; Taleff, Alexander; Sturges, Jr., Robert H.

    1982-01-01

    Apparatus for inspecting nuclear fuel pellets in a sealed container for diameter, flaws, length and weight. The apparatus includes, in an array, a pellet pick-up station, four pellet inspection stations and a pellet sorting station. The pellets are delivered one at a time to the pick-up station by a vibrating bowl through a vibrating linear conveyor. Grippers each associated with a successive pair of the stations are reciprocable together to pick up a pellet at the upstream station of each pair and to deposit the pellet at the corresponding downstream station. The gripper jaws are opened selectively depending on the state of the pellets at the stations and the particular cycle in which the apparatus is operating. Inspection for diameter, flaws and length is effected in each case by a laser beam projected on the pellets by a precise optical system while each pellet is rotated by rollers. Each laser and its optical system are mounted in a container which is free standing on a precise surface and is provided with locating buttons which engage locating holes in the surface so that each laser and its optical system is precisely set. The roller stands are likewise free standing and are similarly precisely positioned. The diameter optical system projects a thin beam of light which scans across the top of each pellet and is projected on a diode array. The fl GOVERNMENT CONTRACT CLAUSE The invention herein described was made in the course of or under a contract or subcontract thereunder with the Department of Energy bearing No. EY-67-14-C-2170.

  14. Tritium proof-of-principle pellet injector

    SciTech Connect

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic {sup 3}He separator, which was an integral part of the gun assembly, was capable of lowering {sup 3}He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs.

  15. Tritium proof-of-principle pellet injector

    NASA Astrophysics Data System (ADS)

    Fisher, P. W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic He-3 separator, which was an integral part of the gun assembly, was capable of lowering He-3 levels in the feed gas to less than 0.005 percent. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized.

  16. The influence of polymeric subcoats and pellet formulation on the release of chlorpheniramine maleate from enteric coated pellets.

    PubMed

    Bruce, L Diane; Koleng, John J; McGinity, James W

    2003-09-01

    The influences of aqueous polymeric subcoats and pellet composition on the release properties of a highly water-soluble drug, chlorpheniramine maleate (CPM), from enteric coated pellets were investigated. Three different aqueous polymeric subcoats, Eudragit RD 100, Eudragit RS 30D, and Opadry AMB, were applied to 10% w/w CPM-loaded pellets that were then enteric coated with Eudragit L 30D-55. Observed drug release from the coated pellets in acidic media correlated with water vapor transmission rates derived for the subcoat films. The influence of pellet composition on retarding the release of CPM from enteric coated pellets in 0.1 N HCl was investigated. The rate of drug release was greatest for pellets prepared with lactose, microcrystalline cellulose, or dibasic calcium phosphate compared with pellets formulated with citric acid and microcrystalline cellulose. Citric acid reduced the pellet micro-environmental pH, decreasing the amount of drug leakage in 0.1 N HCL during the first 2 hr of dissolution. Polymer flocculation was observed when CPM was added to the Eudragit L 30D-55 dispersion. An adsorption isotherm was generated for mixtures of CPM and the polymer and the data were found to fit the Freundlich model for adsorption. Adsorption of CPM to the polymer decreased with the addition of citric acid to the drug-polymer mixtures.

  17. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  18. Characterization of Fe/KClO4 heat powders and pellets.

    SciTech Connect

    Reinhardt, Frederick William; Guidotti, Ronald Armand; Odinek, Judy Gail

    2005-04-01

    Pellets of Fe/KClO{sub 4} mixtures are used as a heat source for thermally activated ('thermal') batteries. They provide the energy necessary for melting the electrolyte and bringing the battery stack to operating temperature. The effects of morphology of the Fe and the heat-pellet density and composition on both the physical properties (flowability, pelletization, and pellet strength) and the pyrotechnic performance (burn rate and ignition sensitivity) were examined using several commercial sources of Fe.

  19. Pellet plant energy simulator

    NASA Astrophysics Data System (ADS)

    Bordeasu, D.; Vasquez Pulido, T.; Nielsen, C.

    2016-02-01

    The Pellet Plant energy simulator is a software based on advanced algorithms which has the main purpose to see the response of a pellet plant regarding certain location conditions. It combines energy provided by a combined heat and power, and/or by a combustion chamber with the energy consumption of the pellet factory and information regarding weather conditions in order to predict the biomass consumption of the pellet factory together with the combined heat and power, and/or with the biomass consumption of the combustion chamber. The user of the software will not only be able to plan smart the biomass acquisition and estimate its cost, but also to plan smart the preventive maintenance (charcoal cleaning in case of a gasification plant) and use the pellet plant at the maximum output regarding weather conditions and biomass moisture. The software can also be used in order to execute a more precise feasibility study for a pellet plant in a certain location. The paper outlines the algorithm that supports the Pellet Plant Energy Simulator idea and presents preliminary tests results that supports the discussion and implementation of the system

  20. Modelling Iron-Bentonite Interactions

    NASA Astrophysics Data System (ADS)

    Watson, C.; Savage, D.; Benbow, S.; Wilson, J.

    2009-04-01

    The presence of both iron canisters and bentonitic clay in some engineered barrier system (EBS) designs for the geological disposal of high-level radioactive wastes creates the potential for chemical interactions which may impact upon the long-term performance of the clay as a barrier to radionuclide migration. Flooding of potential radionuclide sorption sites on the clay by ferrous ions and conversion of clay to non-swelling sheet silicates (e.g. berthierine) are two possible outcomes deleterious to long-term performance. Laboratory experimental studies of the corrosion of iron in clay show that corrosion product layers are generally thin (< 1 µm) with magnetite, siderite, or ‘green rust' occurring depending upon temperature and ambient partial pressure of carbon dioxide. In theory, incorporation of iron into clay alteration products could act as a ‘pump' to accelerate corrosion. However, the results of laboratory experiments to characterise the products of iron-bentonite interaction are less than unequivocal. The type and amounts of solid products appear to be strong functions of time, temperature, water/clay ratio, and clay and pore fluid compositions. For example, the products of high temperature experiments (> 250 °C) are dominated by chlorite, whereas lower temperatures produce berthierine, odinite, cronstedtite, or Fe-rich smectite. Unfortunately, the inevitable short-term nature of laboratory experimental studies introduces issues of metastability and kinetics. The sequential formation in time of minerals in natural systems often produces the formation of phases not predicted by equilibrium thermodynamics. Evidence from analogous natural systems suggests that the sequence of alteration of clay by Fe-rich fluids will proceed via an Ostwald step sequence. The computer code, QPAC, has been modified to incorporate processes of nucleation, growth, precursor cannibalisation, and Ostwald ripening to address the issues of the slow growth of bentonite

  1. Polypropylene Fiber Amendments to Alleviate Initiation and Evolution of Desiccation Cracks in Bentonite Liners

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Gebrenegus, T. B.

    2009-12-01

    Sodium saturated bentonite is a major constituent of compacted and geosynthetic liners and covers for hydraulic isolation of hazardous waste, playing a crucial role in protecting groundwater and other environmental resources from harmful landfill leachates. Due to favorable hydraulic properties (i.e., low permeability), large surface area and associated adsorption capacity for particular contaminants, and relative abundance and low cost, bentonite is the material of choice in many modern waste containment systems. However, long-term interactions between bentonite and waste leachate and exposure of bentonite to desiccative conditions may significantly deteriorate liner or cover performance and ultimately lead to failure of containment systems. In the presented study, the potential usefulness of polypropylene fiber amendments for preventing initiation and evolution of desiccation cracks, while maintaining acceptably low permeability under saturated conditions was investigated. Well-controlled desiccation experiments were conducted using initially saturated bentonite-sand mixtures that contained varying amounts of polypropylene fibers. Initiation and evolution of surface cracks were observed by means of X-Ray Computed Tomography (CT). Advanced image analysis techniques were employed to characterize and quantify 2-D and 3-D features of the evolving crack networks. Potential negative effects of employed additives on saturated hydraulic conductivity were determined with fully-automated Flexible Wall Permeametry (FWP).

  2. Effect of micromorphological development on the elastic moduli of fly ash-lime stabilized bentonite

    SciTech Connect

    Baykal, G.I.

    1987-01-01

    The mineralogical and micromorphological changes occurring in fly ash-lime stabilized bentonite were observed and related to changes in elastic moduli of the stabilized mixture. Compacted fly ash, fly ash-lime, bentonite-lime, bentonite-fly ash, and bentonite-fly ash-lime mixtures were prepared and cured at 23C and 50C, for 1, 28, 90 and 180 days. The development of microstructure and cementitous crystals were observed by a scanning electron microscope, and energy dispersive spectrum analyzer and a X-ray diffractometer. The elastic moduli and strengths were obtained from unconsolidated undrained triaxial and unconfined compressive strength tests. The physical test results were compared with changes observed by scanning electron microscopy and X-ray diffraction. CSH gel Type I, II and III, ettringite, afwillite and tetracalcium aluminate thirteen hydrate crystals were identified in the cured specimens. The elastic modulus of the fly ash-lime stabilized bentonite was higher than the untreated bentonite and the increase in elastic modulus corresponded to the curing times when new cementitious crystals were observed. Acicular crystals (CSH Type I and II) and ettringite crystals spanned the pores and increased the contact points where blocky aggregates of equant crystals (CSH III) engulfed the fly ash grains providing support. The compressive strength increased, and the strain at a failure decreased resulting in an increase in the elastic modulus. Some fly ash grains providing support for montmorillonite aggregates dissolved and created weak spots in the matrix, causing a decrease in elastic modulus at longer curing periods. At 50C curing temperature the same cementitious crystals were observed as at 23C. However, the rate of the reactions increased considerably.

  3. Bentonite mat demonstration. Final report

    SciTech Connect

    Serrato, M.G.

    1994-12-30

    The Bentonite Mat Demonstration was developed to provide the Environmental Restoration Department with field performance characteristics and engineering data for an alternative closure cover system configuration. The demonstration was initiated in response to regulatory concerns regarding the use of an alternative cover system for future design configurations. These design considerations are in lieu of the US Environmental Protection Agency (EPA) Recommended Design for Closure Cover Systems and specifically a single compacted kaolin clay layer with a hydraulic conductivity of 1 {times} 10{sup {minus}7} cm/sec. This alternative configuration is a composite geosynthetic material hydraulic barrier consisting from bottom to top: 2 ft compacted sandy clay layer (typical local Savannah River Site soil type) that is covered by a bentonite mat--geosynthetic clay liner (GCL) and is overlaid by a 40 mil High Density Polyethylene (HDPE) geomembrane--flexible membrane liner. This effort was undertaken to obtain and document the necessary field performance/engineering data for future designs and meet regulatory technical requirements for an alternative cover system configuration. The composite geosynthetic materials hydraulic barrier is the recommended alternative cover system configuration for containment of hazardous and low level radiological waste layers that have a high potential of subsidence to be used at the Savannah River Site (SRS). This alternative configuration mitigates subsidence effects in providing a flexible, lightweight cover system to maintain the integrity of the closure. The composite geosynthetic materials hydraulic barrier is recommended for the Sanitary Landfill and Low Level Radiological Waste Disposal Facility (LLRWDF) Closures.

  4. Radation shielding pellets

    DOEpatents

    Coomes, Edmund P.; Luksic, Andrzej T.

    1988-01-01

    Radiation pellets having an outer shell, preferably, of Mo, W or depleted U nd an inner filling of lithium hydride wherein the outer shell material has a greater melting point than does the inner filling material.

  5. Radation shielding pellets

    DOEpatents

    Coomes, Edmund P.; Luksic, Andrzej T.

    1988-12-06

    Radiation pellets having an outer shell, preferably, of Mo, W or depleted U nd an inner filling of lithium hydride wherein the outer shell material has a greater melting point than does the inner filling material.

  6. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  7. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    SciTech Connect

    Siriwardane, R.V.

    1995-12-31

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are presented in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (Drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  8. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. PMID:26849195

  9. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  10. HYDRAULIC CONDUCTIVITY OF SOME BENTONITES IN ARTIFICIAL SEAWATER

    NASA Astrophysics Data System (ADS)

    Komine, Hideo; Yasuhara, Kazuya; Murakami, Satoshi

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer.

  11. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  12. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  13. Tritium proof-of-principle pellet injector: Phase 2

    NASA Astrophysics Data System (ADS)

    Fisher, P. W.; Gouge, M. J.

    1995-03-01

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase-2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and DT mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and DT extrusions; integrate, test and evaluate the extruder in a repeating, single-stage light gas gun sized for the ITER application (pellet diameter approximately 7-8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory requiring secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to thirteen pellets have been extruded at rates up to 1 Hz and accelerated to speeds of order 1.0-1.1 km/s using hydrogen propellant gas at a supply pressure of 65 bar. The pellets are typically 7.4 mm in diameter and up to 11 mm in length and are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first wall tritium inventories by a process called isotopic fueling where tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.

  14. Preparation and characterization of a self-emulsifying pellet formulation.

    PubMed

    Abdalla, Ahmed; Mäder, Karsten

    2007-05-01

    The purpose of the current study is to investigate the feasibility of producing solid self-emulsifying pellets using the extrusion/spheronization technique. Pellets were made from a mixture of C18 partial glycerides, Solutol HS15 and microcrystalline cellulose. Pellets with good physical properties (size, shape, friability) and self-emulsifying properties were produced. The pellets were, in contrast to pellets lacking Solutol, able to transfer a lipophilic dye and a spin probe into the aqueous media. The release kinetics and the microenvironment of the pellets during the release process were assessed using electron spin resonance (ESR) spectroscopy. The ESR results showed that the hydrophobic spin probe was localized mainly in the lipid environment all over the release time. Furthermore, the formulation was capable of accelerating the release of the drug diazepam and achieving a diazepam concentration above its saturation solubility. In conclusion, spherical pellets with low friability and self-emulsifying properties can be produced by the standard extrusion/spheronization technique. The pellets are capable of transfering lipophilic compounds into the aqueous phase and have a high potential to increase the bioavailability of lipophilic drugs.

  15. Owl Pellet Paleontology

    ERIC Educational Resources Information Center

    McAlpine, Lisa K.

    2013-01-01

    In this activity for the beginning of a high school Biology 1 evolution unit, students are challenged to reconstruct organisms found in an owl pellet as a model for fossil reconstruction. They work in groups to develop hypotheses about what animal they have found, what environment it inhabited, and what niche it filled. At the end of the activity,…

  16. Experimental and modeling study on long-term alteration of compacted bentonite with alkaline groundwater

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Sakamoto, Y.; Akai, M.; Takazawa, M.; Iida, Y.; Tanaka, T.; Nakayama, S.

    The experimental and modeling studies were conducted on alteration of bentonite buffer materials. The dissolution rate of montmorillonite in, the diffusivity of hydroxide ions in and the hydraulic conductivity of compacted sand-bentonite mixtures were experimentally determined and formulated. Dissolution of montmorillonite followed the linear dependence on time under the employed experimental conditions of a (activity of hydroxide ions) of 0.04-0.57 mol dm -3 and temperatures of 50-170 °C. The slope gave the dissolution rate, RA (Mg m -3 s -1). The dissolution rate was a function of pH and temperature, T (K), and expressed as RA=3.5(a)1.4exp(-51 000/RT), where R is the gas constant. The effective diffusivity, De (m 2 s -1), of hydroxide ions was found to be in the order of 10 -10-10 -11 m 2 s -1 at 10-90 °C and expressed as De = 5.0 × 10 -7ε2.1 exp(-18 600/ RT) where ε is the porosity. The dependence of hydraulic conductivity, K (m s -1), of the sand-bentonite mixtures on the effective montmorillonite dry density, ρmont (Mg m -3), and on the ionic strength of the permeant, I (mol dm -3), was identified as K = 1.2 × 10 -7I1.510 -4.2 ρmont . A PHREEQC-based, coupled mass-transport/chemical-reaction code (MC-BENT) was developed for predicting hydraulic conductivity of the bentonite buffer by using the formulae for the dissolution rate, the effective diffusivity and the hydraulic conductivity. This code was able to reproduce observed changes in concentrations of major species and montmorillonite contents in the lab-scale experiments on the bentonite alteration, which is indicative of partial verification of our calculation.

  17. Enhancement of the bentonite sorption properties.

    PubMed

    Mockovciaková, Annamária; Orolínová, Zuzana; Skvarla, Jirí

    2010-08-15

    The almost monomineral fraction of bentonite rock-montmorillonite was modified by magnetic particles to enhance its sorption properties. The method of clay modification consists in the precipitation of magnetic nanoparticles, often used in preparing of ferrofluids, on the surface of clay. The influence of the synthesis temperature (20 and 85 degrees C) and the weight ratio of bentonite/iron oxides (1:1 and 5:1) on the composite materials properties were investigated. The obtained materials were characterized by the X-ray diffraction method and Mössbauer spectroscopy. Changes in the surface and pore properties of the magnetic composites were studied by the low nitrogen adsorption method and the electrokinetic measurements. The natural bentonite and magnetic composites were used in sorption experiments. The sorption of toxic metals (zinc, cadmium and nickel) from the model solutions was well described by the linearized Langmuir and Freundlich sorption model. The results show that the magnetic bentonite is better sorbent than the unmodified bentonite if the initial concentration of studied metals is very low. PMID:20435410

  18. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    SciTech Connect

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-12-31

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca{sup 2+} (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K{sub d}) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K{sub d} increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca{sup 2+} in solution, an effect most pronounced at pH < 5. These results show that Ca{sup 2+} limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca{sup 2+} was solubilized to depress neptunium sorption. This investigation demonstrates that Ca{sup 2+} contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium.

  19. Porous desulfurization sorbent pellets containing a reactive metal oxide and an inert zirconium compound

    SciTech Connect

    Gardner, Todd H.; Gasper-Galvin, Lee D.

    1996-12-01

    Sorbent pellets for removing hydrogen sulfide from coal gas are prepared by combining a reactive oxide, in particular zinc oxide, with a zirconium compound such as an oxide, silicate, or aluminate of zirconium, and an inorganic binder and pelletizing and calcining the mixture. Alternately, the zinc oxide may be replaced by copper oxide or a combination of copper, molybdenum, and manganese oxides. The pellet components may be mixed in dry form, moistened to produce a paste, and converted to pellets by forming an aqueous slurry of the components and spray drying the slurry, or the reactive oxide may be formed on existing zirconium-containing catalyst-carrier pellets by infusing a solution of a salt of the active metal onto the existing pellets and firing at a high temperature to produce the oxide. Pellets made according to this invention show a high reactivity with hydrogen sulfide and durability such as to be useful over repeated cycles of sorption and regeneration.

  20. Pellet imaging techniques on ASDEX

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-01-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast gated photos with an intensified Xybion CCD video camera allow in-situ velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 nanoseconds and exposures every 50 microseconds, the evolution of each pellet in a multi-pellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened D{sub {alpha}}D{sub {beta}}, and D{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2 {times} 10{sup 17}cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of D{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational q-surfaces, but instead are a result of a dynamic, non-stationary, ablation process. 20 refs., 4 figs.

  1. An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2001-05-21

    A controlled release pellet formulation using a NanoCrystal colloidal dispersion of ketoprofen was developed. In order to be able to process the aqueous NanoCrystal colloidal dispersion into a hydrophobic solid dosage form a spray drying procedure was used. The in vitro dissolution profiles of wax based pellets loaded with nanocrystalline ketoprofen are compared with the profiles of wax based pellets loaded with microcrystalline ketoprofen and of a commercial sustained release ketoprofen formulation. Pellets were produced using a melt pelletisation technique. All pellet formulations were composed of a mixture of microcrystalline wax and starch derivatives. The starch derivatives used were waxy maltodextrin and drum dried corn starch. Varying the concentration of drum dried corn starch increased the release rate of ketoprofen but the ketoprofen recovery remained problematic. To increase the dissolution yield surfactants were utilised. The surfactants were either added during the production process of the NanoCrystal colloidal dispersion (sodium laurylsulphate) or during the pellet manufacturing process (Cremophor RH 40). Both methods resulted in a sustained but complete release of nanocrystalline ketoprofen from the matrix pellet formulations.

  2. Adsorption thermodynamics of Methylene Blue onto bentonite.

    PubMed

    Hong, Song; Wen, Cheng; He, Jing; Gan, Fuxing; Ho, Yuh-Shan

    2009-08-15

    The effect of temperature on the equilibrium adsorption of Methylene Blue dye from aqueous solution using bentonite was investigated. The equilibrium adsorption data were analyzed using three widely applied isotherms: Langmuir, Freundlich, and Redlich-Peterson. A non-linear method was used for comparing the best fit of the isotherms. Best fit was found to be Redlich-Peterson isotherm. Thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated using adsorption equilibrium constant obtained from the Langmuir isotherm. Results suggested that the Methylene Blue adsorption on bentonite was a spontaneous and endothermic process.

  3. Relative efficacy and palatability of three activated charcoal mixtures.

    PubMed

    Navarro, R P; Navarro, K R; Krenzelok, E P

    1980-02-01

    The addition of bentonite with or without chocolate syrup improved the palatability of activated charcoal preparations. Furthermore, bentonite did not significantly reduce the efficacy of charcoal to absorb aspirin. Chocolate syrup reduced the adsorption effectiveness significantly. The mixtures have a reduced shelf-life when premixed with water. However, the dry ingredients can be pre-weighed and sealed in a large jar. Water can be added just prior to administration. PMID:7361450

  4. Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material.

    PubMed

    Puma, Sara; Marchese, Franco; Dominijanni, Andrea; Manassero, Mario

    2013-06-01

    The research described in this study had the aim of evaluating the reuse of incinerator slag, mixed with sodium bentonite, for landfill capping system components. A characterization was performed on pure bottom ash (BA) samples from an incinerator in the north of Italy. The results show that the BA samples had appropriate properties as covers. The compacted dry unit weight of the studied BA (16.2 kN m(-3)) was lower than the average value that characterizes most conventional fill materials and this can be considered advantageous for landfill cover systems, since the fill has to be placed on low bearing capacity ground or where long-term settlement is possible. Moreover, direct shear tests showed a friction angle of 43°, corresponding to excellent mechanical characteristics that can be considered an advantage against failure. The hydraulic conductivity tests indicated a steady-state value of 8 × 10(-10) m s(-1) for a mixture characterized by a bentonite content by weight of 10%, which was a factor 10 better than required by Italian legislation on landfill covers. The results from a swell index test indicated that fine bentonite swelled, even when divalent cations were released by the BA. The leaching behaviour of the mixture did not show any contamination issues and was far better than obtained for the pure BA. Thus, the BA-bentonite mixture qualified as a suitable material for landfill cover in Italy. Moreover, owing to the low release of toxic compounds, the proposed cover system would have no effect on the leachate quality in the landfill. PMID:23478909

  5. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing.

    PubMed

    Alavi, Mehrosadat; Totonchi, Alireza; Okhovat, Mohammad Ali; Motazedian, Motahareh; Rezaei, Peyman; Atefi, Mohammad

    2014-12-01

    In recent years, a wide variety of research has been carried out in the field of novel technologies to stop severe bleeding. In several studies, coagulation properties of minerals such as zeolite, bentonite and halloysite have been proven. In this study, the effect of a new impregnated sterile gauze containing bentonite and halloysite minerals was studied on blood coagulation and wound healing rate in male Wistar rats. Initially, impregnated sterile gauze was prepared from the mixture of bentonite and halloysite minerals and petroleum jelly (Vaseline). Then, the effect of gauze was studied on the blood coagulation time and wound healing process in 40 Wistar rats. SPSS software was used for data analysis and P values less than 0.05 were considered significant. The coagulation time of 81.10 ± 2.532 s in the control group and 33.00 ± 1.214 s in the study group (bentonite-halloysite treated) were reported (P < 0.0005). Time for complete wound healing in the group, which is treated with impregnated sterile pads, was calculated approximately from 10 to 12 days. However, in the control group, there was no complete wound healing (P < 0.0005). According to the results of the present study, topical application of the bentonite-halloysite impregnated sterile gauze significantly decreases the clotting time and increase the wound healing rate.

  6. Acid-base properties of bentonite rocks with different origins.

    PubMed

    Nagy, Noémi M; Kónya, József

    2006-03-01

    Five bentonite samples (35-47% montmorillonite) from a Sarmatian sediment series with bentonite sites around Sajóbábony (Hungary) is studied. Some of these samples were tuffogenic bentonite (sedimentary), the others were bentonitized tuff with volcano sedimentary origin. The acid-base properties of the edge sites were studied by potentiometric titrations and surface complexation modeling. It was found that the number and the ratio of silanol and aluminol sites as well as the intrinsic stability constants are different for the sedimentary bentonite and bentonitized tuff. The characteristic properties of the edges sites depend on the origins. The acid-base properties are compared to other commercial and standard bentonites.

  7. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  8. Long term chemo-hydro-mechanical behavior of compacted soil bentonite polymer complex submitted to synthetic leachate.

    PubMed

    Razakamanantsoa, Andry Rico; Djeran-Maigre, Irini

    2016-07-01

    An experimental program is carried out to investigate the long term hydro-mechanical behavior correlated with chemical one of compacted soils with low concentration of Ca-bentonite and Ca-bentonite polymer mixture. The effect of prehydration on the hydraulic performance is compared to the polymer adding effect. All specimens are submitted to synthetic leachate (LS) under different permeation conditions. Several issues are studied: mechanical stability, hydraulic performance, chemical exchange of cations validated with microstructure observations. Scanning Electron Microscope (SEM) observations demonstrate two distinct behaviors: dispersive for Bentonite (B) and B with Polymer P1 (BP1) and flocculated for B with Polymer P2 (BP2). Direct shear tests show that bentonite adding increases the Soil (S) cohesion and decreases the friction angle. Polymer adding behaves similarly by maintaining the soil cohesion and increasing the friction angle. Hydraulic conductivity of prehydrated soil bentonite (SB) and direct permeation of polymer added soil bentonite are studied (SBP1 and SBP2). Hydraulic test duration are in range of 45days to 556days long. Prehydration allows to delay the aggressive effect of the LS in short term but seems to increase its negative effect on the hydraulic conductivity value in long term exposure. SB and SBP1 behave similarly and seem to act in the long term as a granular filler effect. SBP2 presents positive results comparing to the other mixtures: it maintains the hydraulic conductivity and the chemical resistance. Chemical analysis confirms that all specimens are subjected to Na(+) dissolution and Ca(2+) retention which are more pronounced for prehydrated specimen. The short term effect of prehydration and the positive effect of SBP2 are also confirmed. PMID:27156365

  9. Pellet interaction with runaway electrons

    SciTech Connect

    James, A. N.; Hollmann, E. M.; Yu, J.H.; Austin, M. E.; Commaux, Nicolas JC; Evans, T.E.; Humphrey, D. A.; Jernigan, T. C.; Parks, P. B.; Putvinski, S.; Strait, E. J.; Tynan, G. R.; Wesley, J. C.

    2011-01-01

    We describe results from recent experiments studying interaction of solid polystyrene pellets with a runaway electron current channel generated after cryogenic argon pellet rapid shutdown of DIII-D. Fast camera imaging shows the pellet trajectory and continuum emission from the subsequent explosion, with geometric calibration providing detailed explosion analysis and runaway energy. Electron cyclotron emission also occurs, associated with knock-on electrons broken free from the pellet by RE which then accelerate and runaway, and also with a short lived hot plasma blown off the pellet surface. In addition, we compare heating and explosion times from observations and a model of pellet heating and breakdown by runaway interaction. (C) 2011 Elsevier B.V. All rights reserved

  10. Pellet injector research at ORNL

    SciTech Connect

    Schuresko, D.D.; Milora, S.L.; Combs, S.K.; Foster, C.A.; Fisher, P.W.; Argo, B.E.; Barber, G.C.; Foust, C.R.; Gethers, F.E.; Gouge, M.J.

    1987-01-01

    Several advanced plasma fueling systems are under development at the Oak Ridge National Laboratory (ORNL) for present and future magnetic confinement devices. These include multishot and repeating pneumatic pellet injectors, centrifuge accelerators, electrothermal guns, a Tritium Proof-of-Principle experiment, and an ultrahigh velocity mass ablation driven accelerator. A new eight-shot pneumatic injector capable of delivering 3.0 mm, 3.5 mm, and 4.0 mm diameter pellets at speeds up to 1500 m/s into a single discharge has been commissioned recently on the Tokamak Fusion Test reactor. The so-called Deuterium Pellet Injector (DPI) is a prototype of a Tritium Pellet Injector (TPI) scheduled for use on TFTR in 1990. Construction of the TPI will be preceded by a test of tritium pellet fabrication and acceleration using a 4 mm bore ''pipe gun'' apparatus. A new repeating pneumatic pellet injector capable of 2.7 mm, 4 mm, and 6 mm operation is being installed on the Joint European Torus to be used in ORNL/JET collaborative pellet injection studies. A 1.5 m centrifuge injector is being developed for application on the Tore Supra experiment in 1988. The new device, which is a 50% upgrade of the prototype centrifuge used on D-III, features a pellet feed mechanism capable of producing variable-size pellets (1.5 to 3.0 mm diameter) optimally shaped to survive acceleration stresses. Accelerating pellets to velocities in excess of 2 km/s is being pursued through two new development undertakings. A hydrogen plasma electrothermal gun is operational at 2 km/s with 10 mg hydrogen pellets; this facility has recently been equipped with a pulsed power supply capable of delivering 1.7 kJ millisecond pulses to low impedence arc loads.

  11. ORNL centrifuge pellet fueling system

    SciTech Connect

    Foster, C.A.; Houlberg, W.A.; Gouge, M.J.; Grapperhaus, M.J.; Milora, S.L. ); Drawin, H.; Geraud, A.; Chatelier, M.; Gros, G. )

    1992-01-01

    A centrifuge pellet injecter designed and built at Oak Ridge National Laboratory (ORNL) is in operation on Tore Supra. This injector has the capability of injecting up to 100 pellets at speeds up to 800 M/s. The solid deuterium pellets can be formed with a variable mass from 3 to 10 torr-L and are fired at a rate of up to 10 pellets per second. The experimental program that is under way combines repetitive pellet fueling with the ergodic divertor and pump limiters to establish and understand long-pulse plasmas in which the pellet fuel source is in balance with the particle exhaust. With lower hybrid current drive, pulse lengths of up to 2 min might be achieved. To prepare for these extended pulse lengths, the pellet source on the centrifuge will be extended to provide a 300- to 500-pellet capability. A similar system extended to steady-state pellet fabrication technology and designed for a radiation and tritium environment would be a candidate for a fueling system for the International Thermonuclear Experimental Reactor (ITER). Analysis of pellet-fueled ITER discharges using the WHIST code shows the potential for controlling the radial fuel deposition point to achieve the desired core density while maintaining the edge density and temperatures so as to minimize the diverter plate erosion. A centrifuge fueling system would have the capability of taking the D-T exhaust directly from the cryopumping systems, recondensing and purifying the fuel, and injecting the reconstituted pellets into the plasma, thereby minimizing the tritium inventory.

  12. ORNL centrifuge pellet fueling system

    SciTech Connect

    Foster, C.A.; Houlberg, W.A.; Gouge, M.J.; Grapperhaus, M.J.; Milora, S.L.; Drawin, H.; Geraud, A.; Chatelier, M.; Gros, G.

    1992-11-01

    A centrifuge pellet injecter designed and built at Oak Ridge National Laboratory (ORNL) is in operation on Tore Supra. This injector has the capability of injecting up to 100 pellets at speeds up to 800 M/s. The solid deuterium pellets can be formed with a variable mass from 3 to 10 torr-L and are fired at a rate of up to 10 pellets per second. The experimental program that is under way combines repetitive pellet fueling with the ergodic divertor and pump limiters to establish and understand long-pulse plasmas in which the pellet fuel source is in balance with the particle exhaust. With lower hybrid current drive, pulse lengths of up to 2 min might be achieved. To prepare for these extended pulse lengths, the pellet source on the centrifuge will be extended to provide a 300- to 500-pellet capability. A similar system extended to steady-state pellet fabrication technology and designed for a radiation and tritium environment would be a candidate for a fueling system for the International Thermonuclear Experimental Reactor (ITER). Analysis of pellet-fueled ITER discharges using the WHIST code shows the potential for controlling the radial fuel deposition point to achieve the desired core density while maintaining the edge density and temperatures so as to minimize the diverter plate erosion. A centrifuge fueling system would have the capability of taking the D-T exhaust directly from the cryopumping systems, recondensing and purifying the fuel, and injecting the reconstituted pellets into the plasma, thereby minimizing the tritium inventory.

  13. Pellet injector development at ORNL

    SciTech Connect

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B.; Schmidt, G.L.

    1992-12-31

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma.

  14. Pellet injector development at ORNL

    SciTech Connect

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B. ); Schmidt, G.L. . Plasma Physics Lab.)

    1992-01-01

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma.

  15. Owl Pellets and Crisis Management.

    ERIC Educational Resources Information Center

    Anderson, Tom

    2002-01-01

    Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…

  16. [Shotgun injury--multiple pellets].

    PubMed

    Hejna, P; Pleskot, J

    2009-01-01

    Both typical and less frequent features of gunshot wounds caused by shotguns are reported in the following article. The pattern of shotgun injury predominantly depends on gauge, choke, number and diameter of used pellets, muzzle-victim distance and on character of the afflicted area of the body. Characteristic ballistic properties of shotgun pellets, their wounding potential and significance in forensic patology are presented.

  17. Evaluation of factors affecting diffusion in compacted bentonite

    SciTech Connect

    Lehikoinen, J.; Carlsson, T.; Muurinen, A.; Olin, M.; Salonen, P.

    1996-08-01

    The information available from the open literature and studies on exclusion, sorption and diffusion mechanisms of ionic and neutral species in bentonite has been compiled and re-examined in relation to the microstructure of bentonite. The emphasis is placed on a more thorough understanding of the diffusion processes taking place in compacted bentonite. Despite the scarcity of experiments performed with neutral diffusants, these imply that virtually all the pores in compacted bentonite are accessible to neutral species. Anion exclusion, induced by the overlap of electrical double layers, may render the accessible porosity for anions considerably less than the porosity obtained from the water content of the clay. On the basis of the compiled data, it is highly probable that surface diffusion plays a significant role in the transport of cations in bentonite clays. Moreover, easily soluble compounds in bentonite can affect the ionic strength of porewater and, consequently, exclusion, equilibrium between cations, and surface diffusion.

  18. Nuclear fuel pellet transfer escalator

    SciTech Connect

    Huggins, T.B. Sr.; Roberts, E.; Edmunds, M.O.

    1991-09-17

    This patent describes a nuclear fuel pellet escalator for loading nuclear fuel pellets into a sintering boat. It comprises a generally horizontally-disposed pellet transfer conveyor for moving pellets in single file fashion from a receiving end to a discharge end thereof, the conveyor being mounted about an axis at its receiving end for pivotal movement to generally vertically move its discharge end toward and away from a sintering boat when placed below the discharge end of the conveyor, the conveyor including an elongated arm swingable vertically about the axis and having an elongated channel recessed below an upper side of the arm and extending between the receiving and discharge ends of the conveyor; a pellet dispensing chute mounted to the arm of the conveyor at the discharge end thereof and extending therebelow such that the chute is carried at the discharge end of the conveyor for generally vertical movement therewith toward and away from the sintering boat.

  19. FTIR analysis of bentonite in moulding sands

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, C.; Holtzer, M.; Bobrowski, A.

    2008-05-01

    Bentonite is used in a wide range of applications. One of them is the foundry industry. The aim of this study was to investigate modification of moulding sands by dust which is generated during foundry process. Recycling of this dust is very important from ecological point of view. The samples of moulding sands were examined by Fourier Transform Infrared spectroscopy (FTIR). Analysis of the bands due to the Si-O stretching vibrations allows to reveal the changes of active bentonite and silica sand, i.e. the main components of the moulding sands. FTIR results are compared with technological properties of the materials studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods have been used as the complementary measurement.

  20. Development of a Tritium Extruder for ITER Pellet Injection

    SciTech Connect

    M.J. Gouge; P.W. Fisher

    1998-09-01

    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular

  1. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    NASA Astrophysics Data System (ADS)

    Sitompul, Johnner; Setyawan, Daru; Kim, Daniel Young Joon; Lee, Hyung Woo

    2016-04-01

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were then characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.

  2. Plutonium sorption and desorption behavior on bentonite.

    PubMed

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite. PMID:25574607

  3. Plutonium sorption and desorption behavior on bentonite.

    PubMed

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite.

  4. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    SciTech Connect

    Jha, M.C.; Blandon, A.E.; Hepworth, M.T.

    1988-03-22

    A durable, pelletized and indurated sorbent for removing hydrogen sulfide from hot coal gas is described which consists essentially of zinc ferrite, has a surface area of about 0.5 to about 5 m./sup 2/gram, and is prepared by mixing fine iron oxide and fine zinc oxide, each having a particle size of less than about 1 micron in substantially equi-molar amounts with an inorganic binder in an amount greater than zero and up to about 15%, by weight, and an organic binder in an amount greater than zero and up to about 5%, by weight, up to about 5%, by weight, of manganese oxide, up to about 0.2%, by weight, of an alkali metal carbonate and up to about 0.2%, by weight, of molybdenite. The inorganic binder is capable of a strong bridging action between zinc ferrite particles during induration and the organic binder is capable of burning away during induration to form a porous structure, pelletizing the resulting mixture with water, drying the resulting pellets and indurating the dried pellets and a temperature of about 1600/sup 0/F to about 2000/sup 0/F to form strong, porous sorbent pellets having a crush strength of about 5 to about 20 lbs. Dead Weight Load.

  5. Diffusive transport through compacted Na- and Ca-bentonite

    NASA Astrophysics Data System (ADS)

    Choi, J.-W.; Oscarson, D. W.

    1996-04-01

    The effect of exchangeable cation — Na + and Ca 2+ — on the diffusive transport of I -, Sr 2+ and 3H (as HTO) in compacted bentonite was examined using a through-diffusion method. Total intrinsic diffusion coefficients, Di, were determined from the steady-state flux of the diffusants through the clays, and apparent diffusion coefficients, Da, were obtained from the time lag technique. The clays were compacted to a dry bulk density of 1.3 Mg/m 3, and Na-bentonite was saturated with a solution of 100 mol NaCl/m3 and Ca-bentonite with one of 50 mol CaCl 2/m 3. The Di values for all diffusants are 2 to 6 times higher in the Ca- than Na-clay. We attribute this to the larger quasicrystal, or particle, size of Ca- compared to Na-bentonite. Hence, Ca-bentonite has a greater proportion of relatively large pores; this was confirmed by Hg intrusion porosimetry. This means the diffusion pathways in Ca-bentonite are less tortuous than those in Na-bentonite. Moreover, in some cases the effective porosity, or the porosity available for diffusive transport, may be greater in Ca-bentonite. The D a values are inversely proportional to the distribution coefficients of the diffusants with the clays.

  6. Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition.

    PubMed

    Ruiz, Ana I; Fernández, Raúl; Sánchez Jiménez, Nicanor; Rodríguez Rastrero, Manuel; Regadío, Mercedes; de Soto, Isabel S; Cuevas, Jaime

    2012-03-01

    Enhanced sand-clay mixtures have been prepared by using a sandstone arkosic material and have been evaluated for consideration as landfill liners. A lab-scale test was carried out under controlled conditions with different amended natural sandstones whereby leachate was passed through the compacted mixtures. The compacted samples consisted of siliceous sand (quartz-feldspar sand separated from the arkose sandstone) and clay (purified clay from arkose sandstone and two commercial bentonites) materials that were mixed in different proportions. The separation of mineral materials from a common and abundant natural source, for soil protection purposes, is proposed as an economic and environmentally efficient practice. The liner qualities were compared for their mineralogical, physicochemical and major ions transport and adsorption properties. Although all samples fulfilled hydraulic conductivity requirements, the addition of bentonite to arkose sandstone was determined to be an effective strategy to decrease the permeability of the soil and to improve the pollutants retention. The clay materials from arkose sandstone also contributed to pollutant retention by a significant improvement of the cation exchange capacity of the bulk material. However, the mixtures prepared with clay materials from the arkose, exhibited a slight increase of hydraulic conductivity. This effect has to be further evaluated. PMID:22285080

  7. Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition.

    PubMed

    Ruiz, Ana I; Fernández, Raúl; Sánchez Jiménez, Nicanor; Rodríguez Rastrero, Manuel; Regadío, Mercedes; de Soto, Isabel S; Cuevas, Jaime

    2012-03-01

    Enhanced sand-clay mixtures have been prepared by using a sandstone arkosic material and have been evaluated for consideration as landfill liners. A lab-scale test was carried out under controlled conditions with different amended natural sandstones whereby leachate was passed through the compacted mixtures. The compacted samples consisted of siliceous sand (quartz-feldspar sand separated from the arkose sandstone) and clay (purified clay from arkose sandstone and two commercial bentonites) materials that were mixed in different proportions. The separation of mineral materials from a common and abundant natural source, for soil protection purposes, is proposed as an economic and environmentally efficient practice. The liner qualities were compared for their mineralogical, physicochemical and major ions transport and adsorption properties. Although all samples fulfilled hydraulic conductivity requirements, the addition of bentonite to arkose sandstone was determined to be an effective strategy to decrease the permeability of the soil and to improve the pollutants retention. The clay materials from arkose sandstone also contributed to pollutant retention by a significant improvement of the cation exchange capacity of the bulk material. However, the mixtures prepared with clay materials from the arkose, exhibited a slight increase of hydraulic conductivity. This effect has to be further evaluated.

  8. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  9. Remediation of distilleries wastewater using chitosan immobilized Bentonite and Bentonite based organoclays.

    PubMed

    El-Dib, F I; Tawfik, F M; Eshaq, Gh; Hefni, H H H; ElMetwally, A E

    2016-05-01

    Organic-inorganic nanocomposite, namely chitosan immobilized Bentonite (CIB) with chitosan content of 5% was synthesized in an acetic acid solution (2%). Organically modified CIB and Bentonite (mbent.) were prepared by intercalating cetyl trimethylammonium bromide (CTAB) as a cationic surfactant at doses equivalent to 1.5 and 3 times the cation exchange capacity (CEC) of clay. The prepared samples were characterized using FTIR, XRD and SEM to explore the interlayer structure and morphology of the resultant nanocomposites. The remediation of distilleries (vinasse) wastewater process was carried out using different adsorbents including CIB, modified CIB (mCIB), Bentonite (bent.), modified Bentonite (mbent.) and chitosan at different contact time. The results showed that the packing density of surfactant used in the synthesis of organoclays strongly affects the sorption capacity of the clay mineral and also showed that (mCIB)3 was found to be the most effective sorbent in the purification of distilleries wastewater with 83% chemical oxygen demand (COD) reduction and 78% color removal. PMID:26840179

  10. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  11. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  12. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  13. 46 CFR 148.325 - Wood chips; wood pellets; wood pulp pellets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Wood chips; wood pellets; wood pulp pellets. 148.325... § 148.325 Wood chips; wood pellets; wood pulp pellets. (a) This part applies to wood chips and wood pulp... cargo hold. (b) No person may enter a cargo hold containing wood chips, wood pellets, or wood...

  14. Nutrient transformations during composting of pig manure with bentonite.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhang, Zengqiang; Shen, Feng; Zhang, Guangjie; Qin, Rui; Li, Xiaolong; Xiao, Ran

    2012-10-01

    This work aimed to evaluate the influence of different amounts of bentonite on nutrients transformation during pig manure composting process. The results showed that bentonite had no significant effects on compost temperature and pH changes. While, EC, moisture, OM, TN and NO(3)(-)-N were notably influenced by BT addition. The adding of BT could facilitate OM degradation, increase TKN content and decrease the C/N ratio. Increasing the proportion of bentonite in pig manure compost to reduce extractable heavy metal content is feasible. However, potherb mustard seed GI decreased with the proportion of added bentonite increasing. The results suggest that a proportion of less than 2.5% bentonite is recommended for addition to pig manure compost, and examining the additive ratio in a comprehensive waste composting project is a worthwhile direction for future research. PMID:22864172

  15. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  16. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    PubMed

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  17. Second jet workshop on pellet injection: pellet fueling program in the United States. Summary

    SciTech Connect

    Milora, S.L.

    1983-01-01

    S. Milora described the US programme on pellet injection. It has four parts: (1) a confinement experimental program; (2) pellet injector development; (3) theoretical support; and (4) tritium pellet study for TFTR.

  18. Engineering Properties of Bentonite Stabilized with Lime and Phosphogypsum

    NASA Astrophysics Data System (ADS)

    Kumar, Sujeet; Dutta, Rakesh Kumar; Mohanty, Bijayananda

    2014-12-01

    Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.

  19. A mathematical model to predict the size of the pellets formed in freeze pelletization techniques: parameters affecting pellet size.

    PubMed

    Cheboyina, Sreekhar; O'Haver, John; Wyandt, Christy M

    2006-01-01

    A mathematical model was developed based on the theory of drop formation to predict the size of the pellets formed in the freeze pelletization process. Further the model was validated by studying the effect of various parameters on the pellet size such as viscosity of the pellet forming and column liquids, surface/interfacial tension, density difference between pellet forming and column liquids; size, shape, and material of construction of the needle tips and temperatures maintained in the columns. In this study, pellets were prepared from different matrices including polyethylene glycols and waxes. The column liquids studied were silicone oils and aqueous glycerol solutions. The surface/interfacial tension, density difference between pellet forming and column liquids and needle tip size were found to be the most important factors affecting pellet size. The viscosity of the column liquid was not found to significantly affect the size of the pellets. The size of the pellets was also not affected by the pellet forming liquids of low viscosities. An increase in the initial column temperature slightly decreased the pellet size. The mathematical model developed was found to successfully predict the size of the pellets with an average error of 3.32% for different matrices that were studied.

  20. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate.

    PubMed

    Krueger, Cornelia; Thommes, Markus; Kleinebudde, Peter

    2014-10-01

    Microcrystalline cellulose II (MCC II(1)) is a polymorph of commonly used MCC I; in 2010 it was introduced as new pelletization aid in wet-extrusion/spheronization leading to fast disintegrating pellets. Previous investigations suggested that the storage of the resulting pellets affect the disintegration behavior, the non-hygroscopic substance chloramphenicol that showed no polymorphism or hydrate formation due to relative humidity was used for the investigations. Therefore, theophylline-monohydrate that can dehydrate during storage, but also during manufacturing and drying was used for this study to confirm the results of the previous study and give a more detailed overview of the influence of recrystallization of theophylline monohydrate on disintegration. Storage recommendations should be derived. MCC II-based pellets were prepared of binary mixtures containing 10%, 20% or 50% MCCII as pelletization aid and theophylline-monohydrate as API. These pellets were stored at different relative humidity (0-97%rH; 20°C); the influence on their disintegration and drug release was investigated. The storage conditions had an impact on pellet disintegration. Low relative humidities (⩽ 40%rH) led to a conversion of the monohydrate to the anhydrous form. Newly grown crystals formed a kind of network around the pellet and inhibited the disintegration. High relative humidity (>80%rh) affected the disintegration caused by changes in the MCCII as already seen in the previous study. Due to the changed disintegration behavior also the drug release and release kinetic changed. Therefore, for theophylline containing pellets a storage humidity of 55%rH to 80%rH (20°C) is recommended. All in all, these investigations substantiate the knowledge of MCCII-based pellets providing a better basis for adequate storage conditions of MCCII based pellets. PMID:24950003

  1. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate.

    PubMed

    Krueger, Cornelia; Thommes, Markus; Kleinebudde, Peter

    2014-10-01

    Microcrystalline cellulose II (MCC II(1)) is a polymorph of commonly used MCC I; in 2010 it was introduced as new pelletization aid in wet-extrusion/spheronization leading to fast disintegrating pellets. Previous investigations suggested that the storage of the resulting pellets affect the disintegration behavior, the non-hygroscopic substance chloramphenicol that showed no polymorphism or hydrate formation due to relative humidity was used for the investigations. Therefore, theophylline-monohydrate that can dehydrate during storage, but also during manufacturing and drying was used for this study to confirm the results of the previous study and give a more detailed overview of the influence of recrystallization of theophylline monohydrate on disintegration. Storage recommendations should be derived. MCC II-based pellets were prepared of binary mixtures containing 10%, 20% or 50% MCCII as pelletization aid and theophylline-monohydrate as API. These pellets were stored at different relative humidity (0-97%rH; 20°C); the influence on their disintegration and drug release was investigated. The storage conditions had an impact on pellet disintegration. Low relative humidities (⩽ 40%rH) led to a conversion of the monohydrate to the anhydrous form. Newly grown crystals formed a kind of network around the pellet and inhibited the disintegration. High relative humidity (>80%rh) affected the disintegration caused by changes in the MCCII as already seen in the previous study. Due to the changed disintegration behavior also the drug release and release kinetic changed. Therefore, for theophylline containing pellets a storage humidity of 55%rH to 80%rH (20°C) is recommended. All in all, these investigations substantiate the knowledge of MCCII-based pellets providing a better basis for adequate storage conditions of MCCII based pellets.

  2. A methodology to assess the radionuclide migration parameters through bentonite-sand backfill in a short experimental duration

    SciTech Connect

    Gurumoorthy, C.; Kusakabe, O.

    2007-07-01

    Bentonite-Sand Backfill is a part of Engineered Barrier System (EBS) widely used in a Near Surface Disposal Facility (NSDF) to delay migration of radionuclides from the disposed nuclear waste in a geo environment. Laboratory migration experiments have been conducted to understand the advection/diffusion mechanisms of various radionuclides through backfill and to evaluate their migration rates in order to assess the performance of EBS. Migration through backfill is an extremely slow process and the experiments are time consuming. Also, these experiments have limitations to simulate the field stress conditions. Various researchers have experienced the advantages of centrifuge modeling technique to model contaminant transport problems of geo-environment. However, no such studies have been carried out adopting this technique to model the behaviour of bentonite-sand mixture as backfill in NSDF. An attempt has been made in the present study to investigate the validity of this technique to carry out such studies. Significance of geotechnical centrifuge modeling to simulate the prototype radionuclide migration mechanisms through backfill is highlighted. This paper presents the dimensional analysis of various scale factors to construct a physical model for centrifuge tests to monitor online the migration phenomena of radionuclides through bentonite-sand mixture. Studies reveal the feasibility of the technique to evaluate the migration parameters in a short experimental duration. Such studies help in improving EBS design and assessing the long-term performance of EBS in NSDF. (authors)

  3. Screening of binders for pelletization of CaO-based sorbents for CO{sub 2} capture

    SciTech Connect

    Vasilije Manovic; Edward J. Anthony

    2009-09-15

    CaO-based CO{sub 2} looping cycle technology is a promising method for separation of CO{sub 2} from flue gas and syngas at high temperatures. The process of CO{sub 2} capture is expected to take place in fluidized-bed combustion (FBC) systems, which implies significant attrition and elutriation of the solid sorbent. Hence, both reactivation of spent sorbent and preparation of modified CaO-based sorbent may be required to maximize the performance of the sorbent. We present initial results on the screening of suitable binders for pelletization. Two types of bentonite (Na- and Ca-bentonite) and four types of commercial calcium aluminate cements (CA-14, CA-25, Secar 51, and Secar 80) were investigated here, with a primary focus of maintaining a high CO{sub 2}-capture capacity over 30-35 cycles. The tests were carried out using a thermogravimetric analyzer (TGA), and the results showed that the presence of bentonites led to faster decay in activity as a result of the formation of calcium-silica compounds with low melting points, which leads to enhanced sintering. This is confirmed by scanning electron microscopy (SEM) and also X-ray diffraction (XRD), which showed the presence of spurrite (Ca{sub 5}(SiO{sub 4}){sub 2}CO{sub 3}) as the dominant compound in the pellet after this series of cycles. Better results were obtained with no binder, i.e., by hydration of lime, where Ca(OH){sub 2} plays the role of the binder. Promising results were obtained also with calcium aluminate cements, where no effect of sintering because of the presence of these binders was noticed. Thus, on the basis of this study, the use of calcium aluminate cements for pelletization of CaO-based sorbent is recommended. 39 refs., 9 figs., 2 tabs.

  4. Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment.

    PubMed

    Bose, A; Elyagoby, A; Wong, T W

    2014-07-01

    In situ coating of 5-fluorouracil pellets by ethylcellulose and pectin powder mixture (8:3 weight ratio) in capsule at simulated gastrointestinal media provides colon-specific drug release in vitro. This study probes into pharmacodynamic and pharmacokinetic profiles of intra-capsular pellets coated in vivo in rats with reference to their site-specific drug release outcomes. The pellets were prepared by extrusion-spheronization technique. In vitro drug content, drug release, in vivo pharmacokinetics, local colonic drug content, tumor, aberrant crypt foci, systemic hematology and clinical chemistry profiles of coated and uncoated pellets were examined against unprocessed drug. In vivo pellet coating led to reduced drug bioavailability and enhanced drug accumulation at colon (179.13 μg 5-FU/g rat colon content vs 4.66 μg/g of conventional in vitro film-coated pellets at 15 mg/kg dose). The in vivo coated pellets reduced tumor number and size, through reforming tubular epithelium with basement membrane and restricting expression of cancer from adenoma to adenocarcinoma. Unlike uncoated pellets and unprocessed drug, the coated pellets eliminated aberrant crypt foci which represented a putative preneoplastic lesion in colon cancer. They did not inflict additional systemic toxicity. In vivo pellet coating to orally target 5-fluorouracil delivery at cancerous colon is a feasible therapeutic treatment approach.

  5. Pellet fueling development at ORNL

    SciTech Connect

    Combs, S.K.; Milora, S.L.; Foster, C.A.; Schuresko, D.D.; Foust, C.R.; Simmons, D.W.; Beard, D.S.

    1986-09-01

    Advanced plasma fueling systems for magnetic confinement devices are being developed at the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets at speeds in the range of 1-2 km/s and higher. Two specific concepts are under development: (1) high-speed pneumatic acceleration; and (2) mechanical (centrifugal) acceleration. Both approaches are being pursued to meet the projected pellet size and delivery rates for major near-term plasma confinement devices, such as the Tokamak Fusion Test Reactor (TFTR), Tore Supra, the Joint European Torus (JET), JT-60, and Doublet III-D (DIII-D), as well as future applications. In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of the 2-km/s range already attained with pneumatic injectors and has embarked on a development program designed to explore the feasibility of fabricating and accelerating tritium pellets. This paper describes these ongoing activities.

  6. Temperature influence on structural changes of foundry bentonites

    NASA Astrophysics Data System (ADS)

    Holtzer, Mariusz; Bobrowski, Artur; Żymankowska-Kumon, Sylwia

    2011-10-01

    The results of investigations of three calcium bentonites, activated by sodium carbonate, applied in the foundry industry as binding material for moulding sands, subjected to the influence of high temperatures - are presented in the paper. Investigations were performed by the thermal analysis (TG) method, the infrared spectroscopy (FTIR) method and the modern Cu(II)-TET complex method (used for the determination of the montmorillonite content in bentonite samples). The occurrence of the dehydration process and two-stage dehydroxylation process was confirmed only for bentonite no. 2. This probably indicates that cis- and trans-isomers are present in the octahedric bentonite structure. Tests were performed at temperatures: 500, 550, 700, 900, 1000, 1100, 1200 °C.

  7. Evaluation of reclaimed abandoned bentonite mine lands

    SciTech Connect

    Edinger, K.D.; Schuman, G.E.; Vance, G.F.

    1999-07-01

    In 1985, the Abandoned Mined Land Division of the Wyoming Department of Environmental Quality began reclamation of 4,148 ha of abandoned bentonite mined lands. Calcium amendments and sawmill wood wastes were applied to the regraded spoils to enhance water infiltration, displacement of Na on the clay spoil, and leaching of the displaced Na and other soluble salts. Revegetation of these lands was generally successful, but after several years small areas (0.1--0.2 ha) began to show signs of vegetation die-back and to prescribe corrective treatment options. A randomized block design was imposed on study areas near Upton, Colony, and Greybull, Wyoming to characterize spoil chemical properties of good, moderate, and dead vegetation zones, which were subjectively delineated by visual vegetation cover and density differences. Spoil analyses indicated exchangeable-sodium (Na) concentrations were high and the dead vegetation zones exhibited exchangeable-sodium-percentages (ESP) above 50%, while surrounding good vegetation zones exhibited ESP values <10%. This coupled with low soluble-Na concentrations (<2 cmol/kg) suggests insufficient calcium (Ca) amendments were initially applied to ameliorate the sodic conditions of the spoil. The sampling design used to determine Ca amendment rates, which consisted of a composite of 5 spoil cores taken from each 0.8 ha area, was apparently insufficient to account for the highly heterogeneous spoil material that occurred throughout these abandoned bentonite reclamation sites. To revegetate these small degraded sites, additional Ca amendment would be necessary and reseeding would be required. However, the authors recommend further monitoring of the affected sites to determine if unfavorable conditions continue to degrade the reclaimed landscape before any attempt is made to rehabilitate the affected sites. If the degraded sites are stable, further Remediation efforts are not warranted because small areas of little or no vegetation are

  8. Lot A2 test, THC modelling of the bentonite buffer

    NASA Astrophysics Data System (ADS)

    Itälä, Aku; Olin, Markus; Lehikoinen, Jarmo

    Finnish spent nuclear fuel is planned to be disposed of deep in the crystalline bedrock of the Olkiluoto island. In such a repository, the role of the bentonite buffer is considered to be central. The initially unsaturated bentonite emplaced around a spent-fuel canister will become fully saturated by the groundwater from the host rock. In order to assess the long-term safety of a deep repository, it is essential to determine how temperature influences the chemical stability of bentonite. The aim of this study was to achieve an improved understanding of the factors governing the thermo-hydro-chemical evolution of the bentonite buffer subject to heat generation from the disposed fuel and in contact with a highly permeable rock fracture intersecting a canister deposition hole. TOUGHREACT was used to model a test known as the long-term test of buffer material adverse-2, which was conducted at the Äspö hard rock laboratory in Sweden. The results on the evolution of cation-exchange equilibria, bentonite porewater chemistry, mineralogy, and saturation of the buffer are presented and discussed. The calculated model results show similarity to the experimental results. In particular, the spatial differences in the saturation and porewater chemistry of the bentonite buffer were clearly visible in the model.

  9. Bentonite-derived high-temperature structural materials

    NASA Astrophysics Data System (ADS)

    Delixiati, Ailipati

    This thesis provides new information that is relevant to the science and applications of hot-pressed bentonite and hot-pressed organobentonite, which are emerging high-temperature structural materials. The hot pressing involves no binder. The hardness, coefficient of friction, wear resistance and scratch resistance are greater for hot-pressed bentonite than hot-pressed organobentonite. This means that the resistance to strain-induced damage is superior for hot-pressed bentonite. Hot-pressed organobentonite exhibits a degree of lubricity. The modulus is higher for hot-pressed organobentonite than hot-pressed bentonite. The energy dissipation, deformability and degree of reversibility of the deformation are similar for hot-pressed bentonite and hot-pressed organobentonite. The values of the modulus and hardness of hot-pressed bentonite and hot-pressed organobentonite are lower than those of alumina, but are higher than those of polycrystalline graphite. The energy dissipation and deformability of hot-pressed bentonite or hot-pressed organobentonite are higher than those of alumina, but are lower than those of polycrystalline graphite. The values of the coefficient of friction of hot-pressed bentonite and hot-pressed organobentonite are higher than those of Inconel and stainless steel, and are much higher than that of polycrystalline graphite. The wear resistance of hot-pressed bentonite is similar to that of Inconel and stainless steel. The wear resistance of hot-pressed organobentonite is inferior to these, but is superior to that of polycrystalline graphite. The temperature rise upon friction/wear for hot-pressed bentonite and hot-pressed organobentonite is lower than that of Inconel, but is similar to those of stainless steel and is higher than that of polycrystalline graphite. The through-thickness relative dielectric constant is essentially equal (9) for hot-pressed bentonite and hot-pressed organobentonite. Both through-thickness and in-plane resistivities are

  10. Lactation performance and feeding behavior of dairy cows supplemented via automatic feeders with soy hulls or barley based pellets.

    PubMed

    Miron, J; Nikbachat, M; Zenou, A; Ben-Ghedalia, D; Solomon, R; Shoshani, E; Halachmi, I; Livshin, N; Antler, A; Maltz, E

    2004-11-01

    The potential of soy hulls to replace barley grain in pellets supplemented to lactating cows was measured in automatic concentrate feeders (ACF). Thirty-six cows were divided into 2 equal groups and fed 1 of the 2 experimental pellet supplements individually for 7 wk. All cows were group-fed a basic mixture along the feeding lane (~64% of dietary DM) plus a pelleted additive containing 50% barley or soy hulls as barley replacer, fed individually to each cow via the ACF in 6 feeding windows. Extent and rate of in vitro DM digestibility were similar for both types of pellets; however, NDF content and digestibility were higher in the soy hulls pellets. Average number of rewarded cow visits at the ACF, pellets intake per meal, and accumulated intake of pellets (8.64 kg/d DM) were similar in the 2 experimental groups. Most pellets were consumed during day and night in the first 2 h after feeding windows were opened. Total visits per day in the ACF and the maximal interval between visits were similar for the 2 pellets, indicating similar attractiveness to the cow. Predicted intake of the basic mixture was similar in both groups (14.8 to 15.1 kg of DM/d). Higher milk fat content was observed in the soy hulls-fed cows, whereas higher milk protein content was found in the barley-fed cows. Milk yield was similar in both groups. Data suggest that replacement of barley pellets with soy hulls pellets may slightly enhance milk fat while reducing milk protein production for dairy herds using automatic milking systems.

  11. Model for pneumatic pellet injection

    SciTech Connect

    Hogan, J.T.; Milora, S.L.; Schuresko, D.D.

    1983-07-01

    A hydrodynamic code has been developed to model the performance of pneumatic pellet injection systems. The code describes one dimensional, unsteady compressible gas dynamics, including gas friction and heat transfer to the walls in a system with variable area. The mass, momentum, and energy equations are solved with an iterated Lax-Wendroff scheme with additional numerical viscosity. The code is described and comparisons with experimental data are presented.

  12. Fuel pellet and process for making it by shaping under pressure an organic fibrous material

    SciTech Connect

    Gunnerman, R.W.

    1981-12-29

    An organic fibrous material such as bagasse, tree bark, sawdust, straw, peat moss, tree twigs and the like is mixed with a waxy material which is compatible with natural waxy substances contained by the organic fibrous material. The mixture is shaped into a substantially symmetrical pellet having a density of at least about 62.5 pounds per cubic foot with a maximum dimension in section of one-half inch or less in a pelletizing mill under an applied pressure whereby the natural waxy substance contained by the organic fibrous material are exuded to the surface of the resulting pellet and mixed with the added waxy materials to form a substantially uniform continuous coating over the surfaces of an organic fibrous core. The coated pellet releases more energy at a faster rate than the uncoated core when burned alone.

  13. Modeling interaction of deep groundwaters with bentonite and radionuclide speciation

    SciTech Connect

    Wanner, H.

    1987-12-01

    Based on available experimental data on the interaction of sodium bentonite and groundwater, a model has been developed that represents a means of extrapolation from laboratory data to the conditions in compacted bentonite. The basic reactions between sodium bentonite and groundwater are described by an ion exchange model for sodium, potassium, magnesium, and calcium. The model also assumes equilibrium with calcite and quartz. The calculations are carried out for two types of granitic groundwater: the Swiss reference groundwater (ionic strength I = 0.24 M) and the standard Swedish groundwater (I = 0.0044 M). It is calculated that the pore water of compacted sodium bentonite will have a pH of 9.7 and a carbonate activity of 8 x 10/sup -4/ M if the dry bentonite is saturated with Swiss reference groundwater; it will have a pH near 10.2 and )CO/sub 3//sup 2-/) = 8 x 10/sup -3/ M for standard Swedish groundwater. The long-term situation, which is important for nuclear waste disposal, is modeled by the assumption that the near field of a radioactive waste repository behaves like a mixing tank. It is calculated that sodium bentonite will be slowly converted to calcium bentonite over a long period. The model is used to calculate short- and long-term maximum solubilities of thorium, uranium, neptunium, plutonium, americium, and technetium in the near-field pore water of a potential Swiss nuclear waste repository. The redox potential in the near field is assumed to be controlled by the corrosion products of the iron canister.

  14. [Effect of pretreatment by solid-state fermentation of sawdust on the pelletization and pellet's properties].

    PubMed

    Guo, Jingjing; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihong; Xiao, Zhihua; Jiang, Longbo; Zeng, Guangming

    2015-10-01

    We pretreated sawdust (Castanopsis fissa Rehd.et Wils) by solid state fermentation (SSF) with Phanerochaete chrysosporium, and then compressed it into pellets with the moisture content of 15% and the pressure of 98 MPa, to solve the problem of low density, low Meyer hardness, high water uptake, and short storage period of pellet in the woody pellet industry. We studied the effects of fermentation time on pelletization and pellets's characteristics (including energy consumption, density, Meyer hardness, and hydrophobicity). SSF affected the heating values of pellet. Compared with fresh sawdust, SSF consumed more energy at the maximal value by 6.98% but saved extrusion energy by 32.19% at the maximum. Meanwhile, SSF could improve the density, Meyer hardness and hydrophobicity of pellet. Pellet made of sawdust pretreated by SSF for 48 d had best quality, beneficial for long-term transportation and storage of pellets. PMID:26964334

  15. [Effect of pretreatment by solid-state fermentation of sawdust on the pelletization and pellet's properties].

    PubMed

    Guo, Jingjing; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihong; Xiao, Zhihua; Jiang, Longbo; Zeng, Guangming

    2015-10-01

    We pretreated sawdust (Castanopsis fissa Rehd.et Wils) by solid state fermentation (SSF) with Phanerochaete chrysosporium, and then compressed it into pellets with the moisture content of 15% and the pressure of 98 MPa, to solve the problem of low density, low Meyer hardness, high water uptake, and short storage period of pellet in the woody pellet industry. We studied the effects of fermentation time on pelletization and pellets's characteristics (including energy consumption, density, Meyer hardness, and hydrophobicity). SSF affected the heating values of pellet. Compared with fresh sawdust, SSF consumed more energy at the maximal value by 6.98% but saved extrusion energy by 32.19% at the maximum. Meanwhile, SSF could improve the density, Meyer hardness and hydrophobicity of pellet. Pellet made of sawdust pretreated by SSF for 48 d had best quality, beneficial for long-term transportation and storage of pellets.

  16. Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites.

    PubMed

    Hernández, María C; Suárez, N; Martínez, Luis A; Feijoo, José L; Lo Mónaco, Salvador; Salazar, Norkys

    2008-05-01

    We investigate the effects of clay proportion and nanoscale dispersion in the dielectric response of poly(vinyl alcohol)-bentonite nanocomposites. The dielectric study was performed using the thermally stimulated depolarization current technique, covering the temperature range of the secondary and high-temperature relaxation processes. Important changes in the secondary relaxations are observed at low clay contents in comparison with neat poly(vinyl alcohol) (PVA). The high-temperature processes show a complex peak, which is a combination of the glass-rubber transition and the space-charge relaxations. The analysis of these processes shows the existence of two segmental relaxations for the nanocomposites. Dielectric results were complemented by calorimetric experiments using differential scanning calorimetry. Morphologic characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM and XRD results show a mixture of intercalated and exfoliated clay dispersion in a trend that promotes the exfoliated phase as the bentonite content diminishes. Dielectric and morphological results indicate the existence of polymer-clay interactions through the formation of hydrogen bounds and promoted by the exfoliated dispersion of the clay. These interactions affect not only the segmental dynamics, but also the secondary local dynamics of PVA. PMID:18643091

  17. Pellet imaging techniques in the ASDEX tokamak

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-11-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.

  18. Porosity investigation of compacted bentonite using XRD profile modeling

    NASA Astrophysics Data System (ADS)

    Holmboe, Michael; Wold, Susanna; Jonsson, Mats

    2012-02-01

    Many countries intend to use compacted bentonite as a barrier in their deep geological repositories for nuclear waste. In order to describe and predict hydraulic conductivity or radionuclide transport through the bentonite barrier, fundamental understanding of the microstructure of compacted bentonite is needed. This study examined the interlayer swelling and overall microstructure of Wyoming Bentonite MX-80 and the corresponding homo-ionic Na + and Ca 2 + forms, using XRD with samples saturated under confined swelling conditions and free swelling conditions. For the samples saturated under confined conditions, the interparticle, or so-called free or external porosity was estimated by comparing the experimental interlayer distances obtained from one-dimensional XRD profile fitting against the maximum interlayer distances possible for the corresponding water content. The results showed that interlayer porosity dominated total porosity, irrespective of water content, and that the interparticle porosity was lower than previously reported in the literature. At compactions relevant for the saturated bentonite barrier (1.4-1.8 g/cm 3), the interparticle porosity was estimated to ≤ 3%.

  19. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    NASA Astrophysics Data System (ADS)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  20. Obtainment of pellets using the standardized liquid extract of Brosimum gaudichaudii Trécul (Moraceae)

    PubMed Central

    Filho, Omar Paulino Silva; Oliveira, Leandra Almeida Ribeiro; Martins, Frederico Severino; Borges, Leonardo Luiz; de Freitas, Osvaldo; da Conceição, Edemilson Cardoso

    2015-01-01

    Background: The standardized liquid extract of Brosimum gaudichaudii Trécul is an alternative for the treatment of vitiligo. There is a shortage of solid oral dosage forms developed from standardized extracts of this plant specie. Objective: This study is aimed to obtain pellets with a standardized liquid extract of B. gaudichaudii. Results: The standardized liquid extract of B. gaudichaudii was obtained through maceration and percolation with a 55% ethanol-water solution (v/v). Pellets were obtained through a mixture of extract of 500 g of B. gaudichaudii standardized extract, 500 g of microcrystalline cellulose PH101 and 10 g of hydroxypropyl methylcellulose K100. The pellets obtained presented a homogeneity yield of 92%, aspect ratio of 1.16 ± 0.65, shape fator eR of 0.35 ± 0.09 and Feret diammeter of 0.87 ± 0.27. These pellets were coated with a suspension composed of titanium dioxide, aluminum red lacquer, ethyl cellulose, talc and magnesium stearate. Before the photostability test, the uncoated pellets showed psoralen content equal to 0.13 ± 0.01% and to the 5-MOP was 1.40 ± 0.27%. After exposure to one level (3 J.cm-2) of UVB irradiation the uncoated pellets presented a degradation of 2.16% of psoralen and 8.1% of 5-MOP. After exposure to three levels (10, 20 and 30 J.cm-2) of UVA irradiation the uncoated pellets exhibited photodegradation of 9.78, 17.64, 24.21% of psoralen and 18.95, 23.68, 28.48% for 5-MOP. The coated pellets where unaffected after photostability test. Conclusion: Pellets were obtained with the standardized liquid extract of B. gaudichaudii and coating is a technological alternative to ensure the stability of the formula. PMID:25709229

  1. Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation.

    PubMed

    Beccari, M; Majone, M; Papini, M P; Torrisi, L

    2001-01-01

    Previous work on the anaerobic treatment of olive oil mill effluents (OME) have shown: (a) lipids, even if more easily degraded than phenols, were potentially capable of inhibiting methanogenesis more strongly; (b) a pretreatment based on addition of Ca(OH)2 and bentonite removed lipids almost quantitatively; (c) preliminary biotreatability tests performed on the pretreated OME showed high bioconversion into methane at very low dilutions ratios, especially when the mixture (OME, Ca(OH)2 and bentonite) was fed to the biological treatment without providing an intermediate phase separation. This paper was directed towards two main aims: (a) to optimize pretreatment: the best results in terms of methane production were obtained by addition of Ca(OH)2 up to pH 6.5 and of 10 g L-1 of bentonite; (b) to evaluate the enhancement of anaerobic treatability of OME pretreated under optimized conditions in a lab-scale continuous methanogenic reactor fed with the substrate without intermediate solid/liquid separation: very satisfactory performances were obtained (at an organic load of 8.2 kg COD m-3 d-1 and at a dilution ratio of 1:1.5 total COD removal was 91%, biogas production was 0.80 g CH4 (as COD)/g tot. COD, lipids removal was 98%, phenols removal was 63%). The results confirm the double role played by bentonite (adsorption of the inhibiting substances and release of the adsorbed biodegradable matter in the methanogenic reactor).

  2. Production of inorganic pellet binders from fly-ash. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. Work in the first quarter concentrated on obtaining samples of all of the materials to be used (fly-ash, and magnetite ore), training of personnel on pelletization procedures, obtaining and setting up pelletization apparatus in the MTU laboratories, and running pelletization experiments with bentonite binder to establish a baseline for comparison with the fly-ash binders to be made.

  3. Evaluation of blends tincal waste, volcanic tuff, bentonite and fly ash for use as a cement admixture.

    PubMed

    Abali, Y; Bayca, S U; Targan, S

    2006-04-17

    The evaluation of blends tincal waste (TW), fly ash (FA), bentonite (BE), volcanic tuff (VT) for use as a cement admixture was investigated. The properties examined include setting time, expansion, water requirement, specific surface and compressive strength of cement mixtures. The results revealed that the early compressive strength decrease with increasing tincal waste, due to tincal waste increasing initial setting time of the cement. The tincal waste and volcanic tuff of cement mixtures increased and there was reduction in compressive strength. The more the tincal waste increased the greater retardation there was initial setting time this may be attributed to containing high amount B2O3 and MgO content. The tincal waste and fly ash increased with expansion increased. Water requirement increased as the Blaine fineness of the cement mixtures increased. The results obtained were compared with standards and five batches were advised as suitable for the standard. PMID:16314042

  4. Pellet injector development and experiments at ORNL

    SciTech Connect

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-11-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER).

  5. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.

    2000-01-01

    The Dnestr Basin of Podolia, Ukraine, is an epicratonic basin consisting of neritic carbonate and calcareous mudstone facies including a nearly complete Silurian sequence ranging from late Llandovery to late Pridoli in age. The Silurian section has served as a standard for regional and interregional studies as a consequence of its well-documented macro- and microfaunal assemblages. Approximately 24 mid- to Late Silurian K-bentonites are present in this succession, and their lateral persistence has aided in establishing regional correlations. The K-bentonites range from 1 to 40 cm in thickness and occur in the Bagovitsa (late Wenlock), Malinovtsy (Ludlow) and Skala (Pridoli) Formations. Discrimination diagrams based on immobile trace elements together with rare earth element data suggest the K-bentonites had a volcanic origin in a collision margin setting related to subduction. Thickness and stratigraphic distribution considerations are consistent with a source area in the Rheic Ocean.

  6. Simulation of reduction of iron-oxide-carbon composite pellets in a rotary hearth furnace

    NASA Astrophysics Data System (ADS)

    Halder, Sabuj

    The primary motivation of this work is to evaluate a new alternative ironmaking process which involves the combination of a Rotary Hearth Furnace (RHF) with an iron bath smelter. This work is concerned primarily, with the productivity of the RHF. It is known that the reduction in the RHF is controlled by chemical kinetics of the carbon oxidation and wustite reduction reactions as well as by heat transfer to the pellet surface and within the pellet. It is heat transfer to the pellet which limits the number of layers of pellets in the pellet bed in the RHF and thus, the overall productivity. Different types of carbon like graphite, coal-char and wood charcoal were examined. Part of the research was to investigate the chemical kinetics by de-coupling it from the influence of heat and mass transfer. This was accomplished by carrying out reduction experiments using small iron-oxide-carbon powder composite mixtures. The reaction rate constants were determined by fitting the experimental mass loss with a mixed reaction model. This model accounts for the carbon oxidation by CO2 and wustite reduction by CO, which are the primary rate controlling surface-chemical reactions in the composite system. The reaction rate constants have been obtained using wustite-coal-char powder mixtures and wustite-wood-charcoal mixtures. The wustite for these mixtures was obtained from two iron-oxide sources: artificial porous analytical hematite (PAH) and hematite ore tailings. In the next phase of this study, larger scale experiments were conducted in a RHF simulator using spherical composite pellets. Measurement of the reaction rates was accomplished using off-gas analysis. Different combinations of raw materials for the pellets were investigated. These included artificial ferric oxide as well as naturally existing hematite and taconite ores. Graphite, coal-char and wood-charcoal were the reductants. Experiments were conducted using a single layer, a double layer and a triple layer of

  7. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  8. Study of the influence of alkalizing components on matrix pellets prepared by extrusion/spheronization.

    PubMed

    Hamedelniel, Elnazeer I; Bajdik, János; Kása, Péter; Pintye-Hódi, Klára

    2012-01-01

    The aim of this study was to investigate the effects of alkalizing components and the nature of the wetting liquid on the properties of matrix pellets prepared by extrusion and spheronization. Atenolol was used as an active pharmaceutical ingredient, ethylcellulose as a matrix former, microcrystalline cellulose as a filler and disodium phosphate anhydrous and trisodium phosphate dodecahydrate as alkalizing materials. Water and a water-ethanol mixture served as granulation liquids. Pellet formation was evaluated via mechanical, dissolution and morphological studies. In order to enhance the dissolution of Atenolol from the pellets, alkalizing components were used and the influence of these components on the pH was tested. Investigations of the breaking hardness, the morphology and the dissolution revealed that the pellets containing trisodium phosphate dodecahydrate and prepared with a higher amount of water as binding liquid displayed the best physico-chemical parameters and uniform dissolution. In in vitro experiments, the dissolution release complied with the texture of the pellets and the effect of pH. The pellets have suitable shape and very good hardness for the coating process and are appropriate for subsequent in vivo experiments. PMID:21067337

  9. Numerical simulation of alteration of sodium bentonite by diffusion of ionic groundwater components

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1987-12-01

    Experiments measuring the movement of trace amounts of radionuclides through compacted bentonite have typically used unaltered bentonite. Models based on experiments such as these may not lead to accurate predictions of the migration through altered or partially altered bentonite of radionuclides that undergo ion exchange. To address this problem, we have modified an existing transport code to include ion exchange and aqueous complexation reactions. The code is thus able to simulate the diffusion of major ionic groundwater components through bentonite and reactions between the bentonite and groundwater. Numerical simulations have been made to investigate the conversion of sodium bentonite to calcium bentonite for a reference groundwater characteristic of deep granitic formations. 20 refs., 2 figs., 2 tabs.

  10. Pellet Injection into MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Wyman, M. D.; Chapman, B. E.; Craig, D.; Ennis, D. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reardon, J. C.; Sarff, J. S.; Combs, S. K.; Baylor, L. R.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Rasmussen, D. A.; Wilgen, J. B.; Brower, D. L.; Ding, W. X.

    2002-11-01

    A four-barrel cryogenic pellet injector, designed and built by Oak Ridge National Laboratory, has been installed on MST. The injector is a pipe gun utilizing high-pressure hydrogen gas for acceleration of pellets. Presently, the two barrels in use accommodate deuterium pellets with diameters of 1.0 mm and 1.8 mm and lengths ranging from 1.5 mm to 2.7 mm which are injected radially into MST. Pellet speeds of 1300 m/s have been achieved in initial experiments, and many pellets cross the plasma diameter without completely ablating. The pellets rapidly increase the central density and peak the density profile, something not possible with gas puffing alone. Pellet injection into improved-confinement plasmas has allowed the achievement of line-averaged densities 10-20% larger than the usual limit, above which edge-resonant MHD instability is triggered, and confinement is degraded. Mechanical punches will soon be installed to allow slower pellet speeds. Work supported by U.S.D.O.E.

  11. SAF line pellet gaging. [Secure Automated Fabrication

    SciTech Connect

    Jedlovec, D.R.; Bowen W.W.; Brown, R.L.

    1983-10-01

    Automated and remotely controlled pellet inspection operations will be utilized in the Secure Automated Fabrication (SAF) line. A prototypic pellet gage was designed and tested to verify conformance to the functions and requirements for measurement of diameter, surface flaws and weight-per-unit length.

  12. Diffusion of plutonium in compacted, brine-saturated bentonite

    SciTech Connect

    Nowak, E.J.

    1984-01-01

    Diffusivities were measured for plutonium in brine-saturated compacted Wyoming bentonite. Complexities of the solution chemistry and retardation of transuranics necessitate diffusion studies under conditions that are specific for repository host rock types, in this case salt. Diffusivity values in the range of 10/sup -15/ to 10/sup -14/ m/sup 2//s were obtained for bentonite at a packing density of 1800 kg/m/sup 3/. That density was obtained by compaction at 15 MPa, a typical lithostatic pressure in a repository in salt at 650 m depth. Even a 0.05-m (2 inch) thick bentonite-containing engineered barrier could decrease radionuclide release rates by approximately 4 orders-of-magnitude if the diffusivity for that radionuclide were in the observed range of 10/sup -15/ to 10/sup -14/ m/sup 2//s. These results confirm the effectiveness of uncompacted bentonite-containing materials as engineered barriers for radioactive waste isolation. 23 references, 2 figures, 1 table.

  13. Sodium Bentonite-Based Fire Retardant Coatings Containing Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium bentonite (SB) gel and foam coatings were tested for their ability to suppress the rate of heat increase at the surface of commercial lap siding. Starch was added to some treatments to determine whether it stabilized the coating and prevented vertical slumping. A commercial fire protection ge...

  14. Effect of bentonite on the fertility of an ordinary chernozem

    NASA Astrophysics Data System (ADS)

    Agafonov, E. V.; Khovanskii, M. V.

    2014-05-01

    The effect of bentonite clay on the main fertility parameters of an ordinary chernozem has been revealed. The maximum contents of nutrients in the soil have been obtained after the application of bentonite at rates of 7.5 t/ha for nitrate nitrogen and mobile potassium and 10.0 t/ha for available phosphorus. At the application of bentonite at rates of 10.0-15.0 t/ha, the content of agronomically valuable soil aggregates resistant to mechanical impact has increased by 2.7%, while that of water-stable aggregates has increased by 6.8%. The portion of water-stable microaggregates has increased, which has decreased the degree of dispersion. Because of the increased content of fine-silt and clay particles, the portion of physical clay in the soil has increased by 3.13%, and the portion of physical sand has decreased. The optimum application rate of bentonite (7.5 t/ha) has been found, which ensures an increase in the yield of sorghum by 16.3%. Its effect was insignificantly lower than that of mineral fertilizers.

  15. Effect of slag on shear strength of calcium bentonite

    SciTech Connect

    Khera, R.P.; So, L.T.

    1997-12-31

    To prevent lateral migration of liquid pollutants in groundwater, relatively impervious vertical barriers are built around waste disposal sites. The slurry trench technique is the most commonly used construction method. The two common types of slurry walls are soil bentonite (SB) and cement bentonite (CB) walls. This study was undertaken to determine the strength of calcium bentonite as affected by cement and slag. Test specimens were prepared with 15% calcium bentonite, 5% to 15% cement, and 7.5% to 10% slag. Undrained triaxial compression tests and unconfined compression tests were performed on different mixes. These test results show that regardless of the proportion of cement and slag, the peak strength occurred at strain equal to or less than 1%. The strength essentially reached its ultimate value at about 2% strain and there was little change in strength beyond this point. The strength of specimens increased as the proportion of slag to cement increased. Pore water pressure at peak strength was positive. With increasing strain and increasing proportion of slag the pore water pressure reduced in magnitude. Specimens which were not subjected to vacuum during preparation showed extremely high negative pore pressures and higher strength.

  16. [Controlled release of pseudoephedrine HCl from pellets].

    PubMed

    Vertommen, J

    1997-01-01

    This study describes the development work on a dosage form, which should release the drug pseudoephedrine HCl over twelve hours. Pellets were chosen as the dosage form. The pellets contained 20, respectively, 45 percent pseudoephedrine HCL and were produced using a high shear mixer-granulator. These pellets were coated in a fluidized bed and in a high shear mixer-granulator equipped with a microwave drying installation. The results of the experiments indicate that it is possible to produce pellets in a high shear mixer-granulator. Strong pellets with a narrow size distribution were obtained. A high shear mixer-granulator appears, therefore, to be a valuable alternative to the more commonly used pellet-forming technique of extrusion-sphere formation. The pellets could be coated as well in a fluidized bed as in a high shear mixer-granulator equipped with a microwave drying installation. A major advantage of the high shear mixer-granulator equipped with a microwave drying installation is the possibility to perform several unit operations such as mixing, pellet formation drying, and coating in one piece of equipment. With respect to the requirement of getting a release of pseudoephedrine HCl over twelve hours, the pellets containing 20 percent pseudoephedrine HCl fulfilled this requirement. For pellets containing 45 percent pseudoephedrine HCl it appears to be hard to obtain a sufficient delay in release using the commonly used coating formulations. This can be attributed to the very good solubility of pseudoephedrine HCl in water. Optimization of the coating formulation by changing the nature and concentration of the plasticizer may solve the problem. PMID:9543819

  17. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  18. Alteration of bentonite when contacted with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Jinseok, K.; Jo, H. Y.; Yun, S. T.

    2014-12-01

    Deep saline formations overlaid by impermeable caprocks with a high sealing capacity are attractive CO2 storage reservoirs. Shales, which consist of mainly clay minerals, are potential caprocks for the CO2 storage reservoirs. The properties of clay minerals in shales may affect the sealing capacity of shales. In this study, changes in clay minerals' properties when contacted with supercritical (SC) CO2 at various conditions were investigated. Bentonite, whichis composed of primarily montmorillonite, was used as the clay material in this study. Batch reactor tests on wet bentonite samples in the presence of SC CO2 with or without aqueous phases were conducted at high pressure (12 MPa) and moderate temperature (50 oC) conditions for a week. Results show that the bentonite samples obtained from the tests with SC CO2 had less change in porosity than those obtained from the tests without SC CO2 (vacuum-drying) at a given reaction time, indicating that the bentonite samples dried in the presence of SC CO2 maintained their structure. These results suggest that CO2 molecules can diffuse into interlayer of montmorillonite, which is a primary mineral of bentonite, and form a single CO2 molecule layer or double CO2 molecule layers. The CO2 molecules can displace water molecules in the interlayer, resulting in maintaining the interlayer spacing when dehydration occurs. Noticeable changes in reacted bentonite samples obtained from the tests with an aqueous phase (NaCl, CaCl2, or sea water) are decreases in the fraction of plagioclase and pyrite and formation of carbonate minerals (i.e., calcite and dolomite) and halite. In addition, no significant exchanges of Na or Ca on the exchangeable complex of the montmorillonite in the presence of SC CO2 occurred, resulting in no significant changes in the swelling capacity of bentonite samples after reacting with SC CO2 in the presence of aqueous phases. These results might be attributed by the CO2 molecule layer, which prevents

  19. Effects of the injection grout Silica sol on bentonite

    NASA Astrophysics Data System (ADS)

    Holmboe, Michael; Wold, Susanna; Petterson, Torbjörn

    Silica sol, i.e., colloidal SiO 2, may be used as a low-pH injection grout for very fine fractures in the construction of deep geological repositories for radioactive waste in Sweden and in Finland. If the bentonite barrier encounters SiO 2-colloid particles under conditions favorable for aggregation, there is concern that it will modify the bentonite barrier at the bentonite/bedrock interface. In this study qualitative experiments were performed with mixed dispersions of SiO 2-colloids and bentonite or homo-ionic Na/Ca-montmorillonite. Samples were prepared at different colloid concentrations and treated under various conditions such as low and high ionic strength (0.3 M NaCl), as well as dehydration and redispersing. Free swelling and settling experiments were performed in order to qualitatively compare the conditions in which SiO 2-colloids affect the bulk/macro properties of bentonite. In order to study specific SiO 2-colloid/montmorillonite interactions and preferred type of initial aggregation, dilute dispersions of homo-ionic montmorillonite dispersions mixed with varying concentrations of SiO 2-colloids were prepared and selected samples were characterized by PCS, SEM/EDS, AFM and PXRD. The results from this study show that bentonite and montmorillonite particles can be modified by SiO 2-colloids when mixed in comparable amounts, due to dehydration or high ionic strength. Some indications for increased colloidal stability for the SiO 2-colloid modified clay particles were also found. From the AFM investigation it was found that initial attachment of the SiO 2-colloids in Na + dominated samples seemed to occur on the edges of the montmorillonite layers. In Ca 2+ dominated samples not subjected to excess NaCl, SiO 2-colloid sorption onto the faces of the montmorillonite layers was also found. In all, contact between the bentonite barrier and ungelled Silica sol should preferably be avoided.

  20. Looking Northeast Along Hallway between Pellet Plant and Oxide Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast Along Hallway between Pellet Plant and Oxide Building, including Virgin Hopper Bins - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  1. Potassium metasomatism and diffusion in Cretaceous K-bentonites from the disturbed belt, northwestern Montana and in the Middle Devonian Tioga K-bentonite, eastern USA

    SciTech Connect

    Altaner, S.P.

    1985-01-01

    This thesis presents X-ray diffraction, elemental K/Ar, and petrographic data of K-bentonites and enclosing shales from the Marias River Formation (Late Cretaceous) in the disturbed belt of Montana to determine the kind and extent of chemical exchange between bentonite beds and shale host rocks during K-bentonite formation. One 2.5 m thick K-bentonite bed and five thinner K-bentonite beds are zoned mineralogically and chemically, with illite- and potassium-rich upper and lower contacts and a smectite-rich potassium-poor middle. In all case, the formation of smectite-rich clay minerals appears to be due to a deficient supply of K and not lower temperatures. For K-bentonites that were originally vitric tuffs, K appears to be the only major element that is metasomatically derived, however, the exact source of K was not determined. I/S from the 2.5 m thick K-bentonite bed is zoned with respect to K/Ar age, with the contacts giving ages 3-4 m.y. older than the center. This difference in apparent age is interpreted to indicate that K transport in the bentonite was diffusion controlled. Solution of the coupled equations for chemical transport and reaction (illitization) for the 2.5 m thick bentonite yields a diffusion coefficient for K transport of about 5-8 x 10 cm/sec. Solutions assuming this value predict I/S zonation observed in thinner bentonite beds. The Tioga (Middle Devonian) K-bentonite, studied from outcrop localities in New York, Pennsylvania, Virginia. West Virginia, Indiana, and Illinois, shows a broader range in I/S layer composition and stacking order than reported in previous studies of this unit because this study examined rocks from a larger region and therefore from a wider range of thermal grades than previous studies.

  2. Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal.

    PubMed

    Dutta, Anirban; Singh, Neera

    2015-03-01

    Bentonite clay was modified using quaternary ammonium cations, viz. phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), trioctylmethylammonium (TOMA) [100 % of cation exchange capacity of clay], and stearylkonium (SK) [100 % (SK-I) and 250 % (SK-II) of cation exchange capacity of clay]. The organoclays were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning electron microscopy (SEM). Atrazine adsorption on modified clays was studied using a batch method. Bentonite clay was a poor adsorbent of atrazine as 9.4 % adsorption was observed at 1 μg mL(-1) atrazine concentration. Modification of clay by PTMA cation did not improve atrazine adsorption capacity. However, atrazine adsorption in HDTMA-, TOMA-, and SK-bentonites varied between 49 and 72.4 % and data fitted well to the Freundlich adsorption isotherm (R > 0.96). Adsorption of atrazine in organoclays was nonlinear and slope (1/n) values were <1. The product of Freundlich adsorption constants, K f(1/n) in HDTMA-, TOMA-, and SK-I-bentonites was 239.2, 302.4, and 256.6, respectively, while increasing the SK cation loading in the clay (SK-II) decreased atrazine adsorption [K f(1/n) - 196.4]. Desorption of atrazine from organoclays showed hysteresis and TOMA- and SK-I-bentonites were the best organoclays to retain the adsorbed atrazine. Organoclays showed better atrazine removal from wastewater than an aqueous solution. The synthesized organoclays may find application in soil and water decontamination and as a carrier for atrazine-controlled released formulations. PMID:25273519

  3. Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal.

    PubMed

    Dutta, Anirban; Singh, Neera

    2015-03-01

    Bentonite clay was modified using quaternary ammonium cations, viz. phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), trioctylmethylammonium (TOMA) [100 % of cation exchange capacity of clay], and stearylkonium (SK) [100 % (SK-I) and 250 % (SK-II) of cation exchange capacity of clay]. The organoclays were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning electron microscopy (SEM). Atrazine adsorption on modified clays was studied using a batch method. Bentonite clay was a poor adsorbent of atrazine as 9.4 % adsorption was observed at 1 μg mL(-1) atrazine concentration. Modification of clay by PTMA cation did not improve atrazine adsorption capacity. However, atrazine adsorption in HDTMA-, TOMA-, and SK-bentonites varied between 49 and 72.4 % and data fitted well to the Freundlich adsorption isotherm (R > 0.96). Adsorption of atrazine in organoclays was nonlinear and slope (1/n) values were <1. The product of Freundlich adsorption constants, K f(1/n) in HDTMA-, TOMA-, and SK-I-bentonites was 239.2, 302.4, and 256.6, respectively, while increasing the SK cation loading in the clay (SK-II) decreased atrazine adsorption [K f(1/n) - 196.4]. Desorption of atrazine from organoclays showed hysteresis and TOMA- and SK-I-bentonites were the best organoclays to retain the adsorbed atrazine. Organoclays showed better atrazine removal from wastewater than an aqueous solution. The synthesized organoclays may find application in soil and water decontamination and as a carrier for atrazine-controlled released formulations.

  4. Several textural properties of compacted and cation-exchanged bentonite

    NASA Astrophysics Data System (ADS)

    Montes-Hernandez, G.; Duplay, J.; Géraud, Y.; Martinez, L.

    2006-08-01

    One of the principal applications for bentonite is in drilling muds. Moreover it is widely used as a suspending and stabilizing agent, and as an adsorbent or clarifying agent, in many industries. Recently the bentonites have been proposed as engineered barriers for radioactive waste repository because these materials are supposed to build up a better impermeable zone around wastes by swelling. For these reasons, a textural characterization of bentonites in the laboratory is very important. The aim in this study was to estimate several textural properties of compacted and cation-exchanged bentonite by using Hg-porosimetry, N2-adsorption, water vapour adsorption, scanning electron microscopy (SEM) observations and environmental scanning electron microscopy-digital images analysis measurements. For that, bulk samples were mechanically compressed at atmospheric conditions by using a uniaxial system at four different pressures (21, 35, 49, and 63 MPa) in order to obtain four physical densities. On the other hand, the bulk samples of bentonite were treated separately with four concentrated solutions (1N concentration) of sodium, potassium, magnesium and calcium chlorides in order to obtain a homoionic interlayer cation in the clay phase. The results showed that the macro-porosity (porous size>50 nm) and eventually the mesoporosity (porous size 2 50 nm) are affected by the uniaxial compaction. In this case, a transformation of the shape of the macro-pores network from tube to crack was observed. On the other hand, the swelling potential and water content are governed by the relative humidity and by the nature of interlayer cation.

  5. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  6. Sequential use of bentonites and solar photocatalysis to treat winery wastewater.

    PubMed

    Rodríguez, Eva; Márquez, Gracia; Carpintero, Juan Carlos; Beltrán, Fernando J; Alvarez, Pedro

    2008-12-24

    The sequential use of low-cost adsorbent bentonites and solar photocatalysis to treat winery wastewater has been studied. Three commercial sodium-bentonites (MB-M, MB-G, and MB-P) and one calcium-bentonite (Bengel) were characterized and used in this study. These clay materials were useful to totally remove turbidity (90-100%) and, to a lesser extent, color, polyphenols (PPh), and soluble chemical oxygen demand (CODS) from winery wastewater. Both surface area and cation exchange capacity (CEC) of bentonite had a positive impact on treatment efficiency. The effect of pH on turbidity removal by bentonites was studied in the 3.5-12 pH range. The bentonites were capable of greatly removing turbidity from winery wastewater at pH 3.5-5.5, but removal efficiency decreased with pH increase beyond this range. Settling characteristics (i.e., sludge volume index (SVI) and settling rate) of bentonites were also studied. Best settling properties were observed for bentonite doses around 0.5 g/L. The reuse of bentonite for winery wastewater treatment was found not to be advisable as the turbidity and PPh removal efficiencies decreased with successive uses. The resulting wastewater after bentonite treatment was exposed to solar radiation at oxic conditions in the presence of Fe(III) and Fe(III)/H2O2 catalysts. Significant reductions of COD, total organic carbon (TOC), and PPh were achieved by these solar photocatalytic processes. PMID:19035643

  7. A centrifuge CO2 pellet cleaning system

    NASA Technical Reports Server (NTRS)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  8. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  9. A centrifuge CO2 pellet cleaning system

    NASA Astrophysics Data System (ADS)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-03-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  10. Coupled thermo-hydro-chemical models of swelling bentonites

    NASA Astrophysics Data System (ADS)

    Samper, Javier; Mon, Alba; Zheng, Liange; Montenegro, Luis; Naves, Acacia; Pisani, Bruno

    2014-05-01

    The disposal of radioactive waste in deep geological repositories is based on the multibarrier concept of retention of the waste by a combination of engineered and geological barriers. The engineered barrier system (EBS) includes the solid conditioned waste-form, the waste container, the buffer made of materials such as clay, grout or crushed rock that separate the waste package from the host rock and the tunnel linings and supports. The geological barrier supports the engineered system and provides stability over the long term during which time radioactive decay reduces the levels of radioactivity. The strong interplays among thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration, thermal and solute transport stages of the engineered barrier system (EBS) of a radioactive waste repository call for coupled THMC models for the metallic overpack, the unsaturated compacted bentonite and the concrete liner. Conceptual and numerical coupled THMC models of the EBS have been developed, which have been implemented in INVERSE-FADES-CORE. Chemical reactions are coupled to the hydrodynamic processes through chemical osmosis (C-H coupling) while bentonite swelling affects solute transport via changes in bentonite porosity changes (M-H coupling). Here we present THMC models of heating and hydration laboratory experiments performed by CIEMAT (Madrid, Spain) on compacted FEBEX bentonite and numerical models for the long-term evolution of the EBS for 1 Ma. The changes in porosity caused by swelling are more important than those produced by the chemical reactions during the early evolution of the EBS (t < 100 years). For longer times, however, the changes in porosity induced by the dissolution/precipitation reactions are more relevant due to: 1) The effect of iron mineral phases (corrosion products) released by the corrosion of the carbon steel canister; and 2) The hyper alkaline plume produced by the concrete liner. Numerical results show that

  11. Microbiological survey of birds of prey pellets.

    PubMed

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets.

  12. Microbiological survey of birds of prey pellets.

    PubMed

    Dipineto, Ludovico; Bossa, Luigi Maria De Luca; Pace, Antonino; Russo, Tamara Pasqualina; Gargiulo, Antonio; Ciccarelli, Francesca; Raia, Pasquale; Caputo, Vincenzo; Fioretti, Alessandro

    2015-08-01

    A microbiological survey of 73 pellets collected from different birds of prey species housed at the Wildlife Rescue and Rehabilitation Center of Napoli (southern Italy) was performed. Pellets were analyzed by culture and biochemical methods as well as by serotyping and polymerase chain reaction. We isolated a wide range of bacteria some of them also pathogens for humans (i.e. Salmonella enterica serotype Typhimurium, Campylobacter coli, Escherichia coli O serogroups). This study highlights the potential role of birds of prey as asymptomatic carriers of pathogenic bacteria which could be disseminated in the environment not only through the birds of prey feces but also through their pellets. PMID:26026881

  13. Mixture Experiments

    SciTech Connect

    Piepel, Gregory F.

    2007-12-01

    A mixture experiment involves combining two or more components in various proportions or amounts and then measuring one or more responses for the resulting end products. Other factors that affect the response(s), such as process variables and/or the total amount of the mixture, may also be studied in the experiment. A mixture experiment design specifies the combinations of mixture components and other experimental factors (if any) to be studied and the response variable(s) to be measured. Mixture experiment data analyses are then used to achieve the desired goals, which may include (i) understanding the effects of components and other factors on the response(s), (ii) identifying components and other factors with significant and nonsignificant effects on the response(s), (iii) developing models for predicting the response(s) as functions of the mixture components and any other factors, and (iv) developing end-products with desired values and uncertainties of the response(s). Given a mixture experiment problem, a practitioner must consider the possible approaches for designing the experiment and analyzing the data, and then select the approach best suited to the problem. Eight possible approaches include 1) component proportions, 2) mathematically independent variables, 3) slack variable, 4) mixture amount, 5) component amounts, 6) mixture process variable, 7) mixture of mixtures, and 8) multi-factor mixture. The article provides an overview of the mixture experiment designs, models, and data analyses for these approaches.

  14. Sustained release pellets based on poly(N-isopropyl acrylamide): matrix and in situ photopolymerization-coated systems.

    PubMed

    Mayo-Pedrosa, Marcos; Alvarez-Lorenzo, Carmen; Lacík, Igor; Martinez-Pacheco, Ramon; Concheiro, Angel

    2007-01-01

    The usefulness of poly(N-isopropyl acrylamide), PNIPA, for preparing sustained release matrix or photopolymerization-coated cellulosic pellets was evaluated. Theophylline pellets and granules were prepared using powdered cellulose (PC), poly(vinylpyrrolidone) (PVP), and PNIPA of Mw approximately 330 kDa, Mn approximately 93 kDa and low critical solubility temperature approximately 32 degrees C. The low consistency of wet mass, evaluated by torsion rheometry, due to hydrophilic character of PNIPA at room temperature, favored extrusion-spheronization. Theophylline (20%) pellets prepared with 15% PNIPA, 20% PVP and 45% PC, and granules obtained using 40% PNIPA and 40% PC showed an enhanced, although limited, ability to sustain the release. This effect was notably promoted after compression (which provides slowly eroding tablets) or coating of individualized pellets. A new coating technique consisting in forming the polymer film by photo-polymerization/cross-linking of NIPA monomers on pellets surface, using a photoinitiator and UV-irradiation at 366 nm, was developed. The composition of coating mixture and the time of irradiation were optimized using oscillatory rheometry. Coating did not significantly change the shape, size, or friability of the pellets but remarkably decreased the porosity and sustained drug release for several hours. In situ formation and cross-linking of PNIPA on the pellet appears as a feasible way for controlling drug release. PMID:16967440

  15. Dissolution Behaviour of UO{sub 2} in Anoxic Conditions: Comparison of Ca-Bentonite and Boom Clay

    SciTech Connect

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel

    2007-07-01

    In order to determine in how far the clay properties influence the dissolution of spent fuel, experiments were carried out with depleted UO{sub 2} in the presence of either compacted dry Ca-bentonite with Boom Clay groundwater (KB-BCW) or compacted dry Boom Clay with Boom Clay groundwater (BC-BCW). The leach tests were performed at 25 deg. C in anoxic atmosphere for 2 years. The U concentrations in the clay water were followed during these 2 years, and the amount of U in the clay was determined after 2 years in order to determine the UO{sub 2} dissolution rate. The uranium concentration after 0.45 {mu}m filtration was 50 times higher in the Boom Clay with Boom Clay water (2.0 x 10{sup -7} mol.L{sup -1}) than in Ca-bentonite with Boom Clay water (6.5 x 10{sup -9} mol.L{sup -1}), probably due to colloid formation in the Boom Clay system. Most released uranium was found in the clay. The fraction of uranium, dissolved from the UO{sub 2} pellet and found on the clay represents about 42 % of total uranium release in the system BC-BCW and more than 76 % in the system KB-BCW. The higher uranium retention of Boom Clay goes together with a higher dissolution rate. Global dissolution rates were estimated at about 2.0 x 10{sup -2} {mu}g.cm{sup -2}.d{sup -1} for the BCBCW system and 3.4 x 10{sup -3} {mu}g.cm{sup -2}.d{sup -1} for the KB-BCW system. This is not much lower than for similar tests with spent fuel, reported in literature. (authors)

  16. The Ignitor Fast Pellet Injector

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Bombarda, F.; Milora, S. L.; Baylor, L. R.; Combs, S. K.

    2004-11-01

    A collaboration between the ENEA Laboratory at Frascati and the Fusion Technology Group of Oak Ridge for the development of a fast pellet injector for the Ignitor ignition experiment has been established. The program aims at the construction of a 4 barrel, double stage gun able to reach speeds up to 4 km/s and thus penetrate to the core of the plasma column. The compact size of the Ignitor machine favors the injection from the low field side, for which very positive results have been obtained on the FTU machine [1], in terms of density profile peaking and good energy confinement. The ongoing activities include the procurement of all the hardware for the criocooler, diagnostics and control electronics, from the ORNL side, and the design and construction of the gun by ENEA. A new fast valve has been developed that considerably reduces the requirements on the expansion volumes necessary to prevent the propulsion gas to reach the plasma chamber. [1] D. Frigione, et al., Nuclear Fusion 41, 1613 (2001).

  17. Study of cesium sorption on Na and Ca-Mg bentonites using batch and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Vejsada, J.; Vokál, A.; Vopálka, D.; Filipská, H.

    2006-01-01

    In this study the cesium sorption on two different bentonites (Ca-Mg bentonite Rokle and Na bentonite Volclay KWK 20 80) has been compared using two different experimental approaches — batch and diffusion methods. The distribution coefficients (Kds) calculated for variable liquid-to-solid ratio (batch) and dry density (diffusion) were evaluated with respect to the main uncertainties affecting both approaches. It has been concluded that there are significant differences between selected bentonites in mineral composition, cation exchange capacity (CEC) and sorption characteristics. The Kd values calculated from batch sorption and diffusion data were found comparable only for Na bentonite Volclay KWK 20 80. The considerably higher sorption of Cs on Ca-Mg bentonite Rokle was explained by its higher content of cesium-selective sorbents (illite, vermiculite).

  18. Sorption of wastewater containing reactive red X-3B on inorgano-organo pillared bentonite.

    PubMed

    Zeng, Xiu-qiong

    2006-04-01

    Bentonite is a kind of natural clay with good exchanging ability. By exchanging its interlamellar cations with various soluble cations, such as quaternary ammonium cations and inorganic metal ions, the properties of natural bentonite can be greatly improved. In this study, hexadecyltrimethylammonium bromide (HDTMA), CaCl(2), MgCl(2), FeCl(3), AlCl(3) were used as organic and inorganic pillared materials respectively to produce several kinds of Ca-, Mg-, Fe-, Al-organo pillared bentonites. Sorption of reactive red X-3B on them was studied to determine their potential application as sorbents in wastewater treatment. The results showed that these pillared bentonites had much improved sorption properties, and that the dye solutions' pH value had some effect on the performance of these inorgano-organo pillared bentonites. Isotherms of reactive X-3B on these pillared bentonites suggested a Langmuir-type sorption mechanism. PMID:16532535

  19. Plasma gun pellet acceleration modeling and experiment

    SciTech Connect

    Kincaid, R.W.; Bourham, M.A.; Gilligan, J.G.

    1996-12-31

    Modifications to the electrothermal plasma gun SIRENS have been completed to allow for acceleration experiments using plastic pellets. Modifications have been implemented to the 1-D, time dependent code ODIN to include pellet friction, momentum, and kinetic energy with options of variable barrel length. The code results in the new version, POSEIDON, compare favorably with experimental data and with code results from ODIN. Predicted values show an increased pellet velocity along the barrel length, achieving 2 km/s exit velocity. Measured velocity, at three locations along the barrel length, showed good correlation with predicted values. The code has also been used to investigate the effectiveness of longer pulse length on pellet velocity using simulated ramp up and down currents with flat top, and triangular current pulses with early and late peaking. 16 refs., 5 figs.

  20. Comment on Li pellet Conditioning in TFTR

    SciTech Connect

    R.V. Budny

    2011-05-23

    Li pellet conditioning in TFTR results in a reduction of the edge electron density which allows increased neutral beam penetration, central heating, and fueling. Consequently the temperature profiles became more peaked with higher central Ti, Te, and neutron emission rates.

  1. 21 CFR 520.1628 - Oxfendazole powder and pellets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Oxfendazole powder and pellets. 520.1628 Section... Oxfendazole powder and pellets. (a) Specifications—(1) Powder for suspension. Each gram of powder contains 7.57 percent oxfendazole. (2) Pellets. Each gram of pellets contains 6.49 percent oxfendazole....

  2. 21 CFR 520.1628 - Oxfendazole powder and pellets.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Oxfendazole powder and pellets. 520.1628 Section... Oxfendazole powder and pellets. (a) Specifications—(1) Powder for suspension. Each gram of powder contains 7.57 percent oxfendazole. (2) Pellets. Each gram of pellets contains 6.49 percent oxfendazole....

  3. 21 CFR 520.1628 - Oxfendazole powder and pellets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Oxfendazole powder and pellets. 520.1628 Section... Oxfendazole powder and pellets. (a) Specifications—(1) Powder for suspension. Each gram of powder contains 7.57 percent oxfendazole. (2) Pellets. Each gram of pellets contains 6.49 percent oxfendazole....

  4. 21 CFR 520.1628 - Oxfendazole powder and pellets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Oxfendazole powder and pellets. 520.1628 Section... Oxfendazole powder and pellets. (a) Specifications—(1) Powder for suspension. Each gram of powder contains 7.57 percent oxfendazole. (2) Pellets. Each gram of pellets contains 6.49 percent oxfendazole....

  5. 21 CFR 520.1628 - Oxfendazole powder and pellets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxfendazole powder and pellets. 520.1628 Section... Oxfendazole powder and pellets. (a) Specifications—(1) Powder for suspension. Each gram of powder contains 7.57 percent oxfendazole. (2) Pellets. Each gram of pellets contains 6.49 percent oxfendazole....

  6. The effect of polycarbophil on the gastric emptying of pellets.

    PubMed

    Khosla, R; Davis, S S

    1987-01-01

    The influence of the putative bioadhesive, polycarbophil, on the gastric emptying of a pellet formulation, has been investigated in three fasted subjects. The pellets were radiolabelled with technetium-99m. Gastric emptying was measured using the technique of gamma scintigraphy. The pellets emptied from the stomach rapidly and in an exponential manner. Polycarbophil did not retard the gastric emptying of the pellets.

  7. Pellet-press-to-sintering-boat nuclear fuel pellet loading system

    SciTech Connect

    Bucher, G.D.

    1988-08-23

    This patent describes a system for loading nuclear fuel pellets into a sintering boat from a pellet press which ejects newly made the pellets from a pellet press die table surface. The system consists of: (a) a bowl having an inner surface, a longitudinal axis, an open and generally circular top of larger diameter, and an open and generally circular bottom of smaller diameter; (b) means for supporting the bowl in a generally upright position such that the bowl is rotatable about its longitudinal axis; (c) means for receiving the ejected pellets proximate the die table surface of the pellet press and for discharging the received pellets into the bowl at a location proximate the inner surface towards the top of the bowl with a pellet velocity having a horizontal component which is generally tangent to the inner surface of the bowl proximate the location; (d) means for rotating the bowl about the longitudinal axis such that the bowl proximate the location has a velocity generally equal, in magnitude and direction, to the horizontal component of the pellet velocity at the location; and (e) means for moving the sintering boat generally horizontally beneath and proximate the bottom of the bowl.

  8. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media.

    PubMed

    Yang, Haiyan; Tong, Meiping; Kim, Hyunjung

    2012-11-01

    The significance of clay particles on the transport and deposition kinetics of bacteria in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with clay particles in bacteria suspension versus those without clay particles. Two representative cell types, Gram-negative strain E. coli DH5α and Gram-positive strain Bacillus subtilis were utilized to systematically determine the influence of clay particles (bentonite) on cell transport behavior. Packed column experiments for both cell types were conducted in both NaCl (5 and 25 mM ionic strengths) and CaCl(2) (5 mM ionic strength) solutions at pH 6.0. The breakthrough plateaus with bentonite in solutions (30 mg L(-1) and 50 mg L(-1)) were lower than those without bentonite for both cell types under all examined conditions, indicating that bentonite in solutions decreased cell transport in porous media regardless of cell types (Gram-negative or Gram-positive) and solution chemistry (ionic strength and ion valence). The enhanced cell deposition with bentonite particles was mainly observed at segments near to column inlet, retained profiles for both cell types with bentonite particles were therefore steeper relative to those without bentonite. The increased cell deposition with bentonite observed in NaCl solutions was attributed to the codeposition of bacteria with bentonite particles whereas, in addition to codeposition of bacteria with bentonite, the bacteria-bentonite-bacteria cluster formed in suspensions also contributed to the increased deposition of bacteria with bentonite in CaCl(2) solution. PMID:22970735

  9. Preparation, characterisation and out-of-pile property evaluation of (U,Pu)N fuel pellets

    NASA Astrophysics Data System (ADS)

    Ganguly, C.; Hegde, P. V.; Sengupta, A. K.

    1991-02-01

    (U 0.45Pu 0.55)N and (U 0.8Pu 0.2)N are being considered in India as advanced alternative fuels for the operating fast breeder test reactor (FBTR) and the forthcoming prototype fast breeder reactor (PFBR). Mixed nitride fuel pellets containing <0.1 wt% each of oxygen and carbon impurities were fabricated by the conventional "powder-pellet" (POP) and the advanced "sol-gel microsphere pelletisation" (SGMP) processes, involving two major steps. First, carbothermic reduction of an oxide-graphite powder mixture (in the form of tablets) or gel-microspheres at 1773-1823 K in N 2 followed by N2 + H2 and Ar+ H2 atmospheres. The nitride microspheres could be directly pelletised and sintered to pellets of relatively low density (≤ 85% TD) with an "open" pore structure desirable for LMFBR application. Thermal conductivity and hot hardness of nitride pellets were evaluated up to 1800 and 1500 K respectively. The out-of-pile chemical compatibility experiments of mixed nitride fuel pellets for FBTR with SS 316 cladding at 973 K for 1000 h did not reveal any significant fuel-cladding chemical interaction.

  10. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation.

  11. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets.

    PubMed

    Yan, Hong-Xiang; Zhang, Shuang-Shuang; He, Jian-Hua; Liu, Jian-Ping

    2016-09-01

    The present study aimed to develop and optimize the wax based floating sustained-release dispersion pellets for a weakly acidic hydrophilic drug protocatechuic acid to achieve prolonged gastric residence time and improved bioavailability. This low-density drug delivery system consisted of octadecanol/microcrystalline cellulose mixture matrix pellet cores prepared by extrusion-spheronization technique, coated with drug/ethyl cellulose 100cp solid dispersion using single-step fluid-bed coating method. The formulation-optimized pellets could maintain excellent floating state without lag time and sustain the drug release efficiently for 12h based on non-Fickian transport mechanism. Observed by SEM, the optimized pellet was the dispersion-layered spherical structure containing a compact inner core. DSC, XRD and FTIR analysis revealed drug was uniformly dispersed in the amorphous molecule form and had no significant physicochemical interactions with the polymer dispersion carrier. The stability study of the resultant pellets further proved the rationality and integrity of the developed formulation. PMID:27185125

  12. An economical and market analysis of Canadian wood pellets.

    SciTech Connect

    Peng, J.

    2010-08-01

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  13. Antibiotic release from impregnated pellets and beads.

    PubMed

    Bowyer, G W; Cumberland, N

    1994-03-01

    Antibiotic impregnated beads are being used increasingly in the initial treatment of open fracture wounds, producing high antibiotic levels locally, over the first few days. Pellets were prepared to assess the release of the following antibiotics: benzylpenicillin, flucloxacillin, amoxycillin, amoxycillin-clavulanate (Co-Amoxiclav), ciprofloxacin, imipenem, or gentamicin; the carrier material was either polymethylmethacrylate (PMMA) or plaster of Paris (PoP). Elution of antibiotic over 72 hours from the pellets in vitro was determined using an agar-diffusion microbiologic assay. The initial rapid release of antibiotic lasted 12-24 hours, with release from PoP pellets at least four-fold greater than that from corresponding PMMA pellets. A second phase consisted of a sustained but gradually diminishing elution. The release of antibiotics from PoP pellets compared favorably with that from the PMMA beads currently used. We conclude that PoP pellets may be particularly suitable for short-term applications such as infection prophylaxis in open fractures.

  14. Gas adsorption capacity of wood pellets

    DOE PAGESBeta

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  15. Experiments with the Ignitor Pellet Injector (IPI)

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Caughman, J. B. O.; Combs, S. K.; Foust, C.; Fehling, D.; McJill, J. M.; Meitner, S.; Roveta, G.

    2009-11-01

    The four barrel, two-stage pneumatic injector for the Ignitor experiment (IPI), built by ENEA and ORNL, has been tested in the course of three esperimental campaigns. The optimal shaping of the propellant pressure pulse to improve pellet acceleration is provided by specially designed Pulse Shaping Valves. These have been modified and tested on a new facility that allows operating pellet injector components in conditions close to those at which they will have to operate on the IPI. Fast closing (< 10 ms) valves drastically reduce the expansion volumes needed to remove the propellant gas at the end of the guiding tube. The four barrel (2.1, 2.2, 3.0 and 4.6 mm bores) pipe-gun cryostat is cooled down by a closed cycle refrigerator, and pellet diagnostics for measuring speed and mass of the pellets, as well as for capturing in-flight pictures of all four pellets were developed for this application. The final impact target is equipped with a shock accelerometer. The injector is designed to deliver pellets with velocities up to 4 km/s (2 km/s already achieved): the results of the latest experimental campaign will be reported.

  16. HMSPP nanocomposite and Brazilian bentonite properties after gamma radiation exposure

    NASA Astrophysics Data System (ADS)

    Fermino, D. M.; Parra, D. F.; Oliani, W. L.; Lugao, A. B.; Díaz, F. R. V.

    2013-03-01

    This work concerns the study of the mechanical and thermal behavior of the nanocomposite high melt strength polypropylene (HMSPP) (obtained at a dose of 12.5 kGy) and a bentonite clay Brazilian Paraiba (PB), which is known as "chocolate" and is used in concentrations of 5% and 10% by weight, in comparison to the American Cloisite 20A clay nanocomposites. An agent compatibilizer polypropylene-graft (PP-g-AM) was added at a 3% concentration, and the clay was dispersed using the melt intercalation technique using a twin-screw extruder. The specimens were prepared by the injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the techniques of differential scanning calorimetry (DSC) and thermogravimetry (TGA). The morphology of the nanocomposites was studied with scanning electron microscopy (SEM), while the organophilic bentonite and nanocomposites were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).

  17. Physical and hydraulic characteristics of bentonite-amended soil from Area 5, Nevada Test Site

    SciTech Connect

    Albright, W.

    1995-08-01

    Radioactive waste requires significant isolation from the biosphere. Shallow land burial using low-permeability covers are often used to prevent the release of impounded material. This report details the characterization of a soil mixture intended for use as the low-permeability component of a radioactive waste disposal site. The addition of 6.5 percent bentonite to the sandy soils of the site reduced the value of saturated hydraulic conductivity (K{sub s}) by more than two orders of magnitude to 7.6 {times} 10{minus}{sup 8} cm/sec. Characterization of the soil mixture included measurements of grain density, grain size distribution, compaction, porosity, dry bulk density, shear strength, desiccation shrinkage, K{sub s}, vapor conductivity, air permeability, the characteristic water retention function, and unsaturated hydraulic conductivity by both experimental and numerical estimation methods. The ability of the soil layer to limit infiltration in a simulated application was estimated in a one-dimensional model of a landfill cover.

  18. Effects of Maghnian bentonite on physical properties of sandy soils under semi-arid Mediterranean climate.

    PubMed

    Benkhelifa, M; Belkhodja, M; Daoud, Y; Tessier, D

    2008-01-01

    This research has for object to study the influence of clay addition, i.e., Maghnian bentonite, like deposit clay, in the physical properties of sandy materials from Mostaganem plateau (North-West Algeria) submitted to salinity and sodicity. The first result was to show that the clay content changes drastically the physical properties of clay-sand mixtures. Important differences were observed as a function of the sand particle size distribution. At given clay content, the saturated Hydraulic Conductivity (HCs) was lower when the sand size was small and spread. For the coarse sand the salinity was maintained, even for high clay contents, a significant hydraulic conductivity. One of the main characteristics of Maghnia clay is the presence of calcium carbonates in the natural material. In comparison to that of Mostaganem clay of other deposit, it appears less sensitive to sodicity. An important aspect is the initial state of the clay when used in addition to sands, i.e., disturbance, conditions of preparation of sand clay mixtures and presence of associated components such as carbonates. Maghnia clay appeared to be adapted to the improvement of sandy soils, not because its mineralogical characteristics, but for its natural cationic form and obviously the presence of calcite in it. PMID:18819588

  19. Water migration through compacted bentonite backfills for containment of high-level nuclear waste

    SciTech Connect

    Westsik, J.H.; Hodges, F.N.; Kuhn, W.L.; Myers, T.R.

    1983-01-01

    Tests carried out with compacted sodium and calcium bentonites at room temperature indicate that bentonite backfills will effectively control water movement near a high-level nuclear waste package. Saturation tests indicate that water will rapidly diffuse into a dry bentonite backfill, reaching saturation in times on the order of tens of years. The apparent diffusion coefficient for sodium bentonite (about5 wt% initial water content) compacted to 2.1 g/cm/sup 3/ is 1.7 x 10/sup -6/ cm/sup 2//sec. However, the hydraulic conductivities of saturated bentonites are low, ranging from approximately 10/sup -11/ cm/sec to 10/sup -13/ cm/sec over a density range of 1.5 g/cm/sup 3/ to 2.2 g/cm/sup 3/. The hydraulic conductivities of compacted bentonites are at least several orders of magnitude lower than those of candidate-host silicate rocks, indicating that most flowing groundwater contacting a bentonite backfill would be diverted around the backfill rather than flowing through it. In addition, because of the very low hydraulic conductivities of bentonite backfills, the rate of chemical transport between the containerized waste and the surrounding host rock will be effectively controlled by diffusion through the backfill. The formation of a diffusion barrier by the backfill will significantly reduce the long-term rate of radionuclide release from the waste package, an advantage distinct from the delay in release resulting from the sorptive properties of a bentonite backfill.

  20. Effect of Experimental Conditions on Cementite Formation During Reduction of Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Kazemi, Mania; Sichen, Du

    2016-08-01

    Experiments have been carried out to study the effect of temperature, gas composition, residence time, and type of iron ore pellets on formation of cementite during gaseous reduction of hematite. Industrial iron ore pellets have been reduced isothermally in a gas mixture with H2 and CO as main components. The presence of Fe3C in the partially reduced pellets shows that reduction and cementite formation take place at the same time. The maximum content of cementite is identified in the samples reduced by H2-CO at 1123 K (850 °C). The decrease in the carbide content due to addition of 1 pct CO2 to the initial gas mixture reveals the major influence of carbon potential in the gas atmosphere. Further increase of CO2 content increases the Fe3C. The variations of the amount of cementite with the CO2 content suggest that both the thermodynamics and kinetics of cementite formation are affected by the gas composition. Cementite decomposes to graphite and iron particles in reducing and inert atmospheres as the residence time of pellets at high temperature is increased above 60 minutes.

  1. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    PubMed

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹).

  2. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    PubMed

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹). PMID:27337896

  3. Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug-phospholipids complex technique.

    PubMed

    Li, Jin; Liu, Pan; Liu, Jian-Ping; Yang, Ji-Kun; Zhang, Wen-Li; Fan, Yong-Qing; Kan, Shu-Ling; Cui, Yan; Zhang, Wen-Jing

    2013-01-01

    This study investigated phospholipids complex (PC) loaded pellets of poorly permeable Salvianolic acid B (SalB), in which PC was to improve the liposolubility and permeability of SalB. Transmission electron microscopy observation, differential scanning calorimetry measurement, infrared spectroscopy analysis, n-octanol/water partition coefficient study, and foam cell permeability research were employed to prove the complex formation. Pellets containing SalB phospholipids complex (SalB-PC) were prepared via extrusion/spheronization technique. The optimal pellets obtained with 30% SalB-PC, 15% Kollidon®CL-SF, 15% Flowlac®100, and 40% MCC exhibited a very homogeneous size distribution, the shortest disintegration time, highest crushing force, appreciable spherical shape, and a fast drug release behavior. Following hydration, the droplet size distribution of SalB-PC pellets was nearly same to its PC (85.4±16 and 73.5±12nm). In vivo performance showed SalB-PC pellets presented significantly larger AUC(0-)(t), which was 0.58 times more than that of physical mixtures (PMs) and 1.57 times more than that of SalB pellets. C(max) of SalB-PC pellets were also increased by 0.26-fold and 0.80-fold as that of PMs and SalB pellets, respectively. In conclusion, extrusion/spheronization could be a suitable technique to prepare PC loaded pellets, which could effectively preserve the properties of PC to improve the permeability and bioavailability of highly water-soluble drug.

  4. Ultrasonic vibration-assisted (UV-A) pelleting of wheat straw: a constitutive model for pellet density.

    PubMed

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2015-07-01

    Ultrasonic vibration-assisted (UV-A) pelleting can increase cellulosic biomass density and reduce biomass handling and transportation costs in cellulosic biofuel manufacturing. Effects of input variables on pellet density in UV-A pelleting have been studied experimentally. However, there are no reports on modeling of pellet density in UV-A pelleting. Furthermore, in the literature, most reported density models in other pelleting methods of biomass are empirical. This paper presents a constitutive model to predict pellet density in UV-A pelleting. With the predictive model, relations between input variables (ultrasonic power and pelleting pressure) and pellet density are predicted. The predicted relations are compared with those determined experimentally in the literature. Model predictions agree well with reported experimental results.

  5. An investigation into pellet dispersion ballistics.

    PubMed

    Nag, N K; Sinha, P

    1992-08-01

    Existing works on pellet dispersion ballistics are confined to some data-based models derived from statistical analysis of observed patterns on targets but the underlying process causing the dispersion lacks due attention. The present article delves into the relatively unexplored areas of dispersion phenomena, and attempts to develop a theoretical model for general application. The radial velocity distribution of pellets has been worked out by probing into the physical process of dispersion based on transfer of momentum from undispersed shot mass to dispersed pellets. The ratio 2u/v0 (u = root mean square (r.m.s.) radial velocity and v0 = muzzle velocity of the pellets) is found to be fairly constant for a fixed gun-ammunition combination and has been suitably designated as 'Dispersion Index' (DI) characterising its dispersion capability. The present model adequately accounts for pellet distribution on targets and it appears that 'Effective Shot Dispersion' (ESD) as introduced by Mattoo and Nabar [ESD = [(4/N0)sigma Ri2]1/2, where N(0) is the total number of pellets and Ri is the radial distance of the i-th pellet from centre of pattern], gives a faithful numerical measure of overall dispersion at a given distance. A relationship between ESD and firing distance, incorporating the effects of air resistance and gravity has been worked out, which reveals that DI controls the dispersion at a given distance. For small distances (less than 20 m) the relation reduces to a linear one, as already observed empirically and looks like ESD = E0+DI x firing distance, E0 being a parameter dependent on gun and ammunition. The present model, unlike earlier ones, is versatile enough to explain the natures of the dependence of dispersion on firing distance as well as on gun-ammunition parameters, which are essential for a faithful reconstruction of a crime scene. The model has been tested with such experimental data as are available and reasonable agreement is observed. PMID:1398370

  6. A 400-pellet feed system for the ORNL centrifuge pellet injector

    SciTech Connect

    Foster, C.A.; Qualls, A.L.; Baylor, L.R.; Schechter, D.E.; Dyer, G.R.; Milora, S.L.

    1993-11-01

    An improved and extended pellet fabrication and feed mechanism is being developed for the Oak Ridge National Laboratory (ORNL) centrifuge pellet injector that is presently installed on Tore Supra. This upgrade will extend the number of pellets available for a single-plasma discharge from 100 to 400. In addition, a new pusher and delivery system is expected to improve the performance of the device. As in the original system, deuterium ice is deposited from the gas phase on a liquid-helium-cooled rotating disk, forming a rim of solid deuterium. The rim of ice is machined to a parabolic profile from which pellets are pushed. In the new device, a stack of four ice rims are formed simultaneously, thereby increasing the capacity from 100 to 400 pellets. An improved method of ice formation has also been developed that produces clear ice. The pellet pusher and delivery system utilizes a four-axis, brushless dc servo system to precisely cut and deliver the pellets from the ice rim to the entrance of the centrifuge wheel. Pellets can be formed with sizes ranging from 2.5- to 4-mm diam at a rate of up to 8 per second. The operation of the injector is fully automated by a computer control system. The design and test results of the device are reported.

  7. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Alonso, Úrsula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (˜1×10 -3 M) and alkaline (pH≥8) waters.

  8. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.

    PubMed

    Missana, Tiziana; Alonso, Ursula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters.

  9. Failure of dietary bentonite clay, Silent Herder mineral supplement, or parenteral Banamine to alleviate locoweed toxicosis in rats.

    PubMed

    Dugarte-Stavanja, M; Smith, G S; Edrington, T S; Hallford, D M

    1997-07-01

    To evaluate treatments purportedly beneficial for livestock grazing locoweeds (LW), growing rats were fed diets containing 10 or 20% whole-plant Oxytropis sericea (LW) with and without Silent Herder mineral mix (1.5% of diet) or bentonite clay (1.5% of diet). Pregnant female rats fed 10% LW were treated i.m. with Banamine (a prostaglandins suppressor) or saline. The LW contained swainsonine (430 micrograms/g DM) and elicited toxicosis within 10 d at intake of 2 mg/kg BW. In Trial 1, 96 immature male Sprague-Dawley rats (BW approximately 100 g) were fed commercial rat feed (CRF) with and without LW, as follows: 100% CRF, free choice; 100% CRF, restricted intake to equal average intake of rats consuming 10 and 20% LW; 90% CRF+10% LW free choice; and 80% CRF+20% LW free choice. Diets with LW contained either no supplement or supplemental mineral mixture (Silent Herder, 1.5% of diet) or added bentonite clay (1.5% of diet). Twelve rats received each of eight dietary regimens through 28 d. Locoweed depressed (P < .05) feed intake and BW gain, increased (P < .05) relative size of liver, kidneys, heart, spleen, and testes, and altered blood serum components (P < .05) indicating toxicosis. Dietary provision of Silent Herder or bentonite failed to benefit rats that ingested approximately 4 or 8 mg of swainsonine/kg BW daily through 28 d. In Trial 2, 68 young adult female Sprague-Dawley rats (approximately 230 g BW) were mated and directly assigned to three diets (100% CRF, free choice, 100% CRF, intake restricted slightly below average intake of diet by rats consuming LW, or 90% CRF+10% LW free choice) and two treatments (i.m. saline or i.m. Banamine at .25 mg/kg BW daily for 10 d) in a 3 x 2 factorial arrangement. Approximately half (31 of 68) of the impregnated rats were killed at d 10, when Banamine was discontinued, but diets were continued until the remaining females gave birth. Ingested LW provided approximately 2 mg swainsonine/kg BW daily and elicited toxicosis in 10

  10. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    SciTech Connect

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1/, respectively.

  11. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect

    Plöckl, B.; Lang, P. T.

    2013-10-15

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  12. Lithium Pellet Injector Development for NSTX

    SciTech Connect

    G. Gettelfinger; J. Dong; R. Gernhardt; H. Kugel; P. Sichta; J. Timberlake

    2003-12-04

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described.

  13. The enhanced ASDEX Upgrade pellet centrifuge launcher

    NASA Astrophysics Data System (ADS)

    Plöckl, B.; Lang, P. T.

    2013-10-01

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  14. Characterization of AlFe-pillared Unye bentonite: A study of the surface acidity and catalytic property

    NASA Astrophysics Data System (ADS)

    Caglar, Bulent; Cubuk, Osman; Demir, Ersin; Coldur, Fatih; Catir, Mustafa; Topcu, Cihan; Tabak, Ahmet

    2015-06-01

    Aluminium-iron-pillared bentonite has been prepared by incorporation of the iron mixed aluminium-polyoxocation into bentonite layers and characterized by the powder X-ray diffraction, Fourier transform infrared, thermal analysis and surface area measurement techniques. The characteristic d001 basal spacing of raw bentonite increased with the pillaring process and reached to 18.05 Å. The siloxane layers of bentonite were perturbed and the positions of Si-O stretching vibrations were altered by pillaring process. However, these pillars in the interlayer gallery spacing enhanced the thermal stability of bentonite. The new micropores were formed by the pillaring process and the specific surface area of raw bentonite increased by ca. 2-fold for aluminium-iron-pillared bentonite. FTIR spectra and thermal analysis curves of pyridine adsorbed samples clearly show that the surface Lewis acidity of aluminium-iron-pillared bentonite is greater than that of raw bentonite. Raw and aluminium-iron-pillared bentonites have been utilized as solid catalysts for benzoylation of benzene with benzoyl chloride. The aluminium-iron-pillared bentonite catalyst showed promising catalytic activity whereas raw bentonite showed no catalytic activity in benzoylation of benzene with benzoyl chloride.

  15. Bentonite modification with hexadecylpyridinium and aluminum polyoxy cations and its effectiveness in Se(IV) removal.

    PubMed

    Orucoglu, Esra; Haciyakupoglu, Sevilay

    2015-09-01

    Usage of bentonite as a buffer material is suggested in radioactive waste repositories. Although bentonites have higher sorption ability to cations, they cannot adsorp anions due to negative surface charge. Nowadays, ongoing researches focus on increasing anion adsorption ability of the bentonites with modification. Organic-pillared bentonite (OPBent) was produced by modification of sodium bentonite with aluminum polyoxy and hexadecylpyridinium cations in this study. Variation in structure after modification was demonstrated by using different characterization techniques. Se removal efficiency of OPBent is investigated by using (75)Se, since selenium (Se) is one of the important long lived fission products found in radioactive waste and has toxic anionic species in an aqueous environment. The effect of reaction time, solid/liquid ratio, pH and concentration on the adsorption performance were examined. Se speciation and its effect onto adsorption were also investigated by measuring Eh-pH values under certain experimental conditions. Additionally, importance of the amount of Al-polyoxy cations used in modification was investigated by comparing these results with the results of other organic-pillared bentonite produced in our previous research. Experimental results confirmed that both cations were successfully placed into the bentonite interlayer and significant change in the host structure leads to increase Se adsorption. Consequently, bentonite modification improves its Se adsorption ability and further investigations are needed related to the usage of this adsorbent in other remediation studies especially in sorption of other anionic pollutants. PMID:26081306

  16. Bentonite modification with hexadecylpyridinium and aluminum polyoxy cations and its effectiveness in Se(IV) removal.

    PubMed

    Orucoglu, Esra; Haciyakupoglu, Sevilay

    2015-09-01

    Usage of bentonite as a buffer material is suggested in radioactive waste repositories. Although bentonites have higher sorption ability to cations, they cannot adsorp anions due to negative surface charge. Nowadays, ongoing researches focus on increasing anion adsorption ability of the bentonites with modification. Organic-pillared bentonite (OPBent) was produced by modification of sodium bentonite with aluminum polyoxy and hexadecylpyridinium cations in this study. Variation in structure after modification was demonstrated by using different characterization techniques. Se removal efficiency of OPBent is investigated by using (75)Se, since selenium (Se) is one of the important long lived fission products found in radioactive waste and has toxic anionic species in an aqueous environment. The effect of reaction time, solid/liquid ratio, pH and concentration on the adsorption performance were examined. Se speciation and its effect onto adsorption were also investigated by measuring Eh-pH values under certain experimental conditions. Additionally, importance of the amount of Al-polyoxy cations used in modification was investigated by comparing these results with the results of other organic-pillared bentonite produced in our previous research. Experimental results confirmed that both cations were successfully placed into the bentonite interlayer and significant change in the host structure leads to increase Se adsorption. Consequently, bentonite modification improves its Se adsorption ability and further investigations are needed related to the usage of this adsorbent in other remediation studies especially in sorption of other anionic pollutants.

  17. Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death.

    PubMed

    Nones, Janaína; Nones, Jader; Riella, Humberto Gracher; Poli, Anicleto; Trentin, Andrea Gonçalves; Kuhnen, Nivaldo Cabral

    2015-10-01

    Bentonites are clays that highly adsorb aflatoxin B1 (AFB1) and, therefore, protect human and animal cells from damage. We have recently demonstrated that bentonite protects the neural crest (NC) stem cells from the toxicity of AFB1. Its protective effects are due to the physico-chemical properties and chemical composition altered by heat treatment. The aim of this study is to prepare and characterize the natural and thermal treatments (125 to 1000 °C) of bentonite from Criciúma, Santa Catarina, Brazil and to investigate their effects in the AFB1 adsorption and in NC cell viability after challenging with AFB1. The displacement of water and mineralogical phases transformations were observed after the thermal treatments. Kaolinite disappeared at 500 °C and muscovite and montmorillonite at 1000 °C. Slight changes in morphology, chemical composition, and density of bentonite were observed. The adsorptive capacity of the bentonite particles progressively reduced with the increase in temperature. The observed alterations in the structure of bentonite suggest that the heat treatments influence its interlayer distance and also its adsorptive capacity. Therefore, bentonite, even after the thermal treatment (125 to 1000 °C), is able to increase the viability of NC stem cells previously treated with AFB1. Our results demonstrate the effectiveness of bentonite in preventing the toxic effects of AFB1.

  18. Air gun pellet: cardiac penetration and peripheral embolization.

    PubMed

    Işık, Onur; Engin, Çağatay; Daylan, Ahmet; Şahutoğlu, Cengiz

    2016-05-01

    Use of high-velocity air guns can to lead to serious injuries. Management options of cardiac pellet gun injuries are based on patient stability, and course and location of the pellet. Presently reported is the case of a boy who was shot with an air gun pellet. Following right ventricular entry, the pellet lodged in the left atrium and embolized to the right iliac and femoral artery. Following pellet localization, right ventricular injury was repaired, and the pellet was removed successfully. PMID:27598599

  19. Development and optimization of solid dispersion containing pellets of itraconazole prepared by high shear pelletization.

    PubMed

    Ye, Guanhao; Wang, Siling; Heng, Paul Wan Sia; Chen, Ling; Wang, Chao

    2007-06-01

    This study investigated the solid dispersion containing pellets of itraconazole for enhanced drug dissolution rate. The influence of process parameters used during high shear pelletization on the pellet properties including pellet size and dissolution rate was also studied. Solid dispersions of itraconazole were prepared with Eudragit E100, a hydrophilic polymer, by a simple fusion method followed by powdered and characterized by differential scanning calorimetry and X-ray powder diffraction. Solid dispersions containing pellets were consequently prepared using a lab-scale high shear mixer. In order to improve the product quality, a central composite design was applied to optimize the critical process variables, such as impeller speed and kneading time, and the results were modeled statistically. Itraconazole was presented as an amorphous state in the solid dispersion prepared at a drug to polymer ratio of 1:2. Both studied parameters had great effect on the responses. Powdered solid dispersion and pellets prepared using the optimal parameter settings showed approximately 30- and 70-fold increases in dissolution rate over the pure drug, respectively. Solid dispersion prepared by simple fusion method could be an option for itraconazole solubility enhancement. Pelletization process in high shear mixer can be optimized effectively by central composite design. PMID:17241757

  20. International Trade of Wood Pellets (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    The production of wood pellets has increased dramatically in recent years due in large part to aggressive emissions policy in the European Union; the main markets that currently supply the European market are North America and Russia. However, current market circumstances and trade dynamics could change depending on the development of emerging markets, foreign exchange rates, and the evolution of carbon policies. This fact sheet outlines the existing and potential participants in the wood pellets market, along with historical data on production, trade, and prices.

  1. CO{sub 2} pellet blasting studies

    SciTech Connect

    Archibald, K.E.

    1997-01-01

    Initial tests with CO{sub 2} pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO{sub 2} pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO{sub 2} blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report.

  2. Transport of Iodide Ion in Compacted Bentonite Containing Ag{sub 2}O - 12111

    SciTech Connect

    Yim, Sung Paal; Lee, Ji-Hyun; Choi, Heui-Joo; Choi, Jong-Won; Lee, Cheo Kyung

    2012-07-01

    Observations of the transport of iodide through compacted bentonite containing Ag{sub 2}O as additive and that without additive were made. Compacted bentonite samples with densities of 1.41 g/cm{sup 3} and 1.60 g/cm{sup 3} were used in the experiment. The amount of Ag{sub 2}O added to the compacted bentonite was in the range of 0.0064 ∼ 0.0468 wt/wt%. Two diffusion solutions were used: one in which iodide ion was dissolved in demineralized water (pure iodide solution), and one in which iodide ion was dissolved in 0.1 M NaCl solution (0.1 M NaCl-iodide solution). Experimental results confirmed that iodide ion was transported by the diffusion process in the compacted bentonite containing Ag{sub 2}O as well as in the compacted bentonite without Ag{sub 2}O. The time-lag of diffusion of iodide ion in the compacted bentonite containing Ag{sub 2}O is larger than that in the compacted bentonite without Ag{sub 2}O. The increase of the time-lag of diffusion was observed in pure iodide ion solution as well as in 0.1 M NaCl-iodide solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing Ag{sub 2}O was smaller than in the compacted bentonite without Ag{sub 2}O. The effective diffusion coefficient decreased as the amount of Ag{sub 2}O in the compacted bentonite increased. (authors)

  3. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  4. Studies of cell pellets: I. Electrical properties and porosity.

    PubMed Central

    Abidor, I G; Li, L H; Hui, S W

    1994-01-01

    Cell pellets formed by centrifugation provided a good system to study the osmotic behavior, electroporation, and interaction between cells. Rabbit erythrocyte pellets were used in this study because they were simpler than nucleated cells to model analytically. Structurally, cell pellets possessed properties of porous solid bodies and gels. Electrically, cell pellets were shown to behave as a parallel set of resistance, Rp, and capacitance, Cp. Information on pellet structures was obtained from electric measurements. The pellet resistance reflected the intercellular conductivity (porosity and gap conductivity), whereas the pellet capacitance depended mostly on membrane capacitance. The pellet resistance was more sensitive to experimental conditions. The intercellular gap distance can be derived from pellet porosity measurements, providing the cell volume and surface area were known. Rp increased and relaxed exponentially with time when centrifugation started and stopped; the cycles were reversible. When supernatants were exchanged with solutions containing hypotonic electrolytes or macromolecules (such as PEG) after the pellets were formed, complicated responses to different colloidal osmotic effects were observed. A transient decrease followed by a large increase of Rp was observed after the application of a porating electric pulse, as expected from a momentary membrane breakdown, followed by a limited colloidal-osmotic swelling of pelleted cells. The equilibrium values of Rp, Cp, pellet porosity, and intercellular distances were measured and calculated as functions of cell number, centrifugation force, and ionic strength of the exchanged supernatant. Thus, the structure and properties of cell pellets can be completely characterized by electrical measurements. Images FIGURE 1 FIGURE 11 PMID:7919015

  5. Microwave measurements of the water content of bentonite

    SciTech Connect

    Latorre, V.R.; Glenn, H.D.

    1991-01-01

    The theory of operation of microwave coaxial resonators is described. Sample preparation and the application of resonator techniques to the measurement of the permittivity (dielectric constant) of bentonite is discussed. The results indicate a fairly linear change in resonant frequency for saturation levels at 10, 30, 50, 70, and 90%. The results clearly demonstrate that this microwave technique is a viable method for measuring water content of soils. A discussion of additional applications of microwave methods for determining water content in materials is presented. 3 refs., 5 figs.

  6. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications. PMID:26492498

  7. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  8. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria

    2012-12-01

    Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  9. Removal of odorous compounds from poultry manure by microorganisms on perlite--bentonite carrier.

    PubMed

    Gutarowska, Beata; Matusiak, Katarzyna; Borowski, Sebastian; Rajkowska, Aleksandra; Brycki, Bogumił

    2014-08-01

    Laboratory-scale experiments were conducted using poultry manure (PM) from a laying hen farm. Six strains of bacteria and one strain of yeast, selected on the base of the previous study, were investigated to evaluate their activity in the removal of odorous compounds from poultry manure: pure cultures of Bacillus subtilis subsp. spizizenii LOCK 0272, Bacillus megaterium LOCK 0963, Pseudomonas sp. LOCK 0961, Psychrobacter faecalis LOCK 0965, Leuconostoc mesenteroides LOCK 0964, Streptomyces violaceoruber LOCK 0967, and Candida inconspicua LOCK 0272 were suspended in water solution and applied for PM deodorization. The most active strains in the removal of volatile odorous compounds (ammonia, hydrogen sulfide, dimethylamine, trimethylamine, isobutyric acid) belonged to B. subtilis subsp. spizizenii, L. mesenteroides, C. inconspicua, and P. faecalis. In the next series of experiments, a mixed culture of all tested strains was immobilized on a mineral carrier being a mixture of perlite and bentonite (20:80 by weight). That mixed culture applied for PM deodorization was particularly active against ammonia and hydrogen sulfide, which were removed from the exhaust gas by 20.8% and 17.5%, respectively. The experiments also showed that during deodorization the microorganisms could reduce the concentrations of proteins and amino acids in PM. In particular, the mixed culture was active against cysteine and methionine, which were removed from PM by around 45% within 24 h of deodorization.

  10. The Fast Pellet Injector Program for Ignitor

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Bombarda, F.; Milora, S. L.; Baylor, L. R.; Combs, S. K.

    2003-10-01

    The characteristics of a fast pellet injector for the Ignitor ignition experiment have been identified. In order to produce sufficiently peaked density profiles during the initial phase of the current ramp and to sustain them along the flat top phase, a multiple injector capable of shooting pellets of variable sizes will be developed. The program involves the collaboration of the ENEA Laboratory at Frascati and the Fusion Technology Group of Oak Ridge. The initial activities will be devoted to the development of a 4 barrel, double stage gun able to reach speeds up to 4 km/s. The compact size of the Ignitor machine makes injection from the high field side unpractical, while it is unclear that a vertical injection close to the magnetic axis will be beneficial. Simulations performed with the PELLET code(W.A. Houlberg, et al., Nuclear Fusion) 28, 595 (1988), on the other hand, indicate that pellet speeds of 3-4 km/s would allow a sufficient particle penetration from the low field side, particularly during the initial current ramp up phase, when the plasma temperature is still relatively low and good control of the density profile is most desirable.

  11. Performance of the Ignitor Pellet Injector

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Caughman, J. B. O.; Combs, S. K.; Foust, C.; Fehling, D.; McJill, J. M.; Meitner, S.; Roveta, G.

    2008-11-01

    ENEA and ORNL have built a four barrel, two-stage pneumatic injector for the Ignitor experiment featuring two innovative concepts: (i) an optimal shaping of the propellant pressure pulse to improve pellet acceleration, and (ii) the use of fast closing (< 10 ms) valves to drastically reduce the expansion volumes of the propellant gas removal system. The injector is designed to deliver pellets of different sizes with velocities up to 4 km/s, capable of penetrating near the center of the plasma column when injected from the low field side in Ignitor burning plasmas (n010^21 m-3, T011 keV). The ENEA sub-system, which includes the two-stage guns and pulse-shaping valves, the gas removal system, with associated controls and diagnostics, and the ORNL sub-system, consisting of the cryostat and pellet diagnostics, with related control and data acquisition system, have been assembled in Oak Ridge. Pellet speeds of 2 km/s have been achieved, despite the unfavorable configuration adopted in order to carry out some preliminary tests immediately after assembling the system, a very promising result. A second experimental campaign is planned for the 2008 Fall, when all four diagnostic channels should be complete.

  12. New Results with the Ignitor Pellet Injector

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Combs, S. K.; Foust, C. R.; Meitner, S.; Fehling, D.; Roveta, G.

    2011-10-01

    The Ignitor Pellet Injector (IPI) has been developed in collaboration between ENEA and ORNL to provide greater control over the density time evolution and the density peaking in plasmas produced by the Ignitor device. The four barrel, two stage injector has been designed to reach speeds up to 4 km/s, for effective low field side injection into ignited plasmas (Te ≅Ti ≅ 11 keV). The present arrangement accomodates both a two-stage gun and a standard propellant valve on each barrel, allowing seamless switching between standard and high speed operation on any or all gun barrels. The cryostat is actively cooled by a pulse tube refrigerator, equipped with supplemental cooling from a liquid He dewar. The injector has shown very good repeatability; however, intact pellets were not observed over 2 km/s, possibly due to a spinning effect on the pellets at higher speed. The cross sections of the guiding tubes have been increased and other design improvements have been implemented, aimed in particular at reducing leak rates and reducing the dispersion of the pellet trajectories, in preparation of the experimental campaign reported here. Sponsored in part by ENEA of Italy, and by the U.S. D.O.E.

  13. Paleoparasitological analysis of a raptor pellet from southern Patagonia.

    PubMed

    Fugassa, M H; Sardella, N H; Denegri, G M

    2007-04-01

    Organic remains attributable to one regurgitated pellet were examined. The pellet, belonging to a bird of prey and collected from a cave of Southern Patagonia, was dated at 6,540 +/- 110 yr. With standard paleoparasitological procedures, eggs of Capillaria sp. and a mite, Demodex sp., were found. The parasites found in the pellet belong to a rodent ingested by the bird. The present report constitutes the first paleoparasitological study of a regurgitated pellet. PMID:17539429

  14. Paleoparasitological analysis of a raptor pellet from southern Patagonia.

    PubMed

    Fugassa, M H; Sardella, N H; Denegri, G M

    2007-04-01

    Organic remains attributable to one regurgitated pellet were examined. The pellet, belonging to a bird of prey and collected from a cave of Southern Patagonia, was dated at 6,540 +/- 110 yr. With standard paleoparasitological procedures, eggs of Capillaria sp. and a mite, Demodex sp., were found. The parasites found in the pellet belong to a rodent ingested by the bird. The present report constitutes the first paleoparasitological study of a regurgitated pellet.

  15. Carcinogenic mixtures.

    PubMed

    Krewski, D; Thomas, R D

    1992-03-01

    Human populations are generally exposed simultaneously to a number of toxicants present in the environment, including complex mixtures of unknown and variable origin. While scientific methods for evaluating the potential carcinogenic risks of pure compounds are relatively well established, methods for assessing the risks of complex mixtures are somewhat less developed. This article provides a report of a recent workshop on carcinogenic mixtures sponsored by the Committee on Toxicology of the U.S. National Research Council, in which toxicological, epidemiological, and statistical approaches to carcinogenic risk assessment for mixtures were discussed. Complex mixtures, such as diesel emissions and tobacco smoke, have been shown to have carcinogenic potential. Bioassay-directed fractionation based on short-term screening test for genotoxicity has also been used in identifying carcinogenic components of mixtures. Both toxicological and epidemiological studies have identified clear interactions between chemical carcinogens, including synergistic effects at moderate to high doses. To date, laboratory studies have demonstrated over 900 interactions involving nearly 200 chemical carcinogens. At lower doses, theoretical arguments suggest that risks may be near additive. Thus, additivity at low doses has been invoked as as a working hypothesis by regulatory authorities in the absence of evidence to the contrary. Future studies of the joint effects of carcinogenic agents may serve to elucidate the mechanisms by which interactions occur at higher doses.

  16. Particle confinement of pellet-fuelled tokamak plasma

    NASA Astrophysics Data System (ADS)

    Valovič, M.; Axon, K.; Garzotti, L.; Saarelma, S.; Thyagaraja, A.; Akers, R.; Gurl, C.; Kirk, A.; Lloyd, B.; Maddison, G. P.; Morris, A. W.; Patel, A.; Shibaev, S.; Scannell, R.; Taylor, D.; Walsh, M.; MAST Team

    2008-07-01

    This paper quantifies the particle confinement of pellet-fuelled plasmas as measured in the Mega Ampere Spherical Tokamak. The dataset is restricted mostly to neutral beam heated plasmas in H-mode and to shallow pellets launched from the high-field side. It is shown that the pellet deposition can be explained only by invoking the ∇B drift of the pellet ablatant. The pellet creates a zone with positive density gradient and increased temperature gradient. Simulations show that these changes could increase the level of micro-turbulence and thus enhance further the penetration of pellet-deposited particles towards the core. Post-pellet dynamics of the density profile is characterized by the pellet retention time τpel. It is shown that τpel correlates with the status of the edge transport barrier (L-mode or H-mode) and decreases rapidly for pellet deposition radius rpel approaching the plasma edge. For ELMy H-mode and pellet deposition radius of rpel ≈ 0.8a, the pellet retention time is about 20% of the energy confinement time. The fuelling requirement by the pellets for ITER and the Component Test Facility based on the spherical tokamak is discussed.

  17. Owl Pellet Analysis--A Useful Tool in Field Studies

    ERIC Educational Resources Information Center

    Medlin, G. C.

    1977-01-01

    Describes a technique by which the density and hunting habits of owls can be inferred from their pellets. Owl pellets--usually small, cylindrical packages of undigested bone, hair, etc.--are regurgitated by a roosting bird. A series of activities based on owl pellets are provided. (CP)

  18. Post examination of copper ER sensors exposed to bentonite

    NASA Astrophysics Data System (ADS)

    Kosec, Tadeja; Kranjc, Andrej; Rosborg, Bo; Legat, Andraž

    2015-04-01

    Copper corrosion in saline solutions under oxic conditions is one of concerns for the early periods of disposal of spent nuclear fuel in deep geological repositories. The main aim of the study was to investigate the corrosion behaviour of copper during this oxic period. The corrosion rate of pure copper was measured by means of thin electrical resistance (ER) sensors that were placed in a test package containing an oxic bentonite/saline groundwater environment at room temperature for a period of four years. Additionally, the corrosion rate was monitored by electrochemical impedance spectroscopy (EIS) measurements that were performed on the same ER sensors. By the end of the exposure period the corrosion rate, as estimated by both methods, had dropped to approximately 1.0 μm/year. The corrosion rate was also estimated by the examination of metallographic cross sections. The post examination tests which were used to determine the type and extent of corrosion products included different spectroscopic techniques (XRD and Raman analysis). It was confirmed that the corrosion rate obtained by means of physical (ER) and electrochemical techniques (EIS) was consistent with that estimated from the metallographic cross section analysis. The corrosion products consisted of cuprous oxide and paratacamite, which was very abundant. From the types of attack it can be concluded that the investigated samples of copper in bentonite underwent uneven general corrosion.

  19. Coupled chemical and diffusion model for compacted bentonite

    SciTech Connect

    Olin, M.; Lehikoinen, J.; Muurinen, A.

    1995-12-31

    A chemical equilibrium model has been developed for ion-exchange and to a limited extent for other reactions, such as precipitation or dissolution of calcite or gypsum, in compacted bentonite water systems. The model was successfully applied to some bentonite experiments, especially as far as monovalent ions were concerned. The fitted log-binding constants for the exchange of sodium for potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. In addition, a coupled chemical and diffusion model has been developed to take account of diffusion in pore water, surface diffusion and ion-exchange.d the model was applied to the same experiments as the chemical equilibrium model, and its validation was found partly successful. The above values for binding constants were used also in the coupled model. The apparent (both for anions and cations) and surface diffusion (only for cations) constants yielding the best agreement between calculated and experimental data were 3.0 {times} 10{sup {minus}11} m{sup 2}/s and 6.0 {times} 10{sup {minus}12} m{sup 2}/s, respectively. These values are questionable, however, as experimental results good enough for fitting are currently not available.

  20. Mechanisms of advanced oxidation processing on bentonite consumption reduction in foundry.

    PubMed

    Wang, Yujue; Cannon, Fred S; Komarneni, Sridhar; Voigt, Robert C; Furness, J C

    2005-10-01

    Prior full-scale foundry data have shown that when an advanced oxidation (AO) process is employed in a green sand system, the foundry needs 20-35% less makeup bentonite clay than when AO is not employed. We herein sought to explore the mechanism of this enhancement and found that AO water displaced the carbon coating of pyrolyzed carbonaceous condensates that otherwise accumulated on the bentonite surface. This was discerned by surface elemental analysis. This AO treatment restored the clay's capacity to adsorb methylene blue (as a measure of its surface charge) and water vapor (as a reflection of its hydrophilic character). In full-scale foundries, these parameters have been tied to improved green compressive strength and mold performance. When baghouse dust from a full-scale foundry received ultrasonic treatment in the lab, 25-30% of the dust classified into the clay-size fraction, whereas only 7% classified this way without ultrasonics. Also, the ultrasonication caused a size reduction of the bentonite due to the delamination of bentonite particles. The average bentonite particle diameter decreased from 4.6 to 3 microm, while the light-scattering surface area increased over 50% after 20 min ultrasonication. This would greatly improve the bonding efficiency of the bentonite according to the classical clay bonding mechanism. As a combined result of these mechanisms, the reduced bentonite consumption in full-scale foundries could be accounted for. PMID:16245849

  1. Geochemical properties of bentonite pore water in high-level-waste repository condition

    SciTech Connect

    Ohe, Toshiaki; Tsukamoto, Masaki

    1997-04-01

    The chemically favorable nature of bentonite pore water is clarified by the PHREEQE geochemical simulation code. Bentonite is viewed as a candidate buffer material for a high-level-waste repository, and bentonite`s pore water chemistry is expected to result in a reduced Eh and weak alkaline pH region. Pyrite (Fe{sub 2}S), initially contained in bentonite, alters to magnetite (Fe{sub 3}O{sub 4}), and this redox couple reaction controls the oxidation reduction potential. A mild alkaline pH condition is produced mainly by an ion exchange reaction between the sodium in bentonite and the protons in the solution. A geochemical simulation of the ion exchange reactions and the pyrite-magnetite alteration suggests that a favorable chemical condition would exist during the waste glass dissolution and indicates that the Ph and the Eh values are {minus}7.5 to {minus}9.4 and {minus}450 to {minus}320 mV, respectively, when the granitic groundwater intrudes into the compacted bentonite in the repository.

  2. Production of modified bentonite via adsorbing lignocelluloses from spent liquor of NSSC process.

    PubMed

    Oveissi, Farshad; Fatehi, Pedram

    2014-12-01

    In this work, the adsorption of lignocelluloses from spent liquor (SL) of neutral sulfite semi chemical (NSSC) pulping process on bentonite was investigated. It was observed that 0.26g/g of lignin and 0.27g/g of hemicelluloses from SL were adsorbed on bentonite under the conditions of 50°C, 100rpm and 40g/gSL/bentonite after 3h of treatment. The adsorptions of lignin and hemicellulose were increased to 1.8g/g and 0.45g/g, respectively, via adding 15mg/g of polydiallyldimethylammonium chloride (PDADMAC) in the system of SL/bentonite. The turbidity and COD removals were improved from 69% to 93% and from 25% to 38% by adding PDADMAC to the SL/bentonite system, respectively. The increase in the heating value of bentonite (from 0 to 15.4MJ/kg) confirmed the adsorption of lignocelluloses. The modified bentonite can be used as filler in corrugated medium paper production or as fuel. PMID:25463794

  3. Clay/latex mixture stops lost circulation in large carbonate fractures

    SciTech Connect

    Kurochkin, B.

    1995-08-28

    A mixture of latex and drilling mud clay controls lost circulation in large carbonate fractures by coagulating when it mixes with the formation fluids. The mixture forms large aggregates capable of plugging large formation fractures and is not prone to being washed out by formation water. The Scientific Research Institute of Drilling Techniques in Moscow (Vniibt) has developed a special lost circulation mixture combining a latex base and clay drilling mud for use in plugging these fractures. Mud powders of bentonite and calcium clays can be used to prepare the clay-latex mixture (GPC). The latex is mixed with drilling mud made from bentonite clay powder and is pumped to the lost circulation zone where it coagulates by reacting with the calcium ions in the formation water. The latex used to prepare GPC must be compatible with the mud being used. After coagulation, GPC changes to a rubber mixture. In the Tataria oil region, one of the drilling enterprises used GPC in 23 wells, with positive results in 20 of the wells. The bentonite powder base GPC mixture remains easily pumpable until the end of the operation. The mixture`s plastic strength increases over time as it is pumped into the lost circulation zone. This type of mixture is typically used to control lost circulation at depths greater than 1,000--1,500 m. GPC based on drilling mud made from calcium clay is used at shallower depths. For GPC pumped into a borehole, the latex/clay drilling mud ratio is typically between 1:1 and 1:2.

  4. [Effect of SDS on the adsorption of Cd2+ onto amphoteric modified bentonites].

    PubMed

    Wang, Jian-Tao; Meng, Zhao-Fu; Yang, Ya-Ti; Yang, Shu-Ying; Li, Bin; Xu, Shao-e

    2014-07-01

    Under different modified ratios, temperatures, pH and ionic strengths, the effect of sodium dodecyl sulfonate (SDS) on the adsorption of Cd2+ onto bentonites which modified with amphoteric modifier dodecyl dimethyl betaine (BS-12) was studied by batch experiments, and the adsorption mechanism was also discussed. Results showed that the adsorption of Cd2+ on amphoteric bentonites can be enhanced significantly by SDS combined modification, Cd2+ adsorption decreases in the order: BS + 150SDS (BS-12 + 150% SDS) > BS + 100SDS (BS-12 + 100% SDS) > BS +50SDS(BS-12 + 50% SDS) > BS + 25SDS (BS-12 + 25% SDS) > BS (BS-12) > CK (unmodified soil). The adsorption isotherm can be described by the Langmuir equation. The change of temperature effect from positive on CK and amphoteric bentonites to negative on BS + 150SDS bentonites is observed with an increase of SDS modified ratio. The pH has little influence on Cd2+ adsorption on bentonites. The adsorption of Cd2+ on bentonites decreases with ionic strength rise, but the effect of ionic strength can be reduced with an increase of SDS modified ratio also. The adsorption thermodynamic parameters demonstrated that the adsorption of Cd2+ on modified bentonites was spontaneously controlled by entropy increment. When the SDS modified ratio is lower than 100% CEC, the adsorption of Cd2+ on modified bentonites is a process with characteristics of both enthalpy increment and entropy increment, while the SDS modified ratio is equal to or higher than 100% CEC, the adsorption of Cd2+ on modified bentonites becomes a process of enthalpy decrement and entropy increment. PMID:25244843

  5. Numerical evaluation of cement/bentonite interactions in engineered barrier systems

    NASA Astrophysics Data System (ADS)

    Nakarai, K.; Ishida, T.

    2009-04-01

    We investigate the use of concrete in combination with bentonite in engineered barrier systems of radioactive waste deposits. Such barriers must remain stable for several tens of thousands of years, which is far longer than the lifetime of conventional infrastructure. In this study a multi-phase physicochemical method for the prediction of the long-term degradation of concrete by calcium leaching is presented. We developed a unified approach that can be used for both, concrete and bentonite as well as their interaction in the engineered barrier system. To predict the degradation of cement by calcium leaching, solid-solution equilibrium of calcium ions and their transport are formulated on the basis of thermodynamic laws and calibrated to experimental data. In the bentonite domain, the proposed equilibrium formulation considers ions bound by ion exchange, as well as ion absorption on its microstructure. The parameters of the model are based on experiments with block samples of highly compacted bentonite. Transport of calcium ions is modeled by considering diffusion and advection in the pore structure. We verified the model by comparing it to calcium leaching experiments of concrete in contact with bentonite. The analysis of the experiments revealed that the rate of deterioration is massively increased when the concrete was in contact with bentonite. This is caused by a high calcium concentration gradient between the concrete and the surrounding bentonite. In the bentonite a low concentration of free calcium ions in the pore water is maintained due to ion exchange and adsorption of calcium onto the clay. We conclude that it is important to account for the effect of bentonite on the degradation process of concrete.

  6. Bentonite Clay Evolution at Elevated Pressures and Temperatures: An experimental study for generic nuclear repositories

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Cheshire, M.; McCarney, M.

    2012-12-01

    The Used Fuel Disposition Campaign is presently engaged in looking at various generic repository options for disposal of used fuel. Of interest are the disposal of high heat load canisters ,which may allow for a reduced repository footprint. The focus of this experimental work is to characterize Engineered Barrier Systems (EBS) conditions in repositories. Clay minerals - as backfill or buffer materials - are critical to the performance of the EBS. Experiments were performed in Dickson cells at 150 bar and sequentially stepped from 125 oC to 300 oC over a period of ~1 month. An unprocessed bentonite from Colony, Wyoming was used as the buffer material in each experiment. An K-Ca-Na-Cl-rich brine (replicating deep Stripa groundwater) was used at a 9:1 water:rock ratio. The baseline experiment contained brine + clay, while three other experiments contained metals that could be used as waste form canisters (brine +clay+304SS, brine+clay+316SS, brine+clay+Cu). All experiments were buffered at the Mt-Fe oxygen fugacity univarient line. As experiment temperature increased and time progressed, pH, K and Ca ion concentrations dropped, while Si, Na, and SO4 concentrations increased. Silicon was liberated into the fluid phase (>1000 ppm) and precipitated during the quenching of the experiment. The precipitated silica transformed to cristobalite as cooling progressed. Potassium was mobilized and exchanged with interlayer Na, transitioning the clay from Na-montmorillonite to K-smectite. Though illitization was not observed in these experiments, its formation may be kinetically limited and longer-term experiments are underway to evaluate the equilibrium point in this reaction. Clinoptilolite present in the starting bentonite mixture is unstable above 150 oC. Hence, the zeolite broke down at high temperatures but recrystallized as the quench event occurred. This was borne out in SEM images that showed clinoptilolite as a very late stage growth mineral. Both experimental runs

  7. The adsorption of caesium—137 on bentonites from the Carpathian basin

    NASA Astrophysics Data System (ADS)

    Nagy, N. M.; Kónya, J.; Földvári, M.; Kovács-Pálffy, P.

    2003-01-01

    The adsorption of cesium was studied on the surface of bentonite rocks from the Carpathian basin. The adsorbed quantity at carrier-free concentration was measured using 137Cs, the adsorption capacity of bentonites for cesium ions was determined by X-ray fluorescence analysis. The relation of the cesium adsorption and mineral composition as well as the structural modifications of crystal structure was studied by X-ray diffraction spectrometry and thermoanalysis. The results show that the adsorbed quantity of cesium primarily depends on the montmorillonite content of bentonites.

  8. Study of the acidic properties of ZrO2-pillared bentonite

    NASA Astrophysics Data System (ADS)

    Suseno, Ahmad; Priyono; Wijaya, Karna; Trisunaryanti, Wega

    2016-02-01

    Research on pillared clays prepared from purified bentonite of Boyolali Central Jawa, Indonesia, and polycation Zr at various concentration and calcination temperature had been done. Effect of acidity characteristic and structure of resulting materials were studied. The nature of acidic site of the material was identified on the basis of FTIRspectra of pyridine adsorbed on ZrO2- pillared bentonite catalysts. Analysis showed that increasing calcination temperature was followed by decreasing acidity and increasing ZrO2 content in the pillared bentonite accompanied by the increase of its acidity. FTIR spectra showed there was an intensity increase of the characteristic band of 1635 cm-1that indicates a Bronsted acid.

  9. Simulation of peeling-ballooning modes with pellet injection

    SciTech Connect

    Chen, S. Y.; Huang, J.; Sun, T. T.; Tang, C. J.; Wang, Z. H.

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  10. 46 CFR 148.04-9 - Fishmeal or scrap, ground or pelletized; fishmeal or scrap, ground and pelletized (mixture).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... antioxidant (ethoxyquin); in the case where the material contains more than 12 percent fat by weight, it must be treated with at least 1000 ppm antioxidant (ethoxyquin) at the time of production. (d) Shipment of... ambient temperature, whichever is greater. (f) The material must contain at least 100 ppm...

  11. Preparation of UO2, ThO2 and (Th,U)O2 pellets from photochemically-prepared nano-powders

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Čuba, Václav; de Visser-Týnová, Eva; Ekberg, Christian; Persson, Ingmar

    2016-02-01

    Photochemically-induced preparation of nano-powders of crystalline uranium and/or thorium oxides and their subsequent pelletizing has been investigated. The preparative method was based on the photochemically induced formation of amorphous solid precursors in aqueous solution containing uranyl and/or thorium nitrate and ammonium formate. The EXAFS analyses of the precursors shown that photon irradiation of thorium containing solutions yields a compound with little long-range order but likely "ThO2 like" and the irradiation of uranium containing solutions yields the mixture of U(IV) and U(VI) compounds. The U-containing precursors were carbon free, thus allowing direct heat treatment in reducing atmosphere without pre-treatment in the air. Subsequent heat treatment of amorphous solid precursors at 300-550 °C yielded nano-crystalline UO2, ThO2 or solid (Th,U)O2 solutions with high purity, well-developed crystals with linear crystallite size <15 nm. The prepared nano-powders of crystalline oxides were pelletized without any binder (pressure 500 MPa), the green pellets were subsequently sintered at 1300 °C under an Ar:H2 (20:1) mixture (UO2 and (Th,U)O2 pellets) or at 1600 °C in ambient air (ThO2 pellets). The theoretical density of the sintered pellets varied from 91 to 97%.

  12. Pellets valorization of waste biomass harvested by coagulation of freshwater algae.

    PubMed

    Cancela, Ángeles; Sánchez, Ángel; Álvarez, Xana; Jiménez, Alejandro; Ortiz, Luis; Valero, Enrique; Varela, Paloma

    2016-03-01

    There is a comparison of different coagulants: calcium chloride (20, 60, 120 and 180 mg/L); sodium alginate (10 and 20 mg/L) and tannins of Eucalyptus globulus bark (10 and 20 mg/L) in order to make the most of each method. The results show that 20 mg/L of tannin achieved a recovery efficiency of 95.35±1.16, sodium alginate 90.49±0.53 and 84.04±2.29 for calcium chloride. Taking into account the economic side of the coagulants, obtaining tannins is a profitable process. Bark is waste biomass obtained in the forestry process; therefore it does not involve extra costs. Finally, the feasibility of making pellets from harvested algae was studied, and the results suggest that waste biomass pellets may be used as fuel in boilers in a mixture <54% with other waste sources as Eucalyptus g. branches. PMID:26773958

  13. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  14. Pilot plant processing of sodium bifluoride to sodium fluoride pellets

    SciTech Connect

    Leone, S.M.

    1985-01-25

    Sodium fluoride (NaF) traps in the PGDP purge cascade presently use NaF pellets to remove residual UF{sub 6} from the gas stream. These pellets are procured from ORGDP which converts sodium bifluoride pellets to NaF by thermal decomposition. Discussions of the possibility of no longer producing pellets at ORGDP, due to oven corrosion problems, led to a pilot plant test at PGDP. This test was designed to examine the feasibility of producing the NaF pellets at PGDP in the event that an alternative source of supply became necessary. Satisfactory pellets were produced without difficulty; however, it was determined that the conversion process could not be readily carried out in the existing NaF traps. Construction of a separate facility with provisions to handle the large quantities of hydrogen fluoride (HF) released during the process would be required to produce pellets at the rate needed. 1 fig., 2 tabs.

  15. Performance characterization of pneumatic single pellet injection system

    SciTech Connect

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s.

  16. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  17. Tritium pellet injection sequences for TFTR

    SciTech Connect

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments.

  18. Pellet stoves wood energy for all

    SciTech Connect

    1995-10-01

    While it`s true that specialized pellet stoves, capable of burning fuels as diverse as reprocessed paper waste and feed corn, are expensive and occasionally clunky, they also represent one of the best hopes for introducing clean burning, reliable renewable energy to those now heating with gas and oil. This article explores the benefits and operation of the stoves including discussions of the following: ecological benefits, combustion, stove venting, ashes, costs, fuels, and the future of wood heat. 1 tab.

  19. Surface properties of beached plastic pellets.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2012-10-01

    The presence of pollutants on plastic debris is an emerging environmental hot topic. Understanding the surface alteration of plastics while in the marine environment increases our understanding of the pollutant-plastic debris interaction. Plastic pellets are widely distributed throughout the world oceans. Eroded and virgin polyethylene (PE) and polypropylene (PP) pellets were studied for their surface properties to better understand the interaction between plastic and compounds in marine environment. Surface properties such as point of zero charge, surface area and pore volume, surface topography, functional groups and acid-base behavior are important factors which affect sorption. Virgin plastic pellets had homogeneous smooth surfaces that do not have any acid-base behavior. Eroded PE demonstrates an altered surface that at seawater pH acquires a negative charge due to ketone groups. The uneven surface and possible functional groups could have been formed from the erosion processes while floating at the sea surface and might explain the interaction of eroded plastics with microbes and metals.

  20. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  1. Use of rubber and bentonite added fly ash as a liner material.

    PubMed

    Cokca, Erdal; Yilmaz, Zeka

    2004-01-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner. PMID:14761754

  2. Geochemistry of Telichian (Silurian) K-bentonites in Estonia and Latvia

    NASA Astrophysics Data System (ADS)

    Kiipli, T.; Soesoo, A.; Kallaste, T.; Kiipli, E.

    2008-03-01

    In the Telychian section of Estonia and Latvia K-bentonites from 45 volcanic eruptions were discovered. The thickness of K-bentonite interbeds varies from a few millimetres to 20 cm. The sodium component concentration in sanidine phenocrysts measured by XRD ranges from 20 to 48 mol% and was used for establishing correlations. The Ti, Zr, Nb, Th and Sr concentrations and ratios show temporal trends indicating fractional crystallization in magma chambers. The analysis of biotite phenocrysts revealed magnesium and iron rich biotites in bentonites. Synthesis of these geochemical data enabled a classification of bentonites into seven geochemical types, which probably originate from seven different volcanic sources. Isopach schemes indicate ash transport from the west and north-west directions.

  3. Use of rubber and bentonite added fly ash as a liner material

    SciTech Connect

    Cokca, Erdal; Yilmaz, Zeka

    2004-07-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.

  4. Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.

    2014-02-01

    The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of π interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.

  5. Effect of bentonite modification on hardness and mechanical properties of natural rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Santiago, Denise Ester O.; Pajarito, Bryan B.; Mangaccat, Winna Faye F.; Tigue, Maelyn Rose M.; Tipton, Monica T.

    2016-05-01

    The effect of sodium activation, ion-exchange with tertiary amine salt, surface treatment with non-ionic surfactant, and wet grinding of bentonite on hardness and mechanical properties of natural rubber nanocomposites (NRN) was studied using full factorial design of experiment. Results of X-ray diffraction (XRD) show increase in basal spacing d of bentonite due to modification, while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirm the organic modification of bentonite. Analysis of variance (ANOVA) shows that the main effect of surface treatment increases the hardness and decreases the tensile modulus of the NRN. The surface treatment and wet grinding of bentonite decrease the tensile stresses at 100, 200 and 300% strain of NRN. Sodium activation and ion-exchange negatively affect the compressive properties, while surface treatment significantly improves the compressive properties of NRN.

  6. Use of rubber and bentonite added fly ash as a liner material.

    PubMed

    Cokca, Erdal; Yilmaz, Zeka

    2004-01-01

    In many countries regulations require all hazardous waste disposal facilities to be lined with suitable impermeable barriers to protect against contamination. In this study, a series of laboratory tests on rubber and bentonite added fly ash were conducted. The aim of the tests was to evaluate the feasibility of utilizing fly ash, rubber and bentonite as a low hydraulic conductivity liner material. Type C fly ash was obtained from Soma thermal power plant in Turkey; rubber in pulverized form was waste from the retreading industry. To investigate the properties of rubber and bentonite added fly ash, hydraulic conductivity, leachate analysis, unconfined compression, split tensile strength, one-dimensional consolidation, swell and freeze/thaw cycle tests were performed. The overall evaluation of results have revealed that rubber and bentonite added fly ash showed good promise and a candidate for construction of a liner.

  7. CO2 capture using zeolite 13X prepared from bentonite

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2014-02-01

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

  8. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    NASA Astrophysics Data System (ADS)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated

  9. Contributions of polymers to bentonite and saponite fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Panfil, D.J. . Dept. of Geosciences)

    1991-02-01

    Polymers have been used in drilling fluids for many years. However, the confusion surrounding the use of polymers in the oil field has severely limited their effectiveness. Many oilfield workers simply put all polymers in the same category without regard to the many differences that exist among them. Homopolymers and copolymers of acrylic acid and a copolymer of styrene and maleic anhydride are found to have profound effects on the rheological and filtration properties of clay-based fluids up to 300{degrees}F. These contributions of the polymers are greatly diminished when the clay/polymer fluids were autoclaved at 400{degrees}F. Thus, the effects of these polymers are expected to be negligible at and above 400{degrees}F. Homo- and co-polymers of acrylic acid with molecular weights below 5000 almost eliminate the anomalous viscosity rise of the bentonite fluids at temperatures between 250--450{degrees}F. A homopolymer of acrylic acid with a molecular weight of 60,000 and a co-polymer of styrene and maleic anhydride with very high molecular weight further enhances the anomalous viscosity rise of the bentonite fluid. The original viscosity profile of the saponite fluid is characterized with a high initial viscosity up to 200{degrees}F which is followed by a steep thinning at higher temperatures. The addition of homo- and co-polymer of acrylic acid causes a complete reversal in the fluid viscosity. They become thin at lower temperatures (up to 250{degrees}F) and experience a sudden viscosity rise at higher temperatures. All the above polymers greatly improve the filtration losses of the fluids at room temperatures as indicated by the API test. The filtration tests at high pressure and high temperatures were inconclusive due to the frequent blow-outs that occur during the tests.

  10. Sodium bentonite and monensin under chronic aflatoxicosis in broiler chickens.

    PubMed

    Magnoli, A P; Texeira, M; Rosa, C A R; Miazzo, R D; Cavaglieri, L R; Magnoli, C E; Dalcero, A M; Chiacchiera, S M

    2011-02-01

    Clay feed additives have been increasingly incorporated into animal diets to prevent aflatoxicosis. Due to the nonselective nature of the binding interaction, many important components of the diets could also be made unavailable because of these feed additives. The anticoccidial monensin (MON) could also be sequestered by these clays. The use of sodium bentonite (Na-B) from a mine in the province of Mendoza, Argentina, was investigated as a sequestering agent to prevent the effects of 100 µg/kg of dietary aflatoxin B(1) (AFB(1)). In vitro studies demonstrated that the above Na-B was a good candidate to prevent aflatoxicosis. They also showed that MON competes with AFB(1) for the adsorption sites on the clay surface and effectively displaces the toxin when it is in low concentration. Even though the levels of MON in diets, approximately 55 mg/kg, are high enough to not be significantly changed as a consequence of the adsorption, they can further affect the ability of the clays to bind low levels of AFB(1). An in vivo experiment carried out with poultry showed that 100 µg/kg of AFB(1) does not significantly change productive or biochemical parameters. However, liver histopathology not only confirmed the ability of this particular Na-B to prevent aflatoxicosis but also the decrease of this capacity in the presence of 55 mg/kg of MON. This is the first report stressing this fact and further research should be performed to check if this behavior is a characteristic of the assayed Na-B or of this type of clay. On the other hand, the presence of MON should also be taken into account when assaying the potential AFB(1) binding ability of a given bentonite.

  11. Co-composting of acid waste bentonites and their effects on soil properties and crop biomass.

    PubMed

    Soda, Wannipa; Noble, Andrew D; Suzuki, Shinji; Simmons, Robert; Sindhusen, La-Ait; Bhuthorndharaj, Suwannee

    2006-01-01

    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.

  12. Effect of background electrolytes on the adsorption of nitroaromatic compounds onto bentonite.

    PubMed

    Chen, Baoliang; Huang, Wenhai

    2009-01-01

    To further elucidate interaction of nitroaromatic compounds with mineral surface, the sorption of m-dinitrobenzene (m-DNB) and nitrobenzene to original bentonite in aqueous solution containing different electrolytes (i.e., KCl, NH4Cl, CaCl2 and Tetramethylammonium bromide (TMAB)) was studied. The sorption of m-DNB was greatly enhanced with the presence of KCl and NH4Cl, while little influence was observed with CaCl2 and TMAB, following the order of KC1 > NH4Cl > TMAB, CaCl2, or DI water. For nitrobenzene, sorption enhancement only occurred at high nitrobenzene concentrations in the presence of KCl, and the solute equilibrium concentration at inflexion point was lowered with increasing KCl concentration. These sorption enhancements were significantly promoted with the increase of electrolyte concentration. The salting-out effect is insufficient to account for the sorption enhancement by original bentonite with increasing KCl or NH4Cl concentration. X-ray diffraction patterns of bentonite suspensions indicated that the sorption enhancement of m-DNB was attributed to the intercalation of K+ or NH4+ into bentonite interlayer and then dehydration with m-DNB to form inner-sphere complexes, which caused previously expanded bentonite interlayers to collapse in aqueous suspension, thus further enhanced the interaction of phenyl with siloxane surface. In comparison, the sorption enhancement of NB is attributed to the formation of outer-sphere complexes with K+ at high solute-loadings (> 200-400 mg/kg). The sorption of m-DNB to initially modified TMA(+)-bentonite and K(+)-bentonite was almost the same as respective sorption to original bentonite in solution containing TMA+ and K+. PMID:19862916

  13. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.

    1991-01-01

    A proof-of-principle (POP) electron-beam pellet accelerator has been developed and used for accelerating hydrogen and deuterium pellets. An intact hydrogen pellet was accelerated to a speed of 460 m/s by an electron beam of 13.5 keV. 0.3 A, and 2 ms. The maximum speed is limited by the acceleration path length (0.4 m) and pellet integrity. Experimental data have been collected for several hundred hydrogen pellets, which were accelerated by electron beams with parameters of voltage up to 16 kV, current up to 0.4 A, and pulse length up to 10 ms. Preliminary results reveal that the measured burn velocity increases roughly with the square of the beam voltage, as the theoretical model predicts. The final pellet velocity is proportional to the exhaust velocity, which increases with the beam power. To reach the high exhaust velocity needed for accelerating pellets to >1000 m/s, a new electron gun, with its cathode indirectly heated by a graphite heater and an electron beam, is being developed to increase beam current and power. A rocket casing or shell around the pellet has been designed and developed to increase pellet strength and improve the electron-rocket coupling efficiency. We present the characteristics of this pellet accelerator, including new improvements. 13 refs., 6 figs.

  14. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia.

    PubMed

    Nair, Ramkumar B; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2016-12-01

    Pellet formation of filamentous fungi in submerged culture is an imperative topic of fermentation research. In this study, we report for the first time the growth of filamentous ascomycete fungus, Neurospora intermedia in its mycelial pellet form. In submerged culture, the growth morphology of the fungus was successfully manipulated into growing as pellets by modifying various cultivation conditions. Factors such as pH (2.0-10.0), agitation rate (100-150 rpm), carbon source (glucose, arabinose, sucrose, and galactose), the presence of additive agents (glycerol and calcium chloride) and trace metals were investigated for their effect on the pellet formation. Of the various factors screened, uniform pellets were formed only at pH range 3.0-4.0, signifying it as the most influential factor for N. intermedia pellet formation. The average pellet size ranged from 2.38 ± 0.12 to 2.86 ± 0.38 mm. The pellet formation remained unaffected by the inoculum type used and its size showed an inverse correlation with the agitation rate of the culture. Efficient glucose utilization was observed with fungal pellets, as opposed to the freely suspended mycelium, proving its viability for fast-fermentation processes. Scale up of the pelletization process was also carried out in bench-scale airlift and bubble column reactors (4.5 L).

  15. Pellet imaging techniques in the ASDEX tokamak (abstract)

    SciTech Connect

    Wurden, G.A. ); Buechl, K.; Hofmann, J.; Lang, R.; Loch, R.; Rudyj, A.; Sandmann, W. )

    1990-10-01

    As part of a USDOE/ASDEX collaboration, a detailed examination of pellet ablation in ASDEX with a variety of diagnostics has allowed a better understanding of a number of features of hydrogen ice pellet ablation in a plasma. In particular, fast-gated photos with an intensified Xybion CCD video camera allow {ital in} {ital situ} velocity measurements of the pellet as it penetrates the plasma. With time resolution of typically 100 ns and exposures every 50 {mu}s, the evolution of each pellet in a multipellet ASDEX tokamak plasma discharge can be followed. When the pellet cloud track has striations, the light intensity profile through the cloud is hollow (dark near the pellet), whereas at the beginning or near the end of the pellet trajectory the track is typically smooth (without striations) and has a gaussian-peaked light emission profile. New, single pellet Stark broadened {ital D}{sub {alpha}}, {ital D}{sub {beta}}, and {ital D}{sub {gamma}} spectra, obtained with a tangentially viewing scanning mirror/spectrometer with Reticon array readout, are consistent with cloud densities of 2{times}10{sup 17} cm{sup {minus}3} or higher in the regions of strongest light emission. A spatially resolved array of {ital D}{sub {alpha}} detectors shows that the light variations during the pellet ablation are not caused solely by a modulation of the incoming energy flux as the pellet crosses rational {ital q} surfaces, but instead are a result of dynamic, nonstationary, ablation process.

  16. Influences on particle shape in underwater pelletizing processes

    SciTech Connect

    Kast, O. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: matthias.musialek@ikt.uni-stuttgart.de E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die opening were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.

  17. Cryogenic pellet production developments for long-pulse plasma operation

    NASA Astrophysics Data System (ADS)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-01

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  18. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  19. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    SciTech Connect

    Hibbs, S.M.; Allen, S.L.; Petersen, D.E.; Sewall, N.R.

    1990-09-01

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable.

  20. Study of combined effect of proteins and bentonite fining on the wine aroma loss.

    PubMed

    Vincenzi, Simone; Panighel, Annarita; Gazzola, Diana; Flamini, Riccardo; Curioni, Andrea

    2015-03-01

    The wine aroma loss as a consequence of treatments with bentonite is due to the occurrence of multiple interaction mechanisms. In addition to a direct effect of bentonite, the removal of aroma compounds bound to protein components adsorbed by the clay has been hypothesized but never demonstrated. We studied the effect of bentonite addition on total wine aroma compounds (extracted from Moscato wine) in a model solution in the absence and presence of total and purified (thaumatin-like proteins and chitinase) wine proteins. The results showed that in general bentonite alone has a low effect on the loss of terpenes but removed ethyl esters and fatty acids. The presence of wine proteins in the solution treated with bentonite tended to increase the loss of esters with the longest carbon chains (from ethyl octanoate to ethyl decanoate), and this was significant when the purified proteins were used. The results here reported suggest that hydrophobicity can be one of the driving forces involved in the interaction of aromas with both bentonite and proteins.

  1. Occurrence and significance of Silurian K-bentonite beds at Arisaig, Nova Scotia, eastern Canada

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.; Melchin, Michael J.

    1997-01-01

    The most extensive succession of K-bentonite beds known in the Silurian of North America occurs at Arisaig on the northern coast of Nova Scotia. At least 40 ash beds are present in the Llandoverian Ross Brook Formation and at least four in the early Ludlovian McAdam Brook Formation. Most of the beds are thin (<5 cm), but one bed (the Smith Brook K-bentonite bed) in the late Llandoverian crenulata Zone and another (the McAdam Brook K-bentonite bed) in the early Ludlovian nilssoni Zone each reach a thickness of 20 cm. New graptolite collections provide critical information on the biostratigraphic position of the K-bentonite beds in the Ross Brook Formation. Geochemical data show that the Arisaig ash beds represent calc-alkaline magmas from plate margin, subduction-related volcanic vents. Differences in K-bentonite stratigraphie distribution, combined with paleogeographic considerations, suggest that the volcanoes were located much farther to the south in the Iapetus than the source volcanoes of the British - Baltoscandian Llandoverian K-bentonites.

  2. Numerical simulation of reactive processes in an experiment with partially saturated bentonite

    NASA Astrophysics Data System (ADS)

    Xie, Mingliang; Bauer, Sebastian; Kolditz, Olaf; Nowak, Thomas; Shao, Hua

    2006-02-01

    Bentonites are preferred materials for use as engineered barriers for high-level nuclear waste repositories. Simulation of geochemical processes in bentonite is therefore important for long-term safety assessment of those repositories. In this work, the porewater chemistry of a bentonite sample subject to simultaneous heating and hydration, as studied by Cuevas et al. [Cuevas, J., Villar, M., Fernández, A., Gómez, P., Martín, P., 1997. Porewaters extracted from compacted bentonite subjected to simultaneous heating and hydration. Applied Geochemistry 12, 473-481.], was assessed with a non-isothermal reactive transport model by coupling the geochemical software PHREEQC2 with the object-oriented FEM simulator GeoSys/RockFlow. Reactive transport modelling includes heat transport, two-phase flow, multicomponent transport and geochemical reactions in the liquid phase, i.e. ion exchange, mineral dissolution/precipitation and equilibrium reactions. Simulations show that the easily soluble minerals in bentonite determine the porewater chemistry. Temperature affects both two-phase flow and geochemical reactions. Porosity change due to dissolution/precipitation is low during the experiment. However, changes of the effective porosity caused by bentonite swelling can be very large. The simulated results agree well with the experimental data.

  3. [Solidification/Stabilization (S/S) of sludge using calcium-bentonite as additive].

    PubMed

    Zhu, Wei; Lin, Cheng; Li, Lei; Ohki, T

    2007-05-01

    Cement-based S/S of sludge confronted the problems of consuming the large amount of cement and high pH leaching from solidified sludge. This research utilized calcium-bentonite as additive to assist cement-based S/S of sludge. Unconfined compressive strength (UCS) test and leach test were conducted to assess its effect by measuring UCS of the solidified sludge, leaching ratio of heavy metal, COD and pH of leachate from the solidified sludge. The results show that compressive strength of the solidified sludge increases remarkably after adding calcium-bentonite, and when half of cement content of 0.4 (to sludge by weight) is replaced by bentonite, strength of the solidified sludge increases nearly 6 times. Furthermore, volume of the solidified sludge after adding bentonite changes small. With calcium-bentonite adding, leaching Zn, Pb and pH from the solidified sludge appears in a declining trend, zinc and lead leaching ratios decrease from 6.9% to 0.25%, 9.6% to 5% respectively and pH decreases from 12.3 to 12.1. Copper would be leached out as organics dissolve at high pH or natural drying conditions, which increases leaching ratio of copper from sludge. However, bentonite can reduce these bad influences and improve stability of copper stable in the solidified sludge. PMID:17633173

  4. Preparation of lipid aspirin sustained-release pellets by solvent-free extrusion/spheronization and an investigation of their stability.

    PubMed

    Yan, Xiaonan; He, Haibing; Meng, Jia; Zhang, Chungang; Hong, Mo; Tang, Xing

    2012-10-01

    A novel solvent-free extrusion/spheronization technique was investigated for preparing stable aspirin sustained-release pellets. Lipids as binders and the matrix in this technique were extruded below their melting points, and spheronized in a thermomechanical process. Four types of lipids (adeps solidus, Compritol(®) 888 ATO, Precirol(®) ATO5 and Compritol(®) HD5 ATO) and their admixture in different ratios were used to obtain spherical and extended-release pellets. Pellets containing 80% aspirin, 15% adeps solidus and 5% Compritol(®) 888 ATO had the best spherical geometry and met the dissolution requirements of aspirin extended-release tablets in USP 31. Storage stability studies showed that the content of free salicylic acid increased sharply in the traditional pellets produced by wet extrusion/spheronization, from 1.91 to 7.84%, whereas there was little increase in the lipid pellets (from 0.48 to 1.08%). The dissolution rate from the optimal pellets (F11) stored at 26°C did not change, but became faster at 40°C/RH75% after 5 months. Powder X-ray diffraction, scanning electron microscopy (SEM) and differential scanning calorimetry were used to investigate the physical properties of the pellets during stability testing. The increase in the rate of drug release from aged pellets (40°C/RH75%) may result from the partially melted adeps solidus observed in SEM photographs. This study suggests that it is possible to prepare sustained-release pellets by solvent-free extrusion/spheronization using an appropriate mixture of lipids with high stability. In particular, this novel technique is excellent for hygroscopic drugs.

  5. Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.

    PubMed

    Choi, J; Kang, C H; Whang, J

    2001-05-01

    The bentonite-based material being evaluated in several countries as potential barriers and seals for a nuclear waste disposal system is of mostly sodium type, whereas most bentonite available in Korea is known to be of calcium type. In order to investigate whether local Korean bentonite could be useful as a buffer or sealing material in an HLW repository system, raw bentonites sampled from the south-east area of Korea were examined in terms of their physicochemical properties such as surface area, CEC, swelling rate, and distribution coefficient. The diffusion behavior of some radionuclides of interest in compacted bentonite was also investigated. Considering that HLW generates decay heat over a long time, the thermal effect on the physicochemical properties of bentonite was also included. Four local samples were identified as Ca-bentonite through XRD and chemical analysis. Of the measured values of surface area, CEC and swelling rate of the local samples, Sample-A was found to have the greatest properties as the most likely candidate barrier material. The distribution coefficients of Cs-137, Sr-85, Co-60 and Am-241 for Sample-A sample were measured by the batch method. Sorption equilibrium was reached in around 8 to 10 days, but that of Sr was found to be reached earlier. Comparing the results of this study with the reference data, domestic bentonite was found to have a relatively high sorption ability. For the effect of varying concentration on sorption, the values of Kd peaked at 10(-9)-10(-7) mol/l of radionuclide concentration. In XRD analysis, the (001) peak of Sample-A was fully collapsed above 200 degrees C. The shoulder appearing at about 150 degrees C in the DSC curve was found to be evidence that Sample-A is predominated by Ca-montmorillonite. The loss of swelling capacity and CEC of Sample-A started at about 100 degrees C. The swelling data and the (001) peak intensity of the heat-treated sample showed that they were linearly interrelated. The measured

  6. Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.

    PubMed

    Choi, J; Kang, C H; Whang, J

    2001-05-01

    The bentonite-based material being evaluated in several countries as potential barriers and seals for a nuclear waste disposal system is of mostly sodium type, whereas most bentonite available in Korea is known to be of calcium type. In order to investigate whether local Korean bentonite could be useful as a buffer or sealing material in an HLW repository system, raw bentonites sampled from the south-east area of Korea were examined in terms of their physicochemical properties such as surface area, CEC, swelling rate, and distribution coefficient. The diffusion behavior of some radionuclides of interest in compacted bentonite was also investigated. Considering that HLW generates decay heat over a long time, the thermal effect on the physicochemical properties of bentonite was also included. Four local samples were identified as Ca-bentonite through XRD and chemical analysis. Of the measured values of surface area, CEC and swelling rate of the local samples, Sample-A was found to have the greatest properties as the most likely candidate barrier material. The distribution coefficients of Cs-137, Sr-85, Co-60 and Am-241 for Sample-A sample were measured by the batch method. Sorption equilibrium was reached in around 8 to 10 days, but that of Sr was found to be reached earlier. Comparing the results of this study with the reference data, domestic bentonite was found to have a relatively high sorption ability. For the effect of varying concentration on sorption, the values of Kd peaked at 10(-9)-10(-7) mol/l of radionuclide concentration. In XRD analysis, the (001) peak of Sample-A was fully collapsed above 200 degrees C. The shoulder appearing at about 150 degrees C in the DSC curve was found to be evidence that Sample-A is predominated by Ca-montmorillonite. The loss of swelling capacity and CEC of Sample-A started at about 100 degrees C. The swelling data and the (001) peak intensity of the heat-treated sample showed that they were linearly interrelated. The measured

  7. Numerical simulation of cesium and strontium migration through sodium bentonite altered by cation exchange with groundwater components

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1988-10-01

    Numerical simulations have been used to investigate how spatial and temporal changes in the ion exchange properties of bentonite affect the migration of cationic fission products from high-level waste. Simulations in which fission products compete for exchange sites with ions present in groundwater diffusing into the bentonite are compared to simulations in which the exchange properties of bentonite are constant. 12 refs., 3 figs., 2 tabs.

  8. A curious pellet from a great horned owl (Bubo virginianus)

    USGS Publications Warehouse

    Woodman, N.; Dove, C.J.; Peurach, S.C.

    2005-01-01

    One of the traditional methods of determining the dietary preferences of owls relies upon the identification of bony remains of prey contained in regurgitated pellets. Discovery of a pellet containing a large, complete primary feather from an adult, male Ring-necked Pheasant (Phasianus colchicus) prompted us to examine in detail a small sample of pellets from a Great Horned Owl (Bubo virginianus). Our analyses of feather and hair remains in these pellets documented the presence of three species of birds and two species of mammals, whereas bones in the pellets represented only mammals. This finding indicates an important bias that challenges the reliability of owl pellet studies making use of only osteological remains.

  9. Mechanical durability and combustion characteristics of pellets from biomass blends.

    PubMed

    Gil, M V; Oulego, P; Casal, M D; Pevida, C; Pis, J J; Rubiera, F

    2010-11-01

    Biofuel pellets were prepared from biomass (pine, chestnut and eucalyptus sawdust, cellulose residue, coffee husks and grape waste) and from blends of biomass with two coals (bituminous and semianthracite). Their mechanical properties and combustion behaviour were studied by means of an abrasion index and thermogravimetric analysis (TGA), respectively, in order to select the best raw materials available in the area of study for pellet production. Chestnut and pine sawdust pellets exhibited the highest durability, whereas grape waste and coffee husks pellets were the least durable. Blends of pine sawdust with 10-30% chestnut sawdust were the best for pellet production. Blends of cellulose residue and coals (<20%) with chestnut and pine sawdusts did not decrease pellet durability. The biomass/biomass blends presented combustion profiles similar to those of the individual raw materials. The addition of coal to the biomass in low amounts did not affect the thermal characteristics of the blends. PMID:20605093

  10. Manufacture of Regularly Shaped Sol-Gel Pellets

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  11. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents.

    PubMed

    Shanableh, Abdallah M; Elsergany, Moetaz M

    2013-01-01

    This study was part of a larger effort that involves evaluating alternatives to upgrading secondary treatment systems in the United Arab Emirates for the removal of nutrients. In this study, six modified bentonite (BNT) phosphate adsorbents were prepared using solutions that contained hydroxy-polycations of aluminum (Al-BNT), iron (Fe-BNT), and mixtures of aluminum and iron (Al-Fe-BNT). The adsorption kinetics and capacities of the six adsorbents were evaluated, and the adsorbents were used to remove phosphorus from synthetic phosphate solutions and from treated wastewater. The experimental adsorption kinetics results were well represented by the pseudo-second-order kinetic model, with R(2) values ranging from 0.99 to 1.00. Similarly, the experimental equilibrium adsorption results were well represented by the Freundlich and Langmuir isotherms, with R(2) values ranging from 0.98 to 1.00. The adsorption capacities of the adsorbents were dependent on the BNT preparation conditions; the types, quantities and combination of metals used; BNT particle size; and adsorption pH. The Langmuir maximum adsorption capacities of the six adsorbents ranged from 8.9-14.5 mg P/g-BNT. The results suggested that the BNT preparations containing Fe alone or in combination with Al achieved higher adsorption capacities than the preparations containing only Al. However, the Al-BNT preparations exhibited higher adsorption rates than the Fe-BNT preparation. Three of the six adsorbents were used to remove phosphate from secondarily treated wastewater samples, and the removal results were comparable to those obtained using synthetic phosphate solutions. The BNT adsorbents also exhibited adequate settling characteristics and significant regeneration potential.

  12. Self-emulsifying pellets prepared by wet granulation in high-shear mixer: influence of formulation variables and preliminary study on the in vitro absorption.

    PubMed

    Franceschinis, Erica; Voinovich, Dario; Grassi, Mario; Perissutti, Beatrice; Filipovic-Grcic, Jelena; Martinac, Anita; Meriani-Merlo, Francesco

    2005-03-01

    A method of producing self-emulsifying pellets by wet granulation of powder mixture composed of microcrystalline cellulose, lactose and nimesulide as model drug with a mixture containing mono- and di-glycerides, polisorbate 80 and water, in a 10-l high shear mixer has been investigated. The effects of the formulation variables on pellets characteristics were evaluated by mixtures experimental design and by a polynomial model, in order to describe the phenomenon, to verify eventual interactions among components of the mixture and to investigate the feasibility of scaling-up. After determination of size distribution, the pellets were characterised by scanning electron microscopy, dissolution and disintegration tests, and by in vitro absorption test Such an approach, applied to the development of a self-emulsifying system for nimesulide as poorly water-soluble model drug, resulted in different formulations with improved drug solubility and permeability characteristics. The data demonstrate that pellets composed of oil to surfactant ratio of 1:4 (w/w) presented improvement in performance in permeation experiments. PMID:15707735

  13. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs.

  14. Effects of pellet stove on recovery from mental fatigue

    PubMed Central

    Tanaka, Masaaki; Yamada, Hiromi; Nakamura, Takayuki; Watanabe, Yasuyoshi

    2012-01-01

    Summary Background Exposure to a warm environment has been reported to be effective for recovery from mental fatigue. However, there have been no reports examining the effects of a pellet stove on recovery from mental fatigue. The purpose of this study was to examine the effects of a pellet stove on recovery from mental fatigue. Material/Methods In this placebo-controlled, crossover experiment, 16 healthy volunteers were randomized into the pellet stove and control groups. After a 30-min fatigue-inducing mental task session, participants moved to a recovery room with (pellet stove condition) or without (control condition) a pellet stove to see the image of a pellet stove for 30 min. Results After the recovery session, the participants exposed to the pellet stove condition showed lower total error counts of a cognitive test, higher levels of subjective healing, comfort, and warmth, and sympathetic nerve activity and higher parasympathetic nerve activity as compared with the control condition. Conclusions These results provide evidence that improved cognitive function, subjective mental states, and balance of the autonomic nervous activities result from using a pellet stove during the recovery session. Hence, the pellet stove was effective for the recovery from mental fatigue. PMID:22367125

  15. Sintering of wax for controlling release from pellets.

    PubMed

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  16. Development of Advanced Pellet Injector Systems for Plasma Fueling

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryuichi; Yamada, Hiroshi; LHD Experimental Group

    Two types of solid hydrogen pellet injection systems have been developed, and plasma refueling experiments have been performed using these pellet injectors. One is an in-situ pipe-gun type pellet injector, which has the simplest design of all pellet injectors. This in-situ pipe-gun injector has 10 injection barrels, each of which can independently inject cylindrical solid hydrogen pellets (3.4 and 3.8 mm in diameter and length, respectively) at velocities up to 1,200 m/s. The other is a repetitive pellet injector with a screw extruder, which can form a 3.0 mmφ solid hydrogen rod continuously at extrusion rates up to 55 mm/s. This extruder allows consecutive pellet injection up to 11 Hz without time limit. Both of these pellet injectors employ compact cryo-coolers to solidify hydrogen; therefore, they can be operated using only electrical input instead of a complicated liquid helium supply system. In particular, using a combination of the repetitive pellet injector with cryo-coolers provides a steady-state capability with minimum maintenance.

  17. New Pellet Injection Schemes on DIII-D

    SciTech Connect

    Anderson, P.M.; Baylor, L.R.; Combs, S.K.; Foust, C.R.; Jernigan, T.C.; Robinson, J.I.

    1999-11-13

    The pellet fueling system on DIII-D has been modified for injection of deuterium pellets from two vertical ports and two inner wall locations on the magnetic high-field side (HFS) of the tokamak. The HFS pellet injection technique was first employed on ASDEX-Upgrade with significant improvements reported in both pellet penetration and fueling efficiency. The new pellet injection schemes on DIII-D required the installation of new guide tubes. These lines are {approx_equal}12.5 m in total length and are made up of complex bends and turns (''roller coaster'' like) to route pellets from the injector to the plasma, including sections inside the torus. The pellet speed at which intact pellets can survive through the curved guide tubes is limited ({approx_equal}200-300 m/s for HFS injection schemes). Thus, one of the three gas guns on the injector was modified to provide pellets in a lower speed regime than the original guns (normal speed range {approx_equal}500 to 1000 m/s). The guide tube installations and gun modifications are described along with the injector operating parameters, and the latest test results are highlighted.

  18. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  19. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids.

    PubMed

    Albarran, Nairoby; Missana, Tiziana; García-Gutiérrez, Miguel; Alonso, Ursula; Mingarro, Manuel

    2011-03-25

    The effects of bentonite colloids on strontium migration in fractured crystalline medium were investigated. We analyzed first the transport behaviour of bentonite colloids alone at different flow rates; then we compared the transport behaviour of strontium as solute and of strontium previously adsorbed onto stable bentonite colloids at a water velocity of approximately 7.1·10(-6)m/s-224m/yr. Experiments with bentonite colloids alone showed that - at the lowest water flow rate used in our experiments (7.1·10(-6)m/s) - approximately 70% of the initially injected colloids were retained in the fracture. Nevertheless, the mobile colloidal fraction, moved through the fracture without retardation, at any flow rate. Bentonite colloids deposited over the fracture surface were identified during post-mortem analyses. The breakthrough curve of strontium as a solute, presented a retardation factor, R(f)~6, in agreement with its sorption onto the granite fracture surface. The breakthrough curve of strontium in the presence of bentonite colloids was much more complex, suggesting additional contributions of colloids to strontium transport. A very small fraction of strontium adsorbed on mobile colloids moved un-retarded (R(f)=1) and this fraction was much lower than the expected, considering the quantity of strontium initially adsorbed onto colloids (90%). This behaviour suggests the hypothesis of strontium sorption reversibility from colloids. On the other hand, bentonite colloids retained within the granite fracture played a major role, contributing to a slower strontium transport in comparison with strontium as a solute. This was shown by a clear peak in the breakthrough curve corresponding to a retardation factor of approximately 20.

  20. Na + and HTO diffusion in compacted bentonite: Effect of surface chemistry and related texture

    NASA Astrophysics Data System (ADS)

    Melkior, T.; Gaucher, E. C.; Brouard, C.; Yahiaoui, S.; Thoby, D.; Clinard, Ch.; Ferrage, E.; Guyonnet, D.; Tournassat, C.; Coelho, D.

    2009-05-01

    SummaryIn underground repository concepts for radioactive waste, bentonite is studied as a reference swelling material to be used as an engineered barrier. Under the changing geochemical conditions prevailing within the barrier (saturation with the fluid coming from the host formation, diffusion of various chemical plumes caused by the degradation of some constituents of the barrier-system, etc.), the surface chemistry of the clay particles could evolve. This work aims to characterize the effects of these changes on (i) the microstructure of compacted bentonite samples and (ii) the diffusion properties of HTO and Na in these samples. For this purpose, bentonite sets were equilibrated with different solutions: NaCl, CaCl 2, CsCl solutions as well as an artificial clayey porewater solution. The microstructure of the different samples was characterized by HRTEM and XRD, in a water saturated state. In parallel, effective diffusion coefficients of both HTO and 22Na were measured for the different samples. The density of the bentonite in the diffusion tests and in the HRTEM observations was set at 1.6 Mg m -3. From the microstructural observations and the results of diffusion tests, it is deduced that one key parameter is the occurrence of a gel phase in the material, which is found to depend strongly on the bentonite set: the gel phase dominates in Na-bentonite, while it is lacking in Cs-bentonite. The HTO diffusion coefficients are found to be lower in the samples with high gel phase content. Sodium diffusion does not follow the same trend: when compared with HTO, Na diffuses faster when the gel phase content is high. The latter result could indicate that the "accelerated diffusion mechanism" of cations, already mentioned in the literature, is enhanced in clayey materials that contain a gel phase.

  1. Decontamination of cesium, strontium, and cobalt from aqueous solutions by bentonite

    SciTech Connect

    Khan, M.A.; Khan, S.A.

    1996-12-31

    Sorption studies of cesium, strontium, and cobalt (Cs, Sr, and Co) on bentonite under various experimental conditions, such as contact time, pH, sorbent and sorbate concentration, and temperature, have been performed. The sorption data for all these metals have been interpreted in terms of Freundlich, Langmuir, and Dubinin-Radushkevich equations. Thermodynamics parameters, such as heat of sorption {Delta}H{degrees}, free energy change {Delta}G{degrees}, and entropy change {Delta}S{degrees}, for the sorption of these metals on bentonite have been calculated. The value of {Delta}H{degrees} shows that the sorption of Cs was exothermic, while the sorption of Sr and Co on bentonite were endothermic in nature. The value of {Delta}G{degrees} for their sorption was negative, showing the spontaneity of the process. The maximum loading capacity of Cs, Sr, and Co were 75.5, 22, and 27.5 meq, respectively, for 100 g of bentonite. The mean free energy E of Cs, Sr, and Co sorption on bentonite was 14.5, 9, and 7.7 kJ/mol, respectively. The value of E indicates that ion exchange may be the predominant mode of sorption for these radionuclides. The desorption studies with 0.01 M CaCl{sub 2} and groundwater at low-metal loading on bentonite showed that about 95% of Cs, 85-90% of Sr, and 97% of Co were irreversibly sorbed. Bentonite could be effectively used for the decontamination of wastewater effluent containing low concentrations of radioactive nuclides of Cs, Sr, and Co. 16 refs., 7 figs., 3 tabs.

  2. Comparison of Ontology Reasoners: Racer, Pellet, Fact++

    NASA Astrophysics Data System (ADS)

    Huang, T.; Li, W.; Yang, C.

    2008-12-01

    In this paper, we examine some key aspects of three of the most popular and effective Semantic reasoning engines that have been developed: Pellet, RACER, and Fact++. While these reasonably advanced reasoners share some notable similarities, it is ultimately the creativity and unique nature of these reasoning engines that have resulted in the successes of each of these reasoners. Of the numerous dissimilarities, the most obvious example might be that while Pellet is written in Java, RACER employs the Lisp programming language and Fact++ was developed using C++. From this and many other distinctions in the system architecture, we can understand the benefits of each reasoner and potentially discover certain properties that may contribute to development of an optimal reasoner in the future. The objective of this paper is to establish a solid comparison of the reasoning engines based on their system architectures, features, and overall performances in real world application. In the end, we expect to produce a valid conclusion about the advantages and problems in each reasoner. While there may not be a decisive first place among the three reasoners, the evaluation will also provide some answers as to which of these current reasoning tools will be most effective in common, practical situations.

  3. Adsorption of zinc on magnetite pellets

    SciTech Connect

    Cargnel, D.A.; Cole, C.A.

    1995-12-31

    Zinc is a common contaminant in wastewater electroplating, metal finishing, and many other industrial processes. This paper presents the results of work which is intended to be the first step in an evaluation of the use of concentrated and pelletized magnetite for the adsorption of metals from industrial wastewater. The magnetite used is a cold carbon bonded material which is formulated for the steel industry as a complete product ready for feed to the furnaces. The specific objective of this work was to determine the zinc adsorption capacity of the prepared magnetite pellets through batch tests that were designed to allow the development of an adsorption isotherm. Future work would explore the potential for use of the spent adsorbent in the steel making process, thereby allowing the recovered metals to be recycled into steel products, while avoiding spent adsorbent disposal costs. Although not evaluated in this study, an additional advantage of the use of magnetite as an adsorbent is that it can be magnetically separated from the wastewater.

  4. Noncovalent immobilization of Pectinesterase (Prunus armeniaca L.) onto bentonite.

    PubMed

    Karakuş, Emine; Ozler, Aynur; Pekyardimci, Sule

    2008-01-01

    In this work, pectinesterase isolated from Malatya apricot was immobilized onto acid-treated bentonite surface by simple adsorption at pH 9.0. The properties of free and immobilized enzyme were defined. The effect of various factors such as pH, temperature, heat, and storage stability on immobilized enzyme were investigated. Optimum pH and temperature were determined to be 9.0 and 50 degrees C, respectively. Kinetic parameters of the immobilized enzyme (Km and Vmax values) were also determined as 0.51 mM of the Km and 14.6 micromol min(-1) mg(-1) of the Vmax. No drastic change was observed in the Km value after immobilization. The Vmax value of immobilized enzyme was 8.4-fold bigger than those of free enzyme. Thermal and storage stability experiments were carried out. The patterns of heat stability indicated that the immobilization process tends to stabilize the enzyme. The properties of the immobilized enzyme were compared to those of the free enzyme.

  5. Selective determination of isoniazid using bentonite clay modified electrodes.

    PubMed

    Azad, Uday Pratap; Prajapati, Nandlal; Ganesan, Vellaichamy

    2015-02-01

    Fe(dmbpy)3(2+) (where dmbpy is 4,4'-dimethyl-2,2'-bipyridine) was immobilized by ion-exchange in a bentonite clay film coating on a glassy carbon electrode. Cyclic voltammetry characteristics of the immobilized Fe(dmbpy)3(2+) were stable and reproducible corresponding to the Fe(dmbpy)3(2+/3+) redox process. In the presence of isoniazid (IZ), the electrogenerated in film Fe(dmbpy)3(3+) oxidized IZ efficiently producing large anodic current. This current was linearly proportional to the IZ concentration in the solution. The process was described by an EC' electrocatalysis mechanism allowing for sensitive determination of IZ with a wide linear dynamic concentration range of 10.0μM to 10.0mM. The electrode was tested for its analytical suitability and possible discrimination of interferences by determining IZ in a commercially available pharmaceutical product. The paper reports on a simple, cheap, and easy to fabricate chronoamperometric chemical sensor for determination of IZ. Kinetic parameters, such as the catalytic rate constant (2.3×10(3)M(-1)s(-1)) and diffusion coefficient of IZ (5.42×10(-5)cm(2)s(-1)), were determined using CV, chronoamperometry, and chronocoulometry. PMID:25260015

  6. The Paramagnetic Pillared Bentonites as Digestive Tract MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Mojović, Miloš; Daković, Marko; Omerašević, Mia; Mojović, Zorica; Banković, Predrag; Milutinović-Nikolić, Aleksandra; Jovanović, Dušan

    The increased use of imaging techniques in diagnostic studies, such as MRI, has contributed to the development of the wide range of new materials which could be successfully used as image improving agents. However, there is a lack of such substances in the area of gastrointestinal tract MRI. Many of the traditionally popular relaxation altering agents show poor results and disadvantages provoking black bowel, side effects of diarrhea and the presence of artifacts arising from clumping. Paramagnetic species seem to be potentially suitable agents for these studies, but contrast opacification has been reported and less than 60% of the gastrointestinal tract magnetic resonance scans showed improved delineation of abdominal pathologies. The new solution has been proposed as zeolites or smectite clays (hectorite and montmorillonite) enclosing of paramagnetic metal ions obtained by ion-exchange methods. However, such materials have problems of leakage of paramagnetic ions causing the appearance of the various side-effects. In this study we show that Co+2 and Dy+3 paramagnetic-pillared bentonites could be successfully used as MRI digestive tract non-leaching contrast agents, altering the longitudinal and transverse relaxation times of fluids in contact with the clay minerals.

  7. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite

    NASA Astrophysics Data System (ADS)

    Gök, Özer; Özcan, A. Safa; Özcan, Adnan

    2010-06-01

    The aim of this study is to evaluate adsorption kinetics, isotherms and thermodynamic parameters of Reactive Blue 19 (RB19) onto modified bentonite from aqueous solutions. The effects of pH, contact time, initial dye concentration and temperature were investigated in the experimentally. Natural bentonite was modified by using 1,6-diamino hexane (DAH) as a modifying agent. The characterization of modified bentonite (DAH-bentonite) was accomplished by using FTIR, TGA, BET and elemental analysis techniques. The optimum pH value for the adsorption experiments was found to be 1.5 and all the experiments were carried out at this pH value. The pseudo-second-order kinetic model agrees very well with the experimental results. Equilibrium data were also fitted well to the Langmuir isotherm model in the studied concentration range of RB19 at 20 °C. The results indicate that DAH-modified bentonite is a suitable adsorbent for the adsorption of textile dyes.

  8. Modeling cation diffusion in compacted water-saturatedNa-bentonite at low ionic strength

    SciTech Connect

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2007-08-28

    Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm{sup -3} (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm{sup -3}.

  9. Selectivity coefficient for Ca/Na ion exchange in highly compacted bentonite

    NASA Astrophysics Data System (ADS)

    Karnland, Ola; Birgersson, Martin; Hedström, Magnus

    Bentonite clay is proposed as buffer material around the waste canisters and as tunnel backfill material in several concepts for disposal of radioactive waste. The distribution of charge compensating cations in the bentonite is of interest for several reasons, one being possible release of colloid particles from the bentonite to groundwater with very low ionic strength. The cation distribution at equilibrium may be calculated for various relevant groundwater compositions by use of selectivity coefficients. However, present literature data generally concerns coefficients measured in batch experiments with high water-to-solid ratios. The basic aim with the present work was therefore to determine selectivity coefficients for sodium/calcium exchange in bentonite with low water-to-solid ratios, and thereby give a reliable base for calculating the cation distribution in a confined bentonite buffer with a relatively high density. In total, six tests with homo-ionic Na- and Ca-montmorillonite, prepared to three material densities, were equilibrated with test solutions of successively increasing concentration. The distribution of cations at equilibrium was measured by use of ion selective electrodes and ICP/AES, and selectivity coefficients were calculated according to the Gaines-Thomas convention. The obtained selectivity coefficient was found to be in the range of 3.8-7.8, which is similar to those previously reported for high water-to-solid ratios.

  10. Swelling pressure of a divalent-rich bentonite: Diffuse double-layer theory revisited

    NASA Astrophysics Data System (ADS)

    Schanz, Tom; Tripathy, Snehasis

    2009-05-01

    Physicochemical forces are responsible for the swelling pressure development in saturated bentonites. In this paper, the swelling pressures of several compacted bentonite specimens for a range of dry density of 1.10-1.73 Mg/m3 were measured experimentally. The clay used was a divalent-rich Ca-Mg-bentonite with 12% exchangeable Na+ ions. The theoretical swelling pressure-dry density relationship for the bentonite was determined from the Gouy-Chapman diffuse double-layer theory. A comparison of experimental and theoretical results showed that the experimental swelling pressures are either smaller or greater than their theoretical counterparts within different dry density ranges. It is shown that for dry density of the clay less than about 1.55 Mg/m3, a possible dissociation of ions from the surface of the clay platelets contributed to the diffuse double-layer repulsion. At higher dry densities, the adsorptive forces due to surface and ion hydration dominated the swelling pressures of the clay. A comparison of the modified diffuse double-layer theory equations proposed in the literature to determine the swelling pressures of compacted bentonites and the experimental results for the clay in this study showed that the agreement between the calculated and experimental swelling pressure results is very good for dry densities less than 1.55 Mg/m3, whereas at higher dry densities the use of the equations was found to be limited.

  11. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    SciTech Connect

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration products are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.

  12. Adsorption of Congo red from aqueous solutions onto Ca-bentonite.

    PubMed

    Lian, Lili; Guo, Liping; Guo, Chunjing

    2009-01-15

    The ability of Ca-bentonite to remove Congo red dye from aqueous solutions has been carried out as a function of contact time, temperature (20-50 degrees C), pH (5-10) and concentration (50-200mgL(-1)). An amount of 0.2g of Ca-bentonite could remove more than 90.0% of the dye from 100mgL(-1) Congo red dye solution for the temperature range studied here. The amount of dye adsorbed per unit weight of Ca-bentonite increased from 23.25 to 85.29mgg(-1) with increasing concentration from 50 to 200mgL(-1), but it had a little change with temperature and decreased slightly with increasing pH. The kinetics of adsorption in view of three kinetic models, i.e., the pseudo-first-order Lagergren model, the pseudo-second-order model and the intraparticle diffusion model, was discussed. The pseudo-second-order kinetic model described the adsorption of Congo red on Ca-bentonite very well. Analysis of adsorption results obtained at 20 degrees C showed that the adsorption pattern on Ca-bentonite followed the Freundlich isotherms. It was indicative of the heterogeneity of the adsorption sites on the clay particles. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. PMID:18487014

  13. Modeling cation diffusion in compacted water-saturated sodium bentonite at low ionic strength.

    PubMed

    Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M

    2007-12-01

    Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the "macropore/nanopore" model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the "surface diffusion" model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm(-3) (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.3 kg dm(-3). PMID:18186346

  14. The Lower Silurian Osmundsberg K-bentonite. Part I: Stratigraphic position, distribution, and palaeogeographic significance

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.

    1998-01-01

    A large number of Lower Silurian (Llandovery) K-bentonite beds have been recorded from northwestern Europe, particularly in Baltoscandia and the British Isles, but previous attempts to trace single beds regionally have yielded inconclusive results. The present study suggests that based on its unusual thickness, stratigraphic position and trace element geochemistry, one Telychian ash bed, the Osmundsberg K-bentonite, can be recognized at many localities in Estonia, Sweden and Norway and probably also in Scotland and Northern Ireland. This bed, which is up to 115 cm thick, is in the lower-middle turriculatus Zone. The stratigraphic position, thickness variation and geographic distribution of the Osmundsberg K-bentonite are illustrated by means of 12 selected Llandovery successions in Sweden, Estonia, Norway, Denmark, Scotland and Northern Ireland. In Baltoscandia, the Osmundsberg K-bentonite shows a trend of general thickness increase in a western direction suggesting that its source area was located in the northern Iapetus region between Baltica and Laurentia. Because large-magnitude ash falls like the one that produced the Osmundsberg K-bentonite last at most a few weeks, such an ash bed may be used as a unique time-plane for a variety of regional geological and palaeontological studies.

  15. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure.

    PubMed

    Zhang, Yaxin; Zhao, Yan; Zhu, Yong; Wu, Huayong; Wang, Hongtao; Lu, Wenjing

    2012-01-01

    The adsorption of cationic-nonionic mixed surfactant onto bentonite and its effect on bentonite structure were investigated. The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds. The cationic surfactant used was hexadecylpyridinium bromide (HDPB), and the nonionic surfactant was Triton X-100 (TX100). Adsorption of TX100 was enhanced significantly by the addition of HDPB, but this enhancement decreased with an increase in the fraction of the cationic surfactant. Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB. However, the total adsorbed amount of the mixed surfactant was still increased substantially, indicating the synergistic effect between the cationic and nonionic surfactants. The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement, Fourier transform infrared spectroscopy, and thermogravimetric-derivative thermogravimetric/differential thermal analyses. Surfactant intercalation was found to decrease the bentonite specific surface area, pore volume, and surface roughness and irregularities, as calculated by nitrogen adsorption-desorption isotherms. The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite, but decreased the thermal stability of the organobentonite system.

  16. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  17. State of a Bentonite Barrier After 8 Years of Heating and Hydration in the Laboratory

    SciTech Connect

    Villar, Maria Victoria; Fernandez, Ana Maria; Gomez, Roberto; Martin, Pedro Luis; Barcala, Jose Miguel; Barrenechea, Jose F.; Luque, Javier F.

    2007-07-01

    The conditions of the bentonite in an engineered barrier for HLW disposal have been simulated in a laboratory test. Six cylindrical blocks of bentonite compacted at a dry density of 1.64 g/cm{sup 3} were piled up in a hermetic Teflon cell. The total length of the clay column inside the cell was 60 cm. The bottom surface of the bentonite was heated at 100 deg. C while the top surface was injected with granitic water. The duration of the test was 7.6 years. The water intake was measured during the test and, at the end, the cell was dismounted and the dry density, water content, mineralogy, geochemistry, and swelling capacity of the clay were measured in different sections along the column. At the end of the test no full water saturation was reached and water content and dry density gradients were found along the column. No mineralogical changes have been detected, although the pore water chemistry and the exchangeable complex of the smectite have changed along the bentonite. None of these changes affect drastically its swelling capacity, which remains high. The material used in this test is the FEBEX bentonite. (authors)

  18. Air gun pellet injuries: the safety of MR imaging.

    PubMed

    Oliver, C; Kabala, J

    1997-04-01

    The ferromagnetism, and therefore the safety in a magnetic resonance (MR) examination, of the most widely available air gun pellets has been tested. While many are made of lead and are not ferromagnetic, some contain steel and are deflected strongly in a magnetic field. There must therefore be careful consideration before undertaking MR examinations of patients with embedded air gun pellets.

  19. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application. PMID:26856930

  20. Automatic control system for uniformly paving iron ore pellets

    NASA Astrophysics Data System (ADS)

    Wang, Bowen; Qian, Xiaolong

    2014-05-01

    In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.

  1. Microstability analysis of pellet fuelled discharges in MAST

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Figueiredo, J.; Roach, C. M.; Valovič, M.; Dickinson, D.; Naylor, G.; Romanelli, M.; Scannell, R.; Szepesi, G.; the MAST Team

    2014-03-01

    Reactor grade plasmas are likely to be fuelled by pellet injection. This technique transiently perturbs the profiles, driving the density profile hollow and flattening the edge temperature profile. After the pellet perturbation, the density and temperature profiles relax towards their quasi-steady-state shape. Microinstabilities influence plasma confinement and will play a role in determining the evolution of the profiles in pellet fuelled plasmas. In this paper we present the microstability analysis of pellet fuelled H-mode MAST plasmas. Taking advantage of the unique capabilities of the MAST Thomson scattering system and the possibility of synchronizing the eight lasers with the pellet injection, we were able to measure the evolution of the post-pellet electron density and temperature profiles with high temporal and spatial resolution. These profiles, together with ion temperature profiles measured using a charge exchange diagnostic, were used to produce equilibria suitable for microstability analysis of the equilibrium changes induced by pellet injection. This analysis, carried out using the local gyrokinetic code GS2, reveals that the microstability properties are extremely sensitive to the rapid and large transient excursions of the density and temperature profiles, which also change collisionality and βe significantly in the region most strongly affected by the pellet ablation.

  2. Effect of polydisperse sintering ore on the pelletizing of fine concentrates

    NASA Astrophysics Data System (ADS)

    Trushko, V. L.; Utkov, V. A.

    2016-01-01

    An addition of the polydisperse Yakovlevo deposit sintering ore on the efficiency of pelletizing and, hence, the gas permeability of a sintering mixture containing fine concentrates is studied. This sintering ore is found to have unique properties, which make it possible to increase the iron content in a sinter and to improve the gas permeability of a sintering mixture significantly (by a factor of 2-4). As a result, the sintering machine capacity can be substantially increased, the strength of the sinter can be increased at a lower fuel flow rate and lower lime consumption, and the blast furnace capacity can be substantially improved at lower consumption of expensive coke. Therefore, this version of using the Yakovlevo deposit sintering ore has a high economic efficiency.

  3. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  4. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  5. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. PMID:21783271

  6. ["Piggyback" shot: ballistic parameters of two simultaneously discharged airgun pellets].

    PubMed

    Frank, Matthias; Schönekess, Holger C; Grossjohann, Rico; Ekkernkamp, Axel; Bockholdt, Britta

    2014-01-01

    Green and Good reported an uncommon case of homicide committed with an air rifle in 1982 (Am. J. Forensic Med. Pathol. 3: 361-365). The fatal wound was unusual in that two airgun pellets were loaded in so-called "piggyback" fashion into a single shot air rifle. Lack of further information on the ballistic characteristics of two airgun pellets as opposed to one conventionally loaded projectile led to this investigation. The mean kinetic energy (E) of the two pellets discharged in "piggyback" fashion was E = 3.6 J and E = 3.4 J, respectively. In comparison, average kinetic energy values of E = 12.5 J were calculated for conventionally discharged single diabolo pellets. Test shots into ballistic soap confirmed the findings of a single entrance wound as reported by Green and Good. While the ballistic background of pellets discharged in "piggyback" fashion could be clarified, the reason behind this mode of shooting remains unclear. PMID:24855739

  7. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2002-06-20

    The aim of this study was to evaluate the in-vivo behaviour of matrix pellets formulated with nanocrystalline ketoprofen after oral administration to dogs. No significant differences in AUC-values were seen between pellet formulations containing nanocrystalline or microcrystalline ketoprofen and a commercial ketoprofen formulation (reference: Rofenid 200 Long Acting). C(max) of the formulations containing nano- or microcrystalline ketoprofen was significantly higher compared to reference, whereas t(max) was significantly lower. The in-vivo burst release observed for the spray dried nanocrystalline ketoprofen matrix pellets was reduced following compression of the pellets in combination with placebo wax/starch pellets. These matrix tablets sustained the ketoprofen plasma concentrations during 5.6 and 5.4 h for formulations containing nano- and microcrystalline ketoprofen, respectively.

  8. Straw pellets as fuel in biomass combustion units

    SciTech Connect

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  9. Torque rheological parameters to predict pellet quality in extrusion-spheronization.

    PubMed

    Soh, J L P; Liew, C V; Heng, P W S

    2006-06-01

    This study explored the feasibility of predicting the quality of microcrystalline cellulose (MCC) pellets prepared by extrusion-spheronization using torque rheological characterization. Rheological properties of eleven MCC grades as well as their binary mixtures with lactose (3:7) at various water contents were determined using a mixer torque rheometer (MTR). Derived torque parameters were: maximum torque and cumulative energy of mixing (CEM). CEM values of MCC powders (CEM((MCC))) could be attributed to their physical properties such as crystallinity, V(low P) and V(total) (volumes of mercury intruded in their pores at low pressure and the total intrusion volume), bulk and tapped densities. For both MCC powders and their binary mixtures, strong correlation was observed between their torque parameters and the properties of their pellets formed with 30 and 35% (w/w) water. Since this relationship was valid over a broad water content range, rheological assessment for pre-formulation purposes need not be performed at optimized water contents. These results demonstrated the usefulness of torque rheometry as an effective means of comparing and evaluating MCC grades especially when substitution of equivalent grades is encountered. In so doing, the tedious and expensive pre-production (pre-formulation and optimization) work can be considerably reduced. PMID:16574352

  10. Solar drying of yam-flour pellets

    SciTech Connect

    Oladiran, M.T.

    1987-01-01

    An experimental investigation of the heat/mass transfer characteristics of a turbulent impinging jet in cross flow in a model of a chamber used for solar drying of yam flour pellets is presented. The variables studied were the nozzle inclination, ..cap alpha.. and the jet-to-cross flow velocity ratio, M. These parameters were varied from 30/sup 0/ to 135/sup 0/ and from 5.0 to 20.9 respectively. Superimposing a cross flow onto the jet reduced the heat transfer coefficients. At low cross flows, inclining the nozzle further reduced the heat transfer coefficients. However, at higher cross flows, inclining the nozzle could be beneficial. The thin film napthalene sublimation technique was employed for the mass transfer measurements.

  11. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2006-09-21

    Sorption of four heavy metals (Pb, Cd, Zn and Hg) to calcium bentonite (Ca bentonite), hexadecyltrimethylammonium bentonite (HDTMA bentonite) and benzyltriethylammonium bentonite (BTEA bentonite) was measured as a function of the quaternary ammonium cation (QAC) loading at 25, 50 and 100% of the clay's cation-exchange capacity (CEC). The effects of pH on the surface charge of the clays and heavy metal sorption were also measured. Sorption of Cd, Pb, and Zn was non-linear and sorption of all three metals by HDTMA and BTEA bentonites decreased as the QAC loading increased from 25 to 100%. In most cases, sorption of these metals to 25% BTEA and 25% HDTMA bentonite was similar to or greater than sorption to Ca bentonite. Hg sorption was linear for both HDTMA and BTEA bentonite. No significant effect on Hg sorption was observed with increasing QAC loading on BTEA bentonite. However, an increase of Hg sorption was detected with increasing QAC loading on HDTMA bentonite. This behavior suggests that a process different than cation exchange was the predominant Hg sorption mechanism. Cd, Pb, and Zn sorption decreased with pH. However, this effect was stronger for Cd and Pb than Zn. Hg sorption varied inversely with pH. QAC loading affected the surface charge of the clays. Twenty-five and 50% loading of BTEA cations increased the negative charge on the clay's surface relative to the untreated clay, without affecting the zero point of charge (ZPC) of the clay. Increased QAC loading on HDTMA bentonite causes the surface charge to become more positive and the ZPC increased. One hundred percent of HDTMA bentonite maintained a positive surface charge over the range of pH values tested. The organoclays studied have considerable capacity for heavy metal sorption. Given that prior studies have demonstrated the strong sorption capacity of organoclays for nonionic organic pollutants, it is likely that organoclays can be useful sorbents for the treatment of effluent streams containing

  12. U.S. Pellet Industry Analysis

    SciTech Connect

    Corrie I. Nichol; Jacob J. Jacobsen; Richard D. Boardman

    2011-06-01

    This report is a survey of the U.S. Pellet Industry, its current capacity, economic drivers, and projected demand for biomass pellets to meet future energy consumption needs. Energy consumption in the US is projected to require an ever increasing portion of renewable energy sources including biofuels, among which are wood, and agrictulrual biomass. Goals set by federal agencies will drive an ever increasing demand for biomass. The EIA projections estimate that renewable energy produced by 2035 will be roughly 10% of all US energy consumption. Further analysis of the biofuels consumption in the US shows that of the renewable energy sources excluding biofuels, nearly 30% are wood or biomass waste. This equates to roughly 2% of the total energy consumption in the US coming from biomass in 2009, and the projections for 2035 show a strong increase in this amount. As of 2009, biomass energy production equates to roughly 2-2.5 quadrillion Btu. The EIA projections also show coal as providing 21% of energy consumed. If biomass is blended at 20% to co-fire coal plants, this will result in an additional 4 quadrillion Btu of biomass consumption. The EISA goals aim to produce 16 billion gal/year of cellulosic biofuels, and the US military has set goals for biofuels production. The Air Force has proposed to replace 50% of its domestic fuel requirements with alternative fuels from renewable sources by 2016. The Navy has likewise set a goal to provide 50% of its energy requirements from alternative sources. The Department of Energy has set similarly ambitious goals. The DOE goal is to replace 40% of 2004 gasoline use with biofuels. This equates to roughly 60 billion gal/year, of which, 45 billion gal/year would be produced from lignocellulosic resources. This would require 530 million dry tons of herbaceous and woody lignocellulosic biomass per year.

  13. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.

    PubMed

    Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

    2015-01-01

    Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research.

  14. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.

    PubMed

    Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

    2015-01-01

    Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research. PMID:25746637

  15. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.

    PubMed

    Bulut, Emrah; Ozacar, Mahmut; Sengil, I Ayhan

    2008-06-15

    The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm. PMID:18055111

  16. Surface Fractal Dimension of Bentonite and its Application in Calculation of Swelling Deformation

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2014-09-01

    The correlation between the void ratio of swelled montmorillonite and the vertical overburden pressure can be expressed as {e}{ m} = Kp{ s}{D{ s}-3}. The surface fractal dimension Ds of five bentonites were estimated from the swelling deformation tests according to this fractal correlation. The reliability of surface fractal dimension obtained from the swelling deformation test was confirmed by nitrogen adsorption test, with identical values of surface fractal dimension obtained from both tests. The surface fractal dimension can also be used to estimate the swelling deformation of bentonite, after calculating the swelling coefficient K from the parameters of diffuse double layer (DDL) model in the osmotic swelling phase. Comparison of the model predictions with a number of experimental results on swelling deformation of both Na dominant and Ca dominant bentonites suggests that the surface fractal model works excellent in the cases tested.

  17. Experimental and modeling studies on sorption and diffusion of radium in bentonite.

    PubMed

    Tachi, Y; Shibutani, T; Sato, H; Yui, M

    2001-02-01

    The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude. PMID:11288574

  18. Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage.

    PubMed

    Stone, Wendy; Kroukamp, Otini; Moes, Ana; McKelvie, Jennifer; Korber, Darren R; Wolfaardt, Gideon M

    2016-01-01

    Genomics enjoys overwhelming popularity in the study of microbial ecology. However, extreme or atypical environments often limit the use of such well-established tools and consequently demand a novel approach. The bentonite clay matrix proposed for use in Deep Geological Repositories for the long-term storage of used nuclear fuel is one such challenging microbial habitat. Simple, accessible tools were developed for the study of microbial ecology and metabolic processes that occur within this habitat, since the understanding of the microbiota-niche interaction is fundamental to describing microbial impacts on engineered systems such as compacted bentonite barriers. Even when genomic tools are useful for the study of community composition, techniques to describe such microbial impacts and niche interactions should complement these. Tools optimised for assessing localised microbial activity within bentonite included: (a) the qualitative use of the resazurin-resorufin indicator system for redox localisation, (b) the use of a CaCl2 buffer for the localisation of pH, and (c) fluorometry for the localisation of precipitated sulphide. The use of the Carbon Dioxide Evolution Monitoring System was also validated for measuring microbial activity in desiccated and saturated bentonite. Finally, the buffering of highly-basic bentonite at neutral pH improved the success of isolation of microbial populations, but not DNA, from the bentonite matrix. Thus, accessible techniques were optimised for exploring microbial metabolism in the atypical environments of clay matrices and desiccated conditions. These tools have application to the applied field of used nuclear fuel management, as well as for examining the fundamental biogeochemical cycles active in sedimentary and deep geological environments.

  19. Experimental and modeling studies on sorption and diffusion of radium in bentonite.

    PubMed

    Tachi, Y; Shibutani, T; Sato, H; Yui, M

    2001-02-01

    The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.

  20. Serological Studies of Types A, B, and E Botulinal Toxins by Passive Hemagglutination and Bentonite Flocculation

    PubMed Central

    Johnson, H. M.; Brenner, K.; Angelotti, R.; Hall, H. E.

    1966-01-01

    Johnson, H. M. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), K. Brenner, R. Angelotti, and H. E. Hall. Serological studies of types A, B, and E botulinal toxins by passive hemagglutination and bentonite flocculation. J. Bacteriol. 91:967–974. 1966.—Formalinized sheep red blood cells (SRBC), sensitized with types A, B, and E botulinal toxoids and toxins by bis-diazotized benzidine (BDB), were tested against A, B, and E antitoxins prepared in horses and rabbits. Type B antitoxin cross-reacted with A toxoid SRBC, but the reciprocal cross-reaction was not observed. E toxin SRBC were specifically agglutinated by E antitoxin. Flocculation of antigen-sensitized bentonite particles was less sensitive in titration of antitoxin than hemagglutination. Also, reciprocal cross-reactions were observed between types A and B antitoxins. Cross-reactions in both serological tests were eliminated by titration of antitoxins in the presence of the heterologous antigens, with no inhibitory effect on the homologous antitoxins. Generally, equine antitoxins were less suitable for agglutinations, especially of antigen-sensitized bentonite particles. Types A, B, and E antitoxins were specifically inhibited by 43, 39, and 245 mouse ld50 of their respective homologous toxins in the hemagglutination-inhibition test. A, B, and E antitoxins were specifically inhibited by 500, 950, and 1,500 mouse ld50 of their respective homologous toxins in bentonite flocculation inhibitions. Formalinized SRBC sensitized with rabbit types A and B antitoxins by BDB were respectively clumped by as little as 0.75 to 1.3 mouse ld50 of A toxin and 2.3 ld50 of B toxin, whereas bentonite particles sensitized by the same antitoxins were specifically clumped by 150 ld50 of A toxin and 630 ld50 of B toxin. E antitoxin sensitization of SRBC or bentonite particles was not successful. Evidence is presented that indicates that the serological procedures are applicable to the detection of botulinal toxins

  1. Experimental and modeling studies on sorption and diffusion of radium in bentonite

    NASA Astrophysics Data System (ADS)

    Tachi, Y.; Shibutani, T.; Sato, H.; Yui, M.

    2001-02-01

    The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients ( Kd) were in the range of 10 2 to >10 4 ml g -1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients ( Da) obtained in compacted bentonite were in the range of 1.1×10 -11 to 2.2×10 -12 m 2 s -1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient ( De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.

  2. Geochemical Aspects of The Bentonite/cement System In A Salt Environment

    NASA Astrophysics Data System (ADS)

    Herbert, H.-J.; Meyer, Th.

    Compacted bentonites and cementitious materials containing Portland cement, fly ashes and rock salt may be used in German repositories in salt formations as sealing and backfill materials. The long-term behaviour of these materials in contact with high saline brines has been investigated by means of laboratory experiments and geochem- ical modelling. Whereas the interaction of the cementitious materials with a Mg-rich IP21 brine led to an increase of Ca in solution and consequently to an intensive cor- rosion, in a NaCl-saturated brine only a small quantity of Ca in solution was detected indicating a slight degradation of CSH phases. A good agreement between experi- mental and modelling results was obtained. As shown by Herbert and Moog (2001) the brine composition influences the resulting swelling pressure of compacted ben- tonites. MX-80 bentonite in contact with 8 brines of different chemical compositions suffers a singnifcant reduction of swelling pressure compared to pure water. Mg in- creases and K decreases the swelling pressure. The impact of K is higher than that of Mg. Because of these opposite effects of K and Mg the swelling pressures obtained with naturally occurring brines with varying K and Mg contents do not differ as much as expected. New experiments investigating the interaction of MX-80 bentonite with cementitious material and brines lead to an immediate increase of Si and Al in solu- tion followed by a removal of these elements indicating the formation of new silicate phases. The swelling capacity of the bentonite was further reduced compared with the previous experiments without cement. We conclude from our results that in salt formations bentonites are not very stable materials and the combination of bentonites and cements in the engineered barrier system should be avoided.

  3. Radionuclide transport coupled with bentonite extrusion in a saturated fracture system

    NASA Astrophysics Data System (ADS)

    Borrelli, Robert Angelo

    The study in this dissertation focuses on the characterization of radionuclide migration in a water saturated fracture. The near field of a high level radioactive waste repository contains the engineered barrier system, which provides manufactured components designed to limit radionuclide releases to the environment. A major component in this system involves the utilization of bentonite as a buffer to protect the degraded waste package and limit release of radionuclides into intersecting fractures that pose possible pathways for transport to the environment. A model is derived for radionuclide migration through this fracture. The model incorporates the features of bentonite: extrusion into the fracture, sorption, and the effect of bentonite swelling on groundwater flow. The resulting derivation of this model is a coupled system of differential equations. The differential equation describing the mass conservation of radionuclides is coupled to the equation system for bentonite extrusion. The models are coupled through the parameters in the radionuclide transport model, which are dependent on the spatial distribution of solid material in the domain. Numerical evaluations of the solution to this radionuclide transport model were conducted for neptunium, a weakly sorbing radionuclide and americium, a strongly sorbing radionuclide. Results were presented in terms normalized spatial distribution of radionuclide concentration in the fluid phase and normalized radionuclide release rate in the fluid phase. Major findings of the study conducted for this dissertation are provided. (1) Bentonite extrusion affects fluid phase advection resulting in groundwater flow countercurrent to the direction of extrusion to the direction of radionuclide migration. (2) The sorption distribution coefficient is the most important parameter affecting radionuclide behavior in this system for this model. (3) Simulations of the model for americium, a highly sorbing radionuclide, indicate that

  4. Ordovidan K-bentonites in the Precordillera of San Juan and its tectomasmatic significance

    USGS Publications Warehouse

    Cingolani, C.A.; Huff, W.; Bergstrom, S.; Kolata, D.

    1997-01-01

    A succession of approximately 35 early Middle Ordovician K-bentonite beds are exposed in the Precordillera region near the town of Jachal, in San Juan Province (at Cerro Viejo and La Chilca sections). They occur in argillaceous limestone in the upper part of the San Juan Limestone and in the interbedded shales and mudstones at the base of the overlying Los Azules Formation. Total thickness of the K-bentonite-bearing interval is 23 m and individual beds range from 1 to 65 cm thick. An essentially Arenig-Llanvirn age for the K-bentonite succession is indicated by the presence of graptolites diagnostic of the Paraglossograptus tentaculatus Zone and conodonts indicating the Eoplacognathus suecicus Zone. The bentonites consist mainly of Rl ordered illite/smectite, characteristic of most of the lower Paleozoic K-bentonites, plus volcanogenic crystals. Similar to other K-bentonites, these probably represent the distal, glass-rich portion of fall-out ash beds derived from collision zone explosive volcanism. The geochemical data and preliminary plots on the magmatic discrimination diagram indicate the parental magma was of rhyolite to trachyandesite composition. Tectonic discrimination diagrams show the setting of Cerro Viejo ash layers as falling on the boundary between volcanic arc and within plate rocks, typical of collision margin felsic volcanic rocks. U-Pb isotope dating for two zircon fractions from one sample show a lower concordia intercept of 461, +7-10 Ma coincident with the biostratigraphic age. Thus, they have important implications for the origin and early history of the allochtonous Precordillera terrane and the Pacific margin of South America. Furthermore, they are potentially important in interpretations of the paleogeographic relations of Laurentia and Gondwana during Ordovician time. ?? 1997 Asociacio??n Geolo??gica Argentina.

  5. Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target

    NASA Astrophysics Data System (ADS)

    Zheng, Lijuan; Niu, Sheng; Khan, Abdul Qayyum; Yuan, Shuai; Yu, Jin; Zeng, Heping

    2016-04-01

    Chlorine content brought by salt in a composite powder was determined when the sample was prepared in pellet or first dissolved into solution and then dropped on the surface of a pure metallic target. The purpose is to address the matrix effect when the mixture powders of different kinds of mineral salt are used, and to compare the influence of the matrix effect for two kinds of sample preparation. Three types of powder mixture, NaCl + KBr, NaCl + MgSO4, and NaCl + Na2CO3, were then first prepared with well controlled proportion of salt (NaCl) and mineral salt powder. On one hand, pellets were prepared for laser ablation. On the other hand, mixture powder was dissolved in deionized water for analysis with surface-assisted laser-induced breakdown spectroscopy (LIBS) of solution by dropping it on the surface of a pure aluminum target. Calibration curves were established for the pellets and the solutions, respectively. The slopes of these curves provided an assessment of the matrix effect related to the different mineral salt matrix and different forms of the sample preparation. The similar responses from chlorine for the solution samples showed absence of matrix effect for analysis with the surface-assisted solution analysis configuration. This result was further confirmed by the consistence of the measured temperatures and the electron densities of the produced plasmas. In contrast, the slopes of the chlorine calibration curves exhibited significant variation for different pellet samples corresponding to different powder mixtures, which is an indication of matrix effect in the LIBS analysis of the pellet samples.

  6. A Study on the Effect of Clay Particle Orientation on Diffusion in Compacted Bentonite

    SciTech Connect

    Sato, H.

    2002-02-26

    In this study, the effect of the orientation of clay particles on diffusion in compacted bentonite, which is regarded to be quite important as a candidate buffer material in safety assessment for a geological disposal of high-level radioactive waste, was experimentally discussed by investigating effective diffusion coefficients (De) for tritiated water (HTO), which is non-sorptive onto bentonite. The diffusion experiments were carried out for 2 kinds of smectite contents of Na-bentonites, Kunigel-V1{reg_sign} (content of Na-smectite, 46-49wt%) and Kunipia-F{reg_sign} (content of Na-smectite, > 99wt%) at dry densities of 1.0 and 1.5 Mg/m3 by a through-diffusion method. The through-diffusion experiments were carried out for the same direction as compacted direction of bentonite and perpendicular direction to compacted direction. Scanning electron microscopic (SEM) observations for the cross section of bentonite in the axial and perpendicular directions to compacted direction of bentonite were also carried out at dry densities of 1.0, 1.6, and 2.0 Mg/m3. Although De values for Kunigel-V1{reg_sign} were approximately the same for both diffusion directions to compacted direction over the densities, and no anisotropy in De was found, De values in the perpendicular direction to compacted direction for Kunipia-F{reg_sign} were clearly higher than those in the same direction as compacted direction. In the SEM observations, no significant orientation of clay particles was found for Kunigel-V1{reg_sign} over the densities, while the orientation of clay particles was clearly found for Kunipia-F{reg_sign}, and the degree of the orientation of clay particles became significant with an increase in dry density of bentonite. This tendency is in good agreement with that for De values obtained, indicating that smectite content in bentonite affects the orientation property of clay particles, and that the orientated clay particles affect diffusion pathway.

  7. Consolidated waste forms: glass marbles and ceramic pellets

    SciTech Connect

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes.

  8. Pellet formation of zygomycetes and immobilization of yeast.

    PubMed

    Nyman, Jonas; Lacintra, Michael G; Westman, Johan O; Berglin, Mattias; Lundin, Magnus; Lennartsson, Patrik R; Taherzadeh, Mohammad J

    2013-06-25

    Pelleted growth provides many advantages for filamentous fungi, including decreased broth viscosity, improved aeration, stirring, and heat transfer. Thus, the factors influencing the probability of pellet formation of Rhizopus sp. in a defined medium was investigated using a multifactorial experimental design. Temperature, agitation intensity, Ca(2+)-concentration, pH, and solid cellulose particles, each had a significant effect on pelletization. Tween 80, spore concentration, and liquid volume were not found to have a significant effect. All of the effects were additive; no interactions were significant. The results were used to create a simple defined medium inducing pelletization, which was used for immobilization of a flocculating strain of Saccharomyces cerevisiae in the zygomycetes pellets. A flor-forming S. cerevisiae strain was also immobilized, while a non-flocculating strain colonized the pellets but was not immobilized. No adverse effects were detected as a result of the close proximity between the filamentous fungus and the yeast, which potentially allows for co-fermentation with S. cerevisiae immobilized in pellets of zygomycetes. PMID:23711366

  9. Dependency between removal characteristics and defined measurement categories of pellets

    NASA Astrophysics Data System (ADS)

    Vogt, C.; Rohrbacher, M.; Rascher, R.; Sinzinger, S.

    2015-09-01

    Optical surfaces are usually machined by grinding and polishing. To achieve short polishing times it is necessary to grind with best possible form accuracy and with low sub surface damages. This is possible by using very fine grained grinding tools for the finishing process. These however often show time dependent properties regarding cutting ability in conjunction with tool wear. Fine grinding tools in the optics are often pellet-tools. For a successful grinding process the tools must show a constant self-sharpening performance. A constant, at least predictable wear and cutting behavior is crucial for a deterministic machining. This work describes a method to determine the characteristics of pellet grinding tools by tests conducted with a single pellet. We investigate the determination of the effective material removal rate and the derivation of the G-ratio. Especially the change from the newly dressed via the quasi-stationary to the worn status of the tool is described. By recording the achieved roughness with the single pellet it is possible to derive the roughness expect from a series pellet tool made of pellets with the same specification. From the results of these tests the usability of a pellet grinding tool for a specific grinding task can be determined without testing a comparably expensive serial tool. The results are verified by a production test with a serial tool under series conditions. The collected data can be stored and used in an appropriate data base for tool characteristics and be combined with useful applications.

  10. Preparation and evaluation of sustained-release doxazosin mesylate pellets.

    PubMed

    Ha, Jung-Myung; Kim, Ju-Young; Oh, Tack-Oon; Rhee, Yun-Seok; Chi, Sang-Cheol; Kuk, Hyon; Park, Chun-Woong; Park, Eun-Seok

    2013-01-01

    Doxazosin mesylate (DXM) sustained release pellets were prepared by an extrusion-spheronization and fluid-bed coating technique. The core pellets containing DXM were prepared by extrusion-spheronization technique, and coated by a fluid-bed coater to control the release of DXM. The factors affecting to properties of pellets, such as diluent content, type and coating level of coating agents and plasticizers were studied in the present study. Polymethacrylate derivatives (Eudragit® RS PO and RL PO) were used for coating agents, and polyethylene glycol 6000 (PEG 6000), triethyl citrate (TEC) and castor oil were as plasticizers. To evaluate the properties of prepared pellets, the size of prepared pellets was investigated by sieve analysis technique and the morphology of pellets was evaluated by scanning electron microscopy. Through the dissolution test, factors that have an effect on the dissolution of the drug were evaluated. As the content ratio of microcrystalline cellulose (MCC) had increased, the dissolution was proportionally sustained. Eudragit® RS PO had more marked sustaining effect on the dissolution rate than Eudragit® RL PO, and the effect was more pronounced with the increased coating level. PEG 6000 was an appropriate plasticizer for DXM pellets, and increasing the content of PEG 6000, was also slightly decreasing the dissolution rate.

  11. Microplastic resin pellets on an urban tropical beach in Colombia.

    PubMed

    Acosta-Coley, Isabel; Olivero-Verbel, Jesus

    2015-07-01

    Microplastics are a problem in oceans worldwide. The current situation in Latin America is not well known. This paper reports, for the first time, the presence of microplastics on an urban Caribbean beach in Cartagena, Colombia. Pellet samples were collected from a tourist beach over a 5-month period covering both dry and rainy seasons. Pellets were classified by color and their surface analyzed by stereomicroscopy, and some were characterized by infrared spectroscopy. The most abundant pellets were white, presenting virgin surfaces, with few signs of oxidation. This is congruent with a short residence time in the marine environment and primary sources possibly located nearby. The frequency of white pellets did not change with sampling period. Surface features identified in the pellets included cracks, material loss, erosion, adhesion, granulation, color change, and glazed surfaces. Reticulated granular pellets exhibited the greatest degradation, easily generating submicroplastics. Sample composition was mostly polyethylene, followed by polypropylene. This pollution problem must be addressed by responsible authorities to avoid pellet deposition in oceans and on beaches around the world.

  12. Influence of pellet size on rat's hoarding behavior.

    PubMed

    Charron, I; Cabanac, M

    2004-09-15

    The body weight threshold for hoarding behavior of rats is routinely used as a means to discern an animal's body weight regulation. We explored whether the size of food pellets would modify hoarding and the hoarding threshold. In Experiment 1, we offered the rats either large (ca. 5 g) or small (ca. 2 g) food pellets on alternate days while keeping their body weights within a narrow range when they were not in the hoarding sessions. The hoarding threshold was not influenced, by food size (312+/-32 g small and 298+/-13 g large pellets, N.S.). On the other hand, the relationship between hoarded food and body mass significantly differed between small and large pellets (ratio of 2.7). Because such a ratio was similar to that of the respective pellet weights, this suggests that the more the rat is deprived of food, the more willing it is, in a predetermined manner, to move about in search of food. Experiment 2 verified this hypothesis: instead of weighing the food hoarded, we counted the number of pellets hoarded. The slopes of the regression lines were similar in both cases, when the pellets were counted and when the hoarded food was weighed. Results showed no significant differences between these two approaches, suggesting that the weight of hoarded food is a good indicator of the number of trips from home to food in the hoarding experiment.

  13. Pellet injection in the RFP (Reversed Field Pinch)

    SciTech Connect

    Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.

    1988-01-01

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub ..cap alpha../ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 ..mu..sec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs.

  14. Mechanisms of phosphorus removal by cement-bound ochre pellets.

    PubMed

    Littler, James; Geroni, Jennifer N; Sapsford, Devin J; Coulton, Richard; Griffiths, Anthony J

    2013-01-01

    Hydrous ferric oxide (here termed 'ochre') sludge, an abundant waste product produced from the treatment of acid mine drainage (AMD), was used in this study for the removal of phosphorus (in the form of phosphate ions) from contaminated waters. The phosphorus uptake capacities of both raw and pelletized AMD solids were compared using batch and column tests. Addition of a cement binder to the AMD solids during pellet production led to significantly increased P-loading of the resultant solids compared to the raw sludge. Additionally, the pellets were found to continue to remove P in tests up to 7 d in duration whereas the unbound AMD sludge appeared to approach equilibrium with phosphate solution after approximately 60 min of contact time. In line with previous studies P uptake by the AMD solids was found to be primarily via adsorption. By contrast calcium phosphate precipitation was found to be the dominant removal mechanism for the cement-bound ochre pellets with a relatively small proportion of removal attributable to the AMD solids. SEM-EDX analysis of the surface of used pellets showed a Ca:P molar ratio close to that of hydroxyapatite (HAP). Continuous column tests on these pellets showed a rapid decrease in P removal capacity by the pellets over time, attributable to the formation of a passivating HAP surface layer. PMID:23041038

  15. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGESBeta

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; Lau, Anthony; Sokhansanj, Shahab

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  16. Fecal Pellet Flux in the Mesopelagic Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Koweek, D.; Shatova, O.; Conte, M. H.; Weber, J. C.

    2010-12-01

    The Oceanic Flux Program (OFP), located 75km SE of Bermuda, is the longest running sediment trap time-series of its kind, continually collecting deep sea particle flux since 1978. Recent application of digital microphotography to the size-fractionated OFP sediment trap material has generated a wealth of new quantitative visual information on particle flux composition, its changes with depth, and its temporal variability. We examined the fecal pellet flux at 1500m depth using image analysis of digital archives, in conjunction with data on the overlying surface ocean from the Bermuda Testbed Mooring (BTM) and the Bermuda Atlantic Time Series (BATS) programs, to investigate the role of mesoscale physical forcing on mesopelagic particle flux variability. During 2007, a productive cyclonic eddy, a mode water eddy and an anticyclonic eddy passed over the OFP site. Fecal pellet flux was enhanced during passage of both the cyclonic and mode water eddies. Total mass flux (TMF) was also enhanced during the productive cyclonic eddy, but was not influenced by the passage of the mode water eddy. No increase in fecal pellet flux or TMF was apparent during passage of the anticyclonic eddy despite indications of increased zooplankton abundance from ADCP backscatter intensity. Fecal pellet size frequency distributions indicate the presence of two, and sometimes three, distinct size classes. No seasonal trend in mean size of fecal pellets was observed for any size class, implying that the size distribution of the zooplankton populations producing the pellets is relatively constant throughout the year. We also investigated fecal pellet flux changes with depth at 500, 1500 and 3200m. Fecal pellet flux, and the fecal pellet contribution to TMF, were greatest at 500m and decreased with depth. The use of quantitative image analysis holds great potential as a powerful analytical tool in studies of marine particulate flux.

  17. Electron-beam rocket acceleration of hydrogen pellets

    NASA Astrophysics Data System (ADS)

    Tsai, C. C.; Foster, C. A.; Milora, S. L.; Schechter, D. E.; Whealton, J. H.

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed.

  18. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  19. Methods of Nitrogen Oxide Reduction in Pellet Boilers

    NASA Astrophysics Data System (ADS)

    Zandeckis, Aivars; Blumberga, Dagnija; Rochas, Claudio; Veidenbergs, Ivars; Silins, Kaspars

    2010-01-01

    The main goal of this research was to create and test technical solutions that reduce nitrogen oxide emissions in low-capacity pellet boiler. During the research, wood pellets were incinerated in a pellet boiler produced in Latvia with a rated capacity of 15 kW. During the research two NOx emission reduction methods were tested: secondary air supply in the chamber and recirculation of flue gases. Results indicated a drop of NOx concentration only for flue gas recirculation methods. Maximum reduction of 21% was achieved.

  20. ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS

    DOEpatents

    Patton, G. Jr.; Zirinsky, S.

    1961-06-01

    A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.

  1. Fast Imaging of Intact and Shattered Cryogenic Neon Pellets

    SciTech Connect

    Wang, Zhehui; Combs, Stephen Kirk; Baylor, Larry R; Foust, Charles R; Lyttle, Mark S; Meitner, Steven J; Rasmussen, David A

    2014-01-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100- m- and sub- s-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of m to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  2. Fast imaging of intact and shattered cryogenic neon pellets

    SciTech Connect

    Wang, Zhehui; Combs, S. K.; Baylor, L. R.; Foust, C. R.; Lyttle, M. S.; Meitner, S. J.; Rasmussen, D. A.

    2014-11-15

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  3. Fast imaging of intact and shattered cryogenic neon pellets.

    PubMed

    Wang, Zhehui; Combs, S K; Baylor, L R; Foust, C R; Lyttle, M S; Meitner, S J; Rasmussen, D A

    2014-11-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development. PMID:25430370

  4. Fast imaging of intact and shattered cryogenic neon pellets.

    PubMed

    Wang, Zhehui; Combs, S K; Baylor, L R; Foust, C R; Lyttle, M S; Meitner, S J; Rasmussen, D A

    2014-11-01

    Compact condensed-matter injection technologies are increasingly used in magnetic fusion. One recent application is in disruption mitigation. An imaging system with less-than-100-µm- and sub-µs-resolution is described and used to characterize intact and shattered cryogenic neon pellets. Shattered pellets contain fine particles ranging from tens of µm to about 7 mm. Time-of-flight analyses indicate that pellets could slow down if hitting the wall of the guide tube. Fast high-resolution imaging systems are thus useful to neon and other condensed-matter injector development.

  5. Viability of marine phytoplankton in zooplankton fecal pellets

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Fisher, N. S.

    1983-09-01

    Zooplankton fecal pellets collected from sediment traps or freshly excreted by euphausiids grazing in situ at natural phytoplankton levels in the pelagic Mediterranean were incubated under laboratory conditions and always contained viable marine phytoplankton, usually diatoms. Fecal pellets excreted by euphausiids grazing in the laboratory on unialgal diets also contained living cells, indicating viable gut passage of some species. The rapid sinking of fecal pellets appears to be an effective mechanism for transporting living algae to depth and possibly in seeding marine waters and sediments with such cells.

  6. Plastic pellets sorptive extraction: Low-cost, rapid and efficient extraction of polycyclic aromatic hydrocarbons from environmental waters.

    PubMed

    Nika, Chrysanthi-Elisabeth; Yiantzi, Evangelia; Psillakis, Elefteria

    2016-05-30

    For the first time, plastic pellets, a low-cost and easy to reach industrial raw material, are reported as an efficient sorbent material for the laboratory extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental waters. The proposed methodology, termed plastic pellets sorptive extraction (P2SE), consisted of a two-step procedure whereby target analytes were initially adsorbed onto the surface of three low-density polyethylene (LDPE) pellets and then desorbed using microliters of an organic solvent. Interphase mass transfer was greatly accelerated by means of vortex agitation. Organic extracts were analyzed by means of liquid chromatography-fluorescence detection. Different experimental parameters were controlled and the optimum conditions found were: three LDPE pellets (∼80 mg) added to 20 mL aqueous sample (20% w:v NaCl) followed by vortex agitation at 3000 rpm; for desorption, the three LDPE pellets were immersed in 100 μL of acetonitrile and the mixture was shaken at 3000 rpm for 5 min using the vortex agitator. The calculated calibration curves gave high levels of linearity yielding coefficients of determination (r(2)) greater than 0.9913. The precision of the proposed method was found to be good and the limits of the detection were calculated in the low ng L(-1) level. Matrix effects were determined by applying the proposed method to spiked river water, treated municipal wastewater and seawater samples. To compensate for the low recoveries of the more hydrophobic PAHs in spiked effluent wastewater and seawater samples the standard addition methodology was applied. The proposed method was applied to the determination of target pollutants in real seawater samples using the standard addition method. Overall, the performance of the proposed P2SE method suggests that the use of inexpensive and easy to reach sorbent materials for extracting analytes in the laboratory merits more intensive investigation. PMID:27154829

  7. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  8. Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Alonso, Ursula; Albarran, Nairoby; García-Gutiérrez, Miguel; Cormenzana, José-Luís

    To investigate the dominant mechanisms of colloid formation from compacted and confined bentonite innovative experiments were conducted. Chemical or physical processes that can affect the erosion of the bentonite surface were analyzed (ionic strength of the water, Ca in the water and in the exchange complex of the clay, dry density of the clay and presence of a water flow rate at the bentonite surface). Hydration, swelling and extrusion of clay into pores or fractures are primary steps for the formation of free colloidal particles in the aqueous phase, and the chemistry of the clay/water system is the most important parameter controlling the generation and stability of colloids. Ca-bentonite formed colloids quantities below the detection limit of our techniques, even in deionised water, but a percentage of Na approximately 20-30% in the clay exchange complex, as that present in the FEBEX bentonite, is enough to allow the formation of colloidal particles in quantities very similar to those produced by the Na-bentonite. The results for bentonite colloid generation obtained at a laboratory scale allowed the estimation of a range of colloid generation rates under different chemical conditions. Results were compared with in situ experimental investigations carried out at the FEBEX gallery emplaced in a granite massif at the Grimsel Test Site (Switzerland). The quantitative analysis of laboratory and in situ data can be used as input for models and performance assessment (PA) of high level radioactive waste (HLRW) repositories.

  9. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite.

    PubMed

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong

    2014-08-19

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  10. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    SciTech Connect

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok; Kim, Min-Gyu; Um, Wooyong

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  11. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite.

    PubMed

    Angelidaki, I; Petersen, S P; Ahring, B K

    1990-07-01

    The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaptation of the digestors, very rapid degradation of oil was observed and more than 80% of the oil was degraded within a few hours after daily feeding. In batch experiments, glyceride trioleate was found to be inhibitory to thermophilic anaerobic digestion when the concentrations were higher than 2.0 g/l. However, addition of bentonite (a clay mineral) at concentrations of 0.15% and 0.45% was found to partly overcome this inhibition. Addition of calcium chloride in concentration of 3 mM (0.033% w/v) showed a similar positive effect on the utilization of oil, but the effect was lower than with bentonite. PMID:1366749

  12. Retention of heavy metal ions in bentonites from Grau Region (Northern Peru)

    NASA Astrophysics Data System (ADS)

    Ayala, J.; Vega, J. L.; Alvarez, R.; Loredo, J.

    2008-01-01

    Experimental studies on the retention of metals (Cu, Co, Ni, and Zn) in bentonite samples from the Grau Region (Northern Peru) have been accomplished using monometallic, bimetallic, trimetallic, and tetrametallic solutions. Parameters such as pH and concentration of dissolved metals and organic compounds have been evaluated by means of batch adsorption experiments. Adsorption rates indicate the suitability of these bentonites in the environmental industry for heavy metals retention purposes. In addition to its quality as physical barrier to avoid the dispersion through the environment of polluted leachates, bentonite, due to its high cation exchange capacity, can act also as a chemical barrier, protecting the quality of surface and groundwater systems, while limiting the migration of heavy metals in solid residues or sludge stocked in security landfills. Adsorption rates of tested bentonites were proved to decrease when concentrations of both metal and organic compounds, as well as the number of ionic species, increase in solution; additionally, lower metal removal rates from solution were obtained when extremely acidic conditions were achieved.

  13. Biochar, Bentonite and Zeolite Supplemented Feeding of Layer Chickens Alters Intestinal Microbiota and Reduces Campylobacter Load

    PubMed Central

    Prasai, Tanka P.; Walsh, Kerry B.; Bhattarai, Surya P.; Midmore, David J.; Van, Thi T. H.; Moore, Robert J.; Stanley, Dragana

    2016-01-01

    A range of feed supplements, including antibiotics, have been commonly used in poultry production to improve health and productivity. Alternative methods are needed to suppress pathogen loads and maintain productivity. As an alternative to antibiotics use, we investigated the ability of biochar, bentonite and zeolite as separate 4% feed additives, to selectively remove pathogens without reducing microbial richness and diversity in the gut. Neither biochar, bentonite nor zeolite made any significant alterations to the overall richness and diversity of intestinal bacterial community. However, reduction of some bacterial species, including some potential pathogens was detected. The microbiota of bentonite fed animals were lacking all members of the order Campylobacterales. Specifically, the following operational taxonomic units (OTUs) were absent: an OTU 100% identical to Campylobacter jejuni; an OTU 99% identical to Helicobacter pullorum; multiple Gallibacterium anatis (>97%) related OTUs; Bacteroides dorei (99%) and Clostridium aldenense (95%) related OTUs. Biochar and zeolite treatments had similar but milder effects compared to bentonite. Zeolite amended feed was also associated with significant reduction in the phylum Proteobacteria. All three additives showed potential for the control of major poultry zoonotic pathogens. PMID:27116607

  14. 40 CFR 436.220 - Applicability; description of the bentonite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the bentonite subcategory. 436.220 Section 436.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY...

  15. Effect of aluminosilicates and bentonite on aflatoxin-induced developmental toxicity in rat.

    PubMed

    Abdel-Wahhab, M A; Nada, S A; Amra, H A

    1999-01-01

    Numerous studies have established that aflatoxin is a potent developmental toxin in animals. Previous research has demonstrated that a phyllosilicate clay, hydrated sodium calcium aluminosilicate (HSCAS or Novasil), tightly binds and immobilizes aflatoxins in the gastrointestinal tract of animals and markedly reduces the bioavailability and toxicity of aflatoxin. Our objective in this study was to utilize the pregnant rat as an in vivo model to compare the potential of HSCAS and bentonite to prevent the developmental toxicity of aflatoxin. Aluminosilicates (HSCAS) and bentonite were added to the diet at a level of 0.5% (w/w) and fed to the pregnant rat throughout pregnancy (i.e. days 0-20). Test animals were fed an aflatoxin-contaminated diet (2.5 mg kg(-1) diet) with or without sorbents during gestation days 6-15. Evaluations of toxicity were performed on day 20. These included maternal (mortality, body weights, feed intake and litter weights), developmental (embryonic resorptions and fetal body weights) and biochemical (ALT, AST and AP) evaluations. Sorbents alone were not toxic and aflatoxin alone resulted in significant maternal and developmental toxicity. Animals treated with phyllosilicate (plus aflatoxin) were comparable to controls following evaluations for resorptions, live fetuses and fetal body weights, as well as biochemical parameters. While bentonite plus aflatoxin resulted in significant reduction in fetal body weight, none of the fetuses from HSCAS or bentonite plus aflatoxin-treated groups had any gross, internal soft tissue or major skeletal malformations.

  16. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  17. Geotechnical characteristics of bentonite/sandy silt mixes for use in waste disposal sites

    SciTech Connect

    Abeele, W.V.

    1984-06-01

    The coefficient of consolidation for bentonite/sandy silt ratios of 0.04 to 0.14 decreases inversely proportional with the square of that ratio, whereas the compression index, the swelling index, and the permeability change index increase with increasing bentonite ratio. A strong relationship also exists between the void ratio and the logarithm of the applied stress for any given bentonite ratio. The empirical linear relationship between the void ratio and the logarithm of the applied stress, developed by Taylor, is excellent and enables us to limit the evaluation of conductivity at any void ratio to the measurement of the initial and the desired void ratio, the initial conductivity, and the permeability change index. This allows us to read directly, for a given bentonite ratio, the void ratio (or compaction) needed so that a required hydraulic conductivity will prevail. This is crucial in the choice of materials or mixes to be used in a wick system where an established differentiation in hydraulic conductivity is desirable.

  18. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  19. The effects of Bentonite and Calendula on the improvement of infantile diaper dermatitis

    PubMed Central

    Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi

    2014-01-01

    Background: Diaper dermatitis is one of the most common skin disorders of infancy and childhood. The present study aimed to compare the effects of Bentonite and Calendula on the improvement of diaper dermatitis in infants. Materials and Methods: A double-blind randomized controlled trial, which was conducted on 60 out-patient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper dermatitis. Data were collected by checklist and observation, and analyzed using t-test, Chi-square, and Fisher's exact test. Results: Mean (standard error) age of the total sample was 6.55 ± 0.69 months. Totally, 93.3% of lesions in the Bentonite group started its recovery in the first 6 h, while this rate was 40% in Calendula group (P < 0.001). Furthermore, 90% of infants in the Bentonite group and 36.7% in the Calendula group were improved completely in the first 3 days (P < 0.001). Conclusion: Bentonite was effective on the improvement of diaper dermatitis, and also had faster effects compared with Calendula. PMID:25097603

  20. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite.

    PubMed

    Koumanova, Bogdana; Peeva-Antova, P

    2002-03-29

    The adsorption of p-chlorophenol (p-CP) from aqueous solutions on bentonite and perlite was studied. These materials are available in large quantities in Bulgaria. Model solutions of various concentrations (1-50 mgdm(-3)) were shaken with certain amounts of adsorbent to determine the adsorption capacity of p-CP on bentonite and perlite as well. The influence of several individual variables (initial adsorbate concentration, adsorbent mass) on the rate of uptake of the studied compound on the adsorbent was determined by carrying out experiments at different contact times using the batch adsorber vessel designed according to the standard tank configuration. Rapid adsorption was observed 20-30 min after the beginning for every experiment. After that, the concentration of p-CP in the liquid phase remained constant. The adsorption equilibrium of p-CP on bentonite and perlite was described by the Langmuir and the Freundlich models. A higher adsorption capacity was observed for bentonite (10.63 mgg(-1)) compared to that for perlite (5.84 mgg(-1)).

  1. Solvent-free cleaning using a centrifugal cryogenic pellet accelerator

    SciTech Connect

    Haines, J.R.; Fisher, P.W.; Foster, C.A.

    1995-06-01

    An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

  2. Gasification of pelletized biomass in a pilot scale downdraft gasifier.

    PubMed

    Simone, Marco; Barontini, Federica; Nicolella, Cristiano; Tognotti, Leonardo

    2012-07-01

    This work presents a pilot-scale investigation aimed at assessing the feasibility and reliability of biomass pellet gasification. Wood sawdust and sunflower seeds pellets were tested in a 200 kW downdraft gasifier operating with air as gasifying agent. The gasification of pelletized biomass led to rather high and unstable pressure drops, reducing the gasifier productivity and stability. Furthermore the generation of fine residues compromised the operation of wet ash removal systems. On the other hand, good syngas compositions (H(2) 17.2%, N(2) 46.0%, CH(4) 2.5%, CO 21.2%, CO(2) 12.6%, and C(2)H(4) 0.4%), specific gas production (2.2-2.4 N m(3) kg(-1)) and cold gas efficiency (67.7-70.0%) were achieved. For these reasons pelletized biomass should be considered only as complementary fuel in co-gasification with other feedstock. PMID:22537399

  3. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy.

    PubMed

    Asami, Koji

    2016-04-01

    We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field.

  4. Effects of pelletized anticoagulant rodenticides on California quail

    USGS Publications Warehouse

    Blus, L.J.; Henny, C.J.; Grove, R.A.

    1985-01-01

    A moribund, emaciated California quail (Callipepla californica) that was found in an orchard in the state of Washington had an impacted crop and gizzard. Pellets containing the anticoagulant chlorophacinone (Rozol, RO) were in the crop; the gizzard contents consisted of a pink mass of paraffin that was selectively accumulated from the paraffinized pellets. The plasma prothrombin time of 28 sec was near that determined for control quail. The signs of RO intoxication seen in the moribund wild quail were duplicated in captive quail given ad libitum diets of either RO or another paraffinized chlorophacinone pellet (Mr. Rat Guard II, MRG). This left little doubt that paraffin impaction of the gizzard was the primary problem. All captive quail fed RO or MRG pellets showed no increases in prothrombin times compared to control values, died in an emaciated condition, and had gizzards impacted with paraffin.

  5. Energetic ion diagnostics using neutron flux measurements during pellet injection

    SciTech Connect

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  6. Effects of pelletized anticoagulant rodenticides on California quail.

    PubMed

    Blus, L J; Henny, C J; Grove, R A

    1985-10-01

    A moribund, emaciated California quail (Callipepla californica) that was found in an orchard in the state of Washington had an impacted crop and gizzard. Pellets containing the anticoagulant chlorophacinone (Rozol, RO) were in the crop; the gizzard contents consisted of a pink mass of paraffin that was selectively accumulated from the paraffinized pellets. The plasma prothrombin time of 28 sec was near that determined for control quail. The signs of RO intoxication seen in the moribund wild quail were duplicated in captive quail given ad libitum diets of either RO or another paraffinized chlorophacinone pellet (Mr. Rat Guard II, MRG). This left little doubt that paraffin impaction of the gizzard was the primary problem. All captive quail fed RO or MRG pellets showed no increases in prothrombin times compared to control values, died in an emaciated condition, and had gizzards impacted with paraffin. PMID:4078974

  7. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  8. Reaction and Diffusion of Cementitious Water in Bentonite: Results of `Blind' Modelling

    NASA Astrophysics Data System (ADS)

    Watson, C.; Hane, K.; Savage, D.; Benbow, S.; Cuevas, J.; Fernandez, R.

    2009-04-01

    The potential deleterious geochemical interactions of clay with cement/concrete may provide a constraint on the use of the latter material in deep geological disposal facilities for radioactive wastes. Consequently, it is important to have a fundamental understanding of these interactions to be able to assess their likely impact over the long timescales appropriate to the isolation of radioactive wastes from the human environment. Here, a laboratory experiment investigating the effects of cementitious water diffusing through bentonite has been simulated using a coupled reactive-transport geochemical modelling code. The modelling study was carried out before the results of the experiments were available, as an exercise in ‘blind' modelling. A sensitivity study was carried out to investigate uncertainties associated with a number of input parameters, such as the precise nature of kinetic and ion-exchange reactions, diffusion coefficients, pore water composition, and montmorillonite dissolution models. The experiments used two types of fluid; one saturated with calcium hydroxide showed little mineralogical alteration, which was predicted by the computer simulations. A high pH K-Na-OH-based water however, caused alteration (pore blocking by hydrotalcite, gibbsite and brucite growth) to a depth of 2 mm in the bentonite after a period of 1 year. Experimental evidence showed that ion exchange of Mg-montmorillonite to K-montmorillonite was not confined to this thin region however, and was found to extend throughout the whole of the bentonite sample. The pore blocking by mineral precipitation and movement of ion exchange fronts through the bentonite were accurately simulated by the model. The choice of dissolution model for montmorillonite played an important role in the outcome of the simulations. Of the cases considered in the sensitivity study, that employing the so-called ‘Yamaguchi model' was clearly the best match, exhibiting all the main characteristics of the

  9. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    NASA Astrophysics Data System (ADS)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  10. Study on the Surface-Physicochemical-Property Changing of Bentonite by Adapting a New Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xiang, Wei; Lang, Linzhi; Cui, Deshan

    2015-04-01

    Surface-physicochemical-property of clays has been proved to have direct influence on its mechanic behavior. Specific surface area (SSA) is one of the most important factors for surface-physicochemical-property assessment. The smaller SSA tends higher strength (shear strength, unconfined compressive strength and tensile strength) under different water contents of soil. In this paper, a new soil stabilizer (Tung oil-based sulfonated) is developed and applied to improve the properties of Ca-bentonite. The differences of specific surface area, fractal dimension and micro geometric morphology between raw Ca-bentonite samples and modified ones are investigated based on the data acquired from water vapor, nitrogen adsorption experiments and SEM experiments. Results show that the SSA including external SSA and total SSA of treated samples decrease largely and apparently when compared to that of the raw samples. Furthermore, the higher volume ratio between soil stabilizer and water, the more decrease in SSA. Compared to the ones of raw Ca-bentonite, the external SSA and total SSA of the modified Ca-bentonite samples decrease by 48.5% and 25.2%, respectively, when the volume ratio was 1:50. This result implies that the connection of montmorillonite particles becomes more tightly after the treatment by the soil stabilizer. In addition, an obvious decreasing trend is found in fractal dimension by analysis of water vapor adsorption isotherms. This finding indicates that the pore surface tends to be smoother by the chemical action among particles bonds, more condensable in aggregates and shorter space between the interlayer of montmorillonite. SEM results display that the new soil stabilizer developed a quantity of lamellar aggregates but did not change the structure of montmorillonite. Based on all mentioned above, the results of fractal dimension analysis are verified. Consequently, this study shows that the new soil stabilizer (Tung oil-based sulfonated) has obvious effects

  11. Radiation analysis of the ITER pellet injection system

    SciTech Connect

    Gouge, M.J. ); Gomes, I.C.; Gomes, L.T.; Stevens, P.N, )

    1991-03-01

    The results of neutronics calculations for the pellet injection system of the International Thermonuclear Experimental Reactor (ITER) are described. Hands-on maintenance of components in the pellet injection room results in a considerable simplification of maintenance support equipment and in greater system availability. The basic configuration of the pellet injection system includes small-diameter guide tubes with which the pellet may have several small-angle collisions before reaching the plasma. The pellet injector port through which the guide tubes pass will be shared with ITER plasma diagnostics, so the calculation takes into account penetrations to accommodate numerous channels for a neutron spectrometer and neutron and gamma-ray cameras. The conservative assumption of steady-state operation of ITER for 1000 days was taken as the baseline for calculating the activation of components in the pellet injection room. The plasma configuration is based on the current ITER guidelines, the first wall configuration is based on the most recently updated configuration, and the blanket configuration is based on the US proposal for the blanket. The plasma, coils, and blanket regions were analyzed with the Monte Carlo code MCNP. The transport of neutrons through the penetrations was also performed with MCNP. The pellet injection room was modeled with the two-dimensional discrete ordinates code DORT, which was also used for the transport of neutrons during operation and of gamma rays caused by activation. The activation calculations were carried out with the REBATE code. Results from this study indicate that restricted personnel access to the pellet injection room is possible, so limited hands-on maintenance can be performed on the majority of the components in the room.

  12. QUALITY OF WOOD PELLETS PRODUCED IN BRITISH COLUMBIA FOR EXPORT

    SciTech Connect

    Tumuluru, J.S.; Sokhansanj, Shahabaddine; Lim, C. Jim; Bi, X.T.; Lau, A.K.; Melin, Staffan; Oveisi, E.; Sowlati, T.

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  13. Quality of Wood Pellets Produced in British Columbia for Export

    SciTech Connect

    J. S. Tumuluru; S. Sokhansanj; C. J. Lim; T. Bi; A. Lau; S. Melin; T. Sowlati; E. Oveisi

    2010-11-01

    Wood pellet production and its use for heat and power production are increasing worldwide. The quality of export pellets has to consistently meet certain specifications as stipulated by the larger buyers, such as power utilities or as specified by the standards used for the non-industrial bag market. No specific data is available regarding the quality of export pellets to Europe. To develop a set of baseline data, wood pellets were sampled at an export terminal in Vancouver, British Columbia, Canada. The sampling period was 18 months in 2007-2008 when pellets were transferred from storage bins to the ocean vessels. The sampling frequency was once every 1.5 to 2 months for a total of 9 loading/shipping events. The physical properties of the wood pellets measured were moisture content in the range of 3.5% to 6.5%, bulk density from 728 to 808 kg/m3, durability from 97% to 99%, fines content from 0.03% to 0.87%, calorific value as is from 17 to almost 18 MJ/kg, and ash content from 0.26% to 0.93%.The diameter and length were in the range of 6.4 to 6.5 mm and 14.0 to 19.0 mm, respectively. All of these values met the published non-industrial European grades (CEN) and the grades specified by the Pellet Fuel Institute for the United States for the bag market. The measured values for wood pellet properties were consistent except the ash content values decreased over the test period.

  14. Combustion of char-coal waste pellets for high efficiency and low NO{sub x}. Quarterly report, 1 December 1994--28 February 28, 1995

    SciTech Connect

    Rajan, S.

    1995-12-31

    High efficiencies can be obtained from combined cycle power plants where fuel gas produced in a carbonizer is used to power the topping cycle turbines, while the residual char is burnt to raise steam for the bottoming Rankine cycle plant. Illinois coals are excellent fuels for these high efficiency power plants as the sulfur in the fuel gas is removed in the carbonization process by adding dolomite, thus producing a clean burning fuel gas. The residual char has essentially no volatiles, and is of low density. Because of these characteristics the char requires a longer residence time for efficient combustion. This research is directed towards improving the residence time of the char by pelletizing it with a waste coal, while at the same time reducing the sulfur dioxide emissions from the char combustion. During this quarter, extensive experimentation has been performed to determine the char-gob waste proportions necessary for forming pellets with desirable compression strength for feeding into the circulating fluidized bed combustor. Carbonizer char-gob coal pellets have been made with 5, 10 and 15 weight percent of cornstarch binder. Based on the test data presented, it is concluded that 10--15% weight percent of binder will be required when pelletizing char-gob coal waste mixtures containing 30-40 percent by weight of gob coal. During the next quarter, these pellets will be made in larger quantities and their combustion and emissions properties will be evaluated in a bench scale 4-inch diameter circulating fluidized bed combustor.

  15. New co-processed MCC-based excipient for fast release of low solubility drugs from pellets prepared by extrusion-spheronization.

    PubMed

    Goyanes, Alvaro; Martínez-Pacheco, Ramón

    2015-03-01

    In this study, a new co-processed excipient composed of microcrystalline cellulose (MCC), sorbitol, chitosan and Eudragit® E, easily obtained by wet massing, to increase the dissolution rate of active ingredients of low water solubility from pellets prepared by extrusion-spheronization is evaluated. Indomethacin, nifedipine, furosemide, ibuprofen, prednisolone and hydrochlorothiazide are used as model drugs of different solubility. All pellet formulations evaluated showed adequate morphological, flow and mechanical properties. Pellets prepared with the co-processed excipient show a higher drug dissolution rate than those prepared with MCC and even higher than the pure drug powder. The fast drug dissolution and the complete disintegration (<3 min) of the pellets can be explained by the great porosity of the formulations, the high solubility of the sorbitol, the disintegrant capacity of the chitosan and the distribution of the Eudragit® E polymer particles in-between the other components of the co-processed mixture. In conclusion, this new co-processed excipient is very suitable to increase the dissolution rate of poorly soluble drugs from pellets prepared by extrusion-spheronization. Moreover, the drug release rate can be estimated from the Ln of the drug solubility in acidic medium.

  16. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier

    NASA Astrophysics Data System (ADS)

    Fernández, A. M. a.; Baeyens, B.; Bradbury, M.; Rivas, P.

    Compacted bentonites are being considered in many countries as a backfill material in high-level radioactive waste disposal concepts. A knowledge of the porewater chemistry in the clay barrier is essential since the porewater composition influences the release and transport of the radionuclides. However, quantification of the water chemistry in compacted bentonite under repository conditions is difficult. The methodology followed to obtain the porewater composition of the FEBEX bentonite is described in this paper. It is based on the characterisation of the solid phase, determination of the physico-chemical properties of the montmorillonite component and geochemical modelling. The FEBEX bentonite has a high cation exchange capacity (∼1 eq/kg), high surface area (∼725 m 2/g total surface area and 62 m 2/g external surface area) and accessory minerals such as carbonates, sulphates, pyrite, etc.; and organic matter. The chloride inventory in the FEBEX bentonite is ∼22 mmol/kg. The montmorillonite, together with the other mineral phases present, will determine the composition of the porewater. However, in order to calculate a unique aqueous chemistry, two further quantities are required, the chloride concentration and the pH. Water vapour adsoption/desorption isotherms, together with c-lattice spacing determinations, were used to identify the different states and location of water. Most of the water in the as received bentonite resides in the interlayer space. However, the measurements indicate that about 0.053 l/kg may be regarded as free water, implying a chloride concentration of 0.42 M. The pH of the system is fixed by equilibrium with the atmosphere ( PCO 2=10 -3.5 bar) and saturation with the carbonate phases present. The porewater calculated to be in equilibrium with the as received FEBEX bentonite powder is a Na-Ca-Mg chloride type with a high ionic strength, 0.66 M, and a pH of ∼7.4. Likewise, in order to calculate the porewater composition of

  17. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions

    NASA Astrophysics Data System (ADS)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf; Sellin, Patrik

    The estimated quantity of cement for construction and sealing purposes is around 9E5 kg in the planned Swedish KBS3 repository for nuclear waste. The highly alkaline cement pore fluid (pH > 12) may affect other components in the repository, and especially the bentonite buffer is of concern. In this study, we simulated possible interactions between cement and bentonite by contacting highly compacted bentonite with high molar hydroxide solutions in a series of laboratory experiments. Wyoming bentonite (MX-80) and purified homo-ionic Na- and Ca-montmorillonite were used for tests with 0.1, 0.3 and 1.0 M NaOH, and saturated Ca(OH) 2 solutions. Pressure cells with permeable filters were loaded with compacted discs of bentonite at the proposed buffer density (2000 kg/m 3 at full water saturation). A hydroxide solution was circulated on one side of the cell and an isotonic chloride solution on the other during a minimum of 45 days. Swelling pressure and solution pH were monitored during the tests and the change in the solution composition and bentonite mineralogy were determined after completed tests. No effect on swelling pressure was observed in tests with 0.1 M NaOH (pH 12.9) or saturated Ca(OH) 2 solutions (pH 12.4) and the mineralogical/chemical changes of the clay were minimal. The bentonite swelling pressure was significantly reduced in the tests with 0.3 (pH 13.3) and 1.0 M (pH 13.8) NaOH solutions. The reduction seems to be due to an instant osmotic effect, and to a continuous dissolution of silica minerals, resulting in mass loss and, consequently, a decrease in density. At these high pH, the release of silica was dominating and the CEC of the clay increased by 20-25%. The structural formula of the smectite and X-ray diffraction tests for non-expandability (Greene-Kelly test) provided strong evidence that the dissolution of montmorillonite proceeds incongruently through an initial step of beidellitization. The calculated rate of silica release from

  18. Advanced turbine/CO{sub 2} pellet accelerator

    SciTech Connect

    Foster, C.A.; Fisher, P.W.

    1994-09-01

    An advanced turbine/CO{sub 2} pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit.

  19. Design of a tritium pellet injector for TFTR

    SciTech Connect

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R. ); Schmidt, G.L.; Barnes, G.W.; Persing, R.G. . Plasma Physics Lab.)

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1{minus} to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs.

  20. Evaluating the ignition sensitivity of thermal battery heat pellets

    SciTech Connect

    Thomas, E.V.

    1993-09-01

    Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

  1. Key Formulation Variables in Tableting of Coated Pellets

    PubMed Central

    Murthy Dwibhashyam, V. S. N.; Ratna, J. Vijaya

    2008-01-01

    Multiple unit controlled release dosage forms offer various advantages over their single unit counterparts. Most of these advantages are associated with the uniform distribution of multiparticulates throughout the gastrointestinal tract. Though coated pellets can be filled into hard gelatin capsules, tablet formulation is the preferred one because of various advantages associated with it. However, compression of coated pellets is a challenging task necessitating the optimization of various formulation and process variables. The key formulation variables include composition, porosity, size, shape and density of the pellets; type and amount of polymer coating; nature, size and amount of tableting excipients. The pellet core should be strong with some degree of plasticity. It should be highly porous, small, with an irregular shape. The critical density to achieve prolonged release was reported to lie between 2.4 and 2.8 g/cm3. Acrylic polymer films are more flexible and more suitable for the coating of pellets to be compressed into tablets. Thicker coatings offer better resistance to frictional forces. Solvent based coatings are more flexible and have a higher degree of mechanical stability than the aqueous based ones. The tableting excipients should have cushioning property. They should not be significantly different in size and density from those of the pellet cores in order to avoid segregation. Addition of 30%-60% of tableting excipients is necessary to avoid any damage to the polymer coat and to retain its functional property. PMID:21394249

  2. A Gyrotron-Powered Pellet Accelerator for Tokamak Fueling

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Perkins, F. W.

    2006-04-01

    A novel pellet acceleration concept [1] using microwave power from MW gyrotron sources has been developed that could pave the way for high-speed >3 km/s inner-wall pellet injection on ITER-class tokamaks. The concept is based on the principal of a gun, where a high-pressure propellant gas drives the projectile down the barrel. In the proposed concept, the high gas pressure is created by evaporative explosion of a composite ``pusher'' medium attached behind the DT fuel pellet. The pusher consists of micron-sized conducting particles, (Li, Be, C) embedded uniformly in a D2 ice slug with <5% volume concentration, thus facilitating microwave energy absorption by dissipation of eddy currents flowing within the conducting particles only. Microwave power is delivered to the pusher along a waveguide, which also serves as the pellet launch tube. A scaling law predicts that a pellet of mass M accelerated over a distance L reaches a velocity v (PL/M)^1/3, where P is the gyrotron power.pard[1] P. Parks & F. Perkins, US patent application ``Microwave-Powered Pellet Accelerator,'' No. 11/256/662, October 21, 2005.

  3. A Compact Flexible Pellet Injection System for Fueling Studies

    NASA Astrophysics Data System (ADS)

    Baylor, L. R.; Combs, S. K.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Gouge, M. J.; Rasmussen, D. A.

    2000-10-01

    A compact pellet injection system is being designed and built at ORNL to provide a flexible pellet fueling system for studies in magnetic confinement fusion devices. The system known as a ``pellet injector in a suitcase (PIS)'' is a pipe gun device with four barrels that uses a cryocooler for in-situ hydrogenic pellet formation. The system is being built to provide a flexible, low-cost fueling system that can be used on a number of plasma confinement experiments with minimal installation and operation costs. components in the system. It will use both propellant gas and a mechanical punch to accelerate the 1 - 4 mm size pellets to 100-1500 m/s. With the mechanical punch alone a low speed pellet, useful for curved guide tube applications, can be produced with minimal gas load eliminating the need for a large ballast volume. can be independently fired. diagnose the injector. The PIS is a flexible tool for fueling alternative concept devices such as MST and NSTX and for specialized studies in mainline tokamak experiments such as DIII-D and JET. The small size makes installation on such devices more feasible. of the system design and the expected performance will be presented.

  4. Modeling operation mode of pellet boilers for residential heating

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  5. Design of pellet surface grooves for fission gas plenum

    SciTech Connect

    Carter, T.J.; Jones, L.R.; Macici, N.; Miller, G.C.

    1986-01-01

    In the Canada deuterium uranium pressurized heavy water reactor, short (50-cm) Zircaloy-4 clad bundles are fueled on-power. Although internal void volume within the fuel rods is adequate for the present once-through natural uranium cycle, the authors have investigated methods for increasing the internal gas storage volume needed in high-power, high-burnup, experimental ceramic fuels. This present work sought to prove the methodology for design of gas storage volume within the fuel pellets - specifically the use of grooves pressed or machined into the relatively cool pellet/cladding interface. Preanalysis and design of pellet groove shape and volume was accomplished using the TRUMP heat transfer code. Postirradiation examination (PIE) was used to check the initial design and heat transfer assumptions. Fission gas release was found to be higher for the grooved pellet rods than for the comparison rods with hollow or unmodified pellets. This had been expected from the initial TRUMP thermal analyses. The ELESIM fuel modeling code was used to check in-reactor performance, but some modifications were necessary to accommodate the loss of heat transfer surface to the grooves. It was concluded that for plenum design purposes, circumferential pellet grooves could be adequately modeled by the codes TRUMP and ELESIM.

  6. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model.

  7. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  8. Mobility of atrazine from alginate-bentonite controlled release formulations in layered soil.

    PubMed

    Fernández-Pérez, M; González-Pradas, E; Villafranca-Sánchez, M; Flores-Céspedes, F

    2001-04-01

    The mobility of atrazine [6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine] from alginate-bentonite-based controlled release (CR) formulations was investigated by using soil columns. Two CR formulations based on sodium alginate (14.0 g kg(-1), atrazine (6.0 g kg(-1), natural or acid-treated bentonite (50 g kg(-1), and water (924 g kg(-1) were compared to technical grade product and commercial liquid (CL) formulation (Gesaprim 500FW). All herbicide treatments were applied to duplicate layered bed systems simulating the typical arrangement under a plastic greenhouse, which is composed of sand (10 cm), peat (2 cm), amended soil (20 cm) and native soil (20 cm). The columns were leached with 39 cm (1500 ml) and 156 cm (6000 ml) of 0.02 M CaCl2 solution to evaluate the effect of water volume applied on herbicide movement. When 39 cm of 0.02 M CaCl2 solution was applied, there was no presence of herbicide in the leachate for the alginate-bentonite CR treatments. However, 0.11% and 0.14% of atrazine appeared in the leachate when the treatment was carried out with technical grade and CL formulations, respectively. When 156 cm of 0.02 M CaCl2 solution was applied, the use of the alginate-acid treated bentonite CR formulation retards and reduces the presence of atrazine in the leachate as compared to technical product. Analysis of the soil columns showed the highest atrazine concentration in the peat layer. Alginate-bentonite CR formulations might be an efficient system for reducing atrazine leaching in layered soil and thus, it could reduce the risks of pollution of groundwater.

  9. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    NASA Astrophysics Data System (ADS)

    Zheng, Liange; Samper, Javier; Montenegro, Luis; Fernández, Ana María

    2010-05-01

    SummaryUnsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl - data is excellent except for the data near the heater. The largest deviations of the model from inferred

  10. Purification of industrial phosphoric acid (54 %) using Fe-pillared bentonite.

    PubMed

    Hamza, Wiem; Chtara, Chaker; Benzina, Mourad

    2016-08-01

    The current problem of excess impurities in industrial phosphoric acid (IPA) 54 % P2O5 makes phosphates industries look toward low-cost but efficient adsorbents. In the present study, iron-oxide-modified bentonite (Fe-PILB) was prepared and investigated as a possible adsorbent for the removal of organic matter (OM) like humic acid (HA), chromium (Cr(III)), and zinc (Zn(II)) from IPA aqueous solutions. These adsorbents were characterized using XRD, TEM, and BET. The adsorption of impurities is well described by the pseudo-second-order model. The results indicate that Fe-PILB has a good ability to resist co-existing anions and the low-pH condition of IPA and owns a relatively high-removal capacity of 80.42 and 25 % for OM, Cr(III), and Zn(II). The mechanism of adsorption may be described by the ligand and ion exchange that happened on the active sites. The selected order of adsorption OM > Cr(3+) > Zn(2+) showed the importance of the competitive phenomenon onto bentonite materials' pore adsorption. For the adsorption of OM at the low pH of IPA, H-bond complexation was the dominant mechanism. From the adsorption of heavy metals and OM complex compounds contained in IPA 54 % on Fe-PILB, the bridging of humic acid between bentonite and heavy metals (Zn(II) or Cr(III)) is proposed as the dominant adsorption mechanism (bentonite-HA-Me). Overall, the results obtained in this study indicate Fe-pillared bentonite possesses a potential for the practical application of impurity (OM, Zn(II), and Cr(III)) removal from IPA aqueous solutions. PMID:26514573

  11. Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution

    USGS Publications Warehouse

    Huff, W.D.; Bergstrom, Stig M.; Kolata, Dennis R.; Cingolani, C.A.; Astini, R.A.

    1998-01-01

    This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Ordovician K-bentonites have now been recorded from >20 localities in the vicinity of the Argentine Precordillera. Most occur in the eastern thrust belts, in the San Juan Limestone and the overlying the Gualcamayo Formation, but a few ash beds are known also from the central thrust belts. The oldest occur in the middle Arenig I, victoriae lunatus graptolite (Oe. evae conodont) Zone, and the youngest in the middle Llanvirn P. elegans (P. suecicus) Zone. Mineralogical characteristics, typical of other Ordovician K-bentonites, include a matrix of illite/smectite mixed-layer clay and a typical felsic volcanic phenocryst assemblage: biotite, beta-form quartz, alkali and plagioclase feldspar, apatite, and zircon, with lesser amounts of hornblende, clinopyroxene, titanite and Fe-Ti oxides. The proportions of the mineral phases and variations in their crystal chemistry are commonly unique to individual (or small groups of) K-bentonite beds. Glass melt inclusions preserved in quartz are rhyolitic in composition. The sequence is unique in its abundance of K-bentonite beds, but a close association between the Precordillera and other Ordovician sedimentary basins cannot be established. The ash distribution is most consistent with palaeogeographical reconstructions in which early Ordovician drifting of the Precordillera occurred in proximity to one or more volcanic arcs, and with eventual collision along the Andean margin of Gondwana during the mid-Ordovician Ocloyic event of the Famatinian orogeny. The Puna-Famatina terrane northeast of the Precordillera might have served as the source of the K-bentonite ashes, possibly in concert with active arc magmatism on the Gondwana plate itself.

  12. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    PubMed

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-06-15

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  13. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    PubMed Central

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was <4%, whereas the reduction was about 7-8% without the binder. With 4% binder and 33% (w.b.) feedstock moisture content, the bulk density and durability values observed of the dried pellets were >510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  14. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution.

  15. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. PMID:25560662

  16. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    PubMed

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  17. Apparatus and method for classifying fuel pellets for nuclear reactor

    DOEpatents

    Wilks, Robert S.; Sternheim, Eliezer; Breakey, Gerald A.; Sturges, Jr., Robert H.; Taleff, Alexander; Castner, Raymond P.

    1984-01-01

    Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits.

  18. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled.

  19. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. PMID:26248144

  20. Experimental Study on the pH of Pore water in Compacted Bentonite under Reducing Conditions with Electromigration

    SciTech Connect

    Nessa, S.A.; Idemitsu, K.; Yamazaki, S.; Ikeuchi, H.; Inagaki, Y.; Arima, T.

    2008-07-01

    Compacted bentonite and carbon steel are considered a good buffer and over-pack materials in the repositories of high-level radioactive waste disposal. Sodium bentonite, Kunipia-F contains approximately 95 wt% of montmorillonite. Bentonites prominent properties of high swelling, sealing ability and cation exchange capacity provide retardation against the transport of radionuclides from the waste into the surrounding rocks in the repository and its properties determine the behavior of bentonite. In this regards, the pH of pore water in compacted bentonite is measured with pH test paper wrapped with semi-permeable membrane of collodion sheet under reducing conditions. On 30 days, the pH test paper in the experimental apparatus indicated that the pH of pore water in compacted bentonite is around 8.0 at saturated state. The carbon steel coupon is connected as the working electrode to the potentiostat and is held at a constant supplied potential between +300 and -300 mV vs. Ag/AgCl electrode for up to 7 days. During applying electromigration the pH of pore water in bentonite decreased and it reached 6.0{approx}6.0 on 7 days. The concentration of iron and sodium showed nearly complementary distribution in the bentonite specimen after electromigration. It is expected that iron could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Semi-permeable membrane of collodion sheet does not affect the color change of pH test paper during the experiment. (authors)

  1. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  2. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  3. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  4. Attenuation of elastic waves in bentonite and monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Biryukov, A.; Tisato, N.; Grasselli, G.

    2016-04-01

    Deep geological repositories, isolated from the geosphere by an engineered bentonite barrier, are currently considered the safest solution for high-level radioactive waste (HLRW) disposal. As the physical conditions and properties of the bentonite barrier are anticipated to change with time, seismic tomography was suggested as a viable technique to monitor the physical state and integrity of the barrier and to timely detect any unforeseen failure. To do so, the seismic monitoring system needs to be optimized, and this can be achieved by conducting numerical simulations of wave propagation in the repository geometry. Previous studies treated bentonite as an elastic medium, whereas recent experimental investigations indicate its pronounced viscoelastic behaviour. The aims of this contribution are (i) to numerically estimate the effective attenuation of bentonite as a function of temperature T and water content Wc, so that synthetic data can accurately reproduce experimental traces and (ii) assess the feasibility and limitation of the HLRW repository monitoring by simulating the propagation of sonic waves in a realistic repository geometry. A finite difference method was utilized to simulate the wave propagation in experimental and repository setups. First, the input of the viscoelastic model was varied to achieve a match between experimental and numerical traces. The routine was repeated for several values of Wc and T, so that quality factors Qp(Wc, T) and Qs(Wc, T) were obtained. Then, the full-scale monitoring procedure was simulated for six scenarios, representing the evolution of bentonite's physical state. The estimated Qp and Qs exhibited a minimum at Wc = 20 per cent and higher sensitivity to Wc, rather than T, suggesting that pronounced inelasticity of the clay has to be taken into account in geophysical modelling and analysis. The repository-model traces confirm that active seismic monitoring is, in principle, capable of depicting physical changes in the

  5. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes

    SciTech Connect

    Salavati, Hossein; Rasouli, Nahid

    2011-11-15

    Highlights: {yields} The PVMo and nanocomposite catalyst (PVMo/Bentonite) as catalyst for epoxidation of alkenes. {yields} The composite catalyst showed higher catalytic activity than parent heteropolymolybdate (PVMo). {yields}The use of ultrasonic irradiation increased the conversions and reduced the reaction times. {yields} The H{sub 2}O{sub 2} is a green and eco-friendly oxidant in this catalytic system. -- Abstract: A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na{sub 5}[PV{sub 2}Mo{sub 10}O{sub 40}].14H{sub 2}O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H{sub 2}O{sub 2}. The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).

  6. Comparing the effects of Bentonite & Calendula on the improvement of infantile diaper dermatitis: A randomized controlled trial

    PubMed Central

    Mahmoudi, Mansoreh; Adib-Hajbaghery, Mohsen; Mashaiekhi, Mahdi

    2015-01-01

    Background & objectives: Infantile diaper dermatitis is a common, acute inflammatory reaction of the skin around diaper among infants. This study was undertaken to compare the effect of topical application of Bentonite and Calendula creams on the improvement of infantile diaper dermatitis. Methods: This double blind randomized controlled trial was undertaken on 100 patients of infantile diaper dermatitis. The 100 participants were randomly assigned into two groups of 50 each, and were prescribed the coded medicine. The mothers were trained to apply the cream and level of improvement was judged by observing the affected area on the first visit and then after three days of receiving treatment. Results: The mean age of infants was 6.45±5.53 months in Calendula group and 7.35±6.28 months in Bentonite group. Overall, 88 per cent of lesions in the Bentonite group started improving in the first six hours while this rate was 54 per cent in Calendula group (P<0.001). The risk ratio for the improvement in the first six hours was 2.99 folds in the Bentonite group. Also, lesions in 86 per cent infants in the Bentonite group and 52 per cent in the Calendula group were completely improved in the first three days after treatment (P<0.001). Interpretation & conclusions: Our results showed that in comparison with Calendula, Bentonite had faster healing effect and was more effective on the improvement of infantile diaper dermatitis (IRCT ID: IRCT 2012112811593N1). PMID:26831423

  7. In vitro evaluation of the capacity of zeolite and bentonite to adsorb aflatoxin B1 in simulated gastrointestinal fluids.

    PubMed

    Thieu, N Q; Pettersson, H

    2008-09-01

    Anin vitro study using single concentration and isotherm adsorption was carried out to evaluate the capacity of Vietnamese produced zeolite and bentonite to adsorb aflatoxin B1 (AFB1) in simulated gastrointestinal fluids (SGFs), and a commercial sorbent hydrated sodium calcium aluminosilicate (HSCAS) was used as reference. In this study, AFB1 solution was mixed with sorbents (0.3, 0.4 and 0.5% w/v) in SGFs at pH 3 and pH 7 and shaken for 8 h, centrifuged and the supernatant measured by Vicam fluorometer. Adsorption of AFB1 onto zeolite and bentonite varied according to the pH of SGFs and was lower than HSCAS. Linearity between the increased amount of AFB1 adsorbed on sorbents and the decrease of sorbent concentration was observed for bentonite and HSCAS, except for zeolite in SGFs at pH 7. The observed maximum amounts of AFB1 adsorbed on bentonite and HSCAS were 1.54 and 1.56 mg/g, respectively. The adsorption capacities of bentonite and HSCAS for AFB1 were 12.7 and 13.1 mg/g, respectively, from fitting the data to the Freundlich isotherm equation. Improvement in processing and purification for bentonite is needed to enhance the surface area, which would probably result in better adsorptive capacity for this sorbent. PMID:23604746

  8. Pellet injector development at ORNL (Oak Ridge National Laboratory)

    SciTech Connect

    Gouge, M.J.; Argo, B.E.; Baylor, L.R.; Combs, S.K.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Simmons, D.W.; Sparks, D.O.; Tsai, C.C.

    1990-01-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low {sup 3}He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor.

  9. Massive Pellet and Rupture Disk Testing for Disruption Mitigation Applications

    SciTech Connect

    Combs, Stephen Kirk; Meitner, Steven J; Baylor, Larry R; Caughman, John B; Commaux, Nicolas JC; Fehling, Dan T; Foust, Charles R; Jernigan, Thomas C; McGill, James M; Parks, P. B.; Rasmussen, David A

    2009-01-01

    Injection of massive quantities of noble gases or D2 has proven to be effective at mitigating some of the deleterious effects of disruptions in tokamaks. Two alternative methods that might offer some advantages over the present technique for massive gas injection are shattering massive pellets and employing close-coupled rupture disks. Laboratory testing has been carried out to evaluate their feasibility. For the study of massive pellets, a pipe gun pellet injector cooled with a cryogenic refrigerator was fitted with a relatively large barrel (16.5 mm bore), and D2 and Ne pellets were made and were accelerated to speeds of ~600 and 300 m/s, respectively. Based on the successful proof-of-principle testing with the injector and a special double-impact target to shatter pellets, a similar system has been prepared and installed on DIII-D and should be ready for experiments later this year. To study the applicability of rupture disks for disruption mitigation, a simple test apparatus was assembled in the lab. Commercially available rupture disks of 1 in. nominal diameter were tested at conditions relevant for the application on tokamaks, including tests with Ar and He gases and rupture pressures of ~54 bar. Some technical and practical issues of implementing this technique on a tokamak are discussed.

  10. Progress with the High Speed Pellet Injector for Ignitor*

    NASA Astrophysics Data System (ADS)

    Frattolillo, A.; Migliori, S.; Podda, S.; Bombarda, F.; Baylor, L. R.; Combs, S. K.; Foust, C. R.; Meitner, S.; Fehling, D.; Coppi, B.; Roveta, G.

    2010-11-01

    The four barrel, two-stage Ignitor Pellet Injector (IPI) has been designed to reach speeds up to 4 km/s, for effective low field side injection into ignited plasmas (TeTi11 keV). The IPI has been developed in collaboration between ORNL and ENEA, who have built and tested two indipendent subsystems each. Previous experimental campaigns at ORNL verified that the equipments matched properly, while their respective control systems interfaced correctly. The injector performed outstandingly well, showing very good repeatability. However, the pellet diagnostics expressely developed for this device did not observe intact pellets over 2 km/s. Recently a new arrangement was successfully tested, accommodating both a two-stage gun and a standard propellant valve on each barrel, allowing seamless switching between standard and high speed operation on any or all gun barrels; the cryogenic system was also improved with supplemental cooling by liquid helium. Injection speeds up to 2.6 km/s were obtained, but pellets seldom remained intact above 2 km/s. Optimization of power levels of the upstream and downstream heaters, which up to date have been used sparingly, in the next campaign could help in attaining integral pellets at higher speeds. *Sponsored in part by ENEA and by the D.O.E.

  11. The New High Speed Pellet Injector for the Ignitor Experiment^*

    NASA Astrophysics Data System (ADS)

    Migliori, S.; Baylor, L. R.; Roveta, G.

    2005-10-01

    A four barrel, two-stage pellet injector for the Ignitor experiment is under construction in collaboration between the ENEA Laboratory at Frascati and Oak Ridge National Laboratory. The goal is to reach pellet velocities of about 4 km/s, capable of penetrating near the center of the plasma column when injected from the low field side, in order to control the density profile, especially during the crucial phase of the initial current ramp, and as a possible method to fuel the discharge or to provide fast burn control during the ignited phase. The innovative concepts at the basis of the injector design are the proper shaping of the propulsion gas pressure front and the use of fast valves to considerably reduce the requirements on the expansion volumes necessary to prevent the propulsion gas to reach the plasma chamber. The complete propelling and gas removal systems have been built and tested at CRIOTEC. ORNL is responsible for the design, construction, and testing of the pellet injector vacuum chamber, the cryogenic systems, the gun barrels, and pellet diagnostics. Integrated testing at high pellet speeds with a wide range of operating parameters explored is also going to be carried out at ORNL.

  12. Nuclear fuel pellet sintering boat unloading apparatus and method

    SciTech Connect

    Huggins, T.B.; Widener, W.H.; Klapper, K.K.

    1990-05-22

    This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engaging the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site.

  13. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    SciTech Connect

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  14. Statistical analysis of deer and elk pellet-group data

    SciTech Connect

    White, G.C.; Eberhardt, L.E.

    1980-01-01

    Several authors have demonstrated empirically the fit of observed pellet-group data from mule deer, white-tailed deer, and elk to the negative binomial distribution. This distribution is described by 2 parameters: the mean, m, and the positive exponent, k. The parameter k is a measure of contagion. As over-dispersion increases, k ..-->.. 0; conversely, as the pellet groups approach a random distribution, k ..-->.. infinity. Past application of the negative binomial distribution to pellet-group data required a common value for the parameter k in order to test for differences in mean number of pellet groups for different populations. We developed a method of testing for differences in the means of pellet-group data for 2 or more populations that does not require a common k value. Interval and point estimators of k and m were obtained by the method of maximum likelihood for a series of models where either m or k can be assumed constant for all populations. A set of FORTRAN subroutines is available to analyze negative binomial data.

  15. A preliminary report on the bentonite beds of the lower Virgin Creek Member of the Pierre Shale, Stanley County, South Dakota ( USA).

    USGS Publications Warehouse

    Collins, D.S.

    1987-01-01

    The Virgin Creek Member of the Pierre Shales has been divided by earlier workers into lower and upper zones based on weathering and shale differences. Of the 49 bentonite beds of the lower Virgin Creek, the Government Draw Bentonite Beds, and bentonite bed 20 are the best markers for correlation from stream valley to stream valley. The variation of number and thickness of shale and bentonite beds is due to bioturbation, current activity, differential compaction, basin subsidence, and merging and splitting of bentonite beds. Three distinctive concretion horizons have the potential of also being used as stratigraphic markers within the study area. They include a nodule zone between two bentonite beds, barite(?) concretions that locally mark the lower contact of the Virgin Crrek, and a set of concretions at the contact between the upper and lower Virgin Creek. -from Author

  16. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production.

    PubMed

    Lay, Chyi-How; Sen, Biswarup; Chen, Chin-Chao; Wu, Jou-Hsien; Lee, Shih-Chi; Lin, Chiu-Yue

    2013-05-01

    Hydrogen (H2) production potential of water hyacinth (WH) and beverage wastewater (BW) mixture in powder and pellet form at various combination ratios were evaluated. Batch co-fermentation results showed peak biogas production of 105.5 mL and H2 production of 55.6 mL at the combination ratio of 1.6 g WH and 2.4 g BW in pellet form. With the same ratio in pellet form, the maximum H2 production rate 542 mL H2/L-d, maximum specific H2 production rate 869 mL H2/g VSS-d and H2 yield 13.65 mL/g feedstock were obtained, and were 88, 88 and 34% higher than its powder form. The predominant soluble metabolite was acetate in the concentration of 1059-2639 mg COD/L (40-79% of total metabolites) in most runs during co-fermentation of mixed feedstock. Carbon-to-nitrogen ratio and the physical form of the combined feedstock are essential criteria for optimum H2 production. Co-fermentation also alleviates the waste disposal problem of the industries. PMID:22850173

  17. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production.

    PubMed

    Lay, Chyi-How; Sen, Biswarup; Chen, Chin-Chao; Wu, Jou-Hsien; Lee, Shih-Chi; Lin, Chiu-Yue

    2013-05-01

    Hydrogen (H2) production potential of water hyacinth (WH) and beverage wastewater (BW) mixture in powder and pellet form at various combination ratios were evaluated. Batch co-fermentation results showed peak biogas production of 105.5 mL and H2 production of 55.6 mL at the combination ratio of 1.6 g WH and 2.4 g BW in pellet form. With the same ratio in pellet form, the maximum H2 production rate 542 mL H2/L-d, maximum specific H2 production rate 869 mL H2/g VSS-d and H2 yield 13.65 mL/g feedstock were obtained, and were 88, 88 and 34% higher than its powder form. The predominant soluble metabolite was acetate in the concentration of 1059-2639 mg COD/L (40-79% of total metabolites) in most runs during co-fermentation of mixed feedstock. Carbon-to-nitrogen ratio and the physical form of the combined feedstock are essential criteria for optimum H2 production. Co-fermentation also alleviates the waste disposal problem of the industries.

  18. Rhyolitic glass in Ordovician K-bentonites: A new stratigraphic tool

    NASA Astrophysics Data System (ADS)

    Delano, John W.; Tice, Steven J.; Mitchell, Charles E.; Goldman, Daniel

    1994-02-01

    Fresh volcanic glasses in the form of melt inclusions within quartz phenocrysts are commonly present in Paleozoic K-bentonites from New York State, Iowa, Kentucky, Pennsylvania, Newfoundland, and Quebec. Because these glasses are compositionally distinct from one layerto another, their geochemistry can be used to define chronostratigraphic horizons. In New York State, the K-bentonites occur within flat-lying, calcareous black shales of the Middle Ordovician Utica Formation. This glass has survived (1) because it has been sealed within a host crystal that is stable under most diagenetic conditions, and (2) because of the modest burial depths the Ordovician strata in this region. To demonstrate the potential of these volcanic glasses for stratigraphic correlations, isochronous surfaces have been established among three localities separated by 35 km. The immaculate preservation of these Ordovician glasses bodes well for the general application of this approach to younger, and perhaps even older, strata where geologic conditions have favored the survival of glass inclusions.

  19. Studies on incorporation of exfoliated bentonitic clays in polyurethane foams for increasing flame retardancy

    NASA Astrophysics Data System (ADS)

    Quagliano, J.; Gavilán García, Irma

    2012-09-01

    In this contribution we report the results of studying the incorporation of exfoliated bentonitic clays into polyurethane foams. A suspension in water of a sodium bentonite from Argentine Patagonia was interchanged with cetyl trimethyl ammonium bromide (CTAB) for 4 h at 80°C, rendering an exfoliated clay, which is nanometric in only one dimension. This nanoclay, when dispersed in the polyurethane, resulted in the same fire retardancy rating (UL-94) than when polyurethane was treated with a commercial nanoclay. Scanning electron microscopy (SEM) at low augmentations of polyurethane samples treated with the synthethized nanoclay (2,5% w/w) showed no differences respect to untreated polyurethane, except for the irregularity of void edges.

  20. Comparative study of laterite and bentonite based organoclays: implications of hydrophobic compounds remediation from aqueous solutions.

    PubMed

    Nafees, Muhammad; Waseem, Amir; Khan, Abdur Rehman

    2013-01-01

    Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil) from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals) with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl) and tetradecyl trimethyl ammonium bromide (TDTMA-Br). Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well. PMID:24302867

  1. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting.

    PubMed

    Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua

    2014-09-01

    The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. PMID:24928053

  2. Comparative Study of Laterite and Bentonite Based Organoclays: Implications of Hydrophobic Compounds Remediation from Aqueous Solutions

    PubMed Central

    Nafees, Muhammad; Waseem, Amir; Khan, Abdur Rehman

    2013-01-01

    Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil) from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals) with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl) and tetradecyl trimethyl ammonium bromide (TDTMA-Br). Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well. PMID:24302867

  3. Comparative study of laterite and bentonite based organoclays: implications of hydrophobic compounds remediation from aqueous solutions.

    PubMed

    Nafees, Muhammad; Waseem, Amir; Khan, Abdur Rehman

    2013-01-01

    Four cost effective organoclays were synthesized, characterized, and studied for the sorption of hydrophobic compounds (edible oil/grease and hydrocarbon oil) from aqueous solutions. Organoclays were prepared by cation exchange reaction of lattice ions (present onto the surface of laterite and bentonite clay minerals) with two surfactants, hexadecyl trimethyl ammonium chloride (HDTMA-Cl) and tetradecyl trimethyl ammonium bromide (TDTMA-Br). Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of synthesized organoclays. It was found that the amount of surfactant loading and the nature of the surfactant molecules used in the syntheses of organoclay strongly affect the sorption capacity of the clay mineral. Further, it was found that both the laterite and bentonite based organoclays efficiently removed the edible and hydrocarbon oil content from lab prepared emulsions; however, the adsorption capacity of clay mineral was greatly influenced by the nature of hydrophobic compounds as well.

  4. Microwave measurement of the mass of frozen hydrogen pellets

    DOEpatents

    Talanker, Vera; Greenwald, Martin

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  5. The origin of pelletal lapilli in explosive kimberlite eruptions.

    PubMed

    Gernon, T M; Brown, R J; Tait, M A; Hincks, T K

    2012-05-15

    Kimberlites are volatile-rich magmas from mantle depths of ≥ 150  km and are the primary source of diamonds. Kimberlite volcanism involves the formation of diverging pipes or diatremes, which are the locus of high-intensity explosive eruptions. A conspicuous and previously enigmatic feature of diatreme fills are 'pelletal lapilli'--well-rounded clasts consisting of an inner 'seed' particle with a complex rim, thought to represent quenched juvenile melt. Here we show that these coincide with a transition from magmatic to pyroclastic behaviour, thus offering fundamental insights into eruption dynamics and constraints on vent conditions. We propose that pelletal lapilli are formed when fluid melts intrude into earlier volcaniclastic infill close to the diatreme root zone. Intensive degassing produces a gas jet in which locally scavenged particles are simultaneously fluidised and coated by a spray of low-viscosity melt. A similar origin may apply to pelletal lapilli in other alkaline volcanic rocks, including carbonatites, kamafugites and melilitites.

  6. Electromagnetic launch of mm-size pellets to great velocities

    SciTech Connect

    Drobyshevski, E.M.; Zhukov, B.G.; Kurakin, R.O.; Sakharov, V.A.; Studenkov, A.M.

    1994-11-01

    Small body launching that uses gas or plasma faces the fundamental problem caused by excess energy loss that is due to the great wall surface/volume ratio of the barrel. For example, the efficiency of the plasma armature (PA) rail-gun acceleration is maximum for 8-10 mm-size bodies and drops as their size decreases. That is why in the case of nuclear fusion applications, where 1-2 mm-size pellets at 5-10 km/s velocity are desirable, electromagnetic launchers have not yet demonstrated an advantage over light-gas guns and one is now forced to search for a compromise between the pellet size (increasing it up to 3-4 mm) and its velocity (decreasing it down to {approx}3 km/s). As a whole, the probability of attaining 5-10 km/s velocity for 1-2 mm pellets seems to be rather remote at the present.

  7. Formation of particulate matter monitoring during combustion of wood pellete with additives

    NASA Astrophysics Data System (ADS)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  8. Coaxial pellets for metallic impurity injection on the large helical device

    SciTech Connect

    Huang, X. L. Zhang, H. M.; Morita, S.; Oishi, T.; Goto, M.

    2014-11-15

    Two coaxial pellets with tungsten inserted into graphite carbon and polyethylene (PE) tubes are compared for tungsten spectroscopic study in the Large Helical Device. The tungsten pellet with carbon tube causes plasma collapse, while that with PE tube smoothly ablates without collapse. The deposition profile of the pellets is analyzed with a help of pellet ablation spectroscopy. It is found that the tungsten pellet with carbon tube can significantly penetrate into the core plasma and leads to the plasma collapse. A tungsten spectrum with radial profile is successfully observed when the tungsten pellet with PE tube is used.

  9. Response to Delibes-Mateos et al. : Pellet size matters

    NASA Astrophysics Data System (ADS)

    Rueda, Marta; Rebollo, Salvador; Gálvez-Bravo, Lucía

    2009-05-01

    In Rueda et al. [Rueda, M., Rebollo, S., Gálvez-Bravo, L., 2008. Age and season determine European rabbit habitat use in Mediterranean ecosystems. Acta Oecol. 34, 266-273] we used a threshold of 6 mm faecal pellet diameter to differentiate between adult and juvenile European rabbit ( Oryctolagus cuniculus) habitat use. Delibes-Mateos et al. designed a housing experiment with 12 adult rabbits and criticised the choice of 6 mm as a threshold to separate adult and juvenile rabbit pellets, claiming that adults can produce pellets both larger and smaller than 6 mm in similar proportions. In response to their criticism we argue the following. The selection of a 6 mm threshold has a bibliographic basis, it is not a new method developed by Rueda et al. and produces consistent results when applied in the field. Assuming that Delibes-Mateos et al. results are accurate, we should have found a greater number of <6 mm pellets than >6 mm, overall and seasonally, which is not the case. We believe that the use of commercial pelleted food, keeping animals isolated in small cages for over a year, and the use of adult rabbits only, makes the experimental design used by these authors not suitable to refute the usefulness of separating rabbit pellets smaller and larger than 6 mm diameter as indicators of changes in the relative abundance of juvenile and adult rabbits in the field. Finally, we agree with the authors that the use of indirect methods of animal aging would require case-specific validation studies; however, we believe these studies should be correctly designed.

  10. Formulation and evaluation of olanzapine matrix pellets for controlled release

    PubMed Central

    Vishal Gupta, N.; Balamuralidhara, V.; Mohammed Khan, S.

    2011-01-01

    Background and the purpose of the study Olanzapine is an antipsychotic used in treatment of schizophrenia. This research was carried out to design oral controlled release matrix pellets of water insoluble drug Olanzapine (OZ), using blend of Sodium Alginate (SA) and Glyceryl Palmito-Stearate (GPS) as matrix polymers, micro crystalline cellulose (MCC) as spheronizer enhancer and Sodium Lauryl Sulphate (SLS) as pore forming agent. Methods OZ formulations were developed by the pelletization technique by drug loaded pellets and characterized with regard to the drug content, size distribution, Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction study (XRD). Stability studies were carried out on the optimized formulation for a period of 90 days at 40±2 °C and 75±5% relative humidity. Results and major conclusion The drug content was in the range of 93.34–98.12%. The mean particle size of the drug loaded pellets was in the range 1024 to 1087µm. SEM photographs and calculated sphericity factor confirmed that the prepared formulations were spherical in nature. The compatibility between drug and polymers in the drug loaded pellets was confirmed by DSC and FTIR studies. Stability studies indicated that pellets are stable. XRD patterns revealed the crystalline nature of the pure OZ. Loose surface crystal study indicated that crystalline OZ is present in all formulations and more clear in formulation F5. Drug release was controlled for more than 24 hrs and mechanism of the drug release followed by Fickian diffusion. It may be concluded that F5 is an ideal formulation for once a day administration. PMID:22615665

  11. A bentonite-gold nanohybrid as a heterogeneous green catalyst for selective oxidation of silanes.

    PubMed

    Maya, R J; John, Jubi; Varma, R Luxmi

    2016-08-23

    A highly efficient, environmentally benign and reusable heterogeneous bentonite-gold nanohybrid catalyst was designed and synthesized. This heterogeneous catalyst could efficaciously catalyse the oxidation of organosilanes to silanols. The reaction is 98.7% atom economical and the products were obtained in excellent yield without the formation of disiloxanes as byproducts. The catalyst was also well applicable for the gram scale preparation of silanols. PMID:27498884

  12. A bentonite-gold nanohybrid as a heterogeneous green catalyst for selective oxidation of silanes.

    PubMed

    Maya, R J; John, Jubi; Varma, R Luxmi

    2016-08-23

    A highly efficient, environmentally benign and reusable heterogeneous bentonite-gold nanohybrid catalyst was designed and synthesized. This heterogeneous catalyst could efficaciously catalyse the oxidation of organosilanes to silanols. The reaction is 98.7% atom economical and the products were obtained in excellent yield without the formation of disiloxanes as byproducts. The catalyst was also well applicable for the gram scale preparation of silanols.

  13. Control System for the NSTX Lithium Pellet Injector

    SciTech Connect

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  14. Shattered Pellet Disruption Mitigation Technology Development for ITER

    SciTech Connect

    Baylor, Larry R; Combs, Stephen Kirk; Jernigan, T. C.; Meitner, Steven J; Edgemon, Timothy D; Parks, P. B.; Commaux, Nicolas JC; Maruyama, S.; Caughman, John B; Rasmussen, David A

    2010-01-01

    The mitigation of first wall thermal and mechanical loads and damage from runaway electrons during disruptions are critical for successful long term operation of ITER. Disruption mitigation tools based on shattered pellet injection are being developed at Oak Ridge National Laboratory that can be employed on ITER to provide the necessary mitigation of thermal and mechanical loads from disruptions as well as provide collisional damping to inhibit the formation of runaway electrons . Here we present progress on the development of the technology to provide reliable disruption mitigation with large shattered cryogenic pellets. An example of how this concept can be employed on ITER is discussed.

  15. Tracer-encapsulated pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Viniar, I.; Lukin, A.; Reznichenko, P.; Umov, A.

    2005-05-01

    An injector for making solid hydrogen pellets around impurity cores has been developed for plasma transport study in large helical device. A technique has been employed for automatic loading carbon or polystyrene cores of 0.2 mm diameter from a gun magazine to a light-gas gun barrel. The injector is equipped with a cryocooler and is able to form a 3.2 mm long and 3 mm diameter cylindrical solid hydrogen pellet at 7-8 K with an impurity core in its center within 6 min and to inject it in the light-gas gun up to 1 km/s.

  16. Hydrogen-encapsulated impurity pellet injector for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Viniar, I.; Reznichenko, P.; Lukin, A.; Umov, A.; Sudo, S.

    2001-06-01

    A novel technology is suggested for making solid hydrogen shells around impurity pellets to be injected into plasmas of fusion devices with a view to looking into its transport properties. In proof-of-principle tests, a 3 mm long and 3 mm diameter cylindrical solid hydrogen shell was formed around a 0.2 mm diameter globular pellet at a temperature of 8-11 K within 5 min and accelerated in a pipe-gun barrel up to 1 km/s.

  17. Visible light induced photocatalytic degradation of rhodamine B by magnetic bentonite.

    PubMed

    Li, Wenbing; Wan, Dong; Wang, Guanghua; Lu, Lulu; Wei, Xiaobi

    2016-01-01

    The photocatalytic activity of magnetic bentonite, Fe3O4 nanoparticles decorated Al-pillared bentonite (Fe3O4/Al-B), for the degradation of rhodamine B (RhB) in the presence of H2O2 under visible light (VL) was evaluated. The effects of different reaction parameters such as catalyst dose, dye concentration and externally added H2O2 were also investigated. The magnetic bentonite showed good photocatalytic activity, magnetic separability and stability for repeated use. More than 95% of 40 mg/L RhB was converted within 3 h under VL with a catalyst dose of 0.5 g/L. Suitable mechanisms have been proposed to account for the photocatalytic activities in the presence and absence of H2O2. The efficiency of H2O2 in VL process was much higher than that of the dark process. Results obtained in the current study may be useful to develop a suitable photocatalyst for photocatalytic remediation of different water contaminants including organic dyes. PMID:27191554

  18. Effect of gas pressure on the sealing efficiency of compacted bentonite-sand plugs

    NASA Astrophysics Data System (ADS)

    Liu, J. F.; Davy, C. A.; Talandier, J.; Skoczylas, F.

    2014-12-01

    This research relates to the assessment of the sealing ability of bentonite/sand plugs when swollen in presence of both water and gas pressures, in the context of deep underground radioactive waste storage. Compacted bentonite/sand plugs are placed inside a constant volume cell, and subjected to swelling in presence of both water and gas: swelling kinetics and effective swelling pressure Pswell are identified. Secondly, the gas breakthrough (GB) characteristics of swollen plugs are assessed to determine their ability for gas migration, which has to be minimal for sealing radioactive waste repositories. We show that gas pressure Pg does not affect significantly Pswell until a threshold Pg > 2 MPa. When swelling occurs inside a tube with a smooth (turned) inner surface, continuous GB occurs when Pg is equivalent to the effective Pswell (obtained without gas pressure, at 7.32 MPa ± 0.11). When the plug swells inside a grooved tube, continuous GB does not occur up to Pg ≥ 10.5 MPa: smooth interfaces are a preferential gas migration pathway rather than grooved interfaces, and rather than water-saturated bentonite-sand plugs. With smooth tubes, in presence of Pg ≥ 2 MPa, although Pswell is not affected, gas passes through the sample at significantly lower values than Pswell, due to partial sample saturation. It is concluded that GB pressure is a more accurate indicator of partial sample saturation than swelling pressure Pswell alone.

  19. Potential performance of pillared inorgano- organo bentonite for soil mix technology permeable reactive barrier (Invited)

    NASA Astrophysics Data System (ADS)

    Abunada, Z. M.; Al-Tabbaa, A.

    2013-12-01

    Modified bentonite has gained more interest for their effect in contaminant removal and environmental protection. This study is investigating the use of three different modified inorgano-organo bentonite (IOB) in soil mixing permeable reactive barrier. IOB were prepared using pillaring agents and quaternary ammonium cations (QAC) with different loading ratios. The permeabilities of compacted specimens containing IOB with two different soil types (sandy and gravelly soil) were measured for site contaminated groundwater, pure water and TEX compounds to study the potential of soil mix permeable reactive barrier (PRB). The soil permeability decreased by 1-2 order of magnitude once mixed with IOB. It also decreased by about 100 in case of TEX compound and site groundwater. The IOB was tested to remove Toluene, Ethyl-benzene, and o-Xylene (TEX) compound from model contaminated water in both batch and column test. Physical characteristics such as pore volume, porosity and specific structure in addition to level of surfactant loading were determined. Materials removal efficiency varied due to the surfactant loading, soil type and contaminant molecular weight. Sorption isotherm showed that the adsorbates preference increased in the order of T>E>X in all IOB types. Maximum TEX compound sorptive capacity varied also due to soil type with the highest was 86.89% 93.19% and 90.2% for T,E,X respectively on sandy soil. Key words: Inorgano-organo bentonite, permeability, reactive barrier, soil mix, sorption

  20. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  1. Decolourization of Methylene Blue in Water Using Bentonite Impregnated with Ti and Ag as Photocatalyst.

    PubMed

    Wu, Edward Ming-Yang; Kuo, Shu-Lung

    2015-08-01

    This article used bentonite impregnated with titanium and silver, respectively, as photocatalyst, to degrade methylene blue (MB) under conditions of MB solutions exposed to sodium lamp and sunlight. Due to the semi-conducting properties of synthesized bentonite catalysts, when exposed to sodium lamp and sunlight, catalyst particles are excited for photocatalysis to achieve decolourization. After an FT-IR analysis, this study finds that smectite catalysts have significant and complicated wave crests between the fingerprint area with wave numbers 415~600 cm⁻¹ and 750~1170 cm⁻¹. The bentonite impregnated with Ti(4+) (Sm-Ti) and with Ag⁺ (Sm-Ag) removes MB through the mechanisms of adsorption and degradation, while the commercial product of titanium dioxide (TiO₂) only exhibits the capability of MB degradation. At present, a heterogeneous photocatalytic system has been fully applied for use in daily life, with its efficiency determined by the free radical action of electrons and holes, the generation efficiency of ·OH.

  2. Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight.

    PubMed

    Li, Jin; Song, Xuanyu; Pan, Jinfen; Zhong, Lian; Jiao, Shufang; Ma, Qimin

    2013-11-01

    Chitosans with different degrees of deacetylation (DD) and molecular weights (Mw) were tested for the flocculation of bentonite suspensions prepared with demineralized water (DW) and tap water (TW), respectively. Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the DD and Mw of the chitosans on the flocculation properties. The results indicated that the chitosan (Mw 232 kDa) dosages required for maximum flocculation are 20 mg/L in DW and 5 mg/L in TW, respectively, regardless of DD from 54.6% to 95.2% and pH of bentonite suspension. Chitooligomers (Mw 1.5 kDa, DD 95.2%) failed to reach the required residual turbidity (i.e., 10 NTU) in DW under all investigated conditions, whereas good results were obtained using 5-20 mg/L in TW. The polymer-induced flocculation processed obeyed Von Smoluchowski's bimolecular rate equation. The flocculation performance in TW was very different from that in DW due to the presence of salts in TW. The results were consistent with the destabilization of bentonite by the combined mechanisms of charge neutralization and bridging.

  3. Visible light induced photocatalytic degradation of rhodamine B by magnetic bentonite.

    PubMed

    Li, Wenbing; Wan, Dong; Wang, Guanghua; Lu, Lulu; Wei, Xiaobi

    2016-01-01

    The photocatalytic activity of magnetic bentonite, Fe3O4 nanoparticles decorated Al-pillared bentonite (Fe3O4/Al-B), for the degradation of rhodamine B (RhB) in the presence of H2O2 under visible light (VL) was evaluated. The effects of different reaction parameters such as catalyst dose, dye concentration and externally added H2O2 were also investigated. The magnetic bentonite showed good photocatalytic activity, magnetic separability and stability for repeated use. More than 95% of 40 mg/L RhB was converted within 3 h under VL with a catalyst dose of 0.5 g/L. Suitable mechanisms have been proposed to account for the photocatalytic activities in the presence and absence of H2O2. The efficiency of H2O2 in VL process was much higher than that of the dark process. Results obtained in the current study may be useful to develop a suitable photocatalyst for photocatalytic remediation of different water contaminants including organic dyes.

  4. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  5. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria. PMID:26024740

  6. Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier

    SciTech Connect

    Fernandez, Raul; Cuevas, Jaime; Maeder, Urs K.

    2010-08-15

    The interaction between concrete/cement and swelling clay (bentonite) has been modeled in the context of engineered barrier systems for deep geological disposal of high-level radioactive waste. The geochemical transformations observed in laboratory diffusion experiments at 60 and 90 {sup o}C between bentonite and different high-pH solutions (K-Na-OH and Ca(OH){sub 2}-saturated) were reconciled with the reactive transport code CrunchFlow. For K-Na-OH solutions (pH = 13.5 at 25 {sup o}C) partial dissolution of montmorillonite and precipitation of Mg-silicates (talc-like), hydrotalcite and brucite at the interface are predicted at 60 {sup o}C, while at 90 {sup o}C the alteration is wider. Alkaline cations diffused beyond the mineralogical alteration zone by means of exchange with Mg{sup 2+} in the interlayer region of montmorillonite. Very slow reactivity and minor alteration of the clay are predicted in the Ca(OH){sub 2}-bentonite system. The model is a reasonable description of the experiments but also demonstrates the difficulties in modeling processes operating at a small scale under a diffusive regime.

  7. Inverse modeling of tracer experiments in FEBEX compacted Ca-bentonite

    NASA Astrophysics Data System (ADS)

    Samper, Javier; Dai, Zhenxue; Molinero, Jorge; García-Gutiérrez, M.; Missana, T.; Mingarro, M.

    Solute transport parameters of compacted Ca-bentonite used in the FEBEX Project were derived by García-Gutiérrez et al. (2001) from through- and in-diffusion experiments using analytical solutions for their interpretation. Here we expand their work and present the numerical interpretation of diffusion and permeation experiments by solving the inverse transport problem which is formulated as the minimization of a weighted least squares criterion measuring the differences between computed and measured concentration values. The inverse problem is solved with INVERSE-CORE 2 D© , a finite element code which accounts for both dissolved and sorbed concentration data, uses either the Golden section search or Gauss-Newton-Marquardt methods for minimizing the objective function and allows the estimation of transport and retardation parameters such as diffusion coefficient, total and kinematic porosity and distribution coefficients. Diffusion and permeation experiments performed on FEBEX compacted bentonite using tritium, cesium, selenium, and strontium have been effectively interpreted by inverse modeling. Estimated parameters are within the range of reported values for these tracers in bentonites. It has been found that failing to account for the role of sinters may lead to erroneous diffusion coefficients by a factor of 1.4. Possible ways to improve the design of in-diffusion and permeation experiments have been identified. The interpretation of the tritium permeation experiment requires the use of a double-porosity model with mobile porosity of 0.14 for a dry density of 1.18 g/cm 3.

  8. Effect of gas pressure on the sealing efficiency of compacted bentonite-sand plugs.

    PubMed

    Liu, J F; Davy, C A; Talandier, J; Skoczylas, F

    2014-12-01

    This research relates to the assessment of the sealing ability of bentonite/sand plugs when swollen in presence of both water and gas pressures, in the context of deep underground radioactive waste storage. Compacted bentonite/sand plugs are placed inside a constant volume cell, and subjected to swelling in presence of both water and gas: swelling kinetics and effective swelling pressure Pswell are identified. Secondly, the gas breakthrough (GB) characteristics of swollen plugs are assessed to determine their ability for gas migration, which has to be minimal for sealing radioactive waste repositories. We show that gas pressure Pg does not affect significantly Pswell until a threshold Pg>2MPa. When swelling occurs inside a tube with a smooth (turned) inner surface, continuous GB occurs when Pg is equivalent to the effective Pswell (obtained without gas pressure, at 7.32MPa±0.11). When the plug swells inside a grooved tube, continuous GB does not occur up to Pg≥10.5MPa: smooth interfaces are a preferential gas migration pathway rather than grooved interfaces, and rather than water-saturated bentonite-sand plugs. With smooth tubes, in presence of Pg≥2MPa, although Pswell is not affected, gas passes through the sample at significantly lower values than Pswell, due to partial sample saturation. It is concluded that GB pressure is a more accurate indicator of partial sample saturation than swelling pressure Pswell alone. PMID:25305640

  9. Ion concentration caused by an external solution into the porewater of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Muurinen, Arto; Karnland, Ola; Lehikoinen, Jarmo

    The concentrations caused by the external solution into the porewater were studied with compacted bentonite (MX-80), from which easily dissolving components had been removed in order to ensure that the ions in the porewater came from the external solution. The dry densities of the samples varied from 700 to 1700 kg/m 3 and NaCl solutions of 0.1-3 M were used as the external solution for saturation. The concentrations in the porewater were determined by the direct analysis of the squeezed porewaters and by dispersing the sample in deionized water. At high concentrations, the Donnan model can predict the concentrations in the porewater rather well. At low concentrations, where the ion exclusion is stronger, the measured concentrations are clearly higher than the modelled values. One possible explanation for this discrepancy is the microstructure of the bentonite, and an attempt to couple the effects of the microstructure and the Donnan model was made. It was assumed that there are two pore types, interlamellar pores in the montmorillonite stacks and large pores in the gel between the stacks. The dimensions of the microstructure were obtained from SAXS and BET(N 2) measurements. In this case, the fitting is much better, which supports the assumption of different pore types in bentonite.

  10. {sup 137}Cs sorption into bentonite from Cidadap-Tasikmalaya as buffer material for disposal demonstration plant facility at Serpong

    SciTech Connect

    Setiawan, B. Sriwahyuni, H. Ekaningrum, NE. Sumantry, T.

    2014-03-24

    According to co-location principle, near surface disposal type the disposal demonstration plant facility will be build at Serpong nuclear area. The facility also for anticipation of future needs to provide national facility for the servicing of radwaste management of non-nuclear power plant activity in Serpong Nuclear Area. It is needs to study the material of buffer and backfill for the safety of demonstration plant facility. A local bentonite rock from Cidadap-Tasikmalaya was used as the buffer materials. Objective of experiment is to find out the specific data of sorption characteristic of Cidadap bentonite as buffer material in a radwaste disposal system. Experiments were performed in batch method, where bentonite samples were contacted with CsCl solution labeled with Cs-137 in 100 ml/g liquid:solid ratio. Initial Cs concentration was 10{sup −8} M and to study the effects of ionic strength and Cs concentration in solution, 0.1 and 1.0 M NaCl also CsCl concentration ranging 10{sup −8} - 10{sup −4} M were added in solution. As the indicator of Cs saturated in bentonite samples, Kd value was applied. Affected parameters in the experiment were contact time, effects of ionic strength and concentration of CsCl. Results showed that sorption of Cs by bentonite reached constantly after 16 days contacted, and Kd value was 10.600 ml/g. Effect of CsCl concentration on Kd value may decreased in increased in CsCl concentration. Effect of ionic strength increased according to increased in concentration of background and would effect to Kd value due to competition of Na ions and Cs in solution interacts with bentonite. By obtaining the bentonite character data as buffer material, the results could be used as the basis for making of design and the basic of performance assessment the near surface disposal facility in terms of isolation capacity of radwaste later.

  11. Water-compacted Na-bentonite interaction in simulated nuclear fuel disposal conditions: The role of accessory minerals

    SciTech Connect

    Melamed, A.; Pitkaenen, P.

    1994-12-31

    In an earlier laboratory study, ion exchange processes and smectite alteration were investigated through the interaction between compacted Na-bentonite (Volclay MX-80) and simulated granitic groundwater solutions. In the water, a concentration decrease in Ca, Mg and K, and an increase in Na, HCO{sub 3} and SO{sub 4} were recorded. The total amount of Ca available in the water, however, was found insufficient to account for the recorded formation of Ca-smectite, and it is therefore assumed that the accessory Ca-bearing minerals in the bentonite provide the fundamental source of these cations. X-ray powder diffraction analyses and microscope observations of the bentonite samples were re-conducted. Quartz, feldspars, pyrite, calcite and traces of gypsum were revealed as the primary accessories. In reacted samples, goethite and siderite are found as the secondary mineral products in association with corroded pyrite grains, while calcite and gypsum tend to disappear. From these results it is assumed that the oxygen present in the water and bentonite pore space promotes the oxidation of pyrite (dissolved) and the precipitation of goethite. The pore water pH decreases and calcite is partly dissolved. Through the dissolution, the bulk amount of Ca ions in addition to those arising by diffusion from the water is provided. Some of the reaction-released bicarbonate and Fe{sup 2+} re-precipitate in the bentonite as siderite, while the rest (as also SO{sub 4} ions) diffuse into the water. Though the relative oxygen content in the experiment may be considered higher than that of the repository concept for nuclear fuel disposal (interaction in a semi-closed system with high water/bentonite ratio), the near field geochemistry predictions imply limited oxidizing conditions, which will be characterized by the above-described processes in sulphide-bearing bentonite and occur for some time after the sealing of the repository.

  12. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.

    PubMed

    Meleshyn, A; Azeroual, M; Reeck, T; Houben, G; Riebe, B; Bunnenberg, C

    2009-07-01

    The influence of uranyl-carbonate and calcium-uranyl-carbonate complexations on the kinetics of U(VI) (approximately 3.4 x 10(-3) mol L(-1)) sorption from NaNO3 and Ca(NO3)2 solutions on Na- and Ca-bentonites at circumneutral ambient conditions was investigated. Complexation of U(VI) in Ca2UO2(CO3)3(aq) aqueous species, dominating the U(VI) speciation in Ca(NO3)2 solution, reduces its adsorption on bentonite by a factor of 2-3 in comparison with that in (UO2)2CO3(OH)3- species, dominating in NaNO3 solution, within the studied period of time (21 days). As a result of the dissolution of accessory calcite, Ca2UO2(CO3)3(aq) can be formed in the initially Ca-free solution in contact with either Na- or Ca-bentonite. U(VI) adsorption on Na-bentonite is a factor of approximately 2 higher than that on Ca-bentonite for solutions with the Ca2UO2(CO3)3(aq) complex dominating aqueous U(VI) speciation. This favors use of Na-bentonite over that of Ca-bentonite in final disposal of radioactive waste. Furthermore, the observed strong correlation between U(VI) adsorption and Mg release as a result of montmorillonite dissolution indicates in agreement with previous findings that under the applied conditions U(VI) is adsorbed on the edge surface of montmorillonite, which is a major mineral phase of the studied clays. PMID:19673282

  13. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    DOE PAGESBeta

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long

  14. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    SciTech Connect

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill

  15. Geochemical modelling of bentonite porewater in high-level waste repositories

    NASA Astrophysics Data System (ADS)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  16. Alteration of bentonite by hyperalkaline fluids: A review of the role of secondary minerals

    NASA Astrophysics Data System (ADS)

    Savage, David; Walker, Colin; Arthur, Randy; Rochelle, Chris; Oda, Chie; Takase, Hiro

    Data concerning potential solid products of the interaction of cement pore fluids with bentonite have been reviewed with respect to accurate prediction of bentonite alteration in the long-term. Calcium (aluminium) silicate hydrates (C(A)SH), zeolites, feldspars, hydroxides, carbonates, polymorphs of silica, and some sheet silicates (all of varying degrees of crystallinity) are potential products of cement-bentonite interaction. Evidence from natural systems and laboratory studies suggests that most, or all of these phases, may precipitate on timescales of interest to safety assessment of the geological disposal of radioactive wastes. These data indicate that growth kinetics of secondary minerals is equally as important as thermodynamic stability in controlling occurrence. C(A)SH show variable Ca/Si ratio and Al contents. At high pH (>11), the growth of C(A)SH minerals provides a means by which OH - ions from cement pore fluids may be titrated. Although thermodynamic data exist for a number of naturally-occurring crystalline C(A)SH minerals, they are of doubtful quality and should be applied with caution in predictive modelling. Zeolites are likely to form at lower pH than for C(A)SH, with the Si/Al ratio of the zeolite decreasing with increasing pH of the fluid. Zeolite stability is also strongly dependent upon silica activity in the fluid phase. Although silica activity in bentonite pore fluids will be spatially (and temporally) variable as hyperalkaline alteration proceeds, it is likely that minerals which could form would be those stable in quartz-saturated or supersaturated fluids. Currently available thermodynamic data for zeolites tend to overestimate their stability, leading to inaccurate predictions of their occurrence. Notwithstanding this uncertainty, it is considered that the following secondary minerals are the most likely to form in low temperature cement-bentonite systems: calcite, dolomite, chalcedony, C(A)SH of variable Ca/Si ratio, K

  17. Improvement of bacterial clearance and relief of clinical signs of Salmonella enterica serovar Typhimurium infection in pigs through upregulation of Th 1-specific responses by administration of a combination of two silicate minerals, biotite and bentonite

    PubMed Central

    LEE, Jin-A; JUNG, Bock-Gie; KIM, Tae-Hoon; KIM, Yun-Mi; KOH, Hong-Bum; LEE, Bong-Joo

    2015-01-01

    Biotite and bentonite are phyllosilicate minerals that were originally used in industrial applications. Several beneficial activities of them have recently been reported, especially regulation of the immune system and antimicrobial effects. Therefore, we investigated the immune-enhancing and bacterial clearance effects of a biotite and bentonite mixture (BBM) on experimental infection of Salmonella enterica serovar Typhimurium (S. Typhimurium) to determine whether the BBM could be used as an alternative antibiotic. We administered 1% or 2% BBM as a feed supplement. We then evaluated the bacterial clearance effects of the BBM against S. Typhimurium. We also evaluated the immune-enhancing effect of the BBM through several immunological experiments that included examination of the lysozyme activity, CD4+/CD8+ T lymphocyte ratio and the T-helper type 1 (Th 1) cytokine profile. The clinical signs of S. Typhimurium and the number of viable bacteria in feces and tissues were significantly decreased in both BBM groups, especially in the 2% BBM group. The BBM also markedly enhanced the lysozyme activity, CD4+/CD8+ T lymphocyte ratio and expression levels of IFN-γ and IL-12 in S. Typhimurium-challenged pigs. Therefore, the BBM could be a good candidate as an alternative antibiotic that improves Th 1-specific immune responses and the bacterial clearance effect. PMID:25947887

  18. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  19. Techno-economic assessment of pellets produced from steam pretreated biomass feedstock

    DOE PAGESBeta

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; Ghiasi, Bahman; Kumar, Linoj; Sokhansanj, Shahab

    2016-03-10

    Minimum production cost and optimum plant size are determined for pellet plants for three types of biomass feedstock e forest residue, agricultural residue, and energy crops. The life cycle cost from harvesting to the delivery of the pellets to the co-firing facility is evaluated. The cost varies from 95 to 105 t-1 for regular pellets and 146–156 t-1 for steam pretreated pellets. The difference in the cost of producing regular and steam pretreated pellets per unit energy is in the range of 2e3 GJ-1. The economic optimum plant size (i.e., the size at which pellet production cost is minimum) ismore » found to be 190 kt for regular pellet production and 250 kt for steam pretreated pellet. Furthermore, sensitivity and uncertainty analyses were carried out to identify sensitivity parameters and effects of model error.« less

  20. Microstructural investigation of MX-80 bentonite and Na/Ca-montmorillonite using basal spacing determination

    NASA Astrophysics Data System (ADS)

    Holmboe, M.; Wold, S.

    2010-12-01

    Knowledge about the microstructure of saturated compacted bentonite is of fundamental importance in order to describe and predict diffusive transport through the bentonite barrier in a deep geological repository. If the mineral composition is well characterized, microstructural models of compacted bentonite on the nanoscale can be based on accurate information of the basal spacings and corresponding interlayer distances within the montmorillonite particles. From the average basal spacing, the interlayer and the so-called interparticle or free porosity can be calculated [1]. The basal spacings of the montmorillonite particles can be measured by neutron and X-ray small-angle scattering or diffraction. However, due to microstructural heterogeneity and interstratification of different hydration states, profile fitting through mixed layered modeling is necessary although challenging [2,3]. In this study, we have used low-angle XRD in reflection mode together with one-dimensional analysis of mixed layered clays [2] in order to compare both the relative layer distribution and average basal spacing of MX-80 bentonite and Na/Ca-montmorillonite samples. Two different methods for water saturation commonly used in the literature were compared, saturation by constant relative humidity (adsorption and desorption) and saturation under constant volume conditions, forming compacted clay with dry densities of 0.5-1.8 g/cm3. No significant difference in basal spacings was observed between highly compacted (< 4 H2O layers) homoionic montmorillonite and MX-80 bentonite samples saturated under volume constricted conditions, if the accessory minerals and lower smectite content was accounted for. This was however not the case for the samples saturated at constant RH%, which indicates mixing of the exchangeable cations in the interlayers. Interestingly, even if the total water content was the same water uptake restricted by water activity did not always result in the same magnitude of

  1. LOW EMISSION AND HIGH EFFICIENCY RESIDENTIAL PELLET-FIRED HEATERS

    EPA Science Inventory

    The paper gives results of air emissions testing and efficiency testing on new commercially available under-feed and top-feed residential heaters burning hardwood- and softwood-based pellets. The results were compared with data from earlier models. Reductions in air emissions w...

  2. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  3. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    EPA Science Inventory

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  4. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    SciTech Connect

    Haase, S.

    2010-05-01

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  5. Method for producing pellets for use in a cryoblasting process

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1997-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  6. XPS analysis of nikki N111 catalyst pellets

    SciTech Connect

    Kelly, Dan

    2007-03-26

    X-ray photoelectron spectroscopy (XPS) was performed on several pellets of Nikki N111 catalyst to determine elemental composition. Of specific interest, the Nikki MSDS for this material cites a 20 wt. % contribution from the species "Others". XPS was employed to determine more precisely the chemical composition of the pellets and search for potential catalytic metal species not identified on the MSDS. Results are tabulated in Table 1 below. XPS analysis of the chemical composition of the catalyst pellets compares favorably to the N ikki MSDS, if the assumption is made that the nickel in the catalyst is oxidized to Ni2O3. Specifically, using a 100 g sample basis, the 49 grams of nickel metal specified in the MSDS would carry 20 grams of oxygen if it were oxidized to Ni2O3, potentially accounting for the 20 wt. %"Others". XPS was able to confirm the presence of copper and chromium in the pellets, each expected at less than 1 atomic percent and quantified at 1-3 atomic percent concentrations, but no metal species not identified by the MSDS were detected.

  7. Connect Them Bones! An Interdisciplinary Study of Owl Pellets.

    ERIC Educational Resources Information Center

    Zipko, Stephen J.

    1983-01-01

    Discusses a field/laboratory study of the barn owl in which students collect and dissect owl pellets. Interdisciplinary lessons focus on eco-politics, reconstruction of owl prey skeletons, studies of predator-prey relationships, and construction/installation of nest boxes for owls and other birds. The unit begins and ends with an attitude…

  8. Engineered clay-shredded tyre mixtures as barrier materials

    SciTech Connect

    Al-Tabbaa, A.; Aravinthan, T.

    1997-12-31

    An engineered clay consisting of kaolin and bentonite was mixed with shredded tyre in various weight percentages and examined for use as a constituent in a landfill liner. The clay-tyre mixtures properties in terms of compaction, unconfined compressive strength, permeability to water and paraffin, leachability, stress-strain behaviour, free swell behaviour and swelling pressure were investigated. The results show that the dry density and strength reduced with the addition of tyre and also with increased tyre content but that good interaction was developed between the clay and tyre. The strain at failure increased showing reinforcing effect of the tyre. The permeability to paraffin was considerably reduced compared to that to water due to the presence of the tyre which caused high swelling pressures to develop. The leachability results indicate initial high concentrations leaching out of the soil-tyre mixtures which will be subjected to dilution in the environment. This work adds evidence to the potential advantages of using soil-tyre mixtures as a landfill liner material.

  9. An automatic pellet dispenser for precise control of feeding topography in granivorous birds

    PubMed Central

    Berkhoudt, H.; Van Der Reijden, D.; Heijmans, M.

    1987-01-01

    Design and construction of an automatic pellet dispenser for granivorous birds are described. The dispenser permits rapid pneumatic delivery of pellets (five pellets per second maximum) to one controlled position and does not interfere with simultaneous electrophysiological recording. In addition, the device continuously indicates presence or absence of a pellet in the delivery position. This automatic dispenser proved very effective in our studies of stereotyped topographies of feeding in granivorous birds, such as pigeons and chickens. PMID:16812503

  10. Pellet fabrication development using thermally denitrated UO sub 2 powder

    SciTech Connect

    Davis, N.C.; Griffin, C.W.

    1992-05-01

    Pacific Northwest Laboratory (PNL) has evaluted, on a laboratory scale, the characteristics and pellet fabrication properties of UO{sub 3} powder prepared by the thermal denitration process. Excellent quality, 96% TD (percent of theoretical density) pellets were produced from development lots of this powder. Apparently, the key to making this highly sinterable powder from uranyl nitrate is the addition of ammonium nitrate (NH{sub 4}NO{sub 3}) to the feed solution prior to thermal denitration. Powder lots were processed with and without the NH{sub 4}NO{sub 3} addition in the feed solution. The lots included samples from the ORNL laboratory rotary kiln and from a larger scale rotary kiln at National Lead of Ohio (NLO). In the PNL evaluation, samples of UO{sub 3} were calculated and reduced to UO{sub 2}, followed by conventional process procedures to compare the sinterability of the powder lots. The high density pellets made from the powder lots, which included the NH{sub 4}NO{sub 3} addition, were reduced to Fast Breeder Reactor (FBR) density range of 88 to 92% TD by the use of poreformers. The NH{sub 4}NO{sub 3} addition also improved the sinterability properties of uranium oxide powders that contain thorium and cerium. Thorium and cerium were used as stand-in'' for plutonium used in urania-plutonia FBR fuel pellets. A very preliminary examination of a single lot of thermally denitrated uranium-plutonium oxide powder was made. This powder lot was made with the NH{sub 3}NO{sub 3} addition and produced pellets just above the FBR density range.

  11. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    SciTech Connect

    Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

  12. Intertrial Pellets Influence the Acquisition and Expression of Timed Appetitive Responding in Rats

    ERIC Educational Resources Information Center

    Williams, Douglas A.; Lussier, April L.

    2011-01-01

    Two experiments examined temporally based changes in the conditioned magazine-entries of rats when a target food pellet arrived at a fixed time before the termination of a conditioned stimulus. Both experiments found that increasing the rate of intertrial pellets systematically interfered with the rate of acquisition. When intertrial pellets were…

  13. Remote Visual Inspection Of Nuclear Fuel Pellets With Fiber Optics And Video Image Processing

    NASA Astrophysics Data System (ADS)

    Moore, Frank W.

    1985-12-01

    Westinghouse Hanford Company has designed and is constructing a nuclear fuel fabrication process line for the Department of Energy. This process line includes a pellet surface inspection system that remotely inspects the cylindrical surface of nuclear fuel pellets for surface spots, flaws, or discoloration. The pellets are inspected on a 100 percent basis after pellet sintering. A feeder will deliver the pellets directly to a fiber optic inspection head. The inspection head will view one pellet surface at a time. The surface image of the pellet will be imaged to a closed-circuit color television camera (CCTV). The output signal of the CCTV will be input to a digital imaging processor that stores approximately 25 pellet images at a time. A human operator will visually examine the images of the pellet surfaces on a high resolution monitor and accept or reject the pellets based on visual standards. The operator will use a digitizing tablet to record the location of rejected pellets, which will then be automatically removed from the product stream. The system is expandable to automated disposition of the pellet surface image.

  14. Efficacy and persistence of Altosid pellets against Culex species in catch basins in Michigan.

    PubMed

    McCarry, M J

    1996-03-01

    Larvae of Culex pipiens and Cx. restuans in catch basins were exposed to Altosid pellets (4% active ingredient, [S]-methoprene) applied at a rate of 11.3 kg/ha (7 g of pellets per catch basin). Under field conditions, the pellets yielded an average 82% emergence inhibition of adult mosquitoes over the 15-wk trial period.

  15. Role of prereduced pellets in the slag foaming in modern EAFs

    NASA Astrophysics Data System (ADS)

    Kozhukhov, A. A.

    2013-06-01

    The problems of electric arc furnace slags are considered, and the role of prereduced pellets in the slag foaming in electric arc furnaces is studied. The optimum rate of loading of prereduced pellets into a furnace that ensures effective steelmaking slag foaming is determined as a function of the degree of pellet prereduction.

  16. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. PMID:20400282

  17. Particle confinement of pellet-fuelled H-mode plasmas in the Mega Ampere Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Valovič, M.; Axon, K.; Garzotti, L.; Saarelma, S.; Thyagaraja, A.; Akers, R.; Gurl, C.; Kirk, A.; Lloyd, B.; Maddison, G. P.; Patel, A.; Shibaev, S.; Scannell, R.; Taylor, D.; Walsh, M.; MAST Team

    2008-07-01

    This paper quantifies the particle confinement of pellet-fuelled plasmas in the Mega Ampere Spherical Tokamak (MAST). The dataset is restricted mostly to neutral beam heated plasmas and to shallow pellets launched from the high field side. It is shown that the pellet deposition can be explained only by invoking the ∇B drift of the pellet ablatant. The pellet creates a zone with positive density gradient and increased temperature gradient. Simulations show that these changes could increase the level of micro-turbulence and thus enhance further the penetration of pellet-deposited particles towards the core. Post-pellet dynamics of the density profile is characterised by the pellet retention time τpel. It is shown that τpel correlates with the status of the edge transport barrier (L-mode or H-mode) and decreases rapidly for pellet deposition radius rpel approaching the plasma edge. For ELMy H-mode and ITER-like pellets, rpel ≈ 0.8a, the pellet retention time is about 20% of the energy confinement time. The fuelling requirement by the pellets for ITER is discussed.

  18. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites.

    PubMed

    Yan, Liang-guo; Xu, Yuan-yuan; Yu, Hai-qin; Xin, Xiao-dong; Wei, Qin; Du, Bin

    2010-07-15

    Phosphorus removal is important for the control of eutrophication, and adsorption is an efficient treatment process. In this study, three modified inorganic-bentonites: hydroxy-aluminum pillared bentonite (Al-Bent), hydroxy-iron pillared bentonite (Fe-Bent), and mixed hydroxy-iron-aluminum pillared bentonite (Fe-Al-Bent), were prepared and characterized, and their phosphate adsorption capabilities were evaluated in batch experiments. The results showed a significant increase of interlayer spacing, BET surface area and total pore volume which were all beneficial to phosphate adsorption. Phosphate adsorption capacity followed the order: Al-Bent>Fe-Bent>Fe-Al-Bent. The adsorption rate of phosphate on the adsorbents fits pseudo-second-order kinetic models (R(2)=1.00, 0.99, 1.00, respectively). The Freundlich and Langmuir models both described the adsorption isotherm data well. Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. Finally, phosphate adsorption on the inorganic pillared bentonites significantly raised the pH, indicating an anion/OH(-) exchange reaction.

  19. Measurement of Persistent Organic Pollutants (POPs) in plastic resin pellets from remote islands : Toward establishment of baseline level for International Pellet Watch

    NASA Astrophysics Data System (ADS)

    Takada, H.; Heskett, M.; Yamashita, R.; Yuyama, M.; Itoh, M.; Geok, Y. B.; Ogata, Y.

    2011-12-01

    Plastic resin pellets collected from remote islands in open oceans (Canary, St. Helena, Cocos, Hawaii, Maui Islands and Barbados) were sorted and yellowing polyethylene (PE) pellets were measured for polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and the degradation products (DDTs), and hexachlorocyclohexanes (HCHs) by gas chromatograph equipped with mass spectrometer (GC-MS) and with electron capture detector (GC-ECD). PCBs were detected from all the pellet samples, confirming the global dispersion of PCBs. Median concentrations of PCBs (sum of 13 congeners : CB-66, CB-101, CB-110, CB-118, CB-105, CB-149, CB-153, CB-138, CB-128, CB-187, CB-180, CB-170, CB-206) in the remote island pellets ranged from 0.1 to 10 ng/g-pellet. These were one to three orders of magnitude lower than those observed for pellets from industrialized coastal zones (hundreds ng/g in Los Angeles, Boston, Tokyo; Ogata et al., 2009). Because these remote islands are far (>100 km) from industrialized zones, these concentrations (i.e., 0.1 to 10 ng/g-pellet) can be regarded as global "baseline" level of PCB pollution. Concentrations of DDTs in the remote island pellets ranged from 0.2 to 5.5 ng/g-pellet. At some locations, DDT was dominant over the degradation products (DDE and DDD), suggesting current usage of the pesticides in the islands. HCHs concentrations were 0.4 - 1.8 ng/g-pellet and lower than PCBs and DDTs, except for St. Helena Island at 18.8 ng/g-pellet where the current usage of the pesticides are of concern. The analyses of pellets from the remote islands provided "baseline" level of POPs (PCBs < 10 ng/g-pellet, DDTs < 6 ng/g-pellet, HCHs < 2 ng/g-pellet). However, the present samples were from tropical and subtropical areas. To establish global baseline, especially to understand the effects of global distillation, pellet samples from remote islands in higher latitude regions are necessary. From the eco-toxicological point of view, the fact that sporadic high

  20. A fully coupled three-dimensional THM analysis of the FEBEX in situ test with the ROCMAS Code: Prediction of THM behavior in a bentonite barrier

    SciTech Connect

    Rutqvist, J.; Tsang, C-F.

    2003-09-01

    This paper presents a fully coupled thermal-hydrological-mechanical analysis of FEBEX--a large underground heater test conducted in a bentonite and fractured rock system. System responses predicted by the numerical analysis--including temperature, moisture content, and bentonite-swelling stress--were compared to field measurements at sensors located in the bentonite. An overall good agreement between predicted and measured system responses shows that coupled thermal-hydrological-mechanical processes in a bentonite barrier are well represented by the numerical model. The most challenging aspect of this particular analysis was modeling of the bentonite's mechanical behavior, which at FEBEX turned out to be affected by gaps between prefabricated bentonite blocks. At FEBEX, the swelling pressure did not develop until a few months into the experiment when moisture swelling of bentonite blocks had closed the gaps completely. Moreover, the wetting of the bentonite took place uniformly from the rock and was not impacted by the permeability difference between the Lamprophyres dykes and surrounding rock.